
Developmental and Operational Processes for Agent-Oriented Database Navigation
for Knowledge Discovery

M. Brian Blake
 Department of Computer Science Center for Advanced Aviation

 Georgetown University System Systems Development (CAASD)
234 Reiss Science Building The MITRE Corporation

 Washington, DC 20057 McLean, Virginia 22102
 blakeb@cs.georgetown.edu bblake@mitre.org

Andrew B. Williams
Department of Electrical and Computer

Engineering
University of Iowa

Iowa City, Iowa 52240
abwill@eng.uiowa.edu

ABSTRACT
Knowledge discovery in databases (KDD) is an area that
has become important to organizations that search for
trends and useful information from their raw database
information. KDD can be a tedious and repetitive human-
driven process with respect to extracting the relevant data-
sets from databases for processing in the relevant learning
algorithms. We investigate an approach where agents can
control the extraction of the data-sets. We show a software
developmental process and paradigm for programming
information agents to extract data-sets based on a
methodology we refer to as “extraction hints”. We discuss
what data modeling approaches can be used to allow these
information agents to be reusable across various domains
and databases. Lastly, using the aviation domain for
motivation, we show the design of an agent architecture
toward the further automation of KDD using agents.

1. Introduction
Over the past decade, government and industry
organizations have enhanced their operations by utilizing
emerging technologies in data management. Advances in
data modeling approaches and database technologies have
led to better storage and maintenance of business data and
knowledge. Furthermore, the normalization of such data
has increased the ability of organizations to extract useful
knowledge from raw operational data. These approaches
have led to the popularity of many areas, such as
knowledge discovery in databases and data mining (KDD)
[8]. Over the past decade, there has been increased
acceptance of the maturing KDD technologies, but human-
driven aspects need further automation.

1.1 Problems with Knowledge Discovery
 Knowledge discovery and data mining (KDD) in

databases consists of such phases as selection, pre-
processing, transformation, data mining, and
interpretation/evaluation. Excluding the data mining phase,
where there are a plethora of automated learning algorithms
and processes, other phases are mostly human-driven.
Knowledge discovery is important in some domains, such
as the aviation and bioinformatics, where raw data is

complex and heterogeneous. This data can be represented
in normalized and de-normalized databases.

A problem in such domains is that human experts must
manage the KDD process, which tends to be iterative and
time-consuming. In addition, human experts do not always
know which subsets of data are most valuable for the data
mining scenarios. In most domains, the number of possible
attribute combinations makes it improbable for human-
enacted "trial-and-error" learning sessions to be effective.
Other algorithms for sampling and association rule pruning
[18] are helpful in this domain but do not address the need
for true automated approaches for iterative knowledge
discovery sessions.

1.2 Applying Agents to KDD
Our approach seeks to apply agents for the semi-

automated management of the KDD process and draws on
applications in association rule discovery. Currently, there
has been significant progress in the creation and
enhancement of algorithms that create association rules
from database records. Mostly, these technologies support
human-driven learning sessions. Human domain experts
suggest database columns as attributes and classifiers that
are appropriate for rule learning algorithms. These
attributes are tagged using a database schema viewer or
extracted from the database (using human-proposed
queries) as datasets into flat file formats.

 From the initial suggestions of a human domain
expert, an information agent will pre-process and transform
data in preparation for data mining. The information agent
submits the data to third-party, data mining software. From
experience with the individual information agent, we lay
the foundation for a future architecture toward the use of
multiple learning agents to evaluate results and iteratively
suggest the initiation of new KDD routines.

There are several significant research questions related
to applying agents to KDD such as:

1. What database schema is most effective and reusable
across domains for agent navigation through the
database?

2. How can this information agent architecture be generic
enough to be reusable across domains?

3. Can extraction heuristics, mainly defined with database-
specific semantics, be derived from historical user
actions and are such heuristics effective ?

