

1
American Institute of Aeronautics and Astronautics

AN AIR TRAFFIC SIMULATION MODEL
THAT PREDICTS AND PREVENTS EXCESS DEMAND

Dr. Justin R. Boesel*
The MITRE Corporation

Center for Advanced Aviation System Development (CAASD)
McLean, Virginia 22102

* Sr. Simulation and Modeling Engineer

ABSTRACT
An airplane’s ability to absorb delay while airborne is
limited and costly. Because of this, the air traffic
management system anticipates and manages excessive
demand for scarce shared resources, such as arrival
runways or busy airspace, so that the delay necessary
for buffering can be spread out over a larger distance,
or taken on the ground before departure. It is difficult
to model these important dynamics in a standard queue-
resource simulation framework, which does not account
for limited delay absorption capacity. The modeling
methodology presented here captures these dynamics
by employing a large number of independent threads of
execution to monitor and enforce a large number of
relatively simple mathematical relationships. These
relationships calculate feasible time windows for each
portion of each flight. The model was implemented in
the SLX simulation language. The speed and
scalability of SLX are essential to the approach, which
would otherwise be impractical.

INTRODUCTION
From a capacity modeling perspective, airplane traffic
is fundamentally different from automobile, rail or ship
traffic; while a car, train, or ship can stop and wait for
an essentially unlimited amount of time in the middle of
its journey, an airplane cannot. In other words, once
airborne, an airplane’s ability to absorb delay is limited
and costly, and it is important in modeling delays and
capacities.

Because of this limited delay absorption capacity, the
air traffic management system anticipates and manages
excessive demand for scarce shared resources (e.g.,
arrival runways, busy terminal airspace) so that the
delay necessary for buffering can be spread out over a
larger distance, or taken on the ground before departure.
These actions, however, can ripple back and block
resources upstream, such as departure runways and
busy sectors.

It is difficult to model these dynamics in a standard
queue-resource simulation framework. In a standard
queue-resource model, there is no concept of limited

delay absorption capacity. For instance, in a factory
setting, a part moving from one work station to another
may wait for one minute or one week before receiving
service. The number of parts waiting for service (queue
size) may be explicitly limited, but the wait time per
part is not.

To model airplane traffic, one needs to be able to
anticipate excessive demand for a resource well before
it occurs, so that the flight to be delayed has adequate
distance over which to absorb the required delay.

This paper describes two different, but closely related,
mechanisms for anticipating and preventing excessive
demand in a simulation model. One mechanism is a
link-node network that treats each node as a resource
that can handle one flight at a time. The other model,
which essentially sits on top of the link-node model, is
a sector model that considers a sector as a resource that
has different capacities corresponding to different
resources (e.g., communications and coordination) and
can handle many flights simultaneously. In the sector
model, each flight can place a different burden on each
of the sector’s capacities.

The remainder of this paper is organized as follows: the
next section describes how aircraft are delayed for
buffering; the third section explains why it is important
to capture the dynamics caused by limited buffering
capacity; the fourth section provides an overview of
the link-node network model; the fifth section describes
the central “monitor and enforce” mechanism used in
the simulation; the sixth section provides an example
modeling two merging aircraft; the seventh section
provides an overview of the sector capacity model; the
eighth section describes the model in more detail; the
ninth section describes elements of the Simulation
Language with Extensibility (SLX) simulation language
that are central to this approach; and the tenth section
summarizes and draws some conclusions.

DELAY ABSORPTION BUFFERING
In almost any capacity-constrained system, the ability
to buffer demand during busy periods is key to
increasing utilization of scarce server resources. For

2
American Institute of Aeronautics and Astronautics

instance, during lunchtime at a fast food restaurant,
customers wait in line while the cashier/server takes
orders from other customers. When one customer is
done, the next in line receives service, and the server
remains busy. As wait time increases, a customer can
choose to remain in line or can opt out, and leave the
restaurant. In the air traffic control system, some
similar situations exist: departing airplanes wait on
taxiways for their turn on a runway. Once aircraft are
in the air, however, the situation changes. An aircraft
cannot opt out of landing and, because of fuel
constraints, it cannot wait for an arrival runway
indefinitely. Within these constraints, buffering
airborne flights—making them wait in the air—even for
relatively short periods of time is costly in a number of
ways.

• Buffering requires controller work. Overloading a
controller is undesirable because it can
compromise safety.

• Buffering usually increases mileage, which burns
fuel and increases aircraft wear and tear.

• Buffering requires airspace.

