SABLE: Agent Support for the Consolidation of Enterprise-Wide Data-
Oriented Simulations

Brian Blake
The MITRE Corporation
Center for Advanced Aviation System Development
1820 Dolley Madison Blvd.
McLean, VA 22102-3481

bblake@mitre.org

ABSTRACT

Simulations are programs that model some real world
situation and mirror their interactions in the software domain.
In most cases, conclusions can be made based on the analysis
of initial and resulting data of the simulation. Consequently,
large amounts of data are processed and stored, as both
inputs and outputs of the simulation. Handling data is
common to most simulation domains, however there is
limited specialized support for simulation-based data
management. Most simulation environments utilize batch
files (large text files) to both supply initial data and record
resultant data. This solution is quick and accessible, but
there are several problems. One problem is standardization.
Even within small corporations there can be multiple data
formats for batch files, reducing interoperability between
simulation programs. A second problem is the tightly
coupled dependency between the correct operation of the
simulation and consistency of the file formats and file
directory structure. Moreover within one corporation, there
can be redundant implementations of file streaming methods.
Developers also neglect the benefits of persistence and
concurrency that can be provided by a Database Management
System (DBMS). This paper introduces SABLE (Simulation-
oriented Agent-Based Library and Environment) as a
solution to these problems. SABLE is an agent-controlled
environment that enforces the policy of a specialized data
format, integrates a DBMS, and removes the task of data
management from the developers of the simulation program.

Keywords
Database Management, Agent-Based Systems, CASE Tools

1. INTRODUCTION

Simulation software typically exists in a perennial
“prototype” stage. As the analysis needs change, simulations
are evolved to allow for changes of both input and output
data. Thus simulation environments are dynamic, in nature.
In research organizations, functions performed in one
simulation may overlap the functions performed in another.
Moreover, there are other domain-specific requirements that
must be met to ensure consistency in supporting data
management across all simulation environments.

Requirements for Data Management in this Domain

A standard data format

A method for generating new data schemas

Support for graphical depiction of data

Backward compatibility

- Ease of integrating with previously developed
batch-file based simulations

5. Integration with a DBMS

- Flexibility to support both object and relational
databases.

el e

One requirement that is not solved here is the ability to
dynamically take a user directed data schema and produce a
database schema. This transformation is dependent on a
human in the loop to create the database schema from
SABLE’s standard data format.

Agent-based software systems have experienced increased
attention in the development and support of dynamic systems
[1] [2]. Agents have many definitions in industry and
academia. One commonality between agent definition is that
they act autonomously and have an understanding of their
environment. In our case, agents are software components
that act as proxies for existing software components or
human users. These agents can assume some of the
responsibility of system users. In our case, agents are
mediators between a user and the data schema needed to run
a simulation.

An agent-based solution is applicable for simulation-based
data manipulation because the agents can be programmed to
encapsulate the data management protocols (i.e. standard
data format and data generation methodology). The agent
can also enforce the methodology and format. As the system
evolves, the agent has knowledge of previous formats and
future expectations and is able to manage the data schema
efficiently based on knowledge of the data generation
protocol.

This paper presents the SABLE framework and architecture
in Section 2. In Section 3, there is a depiction of the SABLE
process. In Section 4, the SABLE process is illustrated in the
context of a particular simulation. Section 5 summarizes this
work and its relevance. Finally, future work is presented in
Section 6.

2. SABLE ARCHITECTURE

SABLE is an agent-based solution that provides multiple
functions to support data management in simulations.

Functions supported by SABLE
- Graphical User Interface (GUI) to input data
schema
- Data Schema maintenance as text files

- GUI to input raw simulation data

- Libraries for inclusion in the simulation to
encapsulate data input/output

- Functions to integrate new data schema into the
library

The SABLE architecture is illustrated in Figure 2.1.

Instantiated Data
Object marshals
data in DB

Two_wrapper versions
1. C++ to Java Native

Output DataBase
Oracle/OracleLite

Instantiated Data
Object marshals
data in DB

1. Commits Database
| Records
' 2. Batch File Based

Interface Library Library Graphical Interface
2.100% Java Wrapper Existing and Future Wrapper | 3. Replay functionality
Class Simulation Software Class
|
| |
Graphical Data : : Graphical Data
Depiction (GUI) b 4 Depiction (GUI)
Standard Batch File SABLE
Specialized As[s)iasttht Specialized
Data Object Data Object
Agent
(DAA)

1. Input to simulation
2. Separate Files hold the data schema

1. Input /Output Data Schema Capture
2. Input Data Capture

3. Creates a Standard Batch File

4, Creates a Java Data Object

5. Supports Reporting Functionality

Figure 2.1. SABLE Architectural Components

As seen in Figure 2.1, the SABLE framework consists of the
Data Assistant Agent (DAA), a library which contains
wrappers for both the input and output of data, and a
graphical user interface to show data as it is streamed.
Dynamic portions of the framework are the specialized data
objects. These data objects are user-specified software

objects that realize the data schema in the simulation
software via the SABLE library. Finally, there are text
(batch) files that store the data schema file-based input data.
The central component of the architecture is the Data
Assistant Agent. The DAA coordinates all components of the
framework.

