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ABSTRACT 

The aviation community has a rich collection of tools 
that simulate the operational flows of the National 
Airspace System (NAS).  In nearly all cases, modeled 
operational flows of aircraft in the NAS begin with a 
schedule generated outside of the model.  In the past, 
the schedule has been derived by translating the Federal 
Aviation Administration’s (FAA’s) Terminal Area 
Forecast (TAF) into flights.  The downside to this, 
however, is that NAS operations are made up of 
specific airport-to-airport flows, which may be different 
from terminal area growth attributable to those airports.  
The challenge is to move from a generic traffic count at 
a specific terminal to a schedule of flights that includes 
a “when” and a “where” dimension.   

 Modeled NAS operational performance is highly 
dependent on the characteristics of the forecasted 
operations; hence it is critical that the traffic schedule 
be created correctly.  The top-down approach based on 
TAF projections achieves its goal of replicating the 
intended volume of flights at each airport, but it does 
not necessarily achieve the desired operational-level 
integrity.  In other words, the existing method is not 
capable of forecasting route-specific growth in 
operational flows.   

 At the MITRE Corporation’s Center for Advanced 
Aviation System Development (CAASD), we are 
building a framework which attempts to fill in the gaps 
mentioned above using a bottom-up, demand-driven 
micro-econometric approach.  Our ultimate goal is to 
produce a schedule of flights that is linked with origin 
and destination (O&D) operations via passenger route 
choice.  It should thus be in sync with the Official 
Airline Guide (OAG), but not driven by it.  Our method 
is comprised of six basic steps, beginning with 
estimation and forecasts of traveler demand between 
O&D city pairs, and culminating with the creation of a 

forecasted schedule that incorporates all major aspects 
of passenger demand.   

INTRODUCTION 

 The aviation community has developed numerous 
tools for simulating the operational flows of the NAS1 
[1–3].  Some of these modeling capabilities are quite 
detailed in approximating the metrics they set out to 
depict.  For example, CAASD’s Detailed Policy 
Assessment Tool (DPAT) measures queuing delays 
occurring in the NAS throughout the various phases of 
flight.  Taken together, these delays can reach 
significant levels on a bad weather day.  Alternatively, 
other models have been developed that simulate airline 
schedule evolution to mitigate the effects of congestion.  
For instance the National Aeronautics and Space 
Administration Logistic Management Institute’s 
(NASA/LMI) model provides airlines with a series of 
actions they can take in response to congestion, 
including depeaking, off-hours operations, use of 
secondary airports, and using larger aircraft [3].   

 In all cases, these tools must be fed a schedule of 
flights, or timetable, which is generated outside of the 
model.  A typical timetable contains columns for the 
origin airport, destination airport, departure time, 
arrival time, equipment type, and possibly the carrier. 
(Note we use the term “timetable” because it also 

                                                           
1The NAS is a large network of airports and air traffic control 
facilities (ATC).  ATC facilities are classified into three categories: 
airport towers, terminal radar approach control facilities (or, 
TRACONs), and air route traffic control centers (ARTCCs or, en 
route centers).  Towers are located at airports and direct airport traffic 
on the ground and within approximately 5 nautical miles of the 
airport to altitudes of about 3000 feet.  There are 496 towers, of 
which 266 are under FAA direct control and 230 are managed under 
contract.  TRACON facilities sequence and separate aircraft as they 
approach and leave airports beginning approximately 5 nautical miles 
and ending approximately 50 nautical miles from the airport and at 
altitudes up to about 10,000 feet.  En route centers control aircraft in 
transit and during approaches to TRACONs.  The airspace that most 
en route centers control extends above 18,000 feet for commercial 
aircraft.  At present, there are 22 en route centers.  



estimates itineraries for unscheduled traffic.)  Table 1 
provides an example. 

