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INTRODUCTION 

 The aviation community has developed numerous 
tools for simulating the operational flows of the National 
Airspace System (NAS)1 [1–3].  Some of these modeling 
capabilities are quite detailed in approximating the metrics 
they set out to depict. For example, CAASD’s Detailed 
Policy Assessment Tool (DPAT) measures queuing delays 
occurring in the NAS throughout the various phases of 
flight. Taken together, these delays can reach significant 
levels on a bad weather day.  Alternatively, other models 
have been developed that simulate airline schedule 
evolution to mitigate the effects of congestion.  For 
instance the National Aeronautics and Space 
Administration/Logistic Management Institute’s 
(NASA/LMI) model provides airlines with a series of 
actions they can take in response to congestion, including 
depeaking, off-hours operations, use of secondary airports, 
and using larger aircraft [3].   

 In all cases, these tools must be fed a schedule of 
flights, or timetable, which is generated outside of the 
model. A typical timetable contains columns for the origin 
airport, destination airport, departure time, arrival time, 
equipment type, and possibly the carrier. Note, we use the 
term “timetable” and not “schedule” in order to avoid 
possible confusion. Itineraries for unscheduled traffic, 
combined with that of scheduled commercial traffic, yields 
a timetable.  Table 1 provides an example. 

                                                           
1The NAS is a large network of airports and air traffic control facilities 
(ATC).  ATC facilities are classified into three categories: airport towers, 
terminal radar approach control facilities (or, TRACONs), and air route 
traffic control centers (ARTCCs or, en route centers).  Towers are located 
at airports and direct airport traffic on the ground and within 
approximately 5 nautical miles of the airport to altitudes of about 3000 
feet.  There are 496 towers, of which 266 are under FAA direct control 
and 230 are managed under contract.  TRACON facilities sequence and 
separate aircraft as they approach and leave airports beginning 
approximately 5 nautical miles and ending approximately 50 nautical 
miles from the airport and at altitudes up to about 10,000 feet.  En route 
centers control aircraft in transit and during approaches to TRACONs.  
The airspace that most en route centers control extends above 18,000 feet 
for commercial aircraft.  At present, there are 22 en route centers.  

Table 1.  Sample Timetable 

DEP APT 

(step 2) 

ARR APT 

(step 2) 

EQUIP 

(step 3) 

DEP TIME 

(step 4) 

ARR 
E 

(step 4) 

JFK BOS AEST 10:30 11:30 

JFK IAD CRJ1 10:15 11:31 

JFK KIN A343 10:15 14:05 

JFK LAX B762 10:10 13:15 

JFK LAX B763 10:30 13:23 

JFK MCO B752 10:25 13:11 

JFK PAP A306 10:00 13:53 

JFK PHX A320 10:00 13:24 

 

 

 Timetable input strongly influences the resulting 
modeled output.  For example, modeling an airport with 
only ten scheduled operations a day will produce 
drastically different results than when modeling the same 
airport with 1000 scheduled operations a day.  The 
timetable determines the level, schedule intensity (i.e., 
peaky vs. distributed) and general directional flow of these 
operations. Using a realistic timetable of aircraft operations 
is therefore a critical component to the operational 
modeling effort.   

 In the past, timetables have been derived by 
extrapolating counts and forecasts of airport terminal 
operations into individual flights. The FAA measures 
overall NAS traffic in terms of annual operational counts at 
each terminal.  It publishes a forecast of this traffic each 
year in the Terminal Area Forecast (TAF).  The TAF 
makes a logical data set to use for growing any 
hypothetical schedules as well.  The allocation of terminal 
area arrivals and departures to specific airport pairs is 
accomplished by using what is known as a Fratar algorithm 
[3]. The downside to this method, however, is that in 

Frequency (step 4) Block Time (step 4) 
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reality NAS operations are made up of flows which vary 
with geography and time. This is not necessarily equivalent 
to extrapolating terminal area growth into operations. 
Thus, the challenge is to move from a generic traffic count 
at a specific terminal to a timetable of flights that includes 
a “when” and a “where” dimension.   

 The top-down approach underlying the allocation 
described above achieves its goal of replicating the 
intended volume of flights at each airport (i.e., predicted 
TAF levels), but it does not necessarily achieve the desired 
operational level of integrity.  In other words, the existing 
method is not capable of forecasting route-specific growth 
in operational flows.  By simply matching terminal traffic 
forecasts with the current airline schedules found in the 
Official Airline Guide (OAG), the existing method clearly 
misses out on rich geographic growth patterns.   

