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ABSTRACT 
An airplane’s ability to absorb delay while airborne is 
limited and costly.  Because of this, the air traffic 
management system anticipates and manages excessive 
demand for scarce shared resources, such as arrival 
runways or busy airspace, so that the delay necessary 
for buffering can be spread out over a larger distance, 
or taken on the ground before departure.  It is difficult 
to model these important dynamics in a standard queue-
resource simulation framework, which does not account 
for limited delay absorption capacity. The modeling 
methodology presented here captures these dynamics 
by employing a large number of independent threads of 
execution to monitor and enforce a large number of 
relatively simple mathematical relationships.  These 
relationships calculate feasible time windows for each 
portion of each flight.  The model was implemented in 
the SLX simulation language.  The speed and 
scalability of SLX are essential to the approach, which 
would otherwise be impractical. 

INTRODUCTION 
From a capacity modeling perspective, airplane traffic 
is fundamentally different from automobile, rail or ship 
traffic; while a car, train, or ship can stop and wait for 
an essentially unlimited amount of time in the middle of 
its journey, an airplane cannot. In other words, once 
airborne, an airplane’s ability to absorb delay is limited 
and costly, and it is important in modeling delays and 
capacities. 

Because of this limited delay absorption capacity, the 
air traffic management system anticipates and manages 
excessive demand for scarce shared resources (e.g., 
arrival runways, busy terminal airspace) so that the 
delay necessary for buffering can be spread out over a 
larger distance, or taken on the ground before departure.  
These actions, however, can ripple back and block 
resources upstream, such as departure runways and 
busy sectors. 

It is difficult to model these dynamics in a standard 
queue-resource simulation framework.  In a standard 
queue-resource model, there is no concept of limited 

delay absorption capacity.  For instance, in a factory 
setting, a part moving from one work station to another 
may wait for one minute or one week before receiving 
service.  The number of parts waiting for service (queue 
size) may be explicitly limited, but the wait time per 
part is not. 

To model airplane traffic, one needs to be able to 
anticipate excessive demand for a resource well before 
it occurs, so that the flight to be delayed has adequate 
distance over which to absorb the required delay.  

This paper describes two different, but closely related, 
mechanisms for anticipating and preventing excessive 
demand in a simulation model.  One mechanism is a 
link-node network that treats each node as a resource 
that can handle one flight at a time.  The other model, 
which essentially sits on top of the link-node model, is 
a sector model that considers a sector as a resource that 
has different capacities corresponding to different 
resources (e.g., communications and coordination) and 
can handle many flights simultaneously.  In the sector 
model, each flight can place a different burden on each 
of the sector’s capacities. 

The remainder of this paper is organized as follows: the 
next section describes how aircraft are delayed for 
buffering; the third section  explains why it is important 
to capture the dynamics caused by limited buffering 
capacity; the fourth section  provides an overview of 
the link-node network model; the fifth section describes 
the central “monitor and enforce” mechanism used in 
the simulation; the sixth section provides an example 
modeling two merging aircraft; the seventh section  
provides an overview of the sector capacity model; the 
eighth section describes the model in more detail; the 
ninth section describes elements of the Simulation 
Language with Extensibility (SLX) simulation language 
that are central to this approach; and the tenth section 
summarizes and draws some conclusions. 

DELAY ABSORPTION BUFFERING 
In almost any capacity-constrained system, the ability 
to buffer demand during busy periods is key to 
increasing utilization of scarce server resources.  For 
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instance, during lunchtime at a fast food restaurant, 
customers wait in line while the cashier/server takes 
orders from other customers.  When one customer is 
done, the next in line receives service, and the server 
remains busy. As wait time increases, a customer can 
choose to remain in line or can opt out, and leave the 
restaurant.  In the air traffic control system, some 
similar situations exist:  departing airplanes wait on 
taxiways for their turn on a runway.  Once aircraft are 
in the air, however, the situation changes.  An aircraft 
cannot opt out of landing and, because of fuel 
constraints, it cannot wait for an arrival runway 
indefinitely.  Within these constraints, buffering 
airborne flights—making them wait in the air—even for 
relatively short periods of time is costly in a number of 
ways. 

• Buffering requires controller work.  Overloading a 
controller is undesirable because it can 
compromise safety. 

• Buffering usually increases mileage, which burns 
fuel and increases aircraft wear and tear. 

• Buffering requires airspace. 

Air traffic managers have four basic methods in which 
they can delay aircraft to keep them from 
overwhelming a resource such as a runway or a 
controller downstream.  These methods, and their 
relative costs and benefits, are described as follows: 

1. Ground Delay 
Delaying a flight on the ground before it departs is 
relatively cheap in terms of fuel and controller 
workload, even though it is not free to the airlines, 
their passengers or cargo. Ground delay can absorb 
practically unlimited amounts of time.  Ground 
delay is often used to prevent  congestion in the air, 
which, if left unchecked, could overburden 
controllers and compromise safety.  Because of 
departure runway congestion and flight-time 
variability, however, it is not practical to use 
ground delay to fine-tune a flight’s arrival time at a 
distant airport. 