 Timetable input strongly influences the resulting 
modeled output.  For example, modeling an airport with 
only ten scheduled operations a day will produce 
drastically different results than when modeling the 
same airport with 1000 scheduled operations a day.  
The timetable determines the level and general 
directional flow of these operations.  Using a realistic 
timetable of aircraft operations is therefore a critical 
component to the operational modeling effort.   

 In the past, timetables have been derived by 
extrapolating counts and forecasts of airport terminal 
operations into individual flights.  The FAA measures 

Table 1.  Sample Timetable 
DEP APT 

(step 2) 
ARR APT 

(step 2) 
EQUIP 
(step 3) 

DEP TIME 
(step 4) 

ARR TIME 
(step 4) 

JFK BOS AEST 10:30 11:30 

JFK IAD CRJ1 10:15 11:31 

JFK KIN A343 10:15 14:05 

JFK LAX B762 10:10 13:15 

JFK LAX B763 10:30 13:23 

JFK MCO B752 10:25 13:11 

JFK PAP A306 10:00 13:53 

JFK PHX A320 10:00 13:24 

 
 Frequency (step 4) 

[4–5].  Our ultimate goal is to produce a timetable of 

Block Time (step 4) 
overall NAS traffic in terms of annual operational 
counts at each terminal.  It publishes a forecast of this 
traffic each year in the Terminal Area Forecast.  Since 
the FAA forecasts these counts into the future, they 
make a logical data set to use for growing terminal area 
traffic, and thus growing any hypothetical schedules as 
well.  The downside to this method, however, is that in 
reality NAS operations are made up of flows which are 
associated with a particular location and time of day 
(similar to a flight plan).  This is not necessarily 
equivalent to extrapolating terminal area growth into 
individual operations.  Thus, the challenge is to move 
from a generic traffic count at a specific terminal to a 
timetable of flights that includes a “when” and a 
“where” dimension.   

 The top-down approach described above achieves 
its goal of replicating the intended volume of flights at 
each airport (i.e., predicted TAF levels), but it does not 
necessarily achieve the desired operational level of 
integrity.  In other words, the existing method is not 
capable of forecasting route-specific growth in 
operational flows.  By simply matching terminal traffic 
forecasts with the OAG schedule (published schedule 
of flights submitted by commercial airlines), the 
existing method clearly misses out on rich route-
specific information.   

 The information that is missing in this process is 
the origin and destination of the passengers on the 
flights, and information about the routes over which 
they fly.  For example, if some city pairs are expected 
to experience above- or below-average growth, then 
some routes (and thus some specific airport pairs) will 
experience above- or below-average growth.  A similar 
story can be told for hub airports, some of which may 
add capacity in the near future, and others of which 
may remain capacity constrained. 

PROCESS DESCRIPTION  

 At CAASD, we are building a framework which 
attempts to fill in the gaps mentioned above using a 
bottom-up, demand-driven microeconomic approach  

flights that is linked with O&D operations via 
passenger route choice and carrier equipment choice.  
Our output should thus be consistent with the OAG, but 
not driven by it.  Our method is comprised of six basic 
steps.   

 The first step of the process lays the foundation 
upon which all the other steps will be built.  This step 
determines where people ultimately want to travel.  
Once we know where people want to go, we use a logit 
model to determine how to get them there.  This second 
step produces the actual segments that will be listed in 
our timetable.  For instance, a person planning to travel 
from Seattle to New York may have a stopover in 
Chicago (see Figure 1).  This process translates a single 
trip into two separate flights, one from Seattle to 
Chicago, and the other from Chicago to New York.   

 The third step determines what type of aircraft will 
be flown on each flight segment.  For instance, the 
flight from Seattle to Chicago may require a different 
type of plane, because the distance from Seattle to 
Chicago is twice as great as the distance from Chicago 
to New York.   

 The remaining steps assign arrival and departure 
times to the flights and also take into account flight 
activity that is not driven by domestic passenger 
demand (i.e., cargo, international, and general aviation).  
While the methodology does not encompass all of the 
complexities airlines must account for when creating 
their schedules, it does attempt to capture the same 
passenger demand element that is the primary driver of 
their schedules.   

