
An Autonomous Decentralized Architecture for Distributed Data Management
and Dissemination

M. Brian Blake
The MITRE Corporation

Center for Advanced Aviation System
Development (CAASD)

1820 Dolley Madison Blvd
McLean, VA 22030
bblake@mitre.org

Patricia Liguori
The MITRE Corporation

Center for Advanced Aviation System
Development (CAASD)
500 Scarborough Drive

 Egg Harbor Township, NJ 08234
 pshearn@mitre.org

Abstract

Over recent years, “Internet-able” applications and
architectures have been used to support domains where
there are multiple interconnected systems that are both
decentralized and autonomous. In enterprise-level data
management domains, both the schema of the data
repository and the individual query needs of the users
evolve over time. To handle this evolution, the resulting
architecture must enforce the autonomy in systems that
support the client needs and constraints, in addition to
maintaining the autonomy in systems that support the
actual data schema and extraction mechanisms. At the
MITRE Corporation, this domain has been identified in
the development of a composite data repository for the
Center for Advanced Aviation System Development
(CAASD). In the development of such a repository, the
supporting architecture includes specialized mechanisms
to disseminate the data to a diverse evolving set of
researchers. This paper presents the motivation and
design of such an architecture to support these
autonomous data extraction environments. This run-time
configurable architecture is implemented using web-based
technologies such as the Extensible Markup Language
(XML), Java Servlets, Extensible Stylesheets (XSL), and
a relational database management system (RDBMS).

1.0 Introduction and Motivation

 At the MITRE Corporation-Center for Advanced
Aviation System Development (CAASD), researchers
develop simulations for both design-time and real-time
analysis. This research constitutes a wealth of knowledge
in the area of air traffic management and control. This
division of MITRE is split into a large number of
individual groups that investigate various problems
comprising the air traffic domain. Although the groups
analyze different problems, the data to support the
investigations are typically the same. Also, these
individual groups develop simulations that require the
data in different formats (i.e. specialized text files with
delimited data, database format, XML, etc.) Moreover,
each group looks at different subsets of data that may

cross multiple data sources. Researchers are currently
provided with data from outside sources that is gathered
and distributed by a data librarian. This data is usually
distributed in the same media and format in which it is
obtained. The CAASD Repository System (CRS) team at
MITRE has identified the need for obtaining the desired
raw data from outside sources and building a composite
data repository that serves the need of this diverse
environment.
 This paper presents the architecture that will allow this
data extraction not only for the air traffic domain but also
for other domains throughout MITRE such as army
strategic motions and telemetry. The goal of the CRS
team is to develop a dynamic architecture that will
facilitate this data extraction for any data schema with the
inclusion of some specific meta-data. In order to ensure
the dynamic nature of this architecture, the CRS team
takes a distributed web-based approach that separates the
major components of the architecture into various
autonomous modules. Though the goal of the team is
toward an architecture that will not change, this autonomy
will ensure the reusability of each component in the
architecture.
 The next section this paper provides an overview of the
CRS architecture and its autonomous modules. Section 3
provides a description of the actual technologies used to
implement the architecture. In Sections 4 and 5, we
discuss its autonomy and current usage.

2. The CRS Architecture

 The CRS architecture was devised to support a diverse
set of customers/users. These customers internal to
MITRE-CAASD use numerous technologies,
programming languages, and interfaces. Web access is
the one technology common to all groups. Therefore, the
direction in designing the architecture was to use Internet
technology as much as possible in gathering data request
information and delivering the data to the customers. The
CRS architecture is composed of four autonomous
modules that fit seamlessly into the Internet paradigm.
These modules are the Client Interface Module, the

Interface Specification Module, the Presentation and
Query Module, and the Database Extraction Module.
These modules can be split across three layers, the
Interface Layer, the Presentation Layer, and the Data
Storage Layer. These three layers and the underlying
modules are illustrated in Figure 1.

Client
Interface
Module

Interface
Specification

Module

Presentation and
Query Module

Database
Extraction

Module

Interface Layer Presentation Layer Data Storage
 Layer

 Figure 1. CRS Architecture by Layers.