2. Airborne Holding 
Placing a flight into airborne holding is expensive 
in terms of fuel and controller workload. 
Furthermore, holding requires reserved airspace; 
the locations at which airborne holding can take 
place are limited.  Holding is most commonly used 
to delay arriving flights close to (within 50 miles 
of) their destination airport.  Despite the costs, 
holding allows controllers to delay airborne flights 
for relatively large amounts of time (tens of 
minutes). At large airports with relatively 
unconstrained airspace, such as Atlanta Hartsfield, 
controllers use the buffering capacity provided by 

airborne holding to make more efficient use of 
arrival runways.1 

3. Vectoring 
Vectoring means extending a flight’s path (thereby 
delaying it) by turning it.  Vectoring allows 
controllers to delay aircraft more precisely and 
with less expense, in terms of fuel cost, than they 
could with airborne holding.  The amount of delay 
that can be achieved with vectoring is closely 
related to the amount of airspace a controller can 
use.  Vectoring is a very common technique, 
especially for sequencing flights onto an arrival 
runway. 

4. Speed Control 
Slowing a flight down to delay it requires little 
airspace, but the amount of delay that can be 
absorbed with speed control is not great.   

WHY MODEL LIMITED DELAY ABSORPTION? 
Because airborne flights can absorb only a limited 
amount of delay, buffering caused by contention for a 
downstream resource, such as an arrival runway, can 
quickly ripple back upstream and cause congestion in 
an upstream resource, such as an en route sector.  The 
subsequent congestion upstream can delay departures 
from and arrivals to other airports. 

If a model fails to capture the limits on delay 
absorption, it will miss these blocking effects upstream.  
This makes it important to model aircraft taking delay 
not only in the correct amount, but also at the correct 
place and  time. 

Figure 1 illustrates this problem.   Suppose airport D 
sends flights to airport A, and airport C send flights to 
Airport B, all via en-route Sector Y.  If runway 
congestion at Airport A delays arrivals, they may spend 
more time in Sector Y, especially if the delay 
absorption capacity between Y and A is small.  If this 
causes Sector Y to become too busy, departures from C 
may be held on the ground.  A model that accounts for 
limited delay absorption would capture this dynamic. 

Airport B

Airport A En Route
Sector Y

Airport D

Airport C

Airport B

Airport A En Route
Sector Y

Airport D

Airport C
 

Figure 1:  En Route Sector as a Constraint 
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On the other hand, in a model that overstates the delay 
absorption capacity of flights between Sector Y and 
Airport A, the arrivals to A will quickly pass through 
Sector Y, which will not become too busy, thus 
allowing departures from C to B to proceed undelayed. 
This model will understate delay. 

OVERVIEW OF THE LINK-NODE MODEL 
In the first model presented here, aircraft move along a 
link-node network structure.  Each flight requires a 
minimum time to traverse each link, and each flight can 
absorb only a limited amount of additional delay on 
each link. To represent an airspace that has plenty of 
room for vectoring, this maximum delay parameter can 
be set high, while a narrower, more constrained 
airspace would have a lower maximum delay  
parameter. 

As flights merge onto common links or cross each 
other’s paths, minimum separation between aircraft is 
maintained.  Each link and node in the model is 
assigned a minimum required separation (in minutes) 
that defines its capacity.  

The model is essentially a network model with nodes, 
links, and flights moving and absorbing delay on links.  
Unlike most network models, however,  this model 
anticipates contention for resources long before it 
occurs and spreads the required delay absorption out 
across the links, rather than in a buffer immediately in 
front of the constrained resource.  Four object types 
define the model: 

1. Flight Object 
Each Flight object represents a single flight. It has 
the flight’s aircraft ID, aircraft type, desired 
departure time, and a flight plan, defined as a list of 
Links. 

2. Link Object 
Flights use Links to get from one place to another.  
A  Link object can be used to represent an airway 
at a particular altitude.  Links are defined to be 
one-way only, and while a Link can be shared by 
several Flights, passing is not permitted on a Link. 
In other words, Links impose a strict First-In-First-
Out (FIFO) policy on Flights.   Each Link has 
pointers to its starting and ending Nodes, pointers 
to all of the Flights that will pass over it, and 
minimum required separations (in minutes) that 
define its capacity.   