Air traffic managers have four basic methods in which
they can delay aircraft to keep them from
overwhelming a resource such as a runway or a
controller downstream. These methods, and their
relative costs and benefits, are described as follows:

1. Ground Delay
Delaying a flight on the ground before it departs is
relatively cheap in terms of fuel and controller
workload, even though it is not free to the airlines,
their passengers or cargo. Ground delay can absorb
practically unlimited amounts of time. Ground
delay is often used to prevent congestion in the air,
which, if left unchecked, could overburden
controllers and compromise safety. Because of
departure runway congestion and flight-time
variability, however, it is not practical to use
ground delay to fine-tune a flight’s arrival time at a
distant airport.

2. Airborne Holding
Placing a flight into airborne holding is expensive
in terms of fuel and controller workload.
Furthermore, holding requires reserved airspace;
the locations at which airborne holding can take
place are limited. Holding is most commonly used
to delay arriving flights close to (within 50 miles
of) their destination airport. Despite the costs,
holding allows controllers to delay airborne flights
for relatively large amounts of time (tens of
minutes). At large airports with relatively
unconstrained airspace, such as Atlanta Hartsfield,
controllers use the buffering capacity provided by

airborne holding to make more efficient use of
arrival runways.1

3. Vectoring
Vectoring means extending a flight’s path (thereby
delaying it) by turning it. Vectoring allows
controllers to delay aircraft more precisely and
with less expense, in terms of fuel cost, than they
could with airborne holding. The amount of delay
that can be achieved with vectoring is closely
related to the amount of airspace a controller can
use. Vectoring is a very common technique,
especially for sequencing flights onto an arrival
runway.

4. Speed Control
Slowing a flight down to delay it requires little
airspace, but the amount of delay that can be
absorbed with speed control is not great.

WHY MODEL LIMITED DELAY ABSORPTION?
Because airborne flights can absorb only a limited
amount of delay, buffering caused by contention for a
downstream resource, such as an arrival runway, can
quickly ripple back upstream and cause congestion in
an upstream resource, such as an en route sector. The
subsequent congestion upstream can delay departures
from and arrivals to other airports.

If a model fails to capture the limits on delay
absorption, it will miss these blocking effects upstream.
This makes it important to model aircraft taking delay
not only in the correct amount, but also at the correct
place and time.

Figure 1 illustrates this problem. Suppose airport D
sends flights to airport A, and airport C send flights to
Airport B, all via en-route Sector Y. If runway
congestion at Airport A delays arrivals, they may spend
more time in Sector Y, especially if the delay
absorption capacity between Y and A is small. If this
causes Sector Y to become too busy, departures from C
may be held on the ground. A model that accounts for
limited delay absorption would capture this dynamic.

Airport B

Airport A En Route
Sector Y

Airport D

Airport C

Airport B

Airport A En Route
Sector Y

Airport D

Airport C

Figure 1: En Route Sector as a Constraint

3
American Institute of Aeronautics and Astronautics

On the other hand, in a model that overstates the delay
absorption capacity of flights between Sector Y and
Airport A, the arrivals to A will quickly pass through
Sector Y, which will not become too busy, thus
allowing departures from C to B to proceed undelayed.
This model will understate delay.

OVERVIEW OF THE LINK-NODE MODEL
In the first model presented here, aircraft move along a
link-node network structure. Each flight requires a
minimum time to traverse each link, and each flight can
absorb only a limited amount of additional delay on
each link. To represent an airspace that has plenty of
room for vectoring, this maximum delay parameter can
be set high, while a narrower, more constrained
airspace would have a lower maximum delay
parameter.

As flights merge onto common links or cross each
other’s paths, minimum separation between aircraft is
maintained. Each link and node in the model is
assigned a minimum required separation (in minutes)
that defines its capacity.

The model is essentially a network model with nodes,
links, and flights moving and absorbing delay on links.
Unlike most network models, however, this model
anticipates contention for resources long before it
occurs and spreads the required delay absorption out
across the links, rather than in a buffer immediately in
front of the constrained resource. Four object types
define the model:

1. Flight Object
Each Flight object represents a single flight. It has
the flight’s aircraft ID, aircraft type, desired
departure time, and a flight plan, defined as a list of
Links.

2. Link Object
Flights use Links to get from one place to another.
A Link object can be used to represent an airway
at a particular altitude. Links are defined to be
one-way only, and while a Link can be shared by
several Flights, passing is not permitted on a Link.
In other words, Links impose a strict First-In-First-
Out (FIFO) policy on Flights. Each Link has
pointers to its starting and ending Nodes, pointers
to all of the Flights that will pass over it, and
minimum required separations (in minutes) that
define its capacity.