This paper addresses questions 1 and 2 and is
organized as follows. In Section 2, we survey related
projects that use agents for data mining. The following
section will discuss the appropriateness of various
relational data modeling techniques for agent navigation.
Furthermore, there is the description of a reusable meta-
information loading process to prepare databases for agent
interaction. In Section 4, we discuss how human extraction
hints can translate to agent programming using the aviation
domain for motivation. In Section 5, we discuss the
information agent architecture and user interface prototype
developed in this work and briefly detail questions
answered by the architecture. In Section 6, we discuss how
results from this work motivated a new multi-agent
architecture to address question 3. Finally, we detail our
on-going agent architecture and design to further automate
the KDD process.

2. Related Projects
 In general terms, current technologies and applications

that support knowledge discovery in databases can be
categorized as tightly coupled approaches and loosely-
coupled approaches. Tightly-coupled approaches
[1][15][18] take advantage of database performance and
capabilities by incorporating data mining models inside the
underlying database. Thus, the knowledge discovery tools
are bound to the underlying database. Loosely-coupled
approaches, generically, extract data-sets from the database.
This allows knowledge discovery tools to migrate to
numerous database technologies and applications. Most
commercial applications offer loosely-coupled tools
[6][19][22].

 Both of these approaches are most effective when
human domain experts initiate and manage knowledge
discovery sessions. While most researchers try to use fast,
efficient algorithms to generate association rules and ways
to reduce the number of irrelevant results, there is little
work that provides automated data-set servers or even
sophisticated user interfaces for data-set generation from
databases. Similarly, these association rule-learning
algorithms can discover attributes, which are most likely to
have associations with other attributes. However, there is a
shortcoming in the domain where users must identify
complex qualifying events (i.e. the composition of
unrelated attributes). Generating data-sets containing
information for qualifying events is a time-intensive
process for which there is currently minimal support.
Moreover, current tools have little support for discovering
the attributes or group of attributes that are most relevant to
these qualifying events.

 Considering related agent research, there are few
approaches that use of agents in KDD. Maes [12]
performed initial research using agents that control various
information gathering and associated tasks. One such area
was the use of personal assistant agents for machine
learning. In fact, later implementations of this work led to
the establishment of Frictionless Commerce. InfoSleuth
[16] is a multi-agent architecture that gathers information
from distributed sources and intelligently presents the
composite information. Payne [16] details areas where
interface agents can be used for learning and rule induction.
IDM [4] is another multiple agent architecture that attempts
to do direct data mining that helps businesses gather
intelligence about their internal commerce. Helmer et. al
[9] uses intelligent agents to mine security data.

 Given the survey of related work, there were no
findings of significant related projects that try to define
agent heuristics and architectures for knowledge discovery
in databases. The work of Maes and InfoSleuth are more
data dissemination-oriented than the learning goals of this
work. The goals of Payne and Helmer are more towards
Internet-based domains while this work is toward a generic
architecture and model that will allow learning directly
from a relational database model. The architecture in IDM
has some similarity to the architecture in this work,
however the approach is aims toward the business domain
and more toward applying learning algorithms as opposed
to automating aspects of knowledge discovery.

3. Relational Models for Agent Navigation
 Our current work has formalized a process and
framework that combines the benefits of both tightly-
coupled approaches and loosely-coupled approaches. This
process incorporates the semantics for standardizing
entities in the database through the inclusion of meta-
information. This additional meta-information is not
composed of data mining-specific models, but information
that shows how entities are correlated (correlation
attributes). Human-proxy agents or middle agents are used
to populate the meta-information in the database,
intelligently build data-sets, and also act as wrappers to the
data mining software. This work also supports the
specification that defines qualifying events as a function of
database semantics. In this section, there is a description of
our approach to database preparation/pre-processing for
agent interaction and navigation.

3.1 Difficulties of Common Relational Modeling
Techniques with Agent Navigation
 The explanations in this section will be motivated around
aviation-based data-sets. This is appropriate because, in
later sections, our agent approach will be demonstrated on
aviation data. In general, organizational databases follow a
normalized or de-normalized approach [11]. However,
most commonly, organizations take advantage of hybrid
approaches that combine the benefits of both.