3. Node Object 
A Node object is used to connect Links.  A Node 
object, which can be thought of as a point in 3-D 
space, can be used to represent a waypoint or a fix 
at a particular altitude.  Nodes represent crossings, 
merges, and split relationships between Link 

objects. Each Node has a list of the Links coming 
into and out of it.  Like a Link, a Node has several 
minimum required separations that define its 
capacity. 

4. Flight-By-Link Object  
As each Flight crosses each Link on its flight path, 
the model generates a great deal of timing 
information. Flight-by-Link objects keep track of 
all of this information.  A Flight-by-Link object 
represents a particular Flight on a particular Link.  
For example, if a Flight has n Links on its path, 
then n Flight-By-Link objects will be created for 
that Flight. 

The Flight-By-Link object is the workhorse of the 
simulation.  It has pointers to three other Flight-by-Link 
objects, which define the object’s relationship with the 
rest of the model.  One pointer refers to the Flight 
immediately ahead of it on the same Link, and the other 
two pointers refer to the same Flight on the next and 
previous Links.  Figures 2 and 3 illustrate these 
relationships. 

Link k

Link j

Link h

Flight A

Flight B

Link k

Link j

Link h

Flight A

Flight B

 
Figure 2. Flights A and B on Links h, j, and k 

B_j
(Flight B on Link j)

Next Link

Leading Flight

Previous LinkB_h
(Flight B on Link h)

B_k
(Flight B on Link k)

A_j
(Flight A on Link j)

B_j
(Flight B on Link j)

Next Link

Leading Flight

Previous LinkB_h
(Flight B on Link h)

B_k
(Flight B on Link k)

A_j
(Flight A on Link j)

 
Figure 3.  Flight-By-Link Object B_j’s Pointers to 
Adjacent Flight-By-Link Objects 
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Suppose Flight B follows Flight A across Links h, j, 
and k, as shown in Figure 2.  To represent this in the 
model, one would need Flight objects for A and B, and 
Link objects for h, j, and k.  To represent the flights’ 
movement over these Links, one would need to create 
six Flight-By-Link objects, A_h, A_j, A_k, B_h, B_j, 
and B_k.  Figure 3 illustrates the pointer relationships 
of Flight-By-Link B_j to its “adjacent” Flight-By-Link 
objects B_k (same Flight, next Link), A_j (leading 
Flight, same Link), and B_h (same Flight, previous 
Link). 

Each Flight-by-Link object has two quantities—
minimum traversal time and maximum delay—that 
determine the minimum and maximum amounts of time 
the Flight can spend on the Link.  The minimum 
traversal time represents the amount of time a Flight 
needs to cross a Link, and the maximum delay 
represents the amount of additional time a Flight could 
absorb on a particular Link.  

MONITOR AND ENFORCE 
In the model presented here, each object monitors and 
enforces a number of mathematical relationships. The 
following example illustrates such a relationship, and 
describes its enforcement. 

Suppose the two Flights depicted in Figure 2, need to 
increase separation before entering Link k.  Let TA and 
TB be the clock times at which Flights A and B 
(respectively) enter Link k, and let Sk be the minimum 
required separation (in minutes) between Flights 
entering Link k.  To respect this separation, one must 
ensure that: 

TB >  TA + Sk (1) 

Flight-By-Link object B_k can read all three 
quantities in (1): TB is local to B_k, and the others can 
be read via pointers. B_k gets its own independent 
thread of execution to enforce the separation 
requirement expressed in (1), illustrated by the 
following pseudo-code: 

fork {// fork command creates new thread 
 
 forever //Enters Loop 
{ 
 wait until (TB <  TA + Sk);  
 //relationship is violated 
  
 TB = TA + Sk;  
 //Enforce relationship 
 
 }//end forever loop 
}//end fork 
 

The new thread immediately enters a “forever” loop, 
the only purpose of which is to wait until inequality (1) 
is violated, and then to correct it.  This basic 

mechanism monitors and enforces a mathematical 
relationship. 

At its heart, the model is essentially a system of 
hundreds of thousands of such relationships, each one 
monitored and enforced by its own independent thread 
and a “wait until” statement. 

MODELING MOVEMENT AND LIMITED 
DELAY ABSORPTION: AN EXAMPLE 

The following example illustrates how the objects and 
the monitor-and-enforce mechanism work together to 
model delay pass back due to limited delay absorption. 

Consider Figure 4.  Suppose Flight C traverses the 
airspace represented by Links v, w, and z, and Flight D, 
which starts just a little bit later, traverses the airspace 
represented by Links x, y, and z.  Suppose that the  
Flights will need to be separated by one minute when 
crossing their merge point, S.   

S
v

x

y
w

Flight C
Flight D

z

S
v

x

y
w

Flight C
Flight D

z

 
Figure 4:  Merging Flights at Point S 

Suppose further that each Flight can traverse each Link 
in a minimum of two minutes, but can only absorb  
45 seconds (0.75 minutes) of delay on each Link.  To 
respect the separation requirement at point S, one of the 
Flights will need to be delayed.   