METHODOLOGY 

1.  Estimating and Forecasting Domestic O&D 
Passenger Demand  

 People fly because they want to go to places for 
business and leisure reasons. These decisions are 
primarily driven by local economic and demographic 
characteristics.  In addition, industry characteristics 
such as fare and market share of major carriers, 



seasonality, and the structure of airport hubs all play 
important roles in eventually determining the O&D 
demand.  Differentiating the NAS by distances, we 
estimate a set of econometric relationships that define 
these relationships on O&D data [4]. 

 To estimate those relationships, data from the 
Department of Transportation’s (DOT’s) Origin 
Destination Survey (“10% ticket sample”) are matched 
with local economic and demographic information for 
each origin and destination airport.2  Using this 
information and drawing on well-established 
econometric methodologies in demand estimation, we 
estimate O&D passenger demand between city pairs.  
In this framework, O&D demand is estimated based on 
local metropolitan variables as opposed to national 
economic and demographic conditions, and hence 
called bottom-up demand.  Note this is an ongoing 
process; and as new data become available, we plan to 
re-estimate these relationships. 

 Finally, by combining these estimated relationships 
with commercially available forecasts of local 
economic and demographic variables, we end up with 
yield forecasts of passenger flows by O&D 
metropolitan areas. 

2.  Assigning O&D Passengers to Routes 

 We now have forecasts of passenger demand for 
travel between metropolitan areas.  But choosing to 
travel somewhere is not the only decision a consumer 
must make.  They must also choose how and when they 
will fly.  Unfortunately, good data on passenger flows 
by day or time does not exist.  However, the 10% ticket 
sample does have data on passenger routes.  This is 
important, because over one-third of itineraries involve 
at least one connecting flight.  Knowing that a certain 
number of people want to go from Seattle to New York 
is only part of the story, and obscures the fact that many 
of these passengers will change planes in a hub such as 
Chicago O’Hare or Dallas-Fort Worth.  Furthermore, 
flights through these hubs are filled with passengers 
going to and from a variety of O&D Metropolitan 
Statistical Areas (MSAs).   

 As suggested by [6], we use the following process 
to convert O&D passenger flows into airport-to-airport 
(or “segment”) passenger flows.  First, using data from 
the 10% ticket sample, we estimate how route 
characteristics such as travel time, fare, and connections 
affect the likelihood of passengers choosing a given 
route from among the set of routes available.  We do 

                                                           
2Primary data for this analysis is based on the 10 % O&D sample 
obtained from the Bureau of Transportation Statistics (BTS) [see 
http://ostpxweb.dot.gov/aviation for details].  In addition, we use T-
100 schedule data collected by the BTS.  We combine the O&D 
travel data with local economic, demographic and spatial variables 
collected by the Bureau of Economic Analysis (BEA) (see [4] for 
more details). 

this using a multinomial logit model.  Once the model 
is calibrated using historical data, the resulting equation 
is applied to each O&D pair of MSAs.  The result is a 
distribution of O&D passengers among available 
routes.   

 After we have passengers assigned to routes, the 
model goes through all routes and sums passenger 
counts by segment.  Figure 1 illustrates this using a 
stylized example.  As you can see, when completed we 
have estimated quarterly passenger flows by airport 
pair. 

 

 
Figure 1.  Example of Adding Segment Traffic  

 
 As with the calibration of the model, the routes 
available for passengers to choose from are those which 
are observed in the actual data.  While this does 
preclude the model from “thinking outside the box” to 
determine other potentially feasible routes, the converse 
is also true—we do  not end up with too many 
connecting flights going through small, non-hub 
airports. 