3. Node Object
A Node object is used to connect Links. A Node
object, which can be thought of as a point in 3-D
space, can be used to represent a waypoint or a fix
at a particular altitude. Nodes represent crossings,
merges, and split relationships between Link

objects. Each Node has a list of the Links coming
into and out of it. Like a Link, a Node has several
minimum required separations that define its
capacity.

4. Flight-By-Link Object
As each Flight crosses each Link on its flight path,
the model generates a great deal of timing
information. Flight-by-Link objects keep track of
all of this information. A Flight-by-Link object
represents a particular Flight on a particular Link.
For example, if a Flight has n Links on its path,
then n Flight-By-Link objects will be created for
that Flight.

The Flight-By-Link object is the workhorse of the
simulation. It has pointers to three other Flight-by-Link
objects, which define the object’s relationship with the
rest of the model. One pointer refers to the Flight
immediately ahead of it on the same Link, and the other
two pointers refer to the same Flight on the next and
previous Links. Figures 2 and 3 illustrate these
relationships.

Link k

Link j

Link h

Flight A

Flight B

Link k

Link j

Link h

Flight A

Flight B

Figure 2. Flights A and B on Links h, j, and k

B_j
(Flight B on Link j)

Next Link

Leading Flight

Previous LinkB_h
(Flight B on Link h)

B_k
(Flight B on Link k)

A_j
(Flight A on Link j)

B_j
(Flight B on Link j)

Next Link

Leading Flight

Previous LinkB_h
(Flight B on Link h)

B_k
(Flight B on Link k)

A_j
(Flight A on Link j)

Figure 3. Flight-By-Link Object B_j’s Pointers to
Adjacent Flight-By-Link Objects

4
American Institute of Aeronautics and Astronautics

Suppose Flight B follows Flight A across Links h, j,
and k, as shown in Figure 2. To represent this in the
model, one would need Flight objects for A and B, and
Link objects for h, j, and k. To represent the flights’
movement over these Links, one would need to create
six Flight-By-Link objects, A_h, A_j, A_k, B_h, B_j,
and B_k. Figure 3 illustrates the pointer relationships
of Flight-By-Link B_j to its “adjacent” Flight-By-Link
objects B_k (same Flight, next Link), A_j (leading
Flight, same Link), and B_h (same Flight, previous
Link).

Each Flight-by-Link object has two quantities—
minimum traversal time and maximum delay—that
determine the minimum and maximum amounts of time
the Flight can spend on the Link. The minimum
traversal time represents the amount of time a Flight
needs to cross a Link, and the maximum delay
represents the amount of additional time a Flight could
absorb on a particular Link.

MONITOR AND ENFORCE
In the model presented here, each object monitors and
enforces a number of mathematical relationships. The
following example illustrates such a relationship, and
describes its enforcement.

Suppose the two Flights depicted in Figure 2, need to
increase separation before entering Link k. Let TA and
TB be the clock times at which Flights A and B
(respectively) enter Link k, and let Sk be the minimum
required separation (in minutes) between Flights
entering Link k. To respect this separation, one must
ensure that:

TB > TA + Sk (1)

Flight-By-Link object B_k can read all three
quantities in (1): TB is local to B_k, and the others can
be read via pointers. B_k gets its own independent
thread of execution to enforce the separation
requirement expressed in (1), illustrated by the
following pseudo-code:

fork {// fork command creates new thread

 forever //Enters Loop
{
 wait until (TB < TA + Sk);
 //relationship is violated

 TB = TA + Sk;
 //Enforce relationship

 }//end forever loop
}//end fork

The new thread immediately enters a “forever” loop,
the only purpose of which is to wait until inequality (1)
is violated, and then to correct it. This basic

mechanism monitors and enforces a mathematical
relationship.

At its heart, the model is essentially a system of
hundreds of thousands of such relationships, each one
monitored and enforced by its own independent thread
and a “wait until” statement.

MODELING MOVEMENT AND LIMITED
DELAY ABSORPTION: AN EXAMPLE

The following example illustrates how the objects and
the monitor-and-enforce mechanism work together to
model delay pass back due to limited delay absorption.

Consider Figure 4. Suppose Flight C traverses the
airspace represented by Links v, w, and z, and Flight D,
which starts just a little bit later, traverses the airspace
represented by Links x, y, and z. Suppose that the
Flights will need to be separated by one minute when
crossing their merge point, S.

S
v

x

y
w

Flight C
Flight D

z

S
v

x

y
w

Flight C
Flight D

z

Figure 4: Merging Flights at Point S

Suppose further that each Flight can traverse each Link
in a minimum of two minutes, but can only absorb
45 seconds (0.75 minutes) of delay on each Link. To
respect the separation requirement at point S, one of the
Flights will need to be delayed.