 The Interface layer is the layer by which users can
connect to the system. This layer consists of the Client
Interface Module. Currently, Internet browsers implement
the Client Interface Module. The customers use the
browsers to connect to the system. In the future, this
module might also include some stand-alone applications,
which support data streaming.
 The Presentation Layer contains the Interface
Specification Module and the Presentation and Query
Module. Both of these modules include software services
that provide a graphical user interface. The Interface
Specification module allows the customers to customize
their user interface to meet their specific needs. This is
important considering the diverse data needs. The
Presentation and Query module allows the customer to
choose a standard or specialized interface in order to
request data. Later, this module will need to be enhanced
to explicitly allow the specification of business and
domain logic. This module packages the information that
will later be used in the Data Storage Layer. The Data
Storage Layer contains functionality to maintain and
extract data from some data repository. This layer consists
of software services for extracting data from the relational
database management system (RDBMS).
 Each module can further be decomposed into
individual autonomous components. The decomposition
of the modules is illustrated in Figure 3. As previously
mentioned, the Client Interface Module currently contains
Internet browsers that connect to the CRS system. The
system provides two main functions for the users. In the

first main function, a user can access the Interface
Specification Module and design a personalized query
form. This functionality is designed for users that need to
execute repetitious personalized queries. The Interface
Specification Component saves this personalized query
form in a shared file system. The other function allows
the user to access a personalized or standard query form
within the Presentation and Query module and execute a
query on the data repository. The User Interface
component has access to the shared file system that stores
the personalized and standard forms. The Data Extraction
module is a service to both the Specification module and
the Presentation and Query Module. The Data Access
component accepts connections from the User Interface or
Interface Specification component to satisfy internal or
external services.

3. An Implementation of CRS System

 At MITRE-CAASD, the CRS team has implemented
the CRS architecture using various Internet technologies.
Figure 2 presents the implementation that supports the
details in the original architecture diagram. The CRS
implementation mainly uses Java-based technologies. The
browsers in the Client Interface Modules connect to the
Java Servlet-based components in both the Specification
Module and the Presentation and Query Module. Both
the User Interface component and Interface Specification
component are implemented with Java Servlets. These
Servlets are integrated with Java classes that fulfill the
underlying query services. The Servlet in the Interface
Specification module accepts information from the
browsers in the Client Interface module in the form of an
HttpServletRequest. This information can be parsed and
used to generate the specifications for the HTML-based
query form. This module stores this user preference
information as an XML file in a shared file system
location. In building this XML file, the module gathers
database specific information using the Data Extraction
Module. This information is coupled with the user
preference information. Subsequently, this XML can be
processed with a generic XSL file to dynamically
generate the HTML-based query form. This XML file is
the centerpiece of the architecture as it is the basis for the
execution of the system. This file contains detailed
information that allows the Presentation and Query
Module to be generic. The benefit here is to allow
outside sources to use the same XML format, and without
the Interface Specification module, to have the ability to
use the Presentation and Query module for data retrieval.
 The Servlet in the Presentation and Query module
also receives an HttpServletRequest from the browsers.
This module receives two independent messages. The
first HttpServletRequest designates the particular standard
or user-personalized query form to display. This
personalized query form will be specific to each user.

XML Files XSL Files

Meta-Data Domain-specific

Client Interface Module

Interface
Specification Module

Presentation and Query Module

Data Extraction Module

Java Remote Application using JDBC
Database Access Component

Java Servlet
User Interface
Component

Java Servlet
Interface

Specification
Component

Netscape or
Internet Explorer

3.0 or greater

HTTP (doPost)

return HTML

HTTP (doPost)

XML File Save

 Java RMI
Submit queries and
data request jobs

Oracle Database

Shared File Systems

Figure 2. CRS System Implementation.

Once the user is presented with the query form and
submits it, the second HttpServletRequest includes
information that will be used to create a generic query on
the database. The components in this module make use of
remote registry-based services from the Data Access
Components to fulfill their database needs. Each of the

modules has static interfaces in some cases asynchronous.
Each module has autonomous functionality that can be
changed or updated independently. In Figure 3, the three
main functions of the system are shown in relation to the
modules. The following section discusses the autonomy
of the modules comprising the CRS Architecture.

Specification
Servlet

Interface Specification Module

Interface
Specification
Component

User Preferences
DB-

specific
information

1. Output Field Choices
2. Time Filter Capabilities
3. Data Filter Capabilities
4. Sort Capabilities

1. Entity Names
2 Field Names
3. Key Names

Meta-
data

Integrated query
 form s

Specifications

Form -XML File
(Staged Form Specification)

User
Interface

Component

Data Repository User

HTML-based
Staged Query

Form

Specific
Query

3. Use HTML query
form to make

Query Selections

** Parses selection information and
dynamically generates SQL for data
query **

Data
Extraction

Module

User
Interface

Component

Presentation and Query
Module

XSLT
compiler

Presentation and Query
Module

XSL
Style

Sheets

HTTP
HTTP

Submit
Form-XML

File

2. Use Form-XML
Filename to

dynamically generate
query form

Generate Stage
 Query Form

submits
XSL

doPost
(HttpServletRequest

1. Use Servlet to
configure a query

form HTTP

CRS Main Web
Porta

Figure 3. Operation of the CRS Implementation.