 The information that is missing in this process is the 
origin and destination of the passengers on the flights, and 
information about the routes over which they fly.  For 
example, if some city pairs are expected to experience 
above- or below-average growth, then some routes (and 
thus some specific airport pairs) will experience above- or 
below-average growth.  A similar story can be told for hub 
airports, some of which may add capacity in the near 
future, and others of which may remain capacity 
constrained. 

 

CONCEPTUAL FRAMEWORK 

 At CAASD, we have built a framework which 
attempts to fill the gaps mentioned above using a bottom-
up, origin and destination (O&D) demand-driven 
microeconomic approach [4].  Our ultimate goal is to 
produce a timetable of flights that is linked with O&D 
operations via passenger route choice and carrier 
equipment choice.  (Table 1).  Our output should thus be 
consistent with the OAG, but not driven by it.  Our method 
is comprised of six basic steps.   

 The first step of the process lays the foundation upon 
which all the other steps will be built.  This step estimates 
the economic and demographic drivers for where people 
ultimately want to travel.  This is done by econometrically 
estimating the demand for people’s travel between O&D 
Metropolitan Statistical Areas (MSAs).  Passenger O&D 
trips are specified as a function of average fare, local area 
income, population, and various market characteristics 
(Figure 1).  Passenger trips are then forecast by combining 
our model with commercially available forecasts of metro 
area population and income. 

 Once we have a model of O&D passenger demand, we 
use a discrete choice model to determine what itineraries 
they will choose to get them there. This second step 
produces the flight segments that will be listed in our 
timetable. For instance, a person planning to travel from 
Seattle to New York may have a stopover in Chicago.  This 

process translates a single trip into two separate flights, one 
from Seattle to Chicago, and the other from Chicago to 
New York.   

 The third step determines what type of aircraft will be 
flown on each flight segment. For instance, the flight from 
Seattle to Chicago may require a different type of plane, 
because the distance is twice as great as the distance from 
Chicago to New York.   

 Step 4 assigns arrival and departure times to these 
scheduled commercial flights.  Finally, steps 5 and 6 
account for flight activity that is not driven by domestic 
scheduled passenger demand; this includes cargo, 
international, and general aviation (GA) flights.  While the  
scheduling methodology does not encompass all of the 
complexities airlines must account for when creating their 
actual schedules, it does attempt to capture the same 
passenger demand element that is the primary driver.   

 

METHODOLOGY 

1. Estimating and Forecasting Domestic O&D 
Passenger Demand  

 People fly because they want to go to places for 
business and leisure. These decisions are primarily driven 
by local economic and demographic characteristics. In 
addition, characteristics such as fare, market share of major 
carriers, presence of low-cost carriers, seasonality, and the 
structure of airport hubs all play important roles in 
eventually determining the O&D demand. Differentiating 
the NAS by distances, we estimate a set of econometric 
relationships that define these relationships on O&D data 
[4]. Figure 1 describes the underlying relationships 
qualitatively:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Determinants of O&D Air Demand 
Average No. of Passengers/Day

Note: Bold lines represent directional certainty. 
Therefore, while personal income is certain to increase 
demand, bad weather is certain to reduce it. 
Dashed lines represent ambiguity. Large hubs, will certainly 
increase passenger flow but may eventually reduce it after a 
certain point.  
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Note: Bold lines represent directional certainty. 
Therefore, while personal income is certain to increase 
demand, bad weather is certain to reduce it. 
Dashed lines represent ambiguity. Large hubs, will certainly 
increase passenger flow but may eventually reduce it after a 
certain point.  
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 To estimate those relationships, data from the 
Department of Transportation’s (DOT’s) Origin 
Destination Survey (i.e., 10% ticket sample) are matched 
with local economic and demographic information for each 
O&D airport.2 Using this information and drawing on well-
established econometric methodologies in demand 
estimation, we estimate O&D passenger demand between 
origin and destination city pairs as follows:  

ln (Pij) =   α + β * ln(fij) + χi * ln(PIi) + χj * ln(PIj)  

 + δi * ln(Densityi) + δj * ln(Densityj)  

 + η * ln(Market PowerD
ij)  