 A main principle followed in this work is the
development of agents that have relatively simple non-
domain-specific functionality. Development in this
fashion will allow agents to be reusable as they are
deployed on different databases. The major problem with
both normalized and de-normalized approaches is the
specificity required for agent navigation. To motivate this
problem, we consider the two modeling approaches
(normalized and de-normalized) for data that represents
airport terminal weather and airport terminal performance.
Airport terminal weather [13] include fields such as
visibility, ceiling, barometric pressure, temperature, wind
speed, etc. Airport terminal performance [20] has
information such as arrival/departure rates,
arrival/departure cancellations, etc. This information is
modeled in both normalized and denormalized form as
represented in Figure 3.1. In the de-normalized tables, all
information relevant to airport terminal weather and airport
terminal performance are included in their respective
tables. Related information are not connected by joining
tables, however joins can be built on the tables using query
languages, if the fields have the same basic data types and
formats.
Though the normalization could be much stricter, for
explanation purposes, normalization principles are
demonstrated on the right side of Figure 3.1. Common
fields of time and location are represented in other tables
that are referenced by the main Terminal Weather and
Terminal Performance tables.

Temp
Visibility
DewPoint
Ceiling
WindSpd
WindDir
AptID
Latitude
Longitude
ForecastTime
EffectiveTime
Duration

Terminal Weather

DepartureRate
ArrivalRate
DepCancellation
ArrCancellation
AptID
Latitude
Longitude
EffectiveTime
IssueTime

Terminal Performance

Temp
Visibility
DewPoint
Ceiling
WindSpd
WindDir
IssueTimeID
LocationID
EffectiveTimeID

Terminal Weather

DepartureRate
ArrivalRate
DepCancellation
ArrCancellation
IssueTimeID
EffectiveTimeID
LocationID

Terminal Performance

Location

Time

Latitude

Longitude
Coordinate

Airport
City

State
Month

Day

Year

De-Normalized Normalized

Figure 3.1 Different Relational Modeling Approaches

 In initial studies, we attempted to model agents that
navigate both modeling paradigms. We discovered that
using either of these modeling paradigms would require
autonomous agents to be tightly-coupled to the database.
Answering questions, such as “What is the arrival rate
trend when temperature is below zero degrees at Dulles
International Airport?”, required agents to have more than

knowledge about the information, but also database
semantic knowledge.
 In the de-normalized models, agents would have to
initially know which fields are used to relate tables. Thus,
hard-coding agents to specific fields would be necessary.
In addition, the assumption would be that these fields use
similar data types and formatting which is not always true.
Moreover, making joins across the de-normalized tables
tended to be problematic with large data-sets.
 In the normalized models, though common fields are
modeled in the database, agents are required to have an
understanding of the other descriptive tables. Most data
mining software operates automatically from the
normalized tables using numerous learning algorithms.
However, such approaches still require human users to
direct the KDD process. These data mining approaches use
the key constraints found in relational system tables to
understand table connectivity. In early approaches, we
attempted to use these key constraints for agent navigation.
This proved to be ineffective because of the variation of
system tables across multiple relational database
management systems. In addition, modeling behavior for
tables having multiple keys to one another also tended to be
problematic. Again, this required complex database
semantic information to be programmed into the agents.
 For agents to navigate through databases while also
allowing the maximum possibility for reuse, we found it
necessary to follow several conditions:
• Limit the coupling of database semantics in the

agents
This would allow agents to be functional on multiple
relational database management systems.

• Allow joins, however joins should not be mandatory
This will allow agents to be able to optimize their
operations in some situations by using single table
queries.

• Complex entity relationships should be made prior to
data-set generation in a “data preparation” phase
Relating information real-time prove to be an
ineffective approach the most effective approach

3.2 A Process for Programming the KDD Agents
 In this modeling technique, we make the assumption that
the initial database contains mostly de-normalized entities.
This approach uses a process that standardizes the database
into an environment that agents can navigate. This is a
reproducable process that is valid for any database with
entities that share related columns. This process includes
the creation of fact tables [11] that connect entities.
Information agents are configured to manage this loading
and standardization process. Similar to tables above,
consider entities that represent aviation terminal weather,
terminal performance (arrival and departure rates), and
terminal operations as illustrated in Figure 3.2.