3. SABLE PROCESS

In understanding the SABLE architecture, one must be
introduced to the process. The initial assumption is that the
SABLE libraries are installed on the local operating system
of the software simulation groups. The first step in the
SABLE process is to input the data schema specific to the
simulation. The simulation developer executes the DAA to
input or update the data schema. The DAA provides a GUI
to allow the developer to input the name and type of each
data entity. The developer can also aggregate data entities
into specialized groups. The DAA will group aggregated
data entities into individual software objects. Once the data

schema has been captured, the DAA builds two data artifacts,
a text file of data schema and a software object of the data
schema. Both artifacts are divided into separate files/objects
based on specialized grouping. The DAA then includes the
specialized data objects in the SABLE library source code
and rebuilds the SABLE libraries.

At the time of this writing, the developer is required to create
the database schema. The next phase in SABLE’s
development is to provide an automated method to translate
user-prescribed data schemas into a database schema that is
consistent with both object and relational database schemas.
At this point, the assumption is made that the database model
has tables and fields that

1. Developer builds data schemas
using DAA GUI

Simulation Developer

** Developer builds database schema **

6. As the simulation gets and sets
data, the wrappers GUI displays the
data flow.

SABLE

wrappers
B

Graphical DataFlow Display

I

5. Simulation executes and makes
library calls for data input/output.

¢

Simulation
Program

SABLE
wrappers

\A
SABLE.getfirst("DataObjectName", "DataName")

SABLE.getnext

SABLE.setfirst("DataObjectName", "DataName")
SABLE.setnext

SABLE
wrappers

: —

Developer/User

2. Data Assistant Agent builds
schema text file and dynamically
creates software data object

Data Schema/
/ Text File

.

DAA

Specialized Data
Object

Fields

1L

3. Data Assistant Agent includes data
object in library source code and
recompiles [

Specialized Data ~
Object
Fields
DAA e

t SABLE 4 N

Library
wrappers

1l

4. Developer or User enters actual
simulation data (through DAA GUI or
directly to files)

Indirectly

Data
Schema/

Directly Text File

Simulation

Figure 3.1 SABLE Process

are the same as the object and attributes of the specialized
data objects. Database packages currently translate that
information into the relational schema needed to do the
proper analysis.

At this point, the developer adds the wrapper calls into the
simulation software to access the data entities by row. The
developer also includes the SABLE libraries. Once the
updates have been made, the developer re-compiles the
simulation software. The final step is actually entering the
raw data for the simulation. The developer/user has two
options. One option is to edit the data schema text file by
hand. This option is allowed just in case there is a large
amount of data that has to be translated from other formats.
The DAA allows the user/developer to enter the information
viaa GUI. The DAA then takes the information and writes it
to the data schema text files. At this point, the system is
ready to execute. This process is depicted in Figure 3.1

As the system executes, initial data are read in from the data
schema text files. The software objects are instantiated by the
SABLE wrappers and populated. As the main simulation
reads the data from the software objects, there is the option to
display the data flow on external graphical interfaces. The
GUIs show a basic flow of data but can be manipulated to
show the data in more complex formats. The main
simulation populates the software objects with output data.
At the same time, the software objects store these outputs in
the database for later analysis. Subsequent simulation runs
can pull data directly from the database (this supports the
playback capability). The simulation saves data to the
database in the static schema constructed by the developer.

4. SAMPLE CASE FOR IMPACT

The MITRE Corporation has an agent-based simulation,
IMPACT, that mirrors the air traffic management problem
domain. IMPACT takes initial flight schedules among other
operational parameters (i.e. ground delay programs, ground
stops, flight change, airline information, etc.) and determines
the actual simulated departure/arrival times into a particular
airport. Here a subset of IMPACT is used to show a sample
case of the SABLE process. In this case, let’s assume that
that the input data schema of IMPACT is the same as the
output data schema; in reality there is some variation. The
data schema would incorporate the airline name, departure
time, arrival time, and arrival airport (this is a subset of the
actual data needed in the simulation). The DAA would
collect the information tabulated in Table 4.1.

Object Name Number of Entities
Schedule 4

Data Entity Name Data Type
Entity 1 AirlineName Char[10]
Entity 2 DepartureTime Int

Entity 3 ArrivalTime Int

Entity 4 Arrival Airport Char[4]

Figure 4.1 SABLE-DAA data schema

The DAA would then create a text file that contains the data
schema. This text file will allow the users of IMPACT to
enter information directly or indirectly (i.e. via the DAA).
The file will be named as the object name and the first line
will be the data schema. Also, once the software data object
is instantiated in IMPACT, it will read initial data from this
text. This text file format is depicted below. Percent sign (%)

delimiters can be replaced for any delimiter.