 + ι * ln(MarketPowerND
ij) + κD * (LCC ij)  

 + κND * (LCC ij)  + γi* (hub statusOrigin)  

 + γj* (hub statusDestination)  

 + ϕ * ln(Distanceij)+ ρ * (season) + εij 

 

where i = origin (O) and j = destination (D); P = O&D 
passenger flow; PI = personal income of O&D in (1996) 
real chained dollars; Density = population density at O&D 
cities. Market power is measured by using a concentration 
index for dominant carriers (D) and non-dominant carriers 
(ND) and for low-cost carriers (LCC) separate from the 
network carriers; hubstatusOrigin and hubstatusDestination 
are two dummy variables accounting for large hubs 
(dummy = 1) and not (dummy = 0). Distance is the 
distance between O and D cities. Finally, errors have been 
assumed to be distributed normally with mean zero and a 
constant variance.  The symbol “ln” signifies the natural 
logarithm. [See (4) for detailed discussion on econometric 
methodology, estimation, and results from earlier 
estimations.]  

 Using quarterly data starting from 1995, O&D demand 
is estimated, on average for 38,000-42,000 markets, based 
on local metropolitan variables as opposed to national 
economic and demographic conditions, and hence is called 
bottom-up demand.  Notice that this methodology focuses 
on estimating O&D passenger flows, as opposed to airport-
centric activity, as found in the Terminal Area Forecast [8].  
Note also that this is an ongoing process; as new data 
become available, we re-estimate the above relationships 
and make appropriate changes in selecting exogenous 
variables and model specifications.   

 Finally, by combining these estimated relationships 
with commercially available forecasts of local economic 

                                                           
2Primary data for this analysis is based on the 10 % O&D sample obtained 
from the Bureau of Transportation Statistics (BTS) [see 
http://www.bts.gov/oai for details].  In addition, we use T-100 schedule 
data collected by BTS.  We combine the O&D travel data with local 
economic, demographic and spatial variables collected by the Bureau of 
Economic Analysis (BEA) (see [4] for more details). 

and demographic variables (provided by Global Insight), 
we come up with forecasts of passenger flows by O&D 
metropolitan areas. As evident, when these forecasts are 
rolled up for a particular airport, they can provide us with 
activity measures that are comparable to the TAF.  [See 
Results section for more details].  

 

2.  Assigning O&D Passengers to Routes 

 We now have forecasts of O&D passenger demand 
between metropolitan areas.  But choosing to travel 
somewhere is not the only decision a passenger must make.  
They must also choose how and when they will fly.  
Unfortunately, data on passenger flows by day or time do 
not exist in the public domain. However, the 10% ticket 
sample does have data on passenger itineraries.  This is 
important, because over one-third of itineraries involve at 
least one connecting flight.  Knowing that a certain number 
of people want to go from Seattle to New York is only part 
of the story (as illustrated in Figure 2), and obscures the 
fact that many of these passengers will change planes in a 
hub such as Chicago O’Hare or Dallas-Fort Worth. 
Furthermore, flights through these hubs are filled with 
passengers going to and from a variety of O&D pairs.   

 We use the following process to convert O&D 
passenger flows into airport-to-airport (or “segment”) 
passenger flows.  As suggested by [6], each possible route 
between any given origin and destination is constructed as 
a set of links and nodes (flight segments and airports).  
Passengers are then assigned to routes, and at the end of 
the process, total passenger traffic is summed up for each 
“link.” 

 There are various ways to assign passengers to routes.  
Currently, using itinerary data from the 10% ticket sample, 
we assign passengers based on the most recent historical 
distribution.  Thus, the routes available for passengers to 
choose from are those which are observed in the actual 
data. While this precludes the model from “thinking 
outside the box” to determine other potentially feasible 
routes, the converse is also true—we do  not end up with 
connecting flights going through small, non-hub airports. 

 
Figure 2.  Example of Adding Segment Traffic 

 A richer assignment method would be to use a 
multinomial Logit model based on route characteristics 
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such as travel time, fare, and number of connections.  We 
have experimented with using this type of model, but have 
not yet incorporated it into our overall system due to the 
fact that, within our current framework, most of our right-
hand-side variables are either static (such as “number of 
connections”), or assumed static (such as “fare” and “travel 
time”).    