The process for creating the database structure in Figure
3.2 is as follows.
1. Human domain expert identifies related columns across

multiple entities and also specifies the target data types
2. The human also identifies specific range for the related

columns/attributes (i.e. the range to be analyzed)
3. Assuming columns are sorted, information agents develop

generic CorrelationAttribute entities and preload records for
data within that specified range

4. Agents query the raw data tables and record-by-record
create correlation records in the CorrelationSpace entities
based on matching correlation attributes.

5. Additional detailed entities (Airports and Time) can be
generated/connected to further describe the correlation
attributes (This post-loading-process can be used in
normalized models).

In Figure 3.2, the airport identification (AptID) and event
times (EffectiveTime) are identified as common columns,
as depicted with ovals and rectangles, respectively. In this
example, these columns are obvious, but there are
situations where the relations between entities are only
evident to domain experts. By using the generic
CorrelationSpace and CorrelationAttribute table structures,
agent capabilities can be duplicated on any database
containing these meta-information tables.
The agents are not limited by having to “hard-coded”
column names and table locations, instead queries can be
managed based on pre-defined conditions. Also, this
process essentially pre-loads joins into the database model.
During loading, agents do not create duplicate correlation
records (CSpaceID), instead existing correlation records are
reused. In this way, for example, when a weather record
has the same correlation conditions (the same time and
same airport) as a terminal performance record then both
records have the same CorrelationSpace identification
(CSpaceID).
The modeling concepts used to create this structure are not
novel. These concepts are consistent with database
normalization routines. The benefit is the separation of the
domain-specific information from the database semantics.
The main idea is for the agents to be able to perform basic
text comparisons without knowledge of domain-specific
concerns when generating data sets.
This schema makes it possible for agents to answer such
questions as:
• What was the arrival rate at Dulles Airport on September

11th?

• What was the cancellation count of arrivals at La Guardia
Airport when the temperature was less than 0 degrees?

• What was the arrival rate at Reagan National Airport on days
when Ground Stops were issue?

Temp
Visibility
DewPoint
Ceiling
WindSpd
WindDir
AptID
ForecastTime
EffectiveTime
Duration
CSpaceID

Terminal Weather

DepRate
ArrivalRate
DepCancellation
ArrCancellation
AptID
EffectiveTime
IssueTime
CSpaceId

Terminal Performance

GroundStop
GroundDelayProgram
CancellationOrders
DiversionOrders
EffectiveTime
IssueTime
AptID
CSpaceID

Terminal Processes

CSpaceID
CAttribute1_ID
CAttribute2_ID

CorrelationSpace
CAttribute1_ID

CorrelationAttribute1

CAttributed2_ID

CorrelationAttribute2

Airports

TimeIntervals

 Figure 3.2 Database Preparation for Agent Navigation

 The major benefit of this modeling approach is that
agents can now vary the correlation attributes (in this
example case, time and airport locations) to find deeper
knowledge. For example:
• When the cancellation count at La Guardia Airport is less

than one per fifteen minute period, then what is the trend for
weather in Newark at that same time?

• What was the ceiling and visibility 4 hours before a ground
stop is issued at Reagan National Airport?

The automation of these variations is not a current
capability but will be possible in the architecture described
in Section 7.0.

4. Programming Agents with Extraction Hints
Domain experts, at times, need to determine trends based
on a composite list of attribute constraints. In this work,
we specify these composite constraints as hints or
qualifying events. In the example presented in Section 3.2,
qualifying events can be defined as the combination of
weather, processes, and performance conditions.
 We define two major aspects of the qualifying event that
human users can provide. The first aspect, called the search
criteria, allows the input of a basic constraint. For
example, a user might direct the agent to explore situations
where the ceiling was greater than 1000 feet and
temperature was greater than 90 degrees. This search
criteria will specify records from the Terminal Weather
table where the values of the ceiling column is greater than
1000 and the temperature column is greater than 90.
 Once a search criteria is set, the user can also suggest
information points. An information point is defined as
other information related to the search criteria, as

constrained by the correlation attributes (in this case, time
and airport). For example, a user may specify an
information point as the visibility at the same time and area.
A user can also specify an information point for a different
location for a different time, perhaps at another airport and
for the time 3 hours before the time captured when the
search criteria is met. Both the search criteria and
information points are composed of the correlation
attributes represented in the correlation records.