To model this, one creates Flight objects representing C 
and D, Link objects representing v, w, x, y, and z, a 
Node object representing point S,  Flight-By-Link 
objects C_v, C_w, and C_z, representing Flight C on 
Links v, w, and z, and Flight-By-Link objects D_x, 
D_y, and D_z representing Flight D on Links x, y,  
and z. 

Each Flight-By-Link object has three pointers to other 
Flight-By-Link objects that are “adjacent” (in space or 
sequence): 

• The Next Link pointer points to the same flight on 
the next Link in the flight plan.  For instance, C_v 
has a pointer to Next Link C_w 
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• The Previous Link pointer points to the same flight 
on the previous Link in the flight plan.  For 
instance, C_w has a pointer to Previous Link C_v 

• The Leading Flight pointer points to the previous 
flight on the same Link.  In this example, there is 
only one such meaningful instance of this; D_z has 
a pointer to Leading Flight C_z 

Each Flight-By-Link object has several attributes, 
specifically: 

• Minimum Traversal Time − two minutes for all 
Flight-By-Link objects in this example 

• Maximum Delay − 45 seconds for all Flight-By-
Link objects in this example 

• Best Guess Time of Entry − the current best 
estimate of when (in simulation clock time) the 
Flight will enter the Link; 

• Best Guess Time of Exit − the current best estimate 
of when (in simulation clock time) the Flight will 
exit the Link 

To model simple movement across a single Link, there 
is a thread that monitors and enforces the relationship 
(M1): 

 Best Guess Time of Exit > 
  Best Guess Time of Entry + 
  Minimum Traversal Time 

To model movement from Link to Link, there is a 
thread that monitors and enforces the relationship (M2): 

 Best Guess Time of Entry >  
  Previous Link’s Best Guess Time of Exit 

Each Link object has a constant Minimum Separation 
Required at Entry, which is used to separate merging 
and in-trail Flights.  This is set to one minute on Link z.  
Each Flight-By-Link object compares its Best Guess 
Time of Entry to that of the Flight in front of it.  The 
mechanism for doing this is a thread that monitors and 
enforces the relationship (M3): 

 Best Guess Time of Entry >  
Leading Flight’s Best Guess Time of Entry + 

   Shared_Link’s  
   Minimum Separation Required at Entry 

To pass back constraint information from Link to Link, 
there is a thread that monitors and enforces the 
relationship (M4): 

 Best Guess Time of Exit > 
  Next Link’s Best Guess Time of Entry 

To model the limited delay absorption capacity on each 
Link, there is a thread that monitors and enforces the 
relationship (M5): 

 Best Guess Time of Entry >  
  Best Guess Time of Exit – 
   (Minimum Traversal Time  +   

Maximum Delay ) 

Suppose Flight C starts at time 100.0 and Flight D starts 
at time 100.1.  The threads enforcing relationships M1 
and M2 will cascade forward through the system, 
setting Best Guess Time of Entry at 104 for Flight-By-
Link object C_z (see Figure 5). 

A similar chain of events takes place on objects D_x, 
D_y, and D_z, so that D_z’s Best Guess Time of Entry 
will equal 104.1.  But because the entry times are less 
than one minute apart, this causes a separation violation 
on entry to Link z. This violation is caught by M3, 
which will force D_z’s Best Guess Time of Entry to 
105, causing M4 to force D_y’s Best Guess Time of 
Exit to 105 (see Figure 6). 

Flight D needs to absorb a total delay of 0.9 minutes 
overall, but only 0.75 minutes can be absorbed on any 
single Link. M5 forces D_y’s Best Guess Time of Entry 
down to 102.25.  This means that 0.75 minutes of delay, 
the maximum, is absorbed on Link y.  The remaining 
0.15 minutes is pushed back to Link x by M4 which 
forces D_x’s Best Guess Time of Exit to 102.25.   

C_v (Flight C on Link v, before w)

Best Guess Time of Entry =100

Best Guess Time of Exit =102

C_w (Flight C on Link w)

Best Guess Time of Entry =102

Best Guess Time of Exit =104

C_z (Flight C on Link z, after w)

Best Guess Time of Entry =104

M1

M1

M2

M2

C_v (Flight C on Link v, before w)

Best Guess Time of Entry =100

Best Guess Time of Exit =102

C_w (Flight C on Link w)

Best Guess Time of Entry =102

Best Guess Time of Exit =104

C_z (Flight C on Link z, after w)

Best Guess Time of Entry =104

M1

M1

M2

M2

 
Figure 5:  Sending Flight C’s Timing Information 
Forward via Flight-By-Link Objects C_v, C_w,  
and C_z 
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M3