  

3.  Determining Aircraft Equipment Mix  

 Our third step is critical⎯taking the airport-to-airport 
passenger flows and translating total seat demand into the 
likely set of aircraft types that will fly each route. This step 
is necessary due to the variation in actual aircraft sizes, 
which implies that a given number of passengers does not 
uniquely determine the number of aircraft operations. 
Estimated passenger counts must be therefore combined 
with estimated aircraft size to determine a likely equipment 
mix for each given route.   

 Choice of aircraft thus emerges as a function of 
passengers, frequency, trip distance, and other route 
characteristics. We can therefore estimate a multinomial 
Logit model that enables us to determine the most likely 
choice of aircraft type.  To do this, we turn to DOT’s T-
100 “Segment” data, which combines historical passenger 
counts with equipment type, along with flight 
characteristics such as distance.  We have examined actual 
data and classified the vast majority of aircraft based on 
these characteristics. Of all 311 specific equipment types 
observed in the second quarter of 2002, there are six 
natural groupings of aircraft, or categories.  Each category 
has particular performance and capacity characteristics.  
(See Appendix A and Figure 3). 

 Category 1 primarily consists of Cessnas and Pipers 
while Category 2 represents turboprops. On average, these 
two typically fly segments that are less than 250 miles and, 
generally speaking, are used to haul passengers between 
hub airports and small spoke airports. Category 3 consists 
of regional jets (e.g., ERJs and CRJs) that fly an average 
distance of 250-500 miles. 

 Short-haul narrow-bodies (Category 4) generally have 
a seat range of 80–162 passengers, best cruise at speeds of 
550–625 miles per hour, and are observed to have been in 
maximum use for flights ranging from 500 to 750 miles. 
Long-haul narrow-bodies (Category 5), on the other hand, 
have a seat range of 130-190 passengers, best cruise at 
speeds of 600+ miles per hour, and mostly are in use for 
flights ranging from 750-1500 miles.   The 6th category is 
the wide-body category that flies the longer haul flights 
(e.g., 747, 767, 777, L-1011, A300, A310, etc.).  

 As noted, these distances are averages, and many 
aircraft within one category also travel distances defined 
under other categories. Each category is also associated 
with an average number of seats (passenger capacity) and a 
best cruise speed. Together, the six classifications account 

for almost all the scheduled passenger activities (see 
Figure 3).  The most utilized aircraft in the NAS have been 
narrow-bodies (Categories 4 and 5), which transport 
approximately 80% of scheduled passengers.   

 Modeling aircraft choice based on historical passenger 
activities is a tricky task, especially during a transitional 
time, such as the one resulting from the terrorist attacks on 
September 11, 2001 and the economic slowdown 
preceding 9/11. The U.S. aviation industry is currently 
undergoing serious structural changes.  At the end of 2002, 
more than 1400 aircraft were temporarily parked in the 
Mojave Desert.  

 
Types of Aircraft Categories, Scheduled Departures, and Enplanements
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Figure 3.  Aircraft Categorization 

 

 This is a relatively large percentage considering that 
the current aircraft inventory consists of only 3623 wide- 
and narrow-bodies, and around 1020 regional jets (RJs). 
Routes are being rationalized based on individual 
profitability in an attempt to improve aircraft utilization.  
Despite all these changes, the central element of 
scheduling flights remains intact: carry passengers between 
two points using the most efficient aircraft given all other 
characteristics. Thus, we postulate the following multi-
nomial Logit equation in order to capture the likelihood of 
aircraft choices underlying any segment [for more details, 
see 7]:  

Pi (yi = j| xi, β)     =    αij + β1 * (passengers) +                       

(j = 1, 2, …, 6)           β2 * (distance) +  

                                   β3  * (OriginHubDummy) +  

                                   β4 * (DestinationHubDummy) + εi 
  
where j=1, 2, …. 6 represent six different aircraft category 
choices; passengers are the segment-pair passengers; 
distance is the distance between two segment points; and 
OriginHubDummy and DestinationHubDummy are 
dummy variables representing the airports if they were 
large airports from where the segment flight originated or 
landed. We use maximum likelihood (ML) estimation 
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procedure for estimating the above multi-nomial Logit 
choice model.  