To model this, one creates Flight objects representing C
and D, Link objects representing v, w, x, y, and z, a
Node object representing point S, Flight-By-Link
objects C_v, C_w, and C_z, representing Flight C on
Links v, w, and z, and Flight-By-Link objects D_x,
D_y, and D_z representing Flight D on Links x, y,
and z.

Each Flight-By-Link object has three pointers to other
Flight-By-Link objects that are “adjacent” (in space or
sequence):

• The Next Link pointer points to the same flight on
the next Link in the flight plan. For instance, C_v
has a pointer to Next Link C_w

5
American Institute of Aeronautics and Astronautics

• The Previous Link pointer points to the same flight
on the previous Link in the flight plan. For
instance, C_w has a pointer to Previous Link C_v

• The Leading Flight pointer points to the previous
flight on the same Link. In this example, there is
only one such meaningful instance of this; D_z has
a pointer to Leading Flight C_z

Each Flight-By-Link object has several attributes,
specifically:

• Minimum Traversal Time − two minutes for all
Flight-By-Link objects in this example

• Maximum Delay − 45 seconds for all Flight-By-
Link objects in this example

• Best Guess Time of Entry − the current best
estimate of when (in simulation clock time) the
Flight will enter the Link;

• Best Guess Time of Exit − the current best estimate
of when (in simulation clock time) the Flight will
exit the Link

To model simple movement across a single Link, there
is a thread that monitors and enforces the relationship
(M1):

 Best Guess Time of Exit >
 Best Guess Time of Entry +
 Minimum Traversal Time

To model movement from Link to Link, there is a
thread that monitors and enforces the relationship (M2):

 Best Guess Time of Entry >
 Previous Link’s Best Guess Time of Exit

Each Link object has a constant Minimum Separation
Required at Entry, which is used to separate merging
and in-trail Flights. This is set to one minute on Link z.
Each Flight-By-Link object compares its Best Guess
Time of Entry to that of the Flight in front of it. The
mechanism for doing this is a thread that monitors and
enforces the relationship (M3):

 Best Guess Time of Entry >
Leading Flight’s Best Guess Time of Entry +

 Shared_Link’s
 Minimum Separation Required at Entry

To pass back constraint information from Link to Link,
there is a thread that monitors and enforces the
relationship (M4):

 Best Guess Time of Exit >
 Next Link’s Best Guess Time of Entry

To model the limited delay absorption capacity on each
Link, there is a thread that monitors and enforces the
relationship (M5):

 Best Guess Time of Entry >
 Best Guess Time of Exit –
 (Minimum Traversal Time +

Maximum Delay)

Suppose Flight C starts at time 100.0 and Flight D starts
at time 100.1. The threads enforcing relationships M1
and M2 will cascade forward through the system,
setting Best Guess Time of Entry at 104 for Flight-By-
Link object C_z (see Figure 5).

A similar chain of events takes place on objects D_x,
D_y, and D_z, so that D_z’s Best Guess Time of Entry
will equal 104.1. But because the entry times are less
than one minute apart, this causes a separation violation
on entry to Link z. This violation is caught by M3,
which will force D_z’s Best Guess Time of Entry to
105, causing M4 to force D_y’s Best Guess Time of
Exit to 105 (see Figure 6).

Flight D needs to absorb a total delay of 0.9 minutes
overall, but only 0.75 minutes can be absorbed on any
single Link. M5 forces D_y’s Best Guess Time of Entry
down to 102.25. This means that 0.75 minutes of delay,
the maximum, is absorbed on Link y. The remaining
0.15 minutes is pushed back to Link x by M4 which
forces D_x’s Best Guess Time of Exit to 102.25.

C_v (Flight C on Link v, before w)

Best Guess Time of Entry =100

Best Guess Time of Exit =102

C_w (Flight C on Link w)

Best Guess Time of Entry =102

Best Guess Time of Exit =104

C_z (Flight C on Link z, after w)

Best Guess Time of Entry =104

M1

M1

M2

M2

C_v (Flight C on Link v, before w)

Best Guess Time of Entry =100

Best Guess Time of Exit =102

C_w (Flight C on Link w)

Best Guess Time of Entry =102

Best Guess Time of Exit =104

C_z (Flight C on Link z, after w)

Best Guess Time of Entry =104

M1

M1

M2

M2

Figure 5: Sending Flight C’s Timing Information
Forward via Flight-By-Link Objects C_v, C_w,
and C_z

6
American Institute of Aeronautics and Astronautics

M3

C_z (Flight C on Link z, ahead of D)

Best Guess Time of Entry =104

D_y (Flight D on Link y)

Best Guess Time of Entry =102.25

Best Guess Time of Exit =105

D_x (Flight D on Link x , before y)