D Generated Data Set
s Resulting Search Criteria Data-points
i Resulting Information Point Data-points
t RDBMS table name
f RDBMS column name
C Set of all correlation attributes
X Set of user-specified filter information
q(C) Function that generates information from directly

specified set of correlation attributes
n(C,X) Function that generates information from directly

specified set of correlation attributes while
constraining returns by user-specified filters

ctime Correlation attribute 1 (time-based)
carea Correlation attribute 2 (area/airport-based)

Table 4.0 Variables Describing Aspects of a Qualifying Event

 The components of the search criteria and information
points are defined in Table 4.0. For the variables in Table
4.0, the search criteria data-point, s, is created from a
function, n, that gathers data from a relational database
given the table name, t, and field name, f, and further
constrained by correlation attributes, ctime and carea and the
set of all other database filters, X. This relation is further
defined as

s = nt,f(ctime, carea, X)
The data-point from the information point specification, i,
is created from a function, q, that gathers data from a
relational database given the table name, t, and field name,
f, and further constrained by correlation attributes, ctime and
carea. In this relation defined as
 i = qt,f(ctime, carea)
there is not a need for other database filters because the
information points are based on instances related to the
search criteria. Finally, the user-directed data-set, D, can be
defined as the series of all search criteria datapoints and
information points.

D = < Σs, Σi >, where some sn or in is the classifier
All data-sets can be captured in a flat file and later
processed using data mining software. When processing the
generated data sets using a association learning algorithm,
one of the points from the search criteria, s1…n, or one of the

information points, i1…n, must be designated as the learned
class or classifier, based on all the other attributes.

5. An Information Agent for KDD
 Thus far, the initial work described could have been
achieved without the use of agent technologies. Agents
have mostly been used in situations requiring autonomy to
perform routine tasks [10]. Middle agents can act as
proxies for their human counterparts. In the initial work,
regular component-based concepts and development could
fulfill the requirements in specifying and enacting complex
knowledge discover sessions. However, in anticipation of
further research, agent qualities were incorporated in the
initial implementation. This architecture extended initial
agent architecture research [2].

5.1 Functionality of the Information Agent
The main agent characteristic is the ability for the
information agents to independently run a knowledge
discovery session once the human user specified a
qualifying event. Information agents in this work perform
the following tasks during one session.

• Present graphical interface to human domain expert

• Extract qualifying event from interface settings

• Generate data-sets from the database

• Correct and record actions performed from incomplete
data

• Submit data-sets to the data mining software

• Report results and corrective actions

 The initial implementation is an excellent starting
point to design and implement higher-level agents that
analyze the results of the information agents. These higher-
level agents or learning agents can trigger other information
agents based on the results. Multiple learning agents can
collaborate on results across multiple knowledge discovery
sessions, thus gaining higher-order knowledge.

5.2 The Information Agent Architecture
 The agent architecture consists of an information agent
with a graphical user interface that allows human domain
experts to specify qualifying events. The information agent
has an internal database interface module that acts as an
interface to a local relational database. This module
utilizes Java Database Connectivity (JDBC) technologies
and the Oracle 9i Lite Personal database. In addition, this
information agent also has an interface to a third-party data
mining tool, specifically the WEKA tool. The initial
application contains specialized loaders supporting the data
model approach Figure 3.2. This initial architecture and
graphical user interface is illustrated in Figure 5.0.

O racle Lite
(600 megabytes
of Av ia tion D ata)

Info rm ation
A gent

C ontro l M odu le
(Java A pp lication)

D ata base
Inte rface
M odule
(JD B C)

U ser
Inte rface
M odule

(Java A pp let)

D ata M in ing
In te rface
(W E K A)

W EK A Data
M in ing

App lica tion
(Java In terfaces)

Figure 5.0 A Information Agent Architecture and User Interface to Support KDD

The graphical user interface allows the user to insert search
criteria and search information (information points) while
varying the correlation attributes of time and area (CSpace
TimeType and CSpace AreaType). Though the number
tabs are configurable, the user interface in Figure 5.1 has 6
tabs corresponding to pairs of search criteria and
information points. The Exact shown in TimeType and
AreaType textboxes means there is no variation in the
correlation.