 

4.  Assigning Times for Scheduled Domestic Flights 

 Our fourth step determines when the flights will occur. 
The first part of this task is to determine exactly how many 
flights will occur.  To do this we combine passenger 
movements between airport pairs (determined in step 2), 
with the aircraft that are predicted to fly between those 
airports (determined in step 3), and then apply a load 
factor. The load factor applied is derived from BTS data. 
For example, if 1000 passengers are predicted to fly 
between LaGuardia and O’Hare on a given day, in a 
category 4 aircraft (that holds approximately 133 
passengers) with a load factor close to 75%, the resulting 
frequency is 10 flights a day.  This task is critical to the 
calibration of our model since the frequency calculation 
determines the total level of operations at an airport. By 
fine tuning the frequency calculation during the model 
validation stage, the overall number of operations in the 
timetable can be adjusted up or down to make it more 
accurate.  

 The next task is to take the actual flights and assign 
arrival and departure times.  The timetable will contain 
commercial operations for 292 airports. The number of 
airports in the timetable with unscheduled or general 
aviation (GA) activity will be considerably larger (see step 
6).  Both commercial and unscheduled departure and 
arrival times are then assigned using historical data, when 
available.   

 Historical data for commercial traffic is obtained from 
the OAG.  To get arrival and departure distributions, we 
use OAG data from 5 different historical years: 1995, 
1997, 1999, 2001 and 2002, and the current year of 2003. 
These data are then transformed into arrival and departure 
distributions of operations over a given day. Several 
different “days” were obtained; one weekday, and one 
weekend, from each of the four quarters, for a total of eight 
representative days.  These different “days” represent 
specific patterns in seasonal and weekday passenger travel.   

 Current baseline OAG operations are used as the 
timetable starting point for scheduled times between city 
pairs. These data are processed and altered to 
accommodate changes in forecasted equipment and 
international traffic. The historical airport operational 
distributions are used to determine time assignment for 
additional flights. For example, if eight flights currently 
operate between LaGuardia and O’Hare each day, and ten 
frequencies are predicted, then the two additional flights 
will need to be assigned departure and arrival times based 
on historical data.  The initial eight flights receive the 
departure and arrival times that already exist in the current 
OAG schedule, with some minor adjustments.   

 To assist in the process of assigning departure and 
arrival times, the airports have been grouped into four tiers. 
The airports with the most dominant schedules were 
assigned to tier 1 (the FAA’s capacity critical airports), and 
the airports with the least dominant schedules were 
assigned to tier 4 (typically airports only served a couple 
times a day by just one carrier), with the other airports 
falling somewhere in between.  This categorization helps 
us to determine flight’s scheduled arrival and departure 
times .   

 Once an arrival or departure time is established at an 
airport for a given flight, there is very little “slack” left in 
the schedule on the other end because the equation—
departure time, plus block time3, equals arrival time—is 
fairly tight. This causes a problem when a departure is 
created at an airport that then dictates an arrival at the 
destination airport during an unlikely time or vice versa.4  
To mitigate this problem, an airport’s tier is used to 
determine how strictly additional arrivals and departures 
should conform to the airport’s historical distribution of 
flights.  For instance, a hub airport traditionally has strong 
arrival and departure banks, thus additional flights should 
conform to those times when banks occur. On the other 
hand, adding flights to small spoke airports that have only 
a handful of operations should not necessarily comply with 
a historic distribution (i.e., if there are only five flights a 
day at an airport and a sixth is added, that sixth flight 
should not necessarily be added at a time when flights have 
historically occurred). Hence when scheduling between 
tiers, the more dominant airport’s schedule prevails. Intra-
tier flights (i.e. flights to and from tier one airports) 
undergoes additional logic in order to find a departure and 
arrival time that fits with the airport’s historical 
distributions.  This preference is also enforced by the order 
in which these flights are assigned in the timetable. Flights 
between tier 1 airports are scheduled first, followed by 
flights between tier 1 and the remaining tiers. The flights 
between tier 2 airports are scheduled next, and so on, until 
all commercial flights have been scheduled. 