C_z (Flight C on Link z, ahead of D) 

Best Guess Time of Entry =104

D_y (Flight D on Link y)

Best Guess Time of Entry =102.25

Best Guess Time of Exit =105

D_x (Flight D on Link x , before y)

Best Guess Time of Entry

Best Guess Time of Exit =102.25

D_z (Flight D on Link z ,after y)

Best Guess Time of Entry =105

M4

M5

M4

M3

C_z (Flight C on Link z, ahead of D) 

Best Guess Time of Entry =104

D_y (Flight D on Link y)

Best Guess Time of Entry =102.25

Best Guess Time of Exit =105

D_x (Flight D on Link x , before y)

Best Guess Time of Entry

Best Guess Time of Exit =102.25

D_z (Flight D on Link z ,after y)

Best Guess Time of Entry =105

M4

M5

M4

 
Figure 6.  Flight C Delays Flight D, and Delay is 
passed back via Flight-By-Link objects D_z, D_y, 
and D_x. 

At this point, the monitoring and enforcing stops, 
because D_x’s Best Guess Time of Exit of 102.25 is 
well within bounds: M5 is unviolated because D_x’s 
Best Guess Time of Entry is 100.1, its Minimum 
Traversal Time is two, and its Maximum Delay is  
45 seconds (0.75 minutes). 

Note that these changes, which essentially put the 
system of equations back into balance, take place in 
zero simulated time.  In this case, the changes should 
occur before the simulation clock reaches 100, the time 
at which the Flights start on their first Links.  The 
simulation clock advances to the next scheduled “Link 
movement”, that is, the next scheduled Best Guess Time 
of Entry among all of the Flight-By-Link objects 
defined in the model.  Subsequent balancing actions 
occur between every advance of the simulation clock. 

Because each Flight-By-Link object only has to directly 
account for the three “adjacent” Flight-By-Link objects, 
the model scales up well.  Once one has set up the rules 
governing these relationships, changes that take place 

far away are allowed to ripple through the system 
automatically.  

Crossing Flights 

The previous example illustrates the fundamental 
monitor-and-enforce mechanisms and the system of 
relationships required to simulate a merge.  Flights 
whose paths cross, rather than merge, however, share 
only a common Node object, not a common Link 
object. As a result, an additional set of relationships 
among Flight-By-Link objects is required.  Specifically, 
whereas a merging Flight requires a pointer to the 
leading Flight on the shared Link, a crossing Flight 
requires a pointer to the leading Flight through the 
shared Node.  Apart from that, the mechanisms for 
maintaining separation and absorbing delay due to 
crossing are practically identical to those for merging. 

OVERVIEW OF SECTOR CAPACITY MODEL 
The Link-Node network model can represent the 
important problem of flight separation and delay pass-
back with limited delay absorption.  There are, 
however, other important constraints of the air traffic 
control system that the link-node network model cannot 
capture.  Specifically, the limited capacity of a sector’s 
control team is often more constraining than any flight 
separation requirement.  For instance, a sector may be 
unable to handle an additional flight because the control 
team does not have time to communicate with the 
flight, even though there may be plenty of air space 
available to separate the flights. 

A sector’s control team may also face constraints on its 
ability to coordinate with other sectors, or on the 
number of flights the team can track simultaneously.  
Furthermore, the demands placed on each of these 
capacities may differ from one flight to the next.  For 
instance, it may be quite easy to keep track of a routine 
flight, while an “oddball” flight may require a great 
deal more controller attention. 

In the model presented below, each sector is a resource 
that can handle many flights simultaneously, and each 
flight traverses several sectors, placing various 
demands on each one it crosses.  Furthermore, each 
sector has several finite capacities, such as 
communications and coordination, rather than just a 
single one, such as flight count.  These capacity and 
demand numbers are user inputs to the model, and the 
model imposes delays upon flights to keep each sector 
within its capacity.  The model makes no attempt to 
account for individual controller instructions or pilot 
actions. 
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Sector A

Sector B

Sector C

Sector D

Sector Y 
Capacity

Communication = 5
Coordination = 10

Sector A

Sector B

Sector C

Sector D

Sector Y 
Capacity

Communication = 5
Coordination = 10

 
Figure 7.  Sectors A, B, C, D and Y 

For example, let us suppose that in Figure 7, Sector Y is 
assigned a communications capacity of five, and a 
coordination capacity of ten.  Furthermore, suppose 
each flight going from Sector C to Sector B (a C-to-B 
flight) places a demand of two communications units 
and three coordination units on Sector Y, while each 
flight going from Sector D to Sector A (a D-to-A flight) 
places a demand of one communications unit and four 
coordination units on Sector Y. Sector Y can 
simultaneously handle any combination of C-to-B and 
D-to-A flights that does not, in aggregate, violate any of 
Sector Y’s capacities.  For instance, Sector Y could 
simultaneously handle two C-to-B flights and one  
D-to-A flight, which would place a total demand of five 
(that is, 2x2+1x1) communications units and ten (that 
is, 2x3+1x4) coordination units.  The sector could not, 
however, handle one C-to-B flight and two D-to-A 
flights simultaneously, which would place a total 
demand of 4 (that is, 1x2+2x1) communications units 
and 11 (that is, 1x3+2x4) coordination units, exceeding 
the sector’s coordination capacity.  In this case, one of 
the flights would need to be delayed until another flight 
exited the sector, keeping the demand within the 
capacity. 