6. Application to the Aviation Domain
The information agent developed in this work proved to be
useful on aviation data-sets. This agent architecture was
deployed on a subset of relational data from repositories
owned by the Center for Advanced Aviation System
Development (CAASD) at The MITRE Corporation. The
entire repository contains over 600 gigabytes of data. For
purpose of experimentation, the pre-processing method
specified in Section 3.2 was executed on terminal weather,
performance, and policy data (a simplified subset of the
model shown in Figure 3.2) from the period of May 2001 –
October 2001. This subset of data represented
approximately 600 megabytes of data available for
knowledge discovery.

6.1 Evaluating Validity of the Information Agent
One case performed to validate the initial information agent
architecture was to re-engineer flight rules. When visibility
is below a certain distance and ceiling (cloud-level) is
below a certain altitude, the FAA institutes instrument
flight rules (IFR) as opposed to the visual flight rules
(VFR) during normal conditions. This means that any pilot

flying a plane should be able to operate the plane using
solely with instruments when IFR is instituted. How these
rules are determined is a known heuristic, therefore if the
right qualifying event is given by a human expert, the
information agent should be able to discover the rules
governing the FAA flight rules policies. Two data
groupings corresponding to this scenario are listed below.

Weather FAA Processes
Temperature, Ceiling,
Visibility, Barometric
Pressure, WindSpeed,Wind
Direction, Dew Point

Ground stop, Ground Delay
Program, Flight Rule, Miles-
In-Trail Restriction,
Cancellations, Diversions

Table 6.0 Sample Attributes from the Experimental Data Model

A human expert would set a search criteria to capture
records when the ceiling (i.e. elevation of lowest cloud
level) is less than 700 feet. The domain expert may also
suggest that temperature, visibility and wind speed may
also have some effect by setting these columns as
information points. Finally, the expert would set another
information point as the flight rule condition and set that
column as the classifier.
In this evaluation scenario, there were 90% of the
experiments where the information agent correctly
discovered that only ceiling and visibility are pertinent to
flight rules. These results showed promise to the domain
experts when using the tool for other unknown associations.
The trials that were not successful generally occurred when
learning algorithms were applied to airports with relatively
fair weather during the chosen six month period. The major
results of the information agents were the lessons learned

that have led to the design of our new multiple agent
architecture detailed in the next section.

6.2 The Motivation for Multiple Agents
The use of the information agent at CAASD has been
successful in discovering trends. Some interesting,
unexpected trends have been the seeds for discovering new
areas for analysis. One discovery in multiple trials of using
the information agent is the trend of the human users to ask
similar follow-up questions leading to follow-up KDD
routines.
To motivate this point, we use the results determined in
Section 6.1 that only ceiling and visibility are pertinent to
flight rules. In response to these results, a domain expert
may ask several follow-up questions that are not known:
1. Does Wind Direction or Dew Point also make a difference?
2. Does the same pertinent conditions of (ceiling and visibility)

effect other processes like cancellations?
3. Does the same conditions effect cancellation in the past (12

hours prior) or in the future (12 hours after)?

The research question that arises from these follow-up
questions is “Can these follow-up questions be defined
with database semantics and can agents autonomously
generate these follow-up questions?”. Our current
architecture inserts a user monitoring agent to analyze these
follow-up questions and determine the differences between
these questions and the previous questions. These
differences are extracted in terms of the underlying
database semantics. These semantics can be further
transformed into heuristics used to program other agents,
learning agents. Some heuristics in terms of the agent
programming (defined in Section 4.0) are:
1. Create a new qualifying event where other attributes from the

same data groupings are added while deleting non-pertinent
attributes (as in question 1 and 2)

2. The correlation attributes (timeframe and location) can be
varied (as in questions 3 and 4).

The above are just samples of the type of heuristics that can
be programmed in the agent to allow new qualifying events
to be generated and new knowledge discovery sessions to
be processed concurrently.