4. Autonomy in the CRS Implementation

 The CRS Architecture is a client driven approach to
data extraction. This autonomous architecture allows a
user to specify general types of queries and then provide
the proper input to execute the queries as necessary. This
architecture uses four modules for client interfacing,
query specification, presentation and querying, and
database extraction. By maintaining the autonomous
nature of these modules, the architecture can adapt in the
future with respect to the evolution of the data as well as
exceptions in the system.
 The Interface Specification module and the
Presentation and Query module are completely
autonomous. They are represented by independent
Servlets. The Query Specification module creates XML
files that are later used by the Presentation and Query
module. Both modules share a file system location, but
the operation or failure of one module has no effect on the
operation of the other. The Data Extraction module is
represented by remote components. There is a
dependency on this module by both the Interface
Specification module and the Presentation and Query
module. However, by implementing the Data Extraction
module as remote objects, the other modules can easily
invoke new Data Extraction modules in event of a failure.
 The autonomy of the Interface Specification Module
and the Presentation and Query module could have been
assured by incorporating the Data Extraction module
within each. However, in doing this, both modules would
be tightly coupled with the database. In creating a Data
Extraction module, we further extend the autonomy of the
other modules with respect to database location and
connection protocol changes. The other modules can
easily re-initialize the Data Extraction modules when
failures occur. Moreover, the modularity of these Data
Extraction modules allows them to be reused across
MITRE-CAASD for this database or for any other.

5. Current CRS Usage

 MITRE-CAASD has approximately 400 researchers
that work to perform analysis and simulations for
problems surrounding air traffic management and control.
These researchers are split into approximately 50-60
different research teams. The CRS implementation
currently has 34 staged and user-generated forms that
support approximately 15 research teams. Currently all
forms are connected to a single 5 gigabyte database. The
systems performance varies on the size of the database
tables. The ETMS dataset has information about the
messages sent between aircrafts and air traffic controllers.
Subsequently some tables are loaded with approximately
2.5 million rows per day. In returning 2 megabytes of
filtered data from this dataset, we have experienced an
average of 35 seconds delay. This performance is
excellent considering the alternative is a human-supported

data librarian. The Jeppesen dataset contains a finite
amount of information that describes map coordinate
information. This dataset only contains a total of
approximately 10 megabytes of data. Consequently,
filtered data queries only experience about 7 seconds of
delay regardless of the size or complexity of the query.

6. Summary

 The CRS Architecture is a distributed approach to data
dissemination [2][3][4]. Autonomous modules within the
system can reside on different machines. There is a great
deal research in autonomous decentralized systems
showing how autonomy and modularity can increase
system utilization [1] [5]. The autonomous nature of the
CRS system allows these modules to be upgraded
individually. Also, this architecture can make use of the
processing time on multiple machines as opposed to one
centralized location. Another advantage to this
architecture is that it abstracts database specific
information from the user. The users of CRS have merely
to understand the output data, formats, and types of filters
to operate this implementation.

7. Acknowledgements

 There was a great deal of support given by members of
the MITRE-CRS team consisting of Fred Wieland, Rob
Tarakan, John Mack, Tho Nguyen, Gail Hamilton, Jeff
Hoyt, Ted Cochrane, Jay Cheng, Dennis Sandlin, and Ali
Obaidi.

REFERENCES

[1] T. Aizono, K. Kawano, H. Wataya, and K. Mori,
“Autonomous decentralized software structure for
integration of information and control systems,
Proceedings of the 21st International Computer Software
and Applications Conference, Washington DC, August
1997

[2] R. Allen, R. Douence, and D. Garlan, “Specifying and
analyzing dynamic software architectures,” Proceedings of
the 1998 Conference on Fundamental Approaches to
Software Engineering (FASE98), March 1998

[3] J. Ambite, et. al., “Simplifying data access: The energy
data collection project”, IEEE Computer, pp 47-54, Feb
2001

[4] M.B. Blake "SABLE: Agent support to consolidate
enterprise-wide data oriented simulations”, Proceedings of
the 4th International Conference on Autonomous Agents
(AGENTS2000), Agents in Industry, Barcelona, Spain June
2000

[5] B. Thuraisingham, “Object technology for building
adaptable and evolvable autonomous decentralized
systems”, 4th IEEE Symposium Autonomous Decentralized
Systems (ISADS99), Tokyo, Japan 1999