3.  Determining Aircraft Equipment Mix  

 Our third step is critical⎯taking the airport-to-
airport passenger flows and translating total seat 
demand into the likely set of aircraft types that will fly 
each route.  This step is necessary due to the variation 
in actual aircraft sizes, which implies that a given 
number of passengers do not uniquely determine the 
number of aircraft operations.  Estimated passenger 
counts must be combined with estimated aircraft size to 
determine a likely equipment mix for each given route.   

 Choice of aircraft thus emerges as a function of 
passengers, frequency, trip distance, and other route 
characteristics. We can therefore estimate a 
multinomial logit model that enables us to determine 
the most likely choice of aircraft type.  To do this, we 
turn to DOT’s T-100 “Segment” data, which combines 
historical passenger counts with equipment type, along 
with flight characteristics such as distance.   

 An investigation into aircraft utilization over the 
last 5 years indicates that the most utilized aircraft in 
the NAS has been narrow-bodies, which transport 

http://ostpxweb.dot.gov/aviation


approximately 60% of scheduled passengers.  Narrow-
body is a broad classification usually representing 
single aisle aircraft (e.g., 737 100 through 500 series; 
and A320).  This class of aircraft has a seat range of 
90–162 passengers; best cruise speeds at 550–625 miles 
per hour, and is observed to have been in maximum use 
for flights ranging from 500 to 750 miles.  We have 
examined actual data and classified the vast majority of 
aircraft based on these characteristics.  In all, there are 
five natural groupings of aircraft, or categories.  Each 
category has particular performance and capacity 
characteristics.  Category 1 primarily consists of 
turboprops, that on average, typically fly segments that 
are less than 250 miles (e.g., SF-340, ATR-42/72, etc.).  
Category 2 consists of regional jets (e.g., ERJs and 
CRJs) that fly an average distance of 250-500 miles 
between MSAs.  Category 3 is made up of narrow-
bodies (737-100 to 500, A320s, and 727-200, etc.) that 
fly an average distance of 750-1500 miles between city 
pairs.  Category 4 is the narrow-bodies that tend to fly 
longer distances, on average 750-1500 miles (i.e., 737 
700/LR, A330, etc.).  The 5th category is the wide-body 
category that fly the long haul flights (e.g., 747, 757, 
767, 777, L-1011, etc.).  As noted, these distances are 
averages, and many aircraft within one category also 
travel distances defined under other categories.  Each 
category is also associated with an average number of 
seats (passenger capacity) and a best cruise speed. 
Together, the five classifications account for more than 
93% of all scheduled passenger activities (see 
Figure 2). 

 
 
 

Fig. 2: Utilization of Aircraft Categories 
in Scheduled Air Transportation 

 
 
 
 
 
 
 
 
 
 
Figure 2.  Aircraft Categorization 
 
 Modeling aircraft choice, based on historical 
passenger activities, is a tricky task, especially during a 
transitional time, like the one resulting from the 
terrorist attacks on September 11, 2001.  The U.S. 
aviation industry is currently undergoing serious 
structural changes.  At the end of 2002, more than 
1400 aircraft were temporarily parked in the Mojave 
Desert.  This is a relatively large percentage 
considering that the current aircraft inventory consists 

of only 3623 wide- and narrow-bodies, and around 
1020 regional jets (RJs).  Routes are being rationalized 
based on individual profitability in an attempt to 
improve aircraft utilization.  Despite all these changes, 
the central element of scheduling flights remains intact: 
carry passengers between two points in the most 
efficient way.  

4.  Assigning Times for Scheduled Domestic Flights 

 Our fourth step determines when the flights will 
occur.  The first part of this task is to determine exactly 
how many flights will occur.  To do this we combine 
passenger movements between airport pairs 
(determined in step 2), with the aircraft that are 
predicted to fly between those airports (determined in 
step 3), and then apply a load factor.  The load factor 
applied will be specific to each city pair and will be 
derived from BTS data.  For example, if 1000 
passengers are predicted to fly between LaGuardia and 
O’Hare on a given day, in a category 3 aircraft (that 
holds approximately 133 passengers) with a load factor 
close to 75%, the resulting frequency is 10 flights a day.  
This task is critical to the calibration of our model since 
the frequency calculation determines the total level of 
operations at an airport.  By fine tuning the frequency 
calculation during the model validation stage, the 
overall number of operations in the timetable can be 
adjusted up or down to make it more accurate.  

