
M T R  9 8 B 0 0 0 0 0 9 3 

M I T R E  T E C H N I C A L  R E P O R T 

A Comparison of Certificate Validation
Methods for Use in a Web Environment

November, 1998

Shimshon Berkovits

Jonathan C. Herzog

Approved for public release; distribution unlimited.
1998 The MITRE Corporation

Center for Integrated Intelligence Systems

Bedford, Massachusetts





A Comparison of Certificate Validation Methods
for Use in a Web Environment

Shimshon Berkovits, G022
Jonathan C. Herzog, G021

Abstract

This paper reports on an investigation into several differing certificate validation
techniques.  It compares their mechanisms and, more importantly, their performance.
An analysis is presented showing the largest number of validator clients that each
validation method can support.  This is done in each of five differing scenarios,
scenarios that are encountered in a web environment.  The affect of caching validation
information is also examined.  Finally, a new, hybrid method for disseminating
certificate validity information is presented and recommendations are made for which
method use in varying circumstances.



Table of Contents

Section Page

1 Introduction 9
1.1 Trust in Public Key Certificates 9
1.2 Certificate Revocation and Validation 9
1.3 Goals of the MOIE 11
1.4 Structure of the Report 11

2 Methods of Certificate Validation 12
2.1 On-line CA Validation 12
2.2 Certificate Revocation Lists 13

2.2.1 Delta CRLs 14
2.2.2 Segmented CRLs 14

2.3 Certificate Revocation System 15
2.4 Certificate Revocation Trees 18
2.5 -CRL/Micali Hybrid 21
2.6 Comparison of Validation Methods 21

3 Web Architectures 24
3.1 Scenario 1: Third-party Repository 24
3.2 Scenario 2: Associated Repository 25
3.3 Scenario 3: Local Repositories 26

3.4 Scenario 4: No Repository (CA Proxy) 26

3.5 Scenario 5: No Repository (Validator Proxy) 27

4 Method Analysis 29
4.1 Resource Consumption Model 29

4.1.1 Drivers 29
4.1.2 Resources 29
4.1.3 Events: 30
4.1.4 Model use: 30

4.2 Resource Consumption Model 31
4.3 Model Results & Discussion 37

5 Recommendations 42
5.1 Conclusion 43

References 45



Table of Figures

Page

Figure 1: Validation Update, Query, and Response 10

Figure 2: The relationship between initial and final Micali “Yes” and “No” numbers 16

Figure 3: Current “Yes” and “No” values after one day – certificate still valid 16

Figure 4: Current “Yes” and “No” values after two days – certificate still valid 17

Figure 5: Current “Yes” and “No” values after three days – certificate now invalid 17

Figure 6: Example Certificate Revocation Tree 19

Figure 7: Nodes returned in response to query regarding certificate 40 20

Figure 8: Third-Party Validator 25

Figure 9: Associated Repository 25

Figure 10: Local Repositories 26

Figure 11: No Repository (CA Proxy) 27

Figure 12: No Repository (Validator Proxy) 28

Figure 13: The Relationship between Drivers, Events, and Resources 31

Figure 14: Maximum Number of Non-Caching Servers Supportable – Architecture 1 38

Figure 15: Maximum Number of Non-Caching Servers Supportable – Architecture 3 39

Figure 16: Maximum Number of Caching Servers Supportable – Architecture 1 40



Table of Tables

Page

Table 1: Work and Message Lengths, by Validation Method 22

Table 2: Advantages and Disadvantages of Validation Methods 23

Table3: Frequencies for Driver Induced Events 32

Table 4: Frequencies for Driver Induced Events 33

Table 5: Indicator Variables for Resource Consumption, by Event and Architecture 34

Table 6a: Resource Consumption, by Event and Method: Variable Definitions 35

Table 6b: Resource Consumption, by Event and Method: Values 36

Table 7: Resource Capacities 37

Table 8: PKI Sizes 37

Table 9: Non-Caching Validators 39

Table 3: Caching Validators 41

Table 4: Non-caching Validators, untrusted directory 44



Introduction
1.1 Trust in Public Key Certificates

From its inception, public key (asymmetric) cryptography has faced a serious and fundamental
problem.  How does one insure that a specific public key is trustworthy?  This question breaks
down into several component concerns.  How does one know that the person who is supposed to
have control of the corresponding private key actually does have control?  How can one be sure that
no one else has discovered or stolen that private key?  If the possession of a particular private key
implies that the subject has certain affiliations or has some specific authority, how can we know that
the affiliation was still valid or that the authority still stood at the time the key was used to create a
signature?

The generally accepted approach to the trustworthiness of public keys has been the creation of a
public key infrastructure (PKI).  The central element of a PKI is a set of certification authorities
(CAs).  A CA certifies that a given public key is associated with a certain subject who possesses the
corresponding private key.  The CA may also certify that the subject has some particular affiliation
or some specific authority.  All this information is tied together in a certificate that the CA signs and
makes available to the public.   Now the question of trusting a public key becomes a question of
trusting the CA that certified the binding of the public key to a subject and, perhaps, to an affiliation
or to some authority.

There are several possible reasons for trusting a specific CA and its signature on a certificate.

• The CA is personally known to and trusted by the person seeking to trust a particular public
key.

• Failing that, the CA is well known and its public key is well published.

• Another CA, whose key in turn is certified by yet another CA, certifies the CA’s public key.
The chain of CAs leads back to a CA that is personally known and trusted or that is well
known with a well-published public key.

Thus, there may be a chain of CAs from the CA that certified the public key in question to a CA that
the person wishing to establish trust in a key already knows and trusts.  It is assumed that there is
no reason that trust not be transitive, i.e., we assume that any CA trusted by a CA that is already
trusted will itself be trusted.  If, for any reason, this assumption is incorrect, it is unwise to rely on
the public key in question.

1.2 Certificate Revocation and Validation
 Trusting the CA that issued a certificate is, however, insufficient.  At the time the certificate is

issued, the CA carefully establishes the identity of the key holder and verifies that the key holder
also posses the corresponding private key, the claimed affiliation, and the specific authority.  It is
not obvious that all or even any of these conditions, that held at the time the CA certified the public
key, still hold at the time the key in the certificate or the corresponding private key is being used.
Perhaps the corresponding private key has been lost, stolen or otherwise compromised.  Maybe the
subject of the certificate has left the organization that vouched for her identity and on whose behalf
the CA issued the certificate.  It is also possible that the authority that the subject had at the time of



certification has since been changed or rescinded completely.  If any of these circumstances apply
to a specific certificate, that certificate must be revoked, preferably by the CA that issued it.

 Subjects wishing to rely on the information contained in a certificate must be able to establish
the continuing validity of that certificate.  The simplest way to accomplish this is to query the CA
each time a client wishes to trust the certificate.  However, CAs are assumed to be busy machines
and unable to handle the additional load of responding to many validation queries.  Hence, it is
common for CAs to delegate the responsibility of responding to validation queries to other
machines, which we call Repositories.1  Periodically, the CA sends to each Repository some data
structure that contains the revocation status of each unexpired certificate.2   The Repository then
uses this information to construct revocation status responses.  Each query response may be the
same data structure as the updates themselves or it may be constructed from them.  Figure 1
diagrams this flow of information.

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Validation Update, Query, and Response

 

  In the most widely used update method, the CA maintains a list of all unexpired but revoked
certificates.  Such a list is known as a certificate revocation list (CRL).  The CA makes the
                                                
1 For historical reasons, these machines are also called “Directories.”  In some cases, these machines are more active than

the term “Directory” would imply.  Thus, our choice of the name “Repository.”