Just like the Link-Node model, the Sector model 
prevents overloads by delaying flights, and it must 
impose these delays early enough so that the Flight has 
enough distance over which to absorb the delay.  The 
mechanisms used to predict and react to sector overload 
are, however, quite different from those used to 
maintain separation in the Link-Node model.  The 
Link-Node model rests heavily on two assumptions: 
one is the assumption that a Node can handle only one 
Flight at a time, and the other is that Links impose a 
FIFO policy on Flights.  Roughly speaking, under these 
assumptions, if each Link-By-Flight object knows 
where it is going and who is ahead of it, and if each 
Node knows who wants to go through it, the model has 
all the information it needs to maintain separation. 

A sector, however, cannot assume a FIFO policy and 
must be able to handle multiple flights simultaneously.  
To manage demand under these conditions, the Sector 

model monitors demand at fixed future time horizons 
(e.g., ten minutes ahead of the simulation clock), and 
imposes delay in reaction to predicted demand 
overloads.  

Despite these differences, the Sector model is tightly 
integrated with the Link-Node network model. The 
Sector model sits on top of the Link-Node model, using 
the Link-Node network infrastructure to: 

• move flights 
• predict each flight’s sector entry and exit times 
• propagate delay backward through the system 

ELEMENTS OF THE SECTOR MODEL 
Implementing the Sector model requires several 
additional object types.  Three objects are most 
important: the Sector object, which defines the sector 
and its capacities, and responds to predicted overloads; 
the Flight-By-Sector object, which represents the 
timing and demands of a single Flight on a single 
Sector, and connects the Sector model to the Link-Node 
model, and; the Horizon Monitor object, which tells the 
Sector object whether a particular Flight will be in the 
Sector at a particular time in the future.  

Sector Object 

A Sector object contains a set of Link objects and a 
vector of resource capacities (e.g., five units of 
communications, ten units of coordination).  The set of 
Links represents the sector control team’s area of work.  
Any Flight that is on a Sector’s Link will place a 
demand on the Sector.  A Link cannot be a member of 
more than one Sector object. 

In Figure 8, Sectors A, B, C, and D each have one Link 
(a, b, c, and d, respectively) while Sector Y has four 
links (y1, y2, y3, and y4). 

Link y1

Link c

Link b

Link y3

Link y4

Link y2

Sector A

Sector B

Sector C

Sector DSector Y

Link dLink a Link y1

Link c

Link b

Link y3

Link y4

Link y2

Sector A

Sector B

Sector C

Sector DSector Y

Link dLink a

 
Figure 8. Sectors A,B,C,D and Y, and their Links 

The Sector Object maintains sets of expected (future), 
current, and past flights.  These are updated as the 
simulation progresses.  The Sector Object also contains 
a matrix of projected demands for each resource at each 
future time horizon. Table 1 shows an example of this 
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for a Sector with two capacities (communications and 
coordination) and two lookahead horizons (10 minutes 
and 20 minutes). The values in this table are 
incremented and decremented by Horizon Monitor 
objects, described later. 

Table 1. Example of Predicted Demand on a Single 
Sector With Two Lookahead Horizons 

 Horizon 
(minutes into the future) 

Capacity Measure 10 min. 20 min. 

Communications 4 units 6 units 

Coordination 5 units 7 units 

 
Each cell in the table (each resource at each horizon) is 
monitored by a thread that compares projected demand 
to capacity.  If demand exceeds capacity, the model 
delays the last flight that is within the horizon by 
increasing a Flight-By-Sector variable, called Earliest 
Allowed Time of Entry, by a small amount.  This action 
is repeated until the last flight is pushed outside of the 
horizon.  If demand still exceeds capacity, the (new) 
last flight within the horizon is pushed outside of the 
horizon.  This action is repeated until predicted demand 
is within capacity.  To determine which flight is the last 
within the horizon (that is, the one that will take the 
delay), the model runs through the Sector object’s set of 
expected flights before imposing each delay.  This 
means that after one flight gets pushed out of the 
horizon, delay will be imposed on the next one.   