 The next task is to take the actual flights and assign 
arrival and departure times.  The timetable will contain 
commercial operations for 292 airports.  The number of 
airports in the timetable with unscheduled or general 
aviation (GA) activity will be considerably larger (see 
step 6).  Both commercial and unscheduled departure 
and arrival times will be assigned using historical data, 
when available.   

Share of AC Categories in Total Enplanement of Scheduled Air Transportation

0.00%

 Historical data for commercial traffic is obtained 
from the OAG.  This data is then transformed into an 
arrival and departure distribution of operations over a 
given day.  Several different “days” were obtained; one 
weekday, and one weekend, from each of the four 
quarters, for a total of eight representative days.  These 
different “days” represent specific patterns in seasonal 
and weekday passenger travel.   

 Current baseline OAG operations will be used as 
the timetable starting point for scheduled times between 
city pairs.  This data will be processed and altered to 
accommodate changes in forecasted equipment and 
international traffic.  The historical airport operational 
distributions will be used to determine time assignment 
for additional flights.  For example, if eight flights 
currently operate between LaGuardia and O’Hare each 
day, and ten frequencies are predicted, then the two 
additional flights will need to be assigned departure and 
arrival times based on historical data.  The initial eight 
flights will receive the departure and arrival times that 
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already exist in the current OAG schedule, with some 
minor adjustments.   

 To assist in the process of assigning departure and 
arrival times, the airports have been grouped into four 
tiers.  The airports with the most dominant schedules 
were assigned to tier 1 (the FAA’s capacity critical 
airports), and the airports with the least dominant 
schedules were assigned to tier 4 (typically airports 
only served a couple times a day by just one carrier), 
with the other airports falling somewhere in between.  
This categorization will help to determine a flight’s 
scheduled arrival and departure times .   

 Once an arrival or departure time is established at 
an airport for a given flight, there is very little “slack” 
left in the schedule on the other end because the 
equation—departure time, plus block time3, equals 
arrival time—is fairly tight.  This causes a problem 
when a departure is created at an airport that then 
dictates an arrival at the destination airport during an 
unlikely time or vice versa.4  To mitigate this problem, 
an airport’s tier will be used to determine how strictly 
additional arrivals and departures should conform to the 
airport’s historical distribution of flights.  For instance, 
a hub airport traditionally has strong arrival and 
departure banks, thus additional flights should conform 
to those times when banks occur.  On the other hand, 
adding flights to small spoke airports that have only a 
handful of operations should not necessarily comply 
with a historic distribution (i.e., If there are only five 
flights a day at an airport and a sixth is added, that sixth 
flight should not necessarily be added at a time when 
flights have historically occurred).  Hence when 
scheduling between tiers, the more dominant airport’s 
schedule will prevail.  Intra-tier flights (i.e. flights to 
and from tier one airports) will undergo additional logic 
in order to find a departure and arrival time that fits 
with the airport’s historical distributions.   This 
preference will also be enforced by the order in which 
these flights are assigned in the timetable.  Flights 
between tier 1 airports will be scheduled first, then 
flights between tier 1 and the remaining tiers.  Next 
flights between tier 2 airports will be scheduled and so 
on, until all commercial flights have been scheduled. 

5.  Adding in Scheduled International Flights 

 Step five adjusts our tentative timetable by taking 
into account aggregate flows of international passenger 
and cargo traffic to and from the continental United 
States (CONUS).  Although our modeling focus is the 
                                                           

                                                          

3 Block time, the time it takes to leave the gate at one airport and 
arrival at the gate of the destination airport, is largely a function of 
distance, winds and aircraft speed, but can also be highly influenced 
by taxi-in and taxi-out times at the arrival and departure airports 
respectively. 
4 Some time frames will also be unavailable due to constraints on 
airport operating hours. 