 

5.  Adding in Scheduled International Flights 

 Step five adjusts our tentative timetable by taking into 
account aggregate flows of international passenger and 
cargo traffic to and from the continental United States 
(CONUS).  Although our modeling focus is the CONUS, 
we must still account for the additional terminal area 
traffic, especially important for the international gateway 
airports, that is generated by flights with only one of their 

                                                           
3 Block time, the time it takes to leave the gate at one airport and arrival at 
the gate of the destination airport, is largely a function of distance, winds 
and aircraft speed, but can also be highly influenced by taxi-in and taxi-
out times at the arrival and departure airports respectively. 
4 Some time frames are also unavailable due to constraints on airport 
operating hours. 
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endpoints in the CONUS.  This is accomplished using a 
modified top-down approach. All non-CONUS 
destinations are associated with some pre-determined 
growth rates (e.g., FAA, IATA, etc.).  These rates are then 
applied to the number of seats currently being flown to or 
from those destinations.  Applying the growth rate to the 
number of seats is in line with a passenger demand focus, 
and also allows for smaller increments of growth. 

 In 2000, around 26 million passengers traveled to the 
U.S. from around the world.  While a majority (43%) of 
these passengers originated in Western Europe, the Far 
East had a respectable 29% share, followed by South 
America’s share of 11%.  Almost all of this traffic takes 
place through 11 gateway airports in the U.S., and 
therefore greatly influences the schedule at these airports.    

 Unlike our O&D model for domestic air travel, here 
we use regional growth rates from external agencies (e.g., 
U.S. Department of Commerce International Trade Agency 
(ITA), FAA, IATA) to drive our forecasts of international 
passenger travel.  Using these forecasts and assuming the 
types of aircraft that are currently flown between these 
destinations, we derive the forecast demand for scheduled 
departures and arrivals. These data are then added to our 
domestic schedule.     

 

6.  Adding in Non-Scheduled Flights 

 The last step is to account for unscheduled, or GA 
traffic. Both the terminal and TRACON handle a large 
amount of GA traffic. There were an estimated 218,000 
active GA aircraft in the NAS, which flew almost 40 
million operations in 2000 [8].  Almost four-fifths of this 
traffic was in the domain of VFR5 and thus less likely to 
crowd the en route air space.  However VFR traffic 
impacts airport towers and TRACONs the same as IFR 
traffic.  Given its significant utilization of NAS 
infrastructure, we must include a model of GA traffic in 
our timetable.6   

 GA traffic is comprised of many different types of 
operators.  Unscheduled business operators tend to file and 
fly IFR flight plans. As in the case of scheduled O&D 
travel, particularly the premium fare travel, unscheduled 

                                                           
5 VFR stands for Visual Flight Rules.  All scheduled commercial aircraft 
are required to fly Instrument Flight Rules (IFR).  GA or unscheduled 
traffic can fly VFR or IFR,  
6Notice that a GA timetable is somewhat fictitious. GA traffic, for all 
practical operational purposes, is unscheduled traffic and hence does not 
produce timetable on its intent to fly between cities at a given time.  It is 
worth noting here that published schedules are different than the flight 
plans that IFR GA flights are required to submit.  Creation of a schedule, 
based on their behavior modeled using economic and/or other logic, runs 
the risk of being truly unreal.  Nonetheless, we proceed with this method 
because of our need to model this entity in simulations of the NAS where 
they compete with scheduled commercial and non-commercial traffic for 
scarce air space resources.   

IFR flights can be sensitive to economic or financial 
factors.  Specific location and time data for these flights 
are derived using the FAA’s Enhanced Traffic 
Management System (ETMS) data.  A breakdown of our 
IFR traffic forecast is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

Figure 4.  Distribution of Forecast IFR Traffic by Type 

  

 On the other hand, data on GA traffic that fly VFR 
flight plans, as well as military traffic, are not time and 
location specific, and thus individual operations must be 
derived using the top-down approach described in the 
introduction.  Based on the historical trends and economic 
factors, composite growth rates are applied to both VFR 
and IFR operations to produce forecasts of activity.    

 

RESULTS 

 Primary results arising from this analytical framework, 
as noted earlier, are future timetables driven by O&D 
traffic flow forecasts (i.e., passenger enplanements and 
aircraft operations). In many ways, these future timetables 
resemble the Official Airline Guide.  One difference, 
however, is that our timetables also include entries for 
unscheduled flights, both IFR and VFR, while of course 
the OAG does not.  Nonetheless, comparisons can be made 
between the OAG and the scheduled component of our 
timetables.  