Best Guess Time of Entry

Best Guess Time of Exit =102.25

D_z (Flight D on Link z ,after y)

Best Guess Time of Entry =105

M4

M5

M4

M3

C_z (Flight C on Link z, ahead of D)

Best Guess Time of Entry =104

D_y (Flight D on Link y)

Best Guess Time of Entry =102.25

Best Guess Time of Exit =105

D_x (Flight D on Link x , before y)

Best Guess Time of Entry

Best Guess Time of Exit =102.25

D_z (Flight D on Link z ,after y)

Best Guess Time of Entry =105

M4

M5

M4

Figure 6. Flight C Delays Flight D, and Delay is
passed back via Flight-By-Link objects D_z, D_y,
and D_x.

At this point, the monitoring and enforcing stops,
because D_x’s Best Guess Time of Exit of 102.25 is
well within bounds: M5 is unviolated because D_x’s
Best Guess Time of Entry is 100.1, its Minimum
Traversal Time is two, and its Maximum Delay is
45 seconds (0.75 minutes).

Note that these changes, which essentially put the
system of equations back into balance, take place in
zero simulated time. In this case, the changes should
occur before the simulation clock reaches 100, the time
at which the Flights start on their first Links. The
simulation clock advances to the next scheduled “Link
movement”, that is, the next scheduled Best Guess Time
of Entry among all of the Flight-By-Link objects
defined in the model. Subsequent balancing actions
occur between every advance of the simulation clock.

Because each Flight-By-Link object only has to directly
account for the three “adjacent” Flight-By-Link objects,
the model scales up well. Once one has set up the rules
governing these relationships, changes that take place

far away are allowed to ripple through the system
automatically.

Crossing Flights

The previous example illustrates the fundamental
monitor-and-enforce mechanisms and the system of
relationships required to simulate a merge. Flights
whose paths cross, rather than merge, however, share
only a common Node object, not a common Link
object. As a result, an additional set of relationships
among Flight-By-Link objects is required. Specifically,
whereas a merging Flight requires a pointer to the
leading Flight on the shared Link, a crossing Flight
requires a pointer to the leading Flight through the
shared Node. Apart from that, the mechanisms for
maintaining separation and absorbing delay due to
crossing are practically identical to those for merging.

OVERVIEW OF SECTOR CAPACITY MODEL
The Link-Node network model can represent the
important problem of flight separation and delay pass-
back with limited delay absorption. There are,
however, other important constraints of the air traffic
control system that the link-node network model cannot
capture. Specifically, the limited capacity of a sector’s
control team is often more constraining than any flight
separation requirement. For instance, a sector may be
unable to handle an additional flight because the control
team does not have time to communicate with the
flight, even though there may be plenty of air space
available to separate the flights.

A sector’s control team may also face constraints on its
ability to coordinate with other sectors, or on the
number of flights the team can track simultaneously.
Furthermore, the demands placed on each of these
capacities may differ from one flight to the next. For
instance, it may be quite easy to keep track of a routine
flight, while an “oddball” flight may require a great
deal more controller attention.

In the model presented below, each sector is a resource
that can handle many flights simultaneously, and each
flight traverses several sectors, placing various
demands on each one it crosses. Furthermore, each
sector has several finite capacities, such as
communications and coordination, rather than just a
single one, such as flight count. These capacity and
demand numbers are user inputs to the model, and the
model imposes delays upon flights to keep each sector
within its capacity. The model makes no attempt to
account for individual controller instructions or pilot
actions.

7
American Institute of Aeronautics and Astronautics

Sector A

Sector B

Sector C

Sector D

Sector Y
Capacity

Communication = 5
Coordination = 10

Sector A

Sector B

Sector C

Sector D

Sector Y
Capacity

Communication = 5
Coordination = 10

Figure 7. Sectors A, B, C, D and Y

For example, let us suppose that in Figure 7, Sector Y is
assigned a communications capacity of five, and a
coordination capacity of ten. Furthermore, suppose
each flight going from Sector C to Sector B (a C-to-B
flight) places a demand of two communications units
and three coordination units on Sector Y, while each
flight going from Sector D to Sector A (a D-to-A flight)
places a demand of one communications unit and four
coordination units on Sector Y. Sector Y can
simultaneously handle any combination of C-to-B and
D-to-A flights that does not, in aggregate, violate any of
Sector Y’s capacities. For instance, Sector Y could
simultaneously handle two C-to-B flights and one
D-to-A flight, which would place a total demand of five
(that is, 2x2+1x1) communications units and ten (that
is, 2x3+1x4) coordination units. The sector could not,
however, handle one C-to-B flight and two D-to-A
flights simultaneously, which would place a total
demand of 4 (that is, 1x2+2x1) communications units
and 11 (that is, 1x3+2x4) coordination units, exceeding
the sector’s coordination capacity. In this case, one of
the flights would need to be delayed until another flight
exited the sector, keeping the demand within the
capacity.