2 Certificates contain a great deal of information in addition to the binding between public key and key owner.  They also

contain the name of the signer, a serial number unique to that certificate, the date of certificate creation, the lifetime of

the certificate, and other information.  Certificates are to be trusted only during their lifetime.  Expired certificates will

be rejected as untrusted.  Hence, the only revoked certificates of interest for the purposes of revocation are unexpired

ones.  From this point on, we will limit our discussion to unexpired certificates.

Certification
Authority

Validator

Repository

LAN

WAN

Update

Response

Status Query

LANLAN



information on its CRL available to any subject that wishes to check the validity of a given
certificate.  There are several different ways that a CA can make the revocation status of its
certificates available.  Early techniques include the periodic publication of CA-signed copies of the
latest CRL on some directory server [X509], which sent the entire CRL in response to a query.  As
an alternative, the CA keeps the CRL itself and sends signed responses to queries about specific
certificates [BERK].  Both these approaches appear to make rather extensive use of one resource or
another.

 More recently, other methods for publishing CRL information have been suggested.  CRLs can
be published less frequently with additions to each CRL (called Delta CRLs or δ-CRLs) appearing
more frequently.  The heavy load on the communication system caused by many users
downloading complete CRLs, thus, occurs only infrequently.  More common is the downloading of
the shorter delta CRLs.  Another approach is to divide the CRLs according to reason codes.  Thus,
a user who cares only about certificates that have been revoked because the corresponding private
key has been compromised need download only that smaller, sub-CRL.  Other schemes propose
placing certificate serial numbers in data structures designed for efficient searching.  This will allow
users to ascertain quickly whether the certificates in which they are interested are revoked or not.
Finally, there are designs that have each CA regularly publish the status of each certificate it has
issued.  The status reports can be distributed at any frequency desired, even as often as daily or
hourly.

1.3 Goals of the MOIE
 The objective of this research effort is to compare and contrast the various approaches to

certificate validation.  It is intended that each of the contrasting methods of publicizing the
information on the CRLs be analyzed in several differing scenarios, especially scenarios that fit
naturally in a web environment.  For each scenario, a comparison will be made of the
communication load and the computational requirements.  The ultimate consideration for comparing
the various methods for dispersing validation status information will be an estimate of the maximum
number of validators that can be supported.

 The final goal is a set of recommendations advocating the use of one of the certificate validation
approaches examined for the various web scenarios.  It is possible that a new approach will suggest
itself during this process.  Should that happen, it is intended that the new method will be analyzed in
the same way the others were so that its benefits can be underscored.

1.4 Structure of the Report
 The remainder of this report is organized as follows.  In the next section, the certificate

validation methods to be examined are introduced.  Section 3 contains descriptions of the various
web scenarios that we shall consider.  The load assumptions and the results of evaluating each
validation method in each scenario are presented in the next section. Finally, recommendations
make up the concluding section.



2 Methods of Certificate Validation

 The purpose of certificate validation is to supply sufficient, trustworthy information to allow any
subject to construct a proof that the certificate in question is not now revoked or was not revoked at
some specific, earlier time.  It is the issuing CA, generally, that generates the needed information.
However, there are circumstances in which another (perhaps higher level) CA may assume this
responsibility.  This can happen should the issuing CA be down for repairs or be completely
defunct.  The entity that wishes to rely on the certificate can either create the necessary proof from
the information provided or rely on a trusted validation server to produce the proof.  In the latter
case, the communication between the proof requester and the proof validator is minimal.  Similarly,
the proof requester’s computational load is little more than the verification of the validation server’s
signature on the response message.  (The requestor, of course, must hold a trusted copy of the
validator’s public key.)  Hence forth, we shall examine the communication and computation loads
generated by any entity obtaining and verifying the requisite proof information.

 We look at different types of validation proofs.  Techniques for making the validation proof
information available to the public come in four distinct styles.  Each fundamental design may have
several variations associated to it.  This section contains brief descriptions of each of the basic
designs and of those variants that are included in this comparative study.

 The four fundamental designs for certificate status proofs are:

• OLV On-line Validation

•  CRL Certificate Revocation List

• CRS Certificate Revocation System

• CRT Certificate Revocation Trees

Table 2 (at the end of the section) summarizes the advantages and disadvantages of these methods.

2.1 On-line CA Validation
The simplest method for determining if a specific certificate is still valid is to ask the entity that

creates or holds the proof information for the result of the proof.  The entity may be the CA that
issued the certificate.  Alternatively, it may be a trusted responder that the issuing CA has named in
the certificate. The CA or the trusted responder replies “yes” or “no” in a short, signed message.
The response the serial number of the certificate in question along with a time interval during which
the response is to be accepted and after which it should be ignored.  That way, the inquirer knows
with which certificate to associate the response and also is assured that the response is not a replay
of a reply to an earlier request for information about the same certificate.  The On-line Certificate
Status Protocol (OCSP) [OCSP] is a commonly used standard protocol for on-line validation.

The questioner must have a trusted copy of the public key of the responder, be it the CA or the
trusted Repository of proof information.  This key is needed to verify the signature on the
response.  If it is a CA and the CA is the requester’s own CA, this is hardly a problem.  If the
certificate is issued by some other CA then, presumably, the certificate is part of a certification chain



leading from a CA for which a trusted copy of the public key is already in hand.  As each certificate
in the chain is processed, its signature is verified using the trusted public key of the CA that issued
it.  The same trusted public key is used to verify that CA’s signature on the validity response
message.  Finally, if the  “yes” or “no” message is signed by some other entity, the inquirer will
need a trusted copy of that entity’s public key.

If the “yes” or “no” message comes from a trusted Repository, the picture is not so simple.
The public key of a local trusted Repository may well be known.  The public key of a distant
Repository will have to be obtained via a certification path that is probably the same as the path for
the target certificate – but it need not be.  For the purposes of the current analysis, we are assuming
certification paths of length one.  We also assume that the requester knows the public key of the
trusted Repository.

One obvious advantage of this system is that the information about the certificate’s validity is as
fresh as it can possibly be.  This, of course, is true only if the issuing CA or the CA responsible for
the revocation immediately informs the trusted Repository of each revocation.  Additionally, the
validation request and response messages are both relatively short.  However, this approach does
place a heavy burden on an entity that undertakes to answer all status queries.  Such an entity must
be available on-line to respond to status requests.  Furthermore, the entity spends a substantial part
of its resources in signing the responses.  Each request carries a time interval to assure that the
reply is fresh.  That interval can be quite short or can be as long as a day or more.  The responder
must decide whether it is most important to have the freshest certificate validity information.  In that
case, it will use short validity periods and sign every response before it sends it out.  Otherwise, the
responder can use a longer period, sign a single response as a query about each certificate arrives.
This response can be cached and reissued whenever another query about the same certificate is
received.

2.2 Certificate Revocation Lists
The original X.509 [X509] concept for publishing information about which certificates have

been revoked is a certificate revocation list (CRL).  Periodically, each CA publishes a singed list of
the serial numbers of its revoked, unexpired certificates.  How frequently a CA publishes a CRL is
a matter of CA policy and varies with the community the CA serves.  Each CRL includes the date of
its issue and a date when the next CRL will be issued.  Anyone wishing to check whether a specific
certificate was valid at a certain time obtains the appropriate CA’s CRL issued immediately before
that time.  If the certificate appears on that CRL, then it cannot be trusted.  If it is not on that specific
CRL and there is a subsequent CRL available, it may useful to check that next CRL to ascertain
whether the certificate was still valid after the time of interest.  Should there be no subsequent CRL,
the requester cannot be completely sure the certificate is/was valid at the time of interest.  There is
an unavoidable period of uncertainty between CRL publications. This interval of doubt can be
reduced only by issuing CRLs more frequently.