 We identify three areas for comparison with the OAG: 
first, the distribution of arrivals and departures at an airport 
at a particular time; second, segment traffic between 
airports implied by the route allocations; and third, the 
count of daily flights between airports, i.e., rolled up 
terminal activities. In order to make these comparisons, we 
undertook a one-year forecast using estimates based on 
historical data (1995:Q1 – 2002:Q2).  Using the OAG from 
the second quarter (April), 2002 as our baseline, we 
forecast schedules for the second quarter, 2003. This 
forecasted schedule is then compared against the actual 
OAG for April, 2003.  

Domestic 
Scheduled 

Traffic
62%

GA
23%

International
12%

Cargo
3%
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1.   Arrival and Departure Times by Airport 

 We constructed an index to validate and verify our 
results. Notice that there are two ways that our forecasts 
can deviate from the OAG actual: first, the distribution of 
arrival and departure banks may differ causing deviation; 
and second, the number of aircraft operations implied by 
those banks may differ from that of implied by the OAG. 
In order for our schedules to be perfectly aligned with that 
of observed/actual OAG, we require that both distributions 
of aircraft operations and arrivals and departures will have 
to be correct simultaneously. This is a rather stringent 
measure because getting either one of the two is relatively 
easier than getting both right simultaneously. Nonetheless, 
we report the cumulative index measuring all deviations.  

 Generally speaking, total deviations for the top 34 
CONUS (i.e., contiguous US) airports were fairly low. 
While top 34 airports accounted for more than 63% of all 
operations in the NAS, they accounted for only 4% of the 
hourly deviations. In other words, most of our deviations 
occurred at smaller airports. In aggregate, 87% of all 
forecasted operations came within 25% of actual results.  

 

  

 

 

       

       

 

        

 

 

 

Figure 5.  OAG actual schedule and forecast schedule 
for Newark International (EWR) Airport 

 

 As Figure 5 demonstrates, the absolute value of 
deviations between the actual OAG and the forecast 
schedules for Newark (EWR) turns out to be fairly low, 
amounting to a cumulative total of .11. A cumulative index 
value = 0 implies that there is no absolute difference 
between the two schedules, i.e., arrival and departure 
distributions along with number of operations perfectly 
matched the actual OAG while a value = 2 would imply 
complete deviations, i.e., time distributions and/or 
distributions of number of aircraft operations match the 
actual.    

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  OAG actual schedule and forecast schedule 
for Atlanta’s Hartsfield (ATL) International Airport 

 Atlanta’s Hartsfield International Airport (ATL), on 
the other hand, scores a relatively higher deviation, 0.23. 
The highest deviation scores of 0.46 have been recorded 
for the Washington Dulles International Airport (IAD) and 
Fort Lauderdale Hollywood International Airport (FLL) 
while lowest deviation score (0.10) was recorded for 
Phoenix SkyHarbor International Airport (PHX).   

 

2.   Daily Flight Counts by Airport Pair 

 A second comparison that can be made is to compare 
our 2003 forecasts of daily flight counts by airport pair 
relative to the same counts from the actual OAG.  Of 
course, there are several thousand airport pair 
combinations, but we can summarize our results by 
looking at the distribution of the absolute value of the 
differences between the forecast and the OAG.  This is 
shown in Figure 7.  As can be seen, there are a few 
instances of relatively high errors, but the vast majority of 
our forecasts deviate from the actual OAG by only 1 or 2 
flights per day.   

 

 

 

 

 

 

 

 

 

Figure 7.  Absolute deviations of forecast flight counts 
versus OAG flight counts 
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3.   Comparing Terminal Counts with the TAF 

 As noted earlier, if we sum up our O&D forecasts by 
airports, we can also arrive at terminal activities, both 
passenger enplanements and aircraft operations.  These can 
then be compared with the FAA’s Terminal Area Forecast 
(TAF) (8).  

 

 

 

 

 

 

 

 

 

 Figure 8.  Forecasts of Enplanements: FAA and O&D  

 

 As Figures 8 and 9 demonstrate, forecasts based on the 
O&D methodology described above and those derived 
from the FAA’s TAF compare fairly well. As also can be 
seen, the O&D forecasts of enplanements and aircraft 
operations are consistently lower than those of the FAA.  
However, some of this is due to the fact that our O&D 
model currently covers only 292 of the airports in the 
NAS. 