Flight-By-Sector Object 

Just as the Link-Node model has a Flight-By-Link 
object to represent a particular Flight on a particular 
Link, the Sector model has a Flight-By-Sector object to 
represent a particular Flight in a particular Sector.  The 
Flight-By-Sector object has pointers to the Flight and to 
the Sector, and contains the flight’s demands for each 
Sector resource (e.g., this Flight demands one unit of 
communications and three units of coordination from 
this Sector). 

The Flight-By-Sector object connects the Sector model 
to the Link-Node model.  Each object maintains a 
Flight’s predicted Sector entry and exit times by 
“piggy-backing” on Flight-By-Link Objects.  To do 
this, the Flight-By-Sector object maintains pointers to 
the Flight-By-Link corresponding to the flight’s first 
and last Links in the Sector. These could both be the 
same Link, such as Link a in Sector A in Figure 8, or 
different Links, such as Links y1 and y2 in Sector Y. 

In Figure 8, suppose we have a single flight that 
traverses three Sectors (D, Y, and A) on four Links  
(d, y1, y2, and a).  The model would create a Flight-By-
Link object for each Link, and a Flight-By-Sector 
Object for each Sector.  The flight’s predicted sector 
entry time for Sector Y is the same as its predicted 
entry time on to Link y1, and its predicted sector exit 
time is equal to the predicted exit time from Link y2. 

To maintain the Flight’s predicted Sector entry time, 
the Flight-By-Sector object has one thread that 
monitors and enforces the relationship: 

Sector Entry Time ==  
 Best Guess Time of Entry on First Link 

and another thread that monitors and enforces the 
relationship: 

Sector Exit Time ==  
Best Guess Time of Exit on Last Link 

In addition to reading times from the Link-Node 
network, Flight-By-Sector objects also transmit Sector-
based delay to the Link-Node network.  Each Flight-
By-Sector object has a variable called “Earliest 
Allowed Time of Entry”.  When a Sector wants to delay 
a Flight, it increases this variable.  To communicate this 
delay to the Link-Node Network, the Flight’s first 
Flight-By-Link object in the Sector (e.g., Link y_1 in 
Figure 8) has a thread that monitors and enforces the 
following relationship: 

Flight-By-Link’s Best Guess Time of Entry > 
  Flight-By-Sector’s Earliest Allowed Time of 

Entry 

The Sector imposes the delay on the Link, and the 
Link-Node network takes care of the rest, propagating 
delay backward if necessary. Sector objects do not 
communicate directly with one another, but they 
communicate with their Links, and one Sector’s Links 
can communicate with another Sector’s Links. 

Horizon Monitor Object 

The model employs several “lookahead horizons” (e.g., 
ten minutes into the future), future points in time at 
which the model monitors the predicted demand upon 
the sector.  Figure 9 illustrates the concept.  Suppose 
Flights Q, R, and S are approaching a Sector. The 
brackets represent the time each flight will be in the 
sector.  If current simulation clock time = t, then  
Flight Q has just entered the Sector, Flight R will enter 
the Sector before time = t + horizon, and Flight S will 
not enter until later. 
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time = t

time = t + horizon

entry time

entry time

entry time

exit time

exit time

exit time

Q

R

S

time = t

time = t + horizon

entry time

entry time

entry time

exit time

exit time

exit time

Q

R

S

 
Figure 9.  Flights Q, R, and S Sector Entry and Exit 
Times Spread Over the Time Line 

Suppose that each Flight places a demand of two 
communication units on the Sector, which has a 
communications capacity of five.  In Figure 9, there is 
no problem, because there will not be more than one 
flight in the sector at any given time.  Now consider  
Figure 10.  As the dotted line indicates, Flights T, U, 
and V will all be in the Sector at time = t+ horizon.  
This would overload the Sector’s communication 
capacity, so a Flight will need to be delayed.  In  
Figure 11, we see that Flight V’s Sector entry time has 
been delayed past the horizon, but there will still be a 
sector overload after that time.  In Figure 12, the 
simulation clock has advanced to time = t+s, and  
Flight V’s entry time has been delayed until  
time = t+s+horizon, which is Flight U’s Sector exit 
time.  Now, the demand is spread out over time, and 
will remain within the Sector’s capacity. 

 

 
Figure 10.  Flight T, U, and V all in the Sector at 
time = t + horizon 

 
Figure 11.  Flight V’s Sector Entry Time Delayed to 
time = t+ horizon 

 
Figure 12.  Simulation Clock advances to time = t + s 
and Flight V’s Sector Entry Time Delayed to  
time = t + s + horizon 

To keep track of when a Flight’s predicted time in a 
Sector rolls into (and out of) a particular time horizon, 
we create a “Horizon Monitor” object for each  
Flight-By-Sector object and each lookahead horizon. So 
if there are ten flights passing through ten sectors each 
with three lookahead horizons, the model will, over the 
course of a simulation, create 300 Horizon Monitor 
objects.  The Horizon Monitor object also increments 
and decrements predicted Sector demand (that is, the 
cells in Table 1), each time a Flight-By-Sector object 
rolls into or out of a particular horizon. 