Just like the Link-Node model, the Sector model
prevents overloads by delaying flights, and it must
impose these delays early enough so that the Flight has
enough distance over which to absorb the delay. The
mechanisms used to predict and react to sector overload
are, however, quite different from those used to
maintain separation in the Link-Node model. The
Link-Node model rests heavily on two assumptions:
one is the assumption that a Node can handle only one
Flight at a time, and the other is that Links impose a
FIFO policy on Flights. Roughly speaking, under these
assumptions, if each Link-By-Flight object knows
where it is going and who is ahead of it, and if each
Node knows who wants to go through it, the model has
all the information it needs to maintain separation.

A sector, however, cannot assume a FIFO policy and
must be able to handle multiple flights simultaneously.
To manage demand under these conditions, the Sector

model monitors demand at fixed future time horizons
(e.g., ten minutes ahead of the simulation clock), and
imposes delay in reaction to predicted demand
overloads.

Despite these differences, the Sector model is tightly
integrated with the Link-Node network model. The
Sector model sits on top of the Link-Node model, using
the Link-Node network infrastructure to:

• move flights
• predict each flight’s sector entry and exit times
• propagate delay backward through the system

ELEMENTS OF THE SECTOR MODEL
Implementing the Sector model requires several
additional object types. Three objects are most
important: the Sector object, which defines the sector
and its capacities, and responds to predicted overloads;
the Flight-By-Sector object, which represents the
timing and demands of a single Flight on a single
Sector, and connects the Sector model to the Link-Node
model, and; the Horizon Monitor object, which tells the
Sector object whether a particular Flight will be in the
Sector at a particular time in the future.

Sector Object

A Sector object contains a set of Link objects and a
vector of resource capacities (e.g., five units of
communications, ten units of coordination). The set of
Links represents the sector control team’s area of work.
Any Flight that is on a Sector’s Link will place a
demand on the Sector. A Link cannot be a member of
more than one Sector object.

In Figure 8, Sectors A, B, C, and D each have one Link
(a, b, c, and d, respectively) while Sector Y has four
links (y1, y2, y3, and y4).

Link y1

Link c

Link b

Link y3

Link y4

Link y2

Sector A

Sector B

Sector C

Sector DSector Y

Link dLink a Link y1

Link c

Link b

Link y3

Link y4

Link y2

Sector A

Sector B

Sector C

Sector DSector Y

Link dLink a

Figure 8. Sectors A,B,C,D and Y, and their Links

The Sector Object maintains sets of expected (future),
current, and past flights. These are updated as the
simulation progresses. The Sector Object also contains
a matrix of projected demands for each resource at each
future time horizon. Table 1 shows an example of this

8
American Institute of Aeronautics and Astronautics

for a Sector with two capacities (communications and
coordination) and two lookahead horizons (10 minutes
and 20 minutes). The values in this table are
incremented and decremented by Horizon Monitor
objects, described later.

Table 1. Example of Predicted Demand on a Single
Sector With Two Lookahead Horizons

 Horizon
(minutes into the future)

Capacity Measure 10 min. 20 min.

Communications 4 units 6 units

Coordination 5 units 7 units

Each cell in the table (each resource at each horizon) is
monitored by a thread that compares projected demand
to capacity. If demand exceeds capacity, the model
delays the last flight that is within the horizon by
increasing a Flight-By-Sector variable, called Earliest
Allowed Time of Entry, by a small amount. This action
is repeated until the last flight is pushed outside of the
horizon. If demand still exceeds capacity, the (new)
last flight within the horizon is pushed outside of the
horizon. This action is repeated until predicted demand
is within capacity. To determine which flight is the last
within the horizon (that is, the one that will take the
delay), the model runs through the Sector object’s set of
expected flights before imposing each delay. This
means that after one flight gets pushed out of the
horizon, delay will be imposed on the next one.

Flight-By-Sector Object

Just as the Link-Node model has a Flight-By-Link
object to represent a particular Flight on a particular
Link, the Sector model has a Flight-By-Sector object to
represent a particular Flight in a particular Sector. The
Flight-By-Sector object has pointers to the Flight and to
the Sector, and contains the flight’s demands for each
Sector resource (e.g., this Flight demands one unit of
communications and three units of coordination from
this Sector).