 

 

 

 

 

 

 

 

 

Figure 9.  Forecasts of Aircraft Operations: FAA and 
O&D  

 

CONCLUSION 

 This paper lays out both a conceptual and an empirical 
framework to estimate and predict future aviation 
timetables. Starting from O&D flows of passengers that are 
determined by local area economics and demographics, 
existing route allocations are used to derive aviation 
activities at the terminal levels. Using forecasted values of 

economic and demographic variables for local metro areas,  
we derive forecasts for O&D passenger flows. Passenger 
itineraries are then assigned using the existing allocations 
as a guide for predicting the future network. Aircraft type 
and the number of operations between airports have been 
derived by using a multinomial aircraft choice model that 
ties enplanements to aircraft choices. Once flight counts 
have been forecast, we calibrate the model to align with the 
baseline OAG.  After this calibration has been established, 
we use the forecasted values of O&D flows to derive the 
future aviation timetables.  The final steps then use a top-
down method to estimate international, cargo, and 
unscheduled traffic counts and times. 

 The primary goal of this work is to support modeling 
efforts that evaluate NAS performance. As evident, the 
present framework makes significant qualitative 
improvement over existing work in that comparative static 
analysis can be done fairly easily under our framework. 
That is, by changing the inputs that go into the process, our 
framework can be used to perform various types of “what 
if” policy analysis, and thus can stand on its own as a 
useful analytical tool. For example, changes in demand 
conditions, route allocations and airport share and their 
impact on schedules can be incorporated fairly easily in 
our framework. Distribution of weights on time schedules, 
relatively more weight on current schedules (i.e., 2003) as 
opposed to history (i.e., 1995-2002), can be changed and 
the impact studied in our framework. Similarly, weights on 
airports can be changed in order to understand the impact 
on schedules. In our current framework, larger airports 
receive higher weights in determining both arrival and 
departure banks. However, this may change in the future. 
All these parameters can be adjusted to generate alternate 
schedules for validation and/or scenario analyses.  
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Appendix A:  

                AIRCRAFT CATEGORIZATION AND RELATED INFORMATION

Representative Types of Av. Distance Avg. Size Range
Types of Aircraft Equipment in this Category and Ranges Pax (min) Pax (max)

Category 1 CESSNAS AND PIPERS CES-150 - 185; AERO-200; PA 12-32 150 3 20
Overall numbers with upper and lower bounds 150 3 20

Category 2 TURBO PROPS ATR-42 Aerospatial; ATR-72 Aerospatial; Dornier 328 Turbo;  < 250 30 37
TurboProp 1-2 engine; JETST-31 BAE; JETST-41 BAE;           < 250 60 72
Overall numbers with upper and lower bounds 250 45 55

Category 3 REGIONAL JETS (RJs) Canadair RJ-100/R;Canadair RJ145-200; 250-500 45 70
Embraer EMB-135; Embraer EMB-145; EMB-140                    250-500 45 70
Overall numbers with upper and lower bounds 500 45 70

Cateogry 4 SHORT-HAUL NARROW Boeing B-737-500;  Boeing B-737-400; 500-750 127 155
BODIES Boeing B-737-300; Boeing B-737-100; 500-750 105 129

Boeing B-737-200C; Douglas DC-9-10; 500-750 62 76
Douglas DC-9-30; Douglas DC-9-40; 500-750 87 107
MD-80 & DC-9-80; MD-90-30/50; 500-750 135 163
Douglas DC-9-50; Boeing B-727-100; 500-750 113 139
Overall numbers with upper and lower bounds 750 105 128

Category 5 LONG-HAUL NARROW Boeing B-737-800; Boeing B-757-200; 750-1500 155 189
BODIES Euro Airbus A320; Airbus Industrie A319; 750-1500 131 161

Boeing B-737/LR Boeing B-737-700/; Boeing B-727-200; 750-1500 132 162
Overall numbers with upper and lower bounds 1500 139 171

Category 6 WIDE BODIES Douglas DC-10-10;  Douglas DC-10-30; 1500-3000 278 340
Douglas DC-10-40; Boeing B-747-100; 1500-3000 256 312
Boeing B-747-200; Boeing B-747-400; 1500-3000 321 393
Boeing B-767-200; Boeing B-767-300; 1500-3000 158 194
Boeing 777;  Lockheed L-1011-1; 1500-3000 239 293
Lockheed L-1011-50;  Douglas MD-11; 1500-3000 299 379
Euro Airbus A-300; Euro Airbus A310; 1500-3000 205 251
Overall numbers with upper and lower bounds 3000 251 309

 

  