A Flight-By-Sector’s “time window” (the time it plans 
to spend in the Sector) can be grouped into one of three 
states with regard to a particular horizon.  The window 
can be before the horizon (that is, predicted entry time 
is later than t + horizon), passed the horizon (that is, 
predicted exit time is earlier than t + horizon), or on the 
horizon (entry time is earlier than t + horizon, and exit 
time is later than t + horizon). 

time = t 

time = t + horizon 

T 
U V 

time = t 

time = t + horizon 

T 
U 

V 

time = t +s 

time = t + s + horizon
T 

U 

V 
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In the model, a Flight-By-Sector’s time window is 
pulled forward (with regard to a particular horizon) as 
the simulation clock advances, but the time window is 
also pushed backward as the model imposes delay upon 
Flights, increasing predicted sector entry and exit time.  
To keep track of this, the Horizon Monitor employs 
four threads. 

The first thread is designed to detect the Flight entering 
the horizon as simulation clock (t) advances.  It waits 
until: 

Predicted Sector entry time < t + horizon 
AND 
Time Window’s State is before horizon 

When these conditions are met, the thread adds the 
Flight’s demands to the Sector’s totals and switches the 
time window’s state to on the horizon. 

The second thread is designed to detect the Flight 
exiting the horizon as simulation clock (t) advances.  It 
waits until: 

Predicted Sector exit time < t + horizon 
AND 
Time Window’s State is on horizon 

When these conditions are met, the thread subtracts the 
Flight’s demands from the Sector’s totals and switches 
the time window’s state to passed the horizon. 

The third thread is designed to detect the Flight being 
pushed back into the horizon as delay is imposed on the 
Flight.  It waits until: 

Predicted Sector exit time > t + horizon 
AND 
Time Window’s State is passed horizon 

When these conditions are met, the thread adds the 
Flight’s demands from the Sector’s totals and switches 
the time window’s state to on the horizon. 

The fourth thread is designed to detect the Flight being 
pushed back out of the horizon as delay is imposed on 
the flight.  It waits until: 

Predicted Sector entry time > t + horizon 
AND 
Time Window’s State is on horizon 

When these conditions are met, the thread subtracts the 
Flight’s demands from the Sector’s totals and switches 
the time window’s state to before the horizon. 

FUNDAMENTALS OF THE SLX SIMULATION 
LANGUAGE 

A model employing the concepts described previously 
was implemented in the SLX simulation language.  
SLX (Wolverine Software) is a PC-based simulation 

language and development environment that has some 
unique capabilities that enable the user to build and run 
very large, complex models.2  While a detailed 
description of the language is beyond the scope of this 
paper, three fundamental aspects of the language, 
necessary for implementing the delay absorption model, 
are described as follows. 

• Pucks 
An SLX puck is like an independent thread, or 
stream of execution, within the simulation model.  
Pucks allow the modeler to simulate many things 
happening in parallel.  The SLX pucks run 
extremely quickly, and each one consumes 
relatively little memory.  Each of the mathematical 
relationships in the model presented previously 
was monitored and enforced by its own puck.  A 
model employing the concepts presented in this 
article used over 500,000 pucks, up to 250,000 
running simultaneously, and ran in about 9 seconds 
on a PC with a 2-gigahertz processor.   

• Wait Until  
SLX has a “wait until” statement that allows the 
user to model time- and state-based delays.  While 
a state-based delay capability is not unique to SLX, 
the speed with which it executes is noteworthy.  
Almost all of the 500,000 pucks in the model 
mentioned previously were controlled with “wait 
until” statements.  

• Active Objects 
SLX is an “object-based” language that allows 
each object to have an unlimited number of 
independent pucks (threads of execution), thereby 
making the object “active.”  This means that the 
user can model several things happening in parallel 
within a single object.  Each Flight-By-Link object 
in the model described previously had multiple 
pucks, one puck for each of the mathematical 
relationships monitored and enforced. 

These modeling constructs, combined with the speed 
and scalability of SLX, open up many modeling 
possibilities—like the approaches described 
previously—that would otherwise be impractical. 

CONCLUSIONS 
This article described a methodology for modeling 
limited delay absorption capacity, which is a 
fundamental problem in air traffic management.  At its 
heart, the methodology is based on a large number of 
independent streams of execution monitoring and 
enforcing a large number of relatively simple 
mathematical relationships.  This approach relies 
heavily on the speed and scalability of the SLX 
simulation language.   
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