The Flight-By-Sector object connects the Sector model
to the Link-Node model. Each object maintains a
Flight’s predicted Sector entry and exit times by
“piggy-backing” on Flight-By-Link Objects. To do
this, the Flight-By-Sector object maintains pointers to
the Flight-By-Link corresponding to the flight’s first
and last Links in the Sector. These could both be the
same Link, such as Link a in Sector A in Figure 8, or
different Links, such as Links y1 and y2 in Sector Y.

In Figure 8, suppose we have a single flight that
traverses three Sectors (D, Y, and A) on four Links
(d, y1, y2, and a). The model would create a Flight-By-
Link object for each Link, and a Flight-By-Sector
Object for each Sector. The flight’s predicted sector
entry time for Sector Y is the same as its predicted
entry time on to Link y1, and its predicted sector exit
time is equal to the predicted exit time from Link y2.

To maintain the Flight’s predicted Sector entry time,
the Flight-By-Sector object has one thread that
monitors and enforces the relationship:

Sector Entry Time ==
 Best Guess Time of Entry on First Link

and another thread that monitors and enforces the
relationship:

Sector Exit Time ==
Best Guess Time of Exit on Last Link

In addition to reading times from the Link-Node
network, Flight-By-Sector objects also transmit Sector-
based delay to the Link-Node network. Each Flight-
By-Sector object has a variable called “Earliest
Allowed Time of Entry”. When a Sector wants to delay
a Flight, it increases this variable. To communicate this
delay to the Link-Node Network, the Flight’s first
Flight-By-Link object in the Sector (e.g., Link y_1 in
Figure 8) has a thread that monitors and enforces the
following relationship:

Flight-By-Link’s Best Guess Time of Entry >
 Flight-By-Sector’s Earliest Allowed Time of

Entry

The Sector imposes the delay on the Link, and the
Link-Node network takes care of the rest, propagating
delay backward if necessary. Sector objects do not
communicate directly with one another, but they
communicate with their Links, and one Sector’s Links
can communicate with another Sector’s Links.

Horizon Monitor Object

The model employs several “lookahead horizons” (e.g.,
ten minutes into the future), future points in time at
which the model monitors the predicted demand upon
the sector. Figure 9 illustrates the concept. Suppose
Flights Q, R, and S are approaching a Sector. The
brackets represent the time each flight will be in the
sector. If current simulation clock time = t, then
Flight Q has just entered the Sector, Flight R will enter
the Sector before time = t + horizon, and Flight S will
not enter until later.

9
American Institute of Aeronautics and Astronautics

time = t

time = t + horizon

entry time

entry time

entry time

exit time

exit time

exit time

Q

R

S

time = t

time = t + horizon

entry time

entry time

entry time

exit time

exit time

exit time

Q

R

S

Figure 9. Flights Q, R, and S Sector Entry and Exit
Times Spread Over the Time Line

Suppose that each Flight places a demand of two
communication units on the Sector, which has a
communications capacity of five. In Figure 9, there is
no problem, because there will not be more than one
flight in the sector at any given time. Now consider
Figure 10. As the dotted line indicates, Flights T, U,
and V will all be in the Sector at time = t+ horizon.
This would overload the Sector’s communication
capacity, so a Flight will need to be delayed. In
Figure 11, we see that Flight V’s Sector entry time has
been delayed past the horizon, but there will still be a
sector overload after that time. In Figure 12, the
simulation clock has advanced to time = t+s, and
Flight V’s entry time has been delayed until
time = t+s+horizon, which is Flight U’s Sector exit
time. Now, the demand is spread out over time, and
will remain within the Sector’s capacity.

Figure 10. Flight T, U, and V all in the Sector at
time = t + horizon

Figure 11. Flight V’s Sector Entry Time Delayed to
time = t+ horizon

Figure 12. Simulation Clock advances to time = t + s
and Flight V’s Sector Entry Time Delayed to
time = t + s + horizon

To keep track of when a Flight’s predicted time in a
Sector rolls into (and out of) a particular time horizon,
we create a “Horizon Monitor” object for each
Flight-By-Sector object and each lookahead horizon. So
if there are ten flights passing through ten sectors each
with three lookahead horizons, the model will, over the
course of a simulation, create 300 Horizon Monitor
objects. The Horizon Monitor object also increments
and decrements predicted Sector demand (that is, the
cells in Table 1), each time a Flight-By-Sector object
rolls into or out of a particular horizon.