7. A Multiple Agent Architecture for KDD
The design of the current multiple agent architecture is
aimed towards a framework for multiple information agents
and the introduction of higher order agents, which can be
referred to as learning agents. In addition to learning
agents, there are user monitoring agents that view the
activities of domain experts that use the stand-alone
information agents. Information agents will perform tasks
similar to their described current functionality. Learning
agents will incorporate the heuristics for the iterative
instantiation of information agents. This architecture is
illustrated in Figure 7.1.

Oracle Lite
(600 megabytes
of Aviation Data)

Learning
Agent

Learning
Agent

Learning
Agent

Learning
Agent

Learning
Agent

Banks of
Information

Agents

Information Agent
operated by

Human Expert

User Monitoring
Agent

Figure 7.1. Multiple Agent Architecture Towards the Full
Automation of KDD

The learning agents, information agents, and user
monitoring agents will coordinate and communicate using
Linda-based communication. Earlier work investigated the
use of tuple-space communication for agent collaboration
for workflow management [3]. This approach and existing
modules using JavaSpace technology have been extended
and incorporated into this architecture. The control module
for the learning agent interprets the results from the
information agents and heuristics created from the results
of the user agents.

Data-Set

Information
Agent

Data Mining
Software
(WEKA)

1. Table and Column Names
2. Correlation conditions among Columns

Results

Learning
Agent

Operations:
1. Delete Irrelevant Table/Column Names
2. Add additional Columns to evaluate
3. Vary or extend Correlation conditions
4. Send new instructions to the Information Agent
5. Switch the classifier

 Figure 7.2 Agent-Based KDD Operational Processes

 The control flow of the agents that manage off-line
knowledge discovery sessions is illustrated in Figure 7.2.
Information agents create data-sets based on a qualifying
event from a human user. The qualifying event, as
explained in Section 4.0, consists of column names and
how those values are correlated. Once the data-set is
processed in the data mining software, association rules are
created and sent to a learning agent. Also in this step, the
columns that are most valid and the strength of the rules are
combined with the learning agents’ existing knowledge of
other available database columns. The learning agent now
uses heuristics and all the available information to produce
a new set of column names and corresponding correlation

conditions. This might require columns to be deleted or
new ones to be added. The learning agent can also change
the correlation conditions, such as time and location
requirements in the aviation domain. The agent may also
define a new column to be the classifier, thus starting a new
thread.

8. Conclusion
In this paper, there is a description of an information agent
that facilitates a human user in developing and executing
KDD routines. This work represents a novel investigation
of agent capabilities for use in knowledge discovery. This
information agent has been useful as applied to the aviation
domain and currently in use for analysis purposes at The
MITRE Corporation. There is also a description of the on-
going work an architecture that is more towards
“automated” KDD routines. The use of the initial
information agent was instrumental in determining the
initial design and protocols for the multiple agent
architecture. Future work is toward the evaluation of the
multiple agent architecture.

9. Acknowledgements
Our thanks to several undergraduate students, Wendell
Norman, Lindsay Blohm, Todd Cornett, and Denitsa
Apostolava, who helped develop and test the agent
modules. We thank Professor Marcus Maloof for his
support in the use of the WEKA software and machine
learning algorithms. We thank Professor Lisa Singh for
discussions and some directions toward knowledge
discovery in databases.

This is the copyright work of the MITRE Corporation and was
produced for the U.S. Government under Contract Number
DTFA01-93-C-00001 and is subject to Federal Acquisition
Regulation Clause 52.227-14, Rights in Data-General,Alt. III
(JUN 1987) and Alt. IV (JUN 1987). The contents of this
document reflect the views of the authors and The MITRE
Corporation. Neither the Federal Aviation Administration nor the
Department of Transportation makes any warranty or guarantee,
expressed or implied, concerning the content or accuracy of these
views.