In [BERK], we showed that CRLs could be expected to consume significant amounts of
communication resources and, at the prevailing communication rates, significant sums of money.  In
fact, CRLs comprised the most expensive part of running a PKI.  Each CRL can become quite
lengthy.  A single subject verifying the validity of several certificates in a certificate chain may need
to download several different CRLs in order to decide whether to trust a single end certificate.  The



costs mount quickly.  Although infrastructure implementations are only recently beginning to reach
the size envisioned in that report, concern for CRL size has existed for some considerable time.
Several suggestions on how to reduce the CRL strain on resources have been put forward.

2.2.1 Delta CRLs

One way to reduce the resource drain caused by CRLs is to issue the lists less frequently.  Then
there is no reason that the CRLs from frequently referenced CAs cannot be downloaded when
issued and cached until the next one is issued.  This saves communication resources but results in
possibly stale validation information.  To disseminate more timely revocation data, each CA
additionally issues shorter signed lists containing only changes to the last published CRL.  These
are called “delta CRLs.”  Each delta CR has a date of issue and a date for the anticipated issue of
the next one.  A subject checking the validity of a particular certificate looks first on the CRL (as
before).  If the certificate serial number is not listed there, the subject next examines the delta CRLs
to see if the certificate has been revoked since the main CRL was issued.  The interval of
vulnerability is now reduced from the longer period between CRL publications to the shorter time
between the delta CRLs.

This approach reduces the communication load because the delta CRLs are considerably shorter
than the main CRLs.  Thus, the more frequent download is of the shorter delta CRL.  However, this
method of proving certificate status requires caching of the full CRLs (perhaps on CD-ROM).
There is little extra processing because, presumably, the signature on the cached CRL and the
validity of the associated CA certificate were both verified when the CRL was downloaded and
cached.  Actually looking for a certificate serial number on the full CRL is relatively inexpensive.
The only real cost is downloading the delta CRL, verifying its signature, and seeking the certificate
serial number.  For complete safety, the validity of CA certificate may again have to be checked at
the time of verifying the signature on the delta CRL.

2.2.2 Segmented CRLs

A US Patent held by Oorschot, Ford, Hillier and Otway [OOR] presents another method for
overcoming the problem of CRLs growing to an unmanageable size.  Their methodology has been
incorporated in the 1997 version of the X.509 Recommendation [X509].  The authors propose
segmenting each CRL into smaller, more easily managed pieces.  CRLs can be divided merely on
the basis of size.  The segments of the CRLs are to be stored in various locations that are to act as
distribution points.  Each certificate carries the location of the distribution point or points where it
will be listed should it ever be revoked.

Subjects validating a certificate may be interested only in ascertaining if the certificate was
revoked for some specific reason.  For example, an individual making a personal purchase may sign
the purchase order with a public key certified through the CA at her place of employment.  To the
seller, it is important to know whether the certificate was revoked at the time of the order and
whether the revocation was the result of the loss or compromise of the corresponding private key.
The seller does not care if the certificate was revoked because the individual is no longer associated
with that particular employer.  On the other hand, if the purchase is made on behalf of the company
for which she works, the seller wants to know if her authority to place such an order on behalf of
her employer was revoked.



This interest in certificates that are revoked for specified reasons leads to a second way of
segmenting a CRL.  Each CA subdivides its large CRL are into smaller lists, each consisting of all
certificates revoked for a specific reason.  There is a key compromise CRL, an affiliation
termination CRL, a subject name change CRL, and perhaps a few others.  Anyone concerned only
about certificates revoked for one reason need download only that specific revocation list.  This list
is far shorter than the full CRL and its transmission in place of the full CRL is a more economical
use of network resources.  The effort required in verifying the signature on this shorter list and
validating the public key used in signing it is no more than was required for the full CRL.  On the
other hand, in a certain fraction of cases, it is necessary to consult several of the smaller CRLs
issued by one CA.  The signatures on each must be verified although only one validation of the
CA’s certificate is required.  Ultimately, if it is important to know whether a particular certificate has
been revoked for any reason, it becomes necessary to examine and validate every smaller CRL or to
obtain the full CRL.

2.3 Certificate Revocation System
In a Certificate Revocation System, each CA updates the status of each certificate periodically

by preparing a certificate revocation status (CRS) for each certificate it has issued.  The frequency
of update can be daily or even more frequently than that.  It is designed to enable positive proof of
certificate status without relying on any trusted intermediaries.  This Certificate Revocation System
was invented and patented by Silvio Micali [MIC].

Associated with each certificate are three quantities, a base “Yes” value Y0, a final “Yes” value
Yk and a current “Yes” value Y.  There are three similar “No” values N0, Nk, and N.  Preferably,
each of these quantities is at least one hundred bits long and cannot be guessed or forged by an
attacker trying to pass off an invalid certificate as valid.  The base numbers Y0 and N0 are known
only to or can be reconstructed only by the certificate issuing CA.  The final values Yk and Nk
(where k is the number of status update intervals in the total validity period planned for the
certificate) are stored in the certificate.  Y and N are the current “Yes” and “No” values in the
status proof information.  Y = Yk-i encodes the number i of status update intervals (since the
certificate was issued) during which the certificate has been valid.  The value N = Nk-j encodes the
number of status update intervals j that the certificate has been invalid.  This last number j is,
hopefully, zero.  The fact that the sum of the two numbers, i and j, must equal the current status
update interval number can be used as a check on the accuracy of the status proof information.

Note that at each update only one of Y or N is changed.  If the certificate is still valid, Y goes
from Yk-(i-1) to Yk-i and N remains equal to Nk.  If this is the jth update when certificate is invalid
(either because it was already invalid at the last status update or it has just become invalid, i.  e.  j =
1) Y is unchanged at Yk-i and N goes from Nk-(j-1) to Nk-j.  The complete status proof information
update consists of a CA-signed file containing the current status update interval index, all
certificates issued since the last proof information update, and a CRS for each and every older,
unexpired certificate.  Each CRS includes the certificate serial number and the updated value V that
is either a new Y or a new N.  The proof Repository can distinguish whether each V is an update to
the current Y value or to the current N value.   In either case, it replaces that value with V and leaves
the other number as before.  From the currently stored values of Y and N, a requestor can establish
for how many update intervals the certificate has been valid and for how many thereafter, if any, it
has been invalid.



Micali suggests that Yk-i and Nk-j should be computed as Fk-i(Y0) and Fk-j(N0) respectively,
where F is some one-way function, i. e., a function whose value is easy to compute but whose
inverse is very difficult to evaluate.  For example, F can be a secure hash function.

The following diagrams demonstrate how this certificate validity proof system works.  In the
example, the validity period for each certificate is a week and CRSs are issued daily.  Thus,
k = 7.   The CA computes Y7 and Y0, N7 and N0 and sends these values to the Repository.  The
relationships between Y0 and Y7, between N0 and N7 are shown in Figure 2.  The values of Y7 and
N7 are also encoded into the certificate itself so that they are available to anyone who wishes to
validate that certificate.

 Figure 2: The relationship between initial and final Micali “Yes” and “No” numbers

After a full day in which the certificate has not been revoked, the CA computes the value Y6
from the Y0, which it knows.  The CA sends this number to the Repository.  By applying the
function F to the received value, the Repository can determine that the number it received is Y6 and
not N6.  The Repository replaces Y7 with Y6 as the current “Yes” value.  The current “No” value
is still N7.  These “Yes” and “No” values are displayed in Figure 3.

Figure 3: Current “Yes” and “No” values after one day – certificate still valid

Should a client wish to validate the certificate before the next CRS is issued, the Repository
sends these two values.  The client counts that one application of F to the current Y value is required
to reach the Y7 stored in the certificate and the current N value equals the certificate’s N7.  Since

Y0

N0
F

Y7

N7

FF F F F F

F FF F F F F

Issued by CA and
Stored at Repository

Issued by CA Stored at Repository

F FF F F F F

F FF F F F FY0

N0

Y7

N7



only one daily update of the CRS has occurred since the certificate was issued, the client deduces
that the Y and N values are legitimate and that the certificate is valid.

If after the second day the certificate is still valid, the CA issues a CRS for this certificate with
the value Y5.  The CA must calculate this anew from Y0 or may have saved all the Y values during
the computation of Y7.  In the latter case, the CA simply looks up the value of Y5.  Again, by one
application of F, the Repository recognizes the value it receives from the CA as a new Y value.  It
now stores Y5 and N7 as the current values.  This situation is shown in Figure 4.

Figure 4: Current “Yes” and “No” values after two days – certificate still valid

When a client requests validation information at this point, the Repository responds with the
current values, Y5 and N7.  Two applications of F show that the certificate has been valid through
two CRS updates.  The fact that the current N value equals N7 and two updates are exactly the
number that should have occurred since the certificate was issued assures the client that these values
can be trusted.

Suppose, now, that the certificate is revoked on the third day.  At the subsequent CRS issue, the
CA computes N6 from N0 or retrieves it from memory if it has saved all intermediate values.  The
CA sends this value to the Repository.  One application of F does not yield the current Y value, Y5.
However, the result does match the current N value, N7.  The Repository stores it as such.  Thus,
the Repository now holds Y5 and N6 as the current values (see Figure 5).

Figure 5: Current “Yes” and “No” values after three days – certificate now invalid

Issued by CA Stored at Repository

F FF F F F F

F FF F F F FY0

N0

Y7

N7

Issued by CA Stored at Repository

F FF F F F F

F FF F F F FY0

N0

Y7

N7



Now, when a client inquires about the certificate, it receives Y5 and N6 in response.  The client
must apply F three times to ascertain the certificate’s validity history.  Two applications of F move
Y5 and Y7 and one moves N6 and N7.  Thus, on the three days that have passed since the certificate
was issued, the certificate was valid at the end of the first two but invalid by the end of the third.  It
is apparent that the certificate was revoked some time on the third day.

This method has three advantages and (at least) one disadvantage.  One advantage is that the
Repository does not need to be trusted.  As opposed to the On-Line method (for example), the
Repository performs no trusted computation.  It computes the hash of what it receives and decides
whether the value is a Y value or an N value.  It then replaces that value with the one sent to it by the
CA.  If the Repository does not do this as required, the Validator will discover that fact when
checking the response to a query.  Also, the size of a query response small—two hash values.  In
addition, the Micali scheme has the advantage that all the values that are needed to update the
validations status of a certificate are calculated at certificate creation.  As Figure 2 above shows, to
calculate the Y and N values that will be included in the certificate, the CA will also need to calculate
every other value in the hash chain.  Hence, if the CA stores those values for future reference, it
need not recalculate the hash chain for each update.  However, the Micali method also has a
significant downside.  Under this method, when issuing an update the CA must include a value for
each certificate, while under other methods the CA need only include a value for revoked
certificates.  Hence, the updates may be much larger under this method than they would under other
methods.

2.4 Certificate Revocation Trees
Certificate Revocation Trees (CRTs) attempt to strike a balance between CRLs and on-line

validation methods.  Whereas on-line methods require a signature for every verification request,
CRTs leverage one signature by the CA into providing cryptographic security for every validation
reply.  On the other hand, while CRLs provide information about every revoked certificate, CRT
validation replies contain only information pertinent to the certificate mentioned in the validation
request.

CRTs were developed by Paul Kocher [KOCH] of Valicert and were later improved by Naor
and Nissim [NOAR] of the Weizmann Institute3.  Construction and use of a CRT begins by noting
that the set of all certificates issued by one CA can be sorted by serial number and broken into
continuous ranges of valid certificates.

For example, suppose that certificates 21, 36, and 54 had been revoked.  Then the following
four statements are true:

• If a certificate has a serial number in the range -∞ to 21, then the certificate is valid unless it has

serial number 21

• If a certificate has a serial number in the range 22 to 36, then the certificate is valid unless it has
serial number 36

                                                
3 While Kocher’s CRTs are apparently in use at Valicert, the Naor-Nissim improvement does not

appear to have been implemented yet.



• If the certificate has a serial number in the range 37 to 54, then the certificate is valid unless it
has serial number 54

• If the certificate has a serial number in the range 55 to ∞, then the certificate is valid unless it

has serial number ∞.

These four statements may seem somewhat strange.  Note, however, that they all have the same
format and that, for any verification query, exactly one of the above statements is relevant.

Given a reasonable encoding of the above statements, a Certificate Revocation Tree is a binary
tree4 constructed in the following way:

• The leaves of the tree are the structures representing statements like those above.

• The internal nodes hold hashes of their children (See Figure 6).

To use a CRT, the CA creates one of these trees internally and signs the root node.  The CA
then sends the signed root node to the Repositories, along with an unsigned list of revoked
certificates – an unsigned CRL.  The Repository, upon receiving the signed root node and revoked
certificate list, constructs its own copy of the tree and verifies that the signed root node matches the
root node of the tree it just generated.

Figure 6: Example Certificate Revocation Tree

                                                
4 Meaning that every internal node has exactly two children.

(-∞, 21)

(22, 36)

(37, 54)

(55, ∞)

A = Hash( (-∞, 21), (22, 36) )

B = Hash( (37, 54), (55, ∞) )

Hash(A, B)



When responding to a verification query, the Repository first determines the relevant leaf, then
returns:

• The CA’s signature on the root node,

• The relevant leaf

• The relevant leaf’s sibling,

• The sibling of each of the relevant leaf’s ancestors.

Figure 7, for example, has circled the nodes returned in response to a verification request for
certificate number 40.

Figure 7: Nodes returned in response to query regarding certificate 40

The validator hashes the relevant leaf with its sibling to get its parent node, hashes that with
the uncle node to get the grandparent node, hashes that with the great-uncle to get the great-
grandparent node, and so on.  This process continues until the validator has what it believes to be
the root node of the tree.  The validator then checks this root node against the root node signed by
the CA.  If the two root nodes match, then the validator can be cryptographically sure that the leaf in
question was in fact a leaf in the CA’s tree.

Forging a response to a validation query requires either the forging of a signature or the
inversion of a hash.  If the signature of the CA can be forged, then a malicious adversary can create
any hash tree it wishes and can forge the signature of the CA on the root node of that tree.  On the
other hand, since the signature probably cannot be forged, an adversary is forced to fabricate a chain
of false internal tree hash nodes.  These nodes produce same value for the root node as that of the
signed root node—in other words, he must invert a hash.  Under the very reasonable assumption
that both inverting a hash and forging a signature are infeasible, the signature of the CA on the root
node supports trust in every query response.

In this respect, CRTs share the advantages of CRLs.  One signature by the CA secures all
validation responses, thus reducing the load upon Repositories.  However, the size of CRT

(-∞, 21)

(22, 36)

(37, 54)

(55, ∞)

A = Hash( (-∞, 21), (22, 36) )

B = Hash( (37, 54), (55, ∞) )

Hash(A, B)Relevant leaf

Uncle node

Sibling node



validation responses, sent from Repository to validator, are much smaller than the corresponding
messages under CRLs.  Whereas the size of a CRL grows linearly with the number of revoked
certificates, the size of a validation response using CRTs grows as the log of that number.
Therefore, while doubling the number of revoked certificates will double the size of a CRL, it will
add only a (small) constant amount to the size of a CRT validation response.  It should be noted,
however, that the size of this response is still much larger than would be used in an on-line method,
where the size of a validation response is constant.

On the other hand, while the Repository does no work when constructing a validation
response, it may have to do a considerable amount of work when receiving an update from the CA.
Using Kocher’s construction, the Repository is forced to re-construct the entire tree to add or
delete a single leaf.  Naor and Nissim address this concern by suggesting that the revocation tree
use a slightly more complicated structure called a 2-3 tree.5  The main advantage to this structure is
that additions and deletions of nodes can be done quickly.  The time required is proportional to the
height of the tree (length of a path from root to leaf), which is proportional to the log of the number
of nodes in the tree.

2.5 δδδδ-CRL/Micali Hybrid

While the δ-CRL method is efficient for distributing updates, it is less efficient as a query

response mechanism.  On the other hand, Micali’s Certificate Revocation Status is extremely
efficient for query responses but enormously costly for updates.  In an attempt to combine the
advantages of both, we also tested an hybrid of the two methods.  In the δ-CRL/Micali hybrid, the

CA chooses values for Y0 and N0 and computes the associated Y and N values when it creates a
certificate. As it would in Micali’s original method, the CA includes the values of Y and N in the
certificate.  It sends the certificate and the secret Y0 and N0 values, encrypted, to the Repositories.
As updates, the CA issues δ-CRLs.  The Repositories are responsible for updating the current

values of Yi and Nj based on the δ-CRL.  This they can do because they have the Y0 and N0 values.

(They can also take advantage of the pre-computation optimization available to the CA in Micali’s
original scheme.)

2.6 Comparison of Validation Methods
Table 1 presents a comparison of the message lengths required by each of the above validation

methods.  It examines messages both between the CA and the Repository and between the
Repository and the Validator.  It also lists the computational load on the Repository in responding
to a validation query.

The second table presents a synopsis of the strengths and the weaknesses of each validation
method.  Both tables include entries for Black Lists [Perl], a technique in which all certificates are
valid for a relatively short time.  Consequently, CRLs (called Black Lists) are relatively short.
However, the short validity period forces frequent issuing of new certificates for all users.  This
seems to be an impractical approach and we did not include Black Lists in our analysis.  They
appear in the tables for the sake of completeness.

                                                
5 In a 2-3 tree, every internal node has either two or three children, and every path from the root to a

leaf has the same length.



Table 1: Work and Message Lengths, by Validation Method

Size of CA-Validator
messages

Repository work per
validation request
(time)

Size of Repository-
Validator messages

CRLs Proportional to number

revoked but unexpired

certificates

O(mRr)

None Proportional to number of

revoked but unexpired

certificates

O(mRr)

∆∆∆∆-CRLs Proportional to number of

certificates revoked per day6

O(mRd)

None Proportional to number of

certificates revoked per day

O(MRd)

Segmented
CRLs

Proportional to number of

unexpired certificates

revoked per reason of

revocation

O(mRr/Nr)

None Proportional to number of

unexpired certificates

revoked per reason of

revocation

O(mRr/Nr)

Black Lists Proportional to number of

certificates revoked since

last cut-off date

None Proportional to number of

certificates revoked since

last cut-off date

On-line
Verification

Proportional to number of

revoked but unexpired

certificates

O(mRr)

1 Signature Constant

CRSs Proportional to number of

unexpired certificates

O(mRr)

None Constant

CRTs Proportional to number of

revoked but unexpired

certificates

O(mRr)

None Proportional to the log of

the number of revoked but

unexpired certificates

O( log(mRr) )

• 

                                                
6 This assumes that Delta CRLs are being issued daily.

• m- number of unexpired certificates

• nu- number of updates per certificate lifetime

• Rd- proportion of certificates revoked per day

• Rr- proportion of certificates revoked at any given time (= _ Rd (nu+1) )

• Nr- number of reasons for revocation



Table 2: Advantages and Disadvantages of Validation Methods

Advantages Disadvantages

CRLs • Requires no work on part of
Repository

• Message lengths proportional to
number of certificates

• Messages, including the many
query responses, can grow quite
long

δδδδ-CRLs • Shorter query response
message lengths

• Requires no work on part of
Repository

• Message lengths still grow
proportional to number of
certificates

Segmented
CRLs

• Shorter query response
message lengths

• Requires no work on part of
Repository

• Message lengths still grow
proportional to number of
certificates

Black Lists • None • Message lengths grow
proportional to number of
certificates

• Requires re-issuing all
certificates frequently

On-line
Verification

• Small message lengths
• Timeliness

• Requires trust in Repository
• Requires work on part of

Repository
CRSs • Short message lengths

• Requires no work on part of
Repository

• Very large CA-Validator
communication

CRTs • Requires no work on part of
Repository

• Moderately large message
lengths



3 Web Architectures

The objective of this effort is to compare and contrast the various approaches to
certificate validation and to analyze each of these methods in different scenarios, particularly
those scenarios that reflect the web environment.  In a web environment, the chief uses of
certificates are either the authentication in SSL connections or the enforcement of access
controls.  The validator can be a web server authenticating a client or a client authenticating a
server.  Although the verification rates for client and server certificates probably are different,
the network topology is same.

In each of these scenarios, there are three different players: the Certificate Authority
(CA), the Repository, and the Validator.  Once per update period, the Certificate Authority
sends information concerning all unexpired certificates to each appropriate Repository.  The
Repositories use this information to respond to verification requests from the Validators.  The
exact nature of the messages involved—for both CA-Repository and Repository-Validator
communication—depend on the verification scheme in use.  There are, of course, multiple
Validators and there may be multiple Repositories.  Each player in a particular scenario is
connected to a shared WAN by a LAN; the LAN itself may be shared by more than one player.
Because we are examining the web environment, it we do not consider Validators that are on the
same LAN as the CA.

We have identified, for use in our analysis, five different scenarios, each described in its
own section below.

3.1 Scenario 1: Third-party Repository
In this scenario, the CA communicates with a number of Repositories scattered across

the WAN.  This is a situation much like the Domain Name System (DNS), in which a number
of servers are responsible for serving a given zone.7  DNS specifications require that some of
these servers be located in different LANs across the Internet.  This scenario will also arise if
CAs wished to store information in Repositories on other networks for redundancy reasons.
The purpose is to minimize the effects of network outages.

In this scenario, the number of Repositories is small—typically on the order of
10—and it does not grow with the number of Validators.  Figure 8 depicts this scenario.

                                                
7 In DNS, a zone is a set of domain names under a common administration.



Figure 8: Third-Party Validator

3.2 Scenario 2: Associated Repository
In this scenario, the CA communicates only with a local Repository.  One would expect

to find this scenario in any PKI presently deployed.  Typically, agencies/organizations that
administer PKIs maintain a CA and a Repository on the same LAN.

Figure 9: Associated Repository

Certification
Authority

LANWAN

Validator

LAN

Repository

Validator

Validator

LAN

LAN

Certification
Authority

Repository

Validator

WAN

Validator

Validator

LAN

Repository

LAN

LAN

LAN LAN

LAN



3.3 Scenario 3: Local Repositories
Here the assumption is that the Validators are grouped on LANs, each of which has its

own local Repository.  This scenario applies when the PKI is used to provide security for an
enterprise-wide intranet, such as the MITRE Information Infrastructure (MII).  Validators
(users) are segregated into departments, each with its own network and local servers.

The number of Validators per LAN is fixed, in this scenario, at some large number (100
to 1000).  Consequently, the number of Repositories grows with the number of Validators.
Figure 10 depicts this scenario.

Figure 10: Local Repositories

3.4 Scenario 4: No Repository (CA Proxy)
In this scenario, there are no independent Repositories.  The CA, which saves all its

revocation information anyway, responds directly to verification queries.  In essence, there is
exactly one Repository, which happens to be located in the same host as the CA.  This scenario
is shown in Figure 11.

Certification
Authority

Validator

Repository

LAN

Validator

Validator

Validator Repository

LAN

LANWAN



Figure 11: No Repository (CA Proxy)

3.5 Scenario 5: No Repository (Validator Proxy)
As in Scenario 4, this scenario contains no Repository.  However, here the role of the

Repository is assumed by the Validators.  Once per update, the CA sends to each Validator the
information it would have sent to the Repository.  In other words, the CA pushes to each
Validator all the proof material the latter might possibly need for all possible certificates.  This
situation arises with Compromised Key Lists (CKLs), which are CRLs pushed from CA to
Validators.  This alternative is depicted in Figure 12.

Certification
Authority / Repos itory

Validator

LAN
LAN

LAN

Validator

Validator

LAN
WAN



Figure 12: No Repository (Validator Proxy)

Certification
Authority

Validator / Repos itory

Validator / RepositoryValidator / Repository

WAN LAN

LAN

LAN

LAN



4 Method Analysis
In this section, we describe the model, its assumptions, and its constituent components.  We

then outline the results produced by the model.   We analyze and explain the significance of those
results.

4.1 Resource Consumption Model
The model used in this analysis is a resource-consumption model.  This means that the model

measures the consumption of critical computation and communication resources in response to
various independent driver variables.  The drivers indirectly consume those resources by producing
events. In this model, there are two drivers, three resources, and two events:

4.1.1 Drivers

• Validators are the agents that wish to validate certificates. Each validator produces validation
requests at some frequency, which depends largely on two considerations.

• Type of validator: Because we are examining validation methods in the web
environment, it is expected that the validators will be either web clients or web
servers.  It is assumed that web clients connect to only a few secure web servers
each day and so will need to validate only a small number of certificates.  On the
other hand, web servers handle large numbers of connections daily and are expected
to validate thousands-- or even millions-- of certificates.

• Caching: A client validates a certificate once and does not need to validate that
certificate again during the same update period.  (If it were to attempt a second
validation in one update period, it would receive the same information as it did the
first time.)  On the other hand, after validating one certificate, the validator may also
gain the information it needs to validate other certificates.  For example, once a
validator retrieves a CRL, it need never make another validation request during the
same update period.

• Updaters are the agents that issue periodic certificate status updates. Because the number of
updaters is independent of the validation method, we assume for simplicity’s sake that the CA is
the only updater in the system.

4.1.2 Resources

• Certificate Authority: Aside from certifying key pairs and perhaps even generating them, the
CA is responsible for updating the revocation information in the Repositories.  Depending upon
the verification method in use, this update may take one of several forms.  Under the CRL
method, for example, the CA hashes the list of revoked certificates and signs the resulting
digest.  When using CRTs, however, the CA builds the hash tree and signs the root node.  Each
verification method requires some work on the part of the CA.  This work consumes processor
time.



Since the resource provided by the CA is processor time, the CA can provide at most one
second per second.  In practice, a CA will probably devote less than full capacity to updates
because it has other functions it must perform.

• Repository: Some verification methods require an active Repository.   For example, the On-
line Verification method requires the Repository sign each response, a costly operation.

Like the CA, the resource provided by the Repository is processor time.  Each Repository can
provide up to one second per second.  The actual time devoted to responding to status inquiries
may be less since the Repository is also responsible for distributing certificates to clients that
request them.

• LAN: The CA, each Repository, and each Verifier have a LAN connection to a common WAN.
Although two or more parties share a LAN in some of the architectures (see Section 4), they do
not share a common LAN on all architectures.  The bandwidth of each LAN bounds the size
and number of messages being sent over it.

4.1.3 Events:
Each event will consume some resources. The degree to which a given event will consume a given
resource will depend on two things, the architecture and the method used.  The events are:

• Validation Queries and Query Replies: As stated above, each Validator will produce
validation requests with some frequency and each request will require a reply.  We assume that
the size and cost of the request itself does not change from method to method.  What does
change, however, is the size and cost of the query reply.  Hence, in this model we will ignore the
actual request, and consider only the resulting reply.

• Updates  are produced by Updaters periodically.  As with validation requests and responses,
we ignore the constant, overhead that would be associated with all forms of updates, and
consider only the variable costs affected by the particular method is use.

4.1.4 Model use:

The drivers produce events, which in turn consume resources. Figure 13 shows the relations
between the drivers, the events, and the resources.  Because the resources have finite capacities, the
number of drivers that can be supported before some resource becomes exhausted is bounded.  We
assume that the number of updaters is fixed at 1, and that the frequency with which it produces
updates is also fixed, at once per day.  This means that the system can support only a finite number
of validators before some resource becomes overloaded.  That number, however, will depend on
several things:

1. The type of validator (client or server),

2. Whether or not validators cache previous query responses,

3. The size of the PKI (i.e., the number of certificates in circulation)

4. The architecture (see Section 3), and

5. The validation method in use.



Figure 13: The Relationship between Drivers, Events, and Resources

Because the focus of this investigation is to compare the scalability of the various validation
methods (i.e., the number of validators the method can support) we will use the model in the
following way:

• Enumerate all possible combinations of conditions 1—5 above.8

• For one particular combination, find the largest number of Validators the resources can support.

• For each combination of conditions 1—4, find the validation model that can support the largest
number of Validators.

A method that is found this way is the one that scales the best, under the given, particular set of
conditions.9

• For the rest of this section, we will develop this model in more detail.

4.2 Resource Consumption Model
• Drivers produce events that are either updates or validation requests.

• Driver i produces event j at frequency fij.  With one exception, these frequencies are fixed.
The frequency with which validators produce validation requests varies.   It depends on the
type of validator, whether or not the validator caches, and, if it does, the type of validation
method being used.

                                                
8 In the case of condition 3, choose discrete PKI sizes representing the range likely to be encountered in actual use.

9 Although it is tempting to believe that the model can produce some predictive value, and that the number of validators the

method can support in the model is the number of validators the method can handle in real life, it is unfortunately not

so. The model was designed for comparison purposes, and hence ignores large aspect of a PKI that are irrelevant to

validation. However, it is entirely possible that a model of this kind could be constructed for an entire PKI if a

predictive model is desired.

Validators

Updaters

Validation
Queries

Updates

CA

LAN

Repository

Drivers Resources(consume)(produce) Events



• CRLs and δ-CRLs contain information about all certificates.  Hence, once a

validator obtains either type of CRL in response to a query, that validator need
never make another validation request until the next update period.  Of course,
the next update time occurs sooner for a δ-CRL than for a full CRL.

• On-line methods, Micali, and the δ-CRL/Micali hybrid, on the other hand,

provide only enough information to determine the status of one query.  Hence, a
validator will have to make a separate query for each certificate it wishes to
validate.

• Each leaf in a CRT contains information about some range of certificates.
Consequently, once a validator obtains one leaf of a CRT, it has information
about several certificates.  Because CRTs have one leaf per revoked certificate,
caching validators using CRTs need never make more validation requests than
there are revoked certificates.  If it ever possesses every leaf of the CRT, the
validator has complete information about all certificates.  It need then never make
another validation request during that update period.

Values for the frequencies fij are shown in Table 3.

Table3: Frequencies for Driver Induced Events

fupdater, update  =  1 per day per updater

fupdater, val req  =   Never

fvalidator, update  =  Never

fvalidator, val req

(per day, per
validator)

CRL δ-CRL On-line CRT Micali δ-CRL/
Micali

Non-
Caching

  Server 1,000 1,000 1,000 1,000 1,000 1,000

  Client 1 1 1 1 1 1

Caching

  Server 1 1 1,000 Once per revoked

certificate, at most

1,000 1,000

  Client 1 1 1 1 1 1



• If there are Di drivers of type I (e.g., there are Dvalidators validators), then the total number of
events of type j is:

f Dij i
i Drivers∈
∑

• If there are Rk resources of type k (e.g., there are RRepository Repositories), then the total number of
events of type j per unit or resource is:

    
1

R
f D

k

ij i
i Drivers∈
∑

Rk depends on the architecture and is given in Table 410

Table 4: Frequencies for Driver Induced Events

Architecture RLAN RCA Rresp

1 1 1 10

2 1 1 1

3 1 1 1 per 1,000
validators

4 1 0 0

 5 1 1 1 per validator

• Hence, the total consumption of resource k is:

Where

• ajk is an indicator variable which is

• 1 if resource k is consumed by event j in the architecture,

• 0 otherwise, and

                                                
10 Technically, there is more than one LAN in each architecture.  However, in each architecture, one LAN is the busiest.

The system will be at maximum capacity when the busiest LAN is saturated.  In architecture 1, that LAN is the one on

which a repository lies.  In all the other architectures, it is the LAN on which the CA lies.

∑ ∑
∈ ∈Eventsj Driversi

jkjkiij
k

maDf
R
1



• mjk is the degree to which resource k would be consumed by event j, if it is consumed in the
architecture.  It is this variable that most shows the differences between the various
validation methods.

The values of ajk and mjk are given in Table 5 and in Tables 6a and 6b respectively.

Table 5: Indicator Variables for Resource Consumption, by Event and Architecture

ajk LAN CA Rep

Update

Architecture 1 1 1 1

Architecture 2 1 1 1

Architecture 3 1 1 1

Architecture 4 0 1

Architecture 5 1 1 1

Validation Request

Architecture 1 1 0 1

Architecture 2 1 0 1

Architecture 3 0 0 1

Architecture 4 1 1

Architecture 5 0 0 1



Table 6a: Resource Consumption, by Event and Method: Variable Definitions

s --  time required for a signature .173 seconds11

|s| -- length of a signature 1024 bits

v – time required to verify a signature .004 seconds10

nc – number of certificates Varies

rr – revocation rate (% of certificates revoked at any time) 5%

h – length of hash output 160 bits12

l – length of certificate serial number 160 bits

nu -- number of updates per certificate lifetime 365

rh – hashing rate (bits / second) 1,565,576 bytes
/ second13

                                                
11 JSAFE 1.1 Benchmarks, assuming Pentium computer (166MHz). RSA Data Security Engineering Report (1998)

12 Output length of SHA-1

13 JSAFE benchmarks



Table 6b: Resource Consumption, by Event and Method: Values

mjk LAN CA Repository

Update

CRL nc rr l + |s| (nc rr l) / rh + s (nc rr l) / rh + v

δ-CRL (nc rr l) / nu + |s| (nc rr l) / ( nu rh) + s (nc rr l) / ( nu rh) + v

Micali nc h (nc / nu) * (2 nu  l/rh) 0

CRT nc rr l + |s| (2 nc rr l + nc rr h) / rh

+ s
(2 nc rr l + nc rr h) / rh

+ s

On-line (nc rr l) / nu + |s| (nc rr l) / ( nu rh) + s (nc rr l)/( nu rh) + v

δ-CRL / Micali (nc rr l) / nu + |s| (nc rr l) / ( nu rh) + s (nc rr l) / ( nu rh) + v +
(nc / 365) * (2 nu l / rh)

Validation response

CRL (nc rr l)+ |s| 0 0

δ-CRL (nc rr l)/ nu + |s| 0 0

Micali 2h 0 0

CRT 2l + log2(nc rr) h 0 0

On-line |s| + 300 0 S

δ-CRL / Micali 2h 0 0

Lastly, if resource k has capacity Ck (per unit of resource), then the normalized consumption of
resource k is:

Values for Ck are given in Table 7

∑ ∑
∈ ∈Eventsj Driversi

jkjkiij
kk

maDf
CR

1



Table 7: Resource Capacities

Ck

LAN 100,000 bits/second14

CA 1 second / second

Repository 1 second / second

The variables shown in Table 6b have been implement in a spreadsheet. The spreadsheet
results produced by the model are used to find the best validation method.  The best method is the
one that supports the largest number of validators under a given set of conditions.  The results are
dependent on several considerations.

1. Validators can be either clients or servers.  The type of validator will affect the frequency
with which each validator issues validation requests. (See Section4.1.)

2. Validators can cache or not cache, which also affects the frequency with which they issue
validation requests. (Again, see Section 4.1)

3. The PKI can vary in size, which will affect the message lengths of some methods. We
used the five sample sizes given in Table 8

Table 8: PKI Sizes

10,000

100,000

1,000,000

10,000,000

100,000,000

4. The architecture can vary among the five listed in Section Section 4.1, and

5. The validation method is one of the six given in Section 4.1.

4.3 Model Results & Discussion
Before discussing the results of the model, it is helpful to make an initial observation.  The

architectures can be broken into two broad categories, based on their growth behavior:

                                                
14 1% of a 10Mbit/sec network



• In architectures 1 (Third-Party Repository), 2 (Associated Repository) and 4 (CA-
Repository), the number of Repositories is constant.  Hence, as the number of validators
increases, the number of validators each repository is required to handle increases as
well.  Ignoring possible effects of caching, one would expect the most common event in
this type of architecture to be the validation request.  Therefore, the most efficient
method for these architectures will most likely be the one that handles validation
responses the best, i.e. Micali’s Hash Chain method and the δ-CRL/Micali hybrid.

• On the other hand, in architectures 3 (Local Repository) and 5 (Validator-Repository),
the number of Validators per Repository remains constant.  Hence, as the number of
validators increases, the number of Repositories must do so as well.  Thus, in these
architectures, the most common communication will be updates.  We expect that he
most efficient methods are those that best handle updates, i.e. those that use δ-CRLs for

updates.

In fact, this is exactly the behavior that occurs (although caching does have an effect under
certain circumstances).  Figure 14 below shows the relative capacities of each method for non-
caching clients in Architecture 1.  One would see similar results for servers in Architecture 1, and
for both clients and servers in architectures 2 or 4.

Figure 13: Maximum Number of Non-Caching Servers Supportable – Architecture 1

Validators Supported (by Method)

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

10,000 100,000 1,000,000 10,000,000 100,000,000

PKI Size

Traditional CRLs

Delta-CRLs

OCSP (Full CRLs)

OCSP (delt a-crls )

Micali

CRTs

Delta-CRL/Micali mix



As can be seen, the methods based on Micali-like query responses show a marked
advantage over all other methods—up to a point.  Using δ-CRLs for the update can extend this

point somewhat, but all methods have their limits.

For the second type of architecture, Figure 15 shows the relative capacities of the various
methods in Architecture 3.  Again, there are similar results for both clients and servers.  The graphs
for both clients and servers in Architectures 5 are also similar.  The three methods that use δ-CRLs

for updates (δ-CRLs, OCSP with δ-CRLs, and the δ-CRL/Micali hybrid) show the highest capacity

and produce almost identical results.  This demonstrates that, in these architectures, the capacity of
each method depends on the method’s update scheme.

Figure 14: Maximum Number of Non-Caching Servers Supportable – Architecture 3

The results for non-caching validators are summarized in Table 9.

Table 9: Non-Caching Validators

Architecture Most clients supported by: Most servers supported by:

Third-party (1),

Associated (2),

CA-repository (4)

• Micali

• δ-CRL/Micali Hybrid

Local Repository (3),

Validator-Repository (5)

• δ-CRL/Micali Hybrid • δ-CRL

• δ-CRL / On-line

• δ-CRL / Micali hybrid

Validatorssupporte d(Non-CachingClients)

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

10,000 100,000 1,000,000 10,000,000 100,000,000

PKI Size

V
a
li
d
a
t
o
r

Tr aditona CRLs

Delta-CRLs

OCSP (FulCRLs)

OCSP (delta-crls)

Micali

CRTs

Deta-CRL/M ic almix



The results for validators that cache are much the same, showing that caching only has a
tangible effect under fairly narrow conditions:

• Caching improves efficiency by eliminating the need for many validation queries.  The
only methods that allow the validator to take advantage of caching are those that provide
information about more that one certificate at a time—namely CRLs, δ-CRLs, and to
some extent, CRTs.  However, each CRT response provides information about a small
fraction of the total number of certificates.  As a result, CRTs are not as effective as
CRLs or δ-CRLs.

• Making caching possible for a reasonably sized client or server means that the CRLs or
δ-CRLs must be of a manageable size.  This requirement implies that the PKI must be
small.

• For a validator to gain the benefits of caching, it must need to validate many certificates
per update period.  Hence, clients—which as we defined in this report to be those
agents that need to validate only a few certificates per update period—gain very little by
caching.

• Lastly, for caching to improve efficiency, it must improve the performance of that
process that actually exhausts the resources.  Because caching improves the
performance of the validation process (as opposed to the update process), it is this
process that is important.  In other words, caching only improves efficiency in
Architectures 1, 2 or 4.

As a result, caching improves efficiency for servers using CRLs or δ-CRLs in small PKIs and only

in Architectures 1, 2, or 4.  Figure 16 shows the capacities of caching client validators:

Figure 16: Maximum Number of Caching Servers Supportable – Architecture 1

Validators Supported (Caching Servers, Architecture 1)

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

10,000 100,000 1,000,000 10,000,000 100,000,000

PKI Size

V
al

id
at

o
rs

 S
u

p
p

o
rt

ed

Traditional CRLs

Delta-CRLs

OCSP (Full CRLs)

OCSP (delta-crls)

Micali

CRTs

Delta-CRL/Micali mix



It is apparent that caching gives δ-CRLs a marked advantage over all other methods,

especially at small PKI sizes.  On the other hand, although one would expect similar effects for
traditional CRLs, their larger size negates this possible advantage.  Table 10 summarizes the results
for caching validators.

Table 10: Caching Validators

Architecture Most clients supported by: Most servers supported by:

Third-party (1),

Associated (2),

CA-repository (4)

• Micali

• δ-CRL/Micali Hybrid

Small PKI: δ-CRLs

Large PKI:

• Micali,

• δ-CRL / Micali hybrid

Local Repository (3),

Validator-Repository (5)

• δ-CRL/Micali Hybrid • δ-CRL

• δ-CRL / On-line

• δ-CRL / Micali hybrid



5 Recommendations

As can be seen from Table 9 and Table 10 above, the δ-CRL/Micali hybrid is consistently

among the most efficient validation methods.  The only exception to this observation occurs in a
Type 1 architecture (one in which the number of Repositories remains constant).  There more
servers can be supported with straight δ-CRLs—provided they cache validation replies.

Hence, we recommend that:

• Certificate Authorities place final Y and N values in each certificate issued.  CAs use δ-CRLs to

send updates to repositories.  They also send to Repositories (in some secure way) the initial
secret Y0 and  N0 Micali values for each newly issued certificate.

• Repositories update the current Yi and Nj values for each certificate as the δ-CRLs are received.

They respond to validation queries with the current Micali hash values.  Furthermore,
Repositories in a Type 1 architecture with small δ-CRLs15, should also make the original δ-

CRLs available.

• If the choice of either Micali hash values or δ-CRL is made available, then each validator can

choose the method most appropriate to its individual circumstances.  Thus, caching servers can
choose the δ-CRL while all others should can the Micali hash pair.

It should be noted that these recommendations assume that efficiency is the sole basis for
choosing a validation method.  Other considerations include the following.

• The above recommendations assume that the Repositories are trusted.  We consider the case of
the untrusted Repository in Appendix A.

• As mentioned in Section 2, the Micali hash chain method has the nice feature that all values
possibly needed for validation can be calculated ahead of time.  In our recommendations above,
we assume that for optimum efficiency the Repositories will calculate and store these valued for
each new certificate.  However, this might consume a large amount of storage.  If a certificate
has a lifetime of one year and its validation status is updated daily, at generation it will require
the storage of 730 hash values—dwindling to 365 hash values just before expiration.
Assuming the use of SHA-1, hashes are 160 bits long.  Each certificate requires, on average,
the storage of 548 hash values.  A PKI with 1,000,000 certificates would require each
Repository to devote 11GB to storage of these hash values—before overhead.16

                                                
15 The threshold value for δ-CRL size will depend on many factors, and will probably have to be adjusted periodically for

optimum performance.

16 Some minor optimization can be done to reduce this number. Under the assumption that most certificates are never

revoked, the repository can store only the Yk values. If a certificate is revoked, it can then delete the unused Yks, and

replace them with the appropriate Nj values.  In this manner, some re-calculation will have to be re-done for a small

percentage of certificates, but storage demands are reduced to 365 hashes at certificate generation and 0 hash values at



5.1 Conclusion
We have examined several different certificate validation methods in several different web

architectures.  We have considered the use of caching of validation information wherever it is
appropriate.  A spreadsheet analysis of the maximum number of Validators that can be supported in
each case has produced some interesting results.

For updating the validation information from the CAs to the Repositories, either δ-CRLs or

Micali Certificate Revocation Status appears to offer maximum capacity.  For responses to