A Flight-By-Sector’s “time window” (the time it plans
to spend in the Sector) can be grouped into one of three
states with regard to a particular horizon. The window
can be before the horizon (that is, predicted entry time
is later than t + horizon), passed the horizon (that is,
predicted exit time is earlier than t + horizon), or on the
horizon (entry time is earlier than t + horizon, and exit
time is later than t + horizon).

time = t

time = t + horizon

T
U V

time = t

time = t + horizon

T
U

V

time = t +s

time = t + s + horizon
T

U

V

10
American Institute of Aeronautics and Astronautics

In the model, a Flight-By-Sector’s time window is
pulled forward (with regard to a particular horizon) as
the simulation clock advances, but the time window is
also pushed backward as the model imposes delay upon
Flights, increasing predicted sector entry and exit time.
To keep track of this, the Horizon Monitor employs
four threads.

The first thread is designed to detect the Flight entering
the horizon as simulation clock (t) advances. It waits
until:

Predicted Sector entry time < t + horizon
AND
Time Window’s State is before horizon

When these conditions are met, the thread adds the
Flight’s demands to the Sector’s totals and switches the
time window’s state to on the horizon.

The second thread is designed to detect the Flight
exiting the horizon as simulation clock (t) advances. It
waits until:

Predicted Sector exit time < t + horizon
AND
Time Window’s State is on horizon

When these conditions are met, the thread subtracts the
Flight’s demands from the Sector’s totals and switches
the time window’s state to passed the horizon.

The third thread is designed to detect the Flight being
pushed back into the horizon as delay is imposed on the
Flight. It waits until:

Predicted Sector exit time > t + horizon
AND
Time Window’s State is passed horizon

When these conditions are met, the thread adds the
Flight’s demands from the Sector’s totals and switches
the time window’s state to on the horizon.

The fourth thread is designed to detect the Flight being
pushed back out of the horizon as delay is imposed on
the flight. It waits until:

Predicted Sector entry time > t + horizon
AND
Time Window’s State is on horizon

When these conditions are met, the thread subtracts the
Flight’s demands from the Sector’s totals and switches
the time window’s state to before the horizon.

FUNDAMENTALS OF THE SLX SIMULATION
LANGUAGE

A model employing the concepts described previously
was implemented in the SLX simulation language.
SLX (Wolverine Software) is a PC-based simulation

language and development environment that has some
unique capabilities that enable the user to build and run
very large, complex models.2 While a detailed
description of the language is beyond the scope of this
paper, three fundamental aspects of the language,
necessary for implementing the delay absorption model,
are described as follows.

• Pucks
An SLX puck is like an independent thread, or
stream of execution, within the simulation model.
Pucks allow the modeler to simulate many things
happening in parallel. The SLX pucks run
extremely quickly, and each one consumes
relatively little memory. Each of the mathematical
relationships in the model presented previously
was monitored and enforced by its own puck. A
model employing the concepts presented in this
article used over 500,000 pucks, up to 250,000
running simultaneously, and ran in about 9 seconds
on a PC with a 2-gigahertz processor.

• Wait Until
SLX has a “wait until” statement that allows the
user to model time- and state-based delays. While
a state-based delay capability is not unique to SLX,
the speed with which it executes is noteworthy.
Almost all of the 500,000 pucks in the model
mentioned previously were controlled with “wait
until” statements.

• Active Objects
SLX is an “object-based” language that allows
each object to have an unlimited number of
independent pucks (threads of execution), thereby
making the object “active.” This means that the
user can model several things happening in parallel
within a single object. Each Flight-By-Link object
in the model described previously had multiple
pucks, one puck for each of the mathematical
relationships monitored and enforced.

These modeling constructs, combined with the speed
and scalability of SLX, open up many modeling
possibilities—like the approaches described
previously—that would otherwise be impractical.

CONCLUSIONS
This article described a methodology for modeling
limited delay absorption capacity, which is a
fundamental problem in air traffic management. At its
heart, the methodology is based on a large number of
independent streams of execution monitoring and
enforcing a large number of relatively simple
mathematical relationships. This approach relies
heavily on the speed and scalability of the SLX
simulation language.

11
American Institute of Aeronautics and Astronautics

ACKNOWLEDGMENTS
The author would like to acknowledge the important
contributions of Michael White of The MITRE
Corporation. Mr. White devised the original conceptual
model behind the multi-capacity sector.

REFERENCES
1. Voss, William R, and J. Hoffman. 2001.

Analytical Identification of Airport and Airspace
Capacity Constraints. In Air Transportation
Systems Engineering, ed. G.L. Donohue, A.G.
Zellwegger, H. Rediess, and C. Pusch, 409-419.
Reston, Virginia: American Institute of
Aeronautics and Astronautics.

2. Henriksen, James O. 1998. Stretching the
boundaries of simulation software. In Proceedings
of the 1998 Winter Simulation Conference, ed.
Medeiros, D.J., E. Watson, M.S. Manivannan, and
J. Carson, 227-234. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