REFERENCES
[1] Agrawal, R. and Shim, K. “Developing Tightly-Coupled

Data Mining Applications on a Relational Database System”,
Proceedings of the 2nd Int'l Conference on Knowledge
Discovery in Databases and Data Mining, Portland, Oregon,
August, 1996

[2] Blake, M.B. “Rule-Driven Coordination Agents: A Self
Configurable Agent Architecture”, 5th IEEE International
Symposium of Autonomous Decentralized Systems
(ISADS2001), pp 271-278, Dallas, TX March 2001

[3] Blake, M.B., “Using Agent Control and Communication in a
Distributed Workflow Information System”, Cooperative
Information Systems, Lecture Notes in Computer Science,
Springer-Verlag, 2519, pp 163-178

[4] Bose, R. and V. Sugumaran, “ IDM: An Intelligent Software
Agent Based Data Mining Environment”. In Proceedings of

the 1998 IEEE International Conference on Systems, Man,
and Cybernetics, 2888-2893 San Diego, CA: IEEE Press

[5] C5.0: RuleQuest Research (2002) :
http://www.rulequest.com/

[6] Clementine (2002): http://www.spss.com/spssbi/clementine/
[7] De Armon, J. et al, “Assessing NAS Performance:

Normalizing for the Effects of Weather”, 4th USA/Europe
Air Traffic Management R&D Symposium, Sante Fe, Dec 3-
7. http://atm2001.eurocontrol.fr/finalpapers/pap94.pdf

[8] Fayyad, U., Piatetsky-Shapiro, G., and Smyth,P. (1996)
”Knowledge Discovery and Data Mining: Towards a
Unifying Framework”, Proceedings of the Second
International Conference on Knowledge Discovery and Data
Mining (KDD-96), Portland, Oregon, AAAI Press

[9] Helmer, G. G., J.S.K. Wong, V. Honavar, and L. Miller, “
Intelligent Agents for Intrusion Detection” Proceedings.
IEEE Information Technology Conference, 121-124,
Syracuse, NY: IEEE Press

[10] Jennings, N., K. Sycara., and M. Wooldridge, “A Roadmap
to Agent Research and Development”. Journal of
Autonomous Agents and Multi-Agent Systems 1 (1) 7-38

[11] Kimball, R. The Data warehouse Toolkit: Practical
Techniques to Building Dimension Data Warehouses, New
York: John Wiley. 1996

[12] Maes, P. 1997. Agents that Reduce Work and Information
Overload. Software Agents: AAAI Press/MIT Press

[13] National Weather Service METAR/TAF Information
(2002): http://205.156.54.206/oso/oso1/oso12/faq.htm

[14] Nazeri, Z. and Jianping Zhang, “Mining Aviation Data to
Understand the Impacts of Severe Weather on Airspace
System Performance” Proceedings of the International
Conference on Information Technology: Coding and
Computing(ITCC’02)/ IEEE Press 2002

[15] Netz, A., S. Chaudhuri, U. Fayyad, and J. Bernhardt,
“Integrating Data Mining with SQL Databases: OLE DB for
Data Mining” Proceedings of the International Conference on
Data Engineering (ICDE 2001), Heidelberg, Germany 2001

[16] Nodine, M., J. Fowler, T. Ksiezyk, B. Perry, M. Taylor, and
A. Unruh, “Active Information Gathering in InfoSleuth”.
International Journal of Cooperative Information Systems
9:1/2, 3-28. 1998

[17] Payne, T.R. and P. Edwards “Interface Agents that Learn: An
Investigation of Learning Issues in a Mail Agent Interface”.
Applied Artificial Intelligence, Vol. 11(1), pp 1-32.1997

[18] Sarawagi, S., Thomas, S., and Agrawal, R. "Integrating
Association Rule Mining with Databases: Alternatives and
Implications", Data Mining and Knowledge Discovery
Journal, 4(2/3), July 2000

[19] Software Suites supporting Knowledge Discovery (2002):
http://www.kdnuggets.com/software/suites.html

[20] The Aviation System Performance Metrics (ASPM) (2002):
http://www.apo.data.faa.gov/faamatsall.HTM

[21] The National Convective Weather Forecast (NCWF) (2002):
http://cdm.awc-kc.noaa.gov/ncwf/index.html

[22] WEKA (2002) http://www.cs.waikato.ac.nz/~ml/weka/