Header line
Airline:char[10]%DepartureTime:int%ArrivalTime:int
%ArrivalAirport:char[4]

Text Line
Entityl value%Entity2 value%Entity3_value%
Entity4_value%

Finally, the DAA dynamically creates a software data object
that is to be included in SABLE wrapper libraries. During
operation, IMPACT instantiated these software objects.
These software objects encapsulate all the functionality of
persistence, concurrency, and graphical data display. The
main simulation only has to set a couple of parameters and
make some generic function calls. Sample software object
source code and function calls are depicted below.

Schedule Data Object

public class Schedul e extends
SABLE_Dat aObj ect
{
private string AirlineNane[]
private int DepartureTine[]
private int Arrival Tine[]
private string Arrival Airport[]

}

Simulation Code Sample

/1 Instantiate Data object
Schedul e this_sched = new schedul e();

/1l Get data values for Airlines
t hi s_sched. getfirst(Schedul e,
Ai rl i neNane)

// lterate through data val ues
whi | e(t hi s_sched. get next (Schedul e,
AirlineNane))

5. SUMMARY

SABLE is an agent-based solution that provides an approach
to the standardization of data management in the dynamic
domain of simulation development and evolution. Design
decisions for SABLE were based on a great deal of low-level
design consideration, which is neglected in this paper. Only a
small amount of low-level design could be detailed in the
space of this paper. The strength of this approach is the ease

of use offered by SABLE. The use of a DBMS has been
abandoned in the context of most air traffic management
simulations because of time constraints and the learning
curve associated with database connectivity and database
schema. The functionality of the SABLE system is similar to
functionality provided in many component libraries as in
Microsoft Foundation Classes (MFC). The main benefit
realized with the SABLE approach is for large-scale
simulation development environments. Other component
libraries are not specifically suited for integration, but more
for “top-down” development.

This first phase of SABLE attempts to create and enforce a
universal data management process to be integrated in past,
existing, and future systems. SABLE has also bheen
incorporated into 2 other simulations. The integration of
SABLE objects decreased development time approximately
35% compared to parallel projects incorporating the same
functionality without SABLE objects. The main time
constraint in the process was designing the data model that
would be used by SABLE. lIterative integration of SABLE
objects into future projects will further strengthen and
formalize SABLE’s data management functionality.

6. FUTURE WORK

The overall goal of the SABLE project is to provide an
agent-based toolkit to allow modelers to make use of agent-
oriented development techniques in their simulations. This
toolkit is being developed in a phased approach. The four
phases are data management, agent communication,
policy/action engine development, and learning/inference
engine development. The work in this paper specifically
documents the first phase of data management. The future
SABLE agent will be used as autonomous entities in
simulations that perform calculations and produce actions,
based on beliefs extracted from a common data model. The
SABLE data objects will allow these future agents to
introspect this data model and infer various beliefs. The
forthcoming SABLE agents will have a modular structure as
illustrated in Figure 6.1. The SABLE agent will be composed
of various components for event-based communication,
data/policy management, and a policy execution engine.

SABLE Agent

EventServer
Wrapper

Consists of

uses

Policy Execution

Communication .
Engine

+—— Data Managemen

/Consists of

Introspection Query Insert
Component Component Component

Consists of

Figure 6.1 Forthcoming SABLE Agent Structure

There are some areas of improvement in this first phase of
the SABLE project. The main area is creating a universal
database format from which the DAA can transform the
developer-prescribed schema to a database schema. Also,
additional design is needed to maintain a consistent and
efficient graphical view of the input and output data. Finally,
for time critical simulations, SABLE will further loosely
couple [3] the act of committing data to the database by
putting them in a separate process.

7. REFERENCES

[1] Blake, B. and Bose, P., 2000. An Agent-Based
Approach to Packaging Mismatch. In Proceedings of
the 4™ International Conference of Autonomous Agents
(AGENTS2000), Barcelona, Spain

[2] Graham, J. and Decker, K., 1999. Towards a
Distributed, Environment-Centered Agent Framework.
In Proceedings of the 1999 Intl. Workshop on Agent
Theories, Architectures, and Languages [ATAL-99],
Orlando, FI

[3] Shaw, M. and Garlan, D., 1996. Software Architectures:
Perspectives on an Emerging Discipline, Prentice-Hall

[4] Sun Microsystems Inc., The Java Language
Specification, Distributed Event Model Specification.
http://java.sun.com.

	Brian Blake
	ABSTRACT
	INTRODUCTION
	Simulation software typically exists in a perennial “prototype” stage. As the analysis needs change, simulations are evolved to allow for changes of both input and output data. Thus simulation environments are dynamic, in nature. In research organizatio
	Requirements for Data Management in this Domain
	A standard data format
	Agent-based software systems have experienced increased attention in the development and support of dynamic systems [1] [2]. Agents have many definitions in industry and academia. One commonality between agent definition is that they act autonomously a
	An agent-based solution is applicable for simulation-based data manipulation because the agents can be programmed to encapsulate the data management protocols (i.e. standard data format and data generation methodology). The agent can also enforce the me
	SABLE ARCHITECTURE
	SABLE PROCESS
	SAMPLE CASE FOR IMPACT
	
	Header line
	Schedule Data Object
	Simulation Code Sample

	SUMMARY
	REFERENCES