CONUS, we must still account for the additional 
terminal area traffic, especially important for the 
international gateway airports, that is generated by 
flights with only one of two cities in the CONUS.  This 
will be accomplished using a modified top-down 
approach.  All non-CONUS destinations will be 
associated with growth rates.  The rates will then be 
applied to the number of seats currently being flown to 
or from those destinations.  Applying the growth rate to 
the number of seats is in line with a passenger demand 
focus, and also allows for smaller increments of growth. 

 In 2000, around 26 million passengers traveled to 
the U.S. from around the world.  While a majority 
(43%) of these passengers originated in Western 
Europe, the Far East had a respectable 29% share, 
followed by South America’s share of 11%.  Almost all 
of this traffic takes place through 11 gateway airports in 
the U.S., and therefore, greatly influences the schedule 
at those airports.    

 Unlike our O&D model for domestic air travel, 
here we plan to use regional growth rates from external 
agencies (e.g., U.S. Department of Commerce 
International Trade Agency (ITA), FAA) to drive our 
forecasts of international passenger travel.  Using these 
forecasts and assuming the types of aircraft that are 
currently flown between these destinations, we can 
derive the forecast demand for scheduled departures 
and arrivals.  This data will then be added to our 
domestic schedule.     

6.  Adding in Non-Scheduled Flights 

 The last step is to account for unscheduled, or GA 
traffic.  Both the terminal and TRACON handle a large 
amount of GA traffic.  It is estimated that for every 
scheduled flight, there is another one and half 
unscheduled operations [7].  There were an estimated 
218,000 active GA aircraft in the NAS, which flew 
almost 40 million operations in 2000.  Almost four-
fifths of this traffic was in the domain of VFR5 and thus 
less likely to crowd the en route air space.  However 
VFR traffic impacts airport towers and TRACONs the 
same as IFR traffic.  Given its significant utilization of 
NAS infrastructure, we must include a model of GA 
traffic in our timetable.6   

 
5 VFR stands for Visual Flight Rules.  All commercial aircraft are 
required to fly instrument flight rules (IFR).  GA or unscheduled 
traffic can fly VFR or IFR,  
6Notice that a GA timetable is somewhat fictitious. GA traffic, for all 
practical operational purposes, is unscheduled traffic and hence does 
not produce timetable on its intent to fly between cities at a given 
time.  It is worth noting here that published schedules are different 
than the flight plans that IFR GA flights are required to submit.  
Creation of a schedule, based on their behavior modeled using 
economic and/or other logic, runs the risk of being truly unreal.  
Nonetheless, we proceed with this method because of our need to 
model this entity in simulations of the NAS where they compete with 



 GA traffic is comprised of many different types of 
operators.  Unscheduled business operators tend to file 
and fly IFR flight plans.  Like in the case of O&D 
travel, particularly the upper end or premium fare 
travel, IFR flights can be sensitive to economic or 
financial factors.  Specific location and time data for 
these flights can be derived using the FAA’s Enhanced 
Traffic Management System data. 

 Data on GA traffic that file and fly VFR flight 
plans as well as military traffic are not time and 
location specific, and thus individual operations must 
be derived using the top-down approach described in 
the introduction.  Based on the historical trends and 
economic factors, composite growth rates will be 
applied to both VFR and IFR operations to produce 
forecasts of activity.    

CONCLUSION 

 This framework is being used to develop a 
timetable of aircraft operations that will support 
modeling efforts in evaluating NAS performance.  In 
addition, by changing the inputs, this framework can be 
used to perform various types of “what if” policy 
analysis, and thus can stand on its own as a useful 
analytical tool.   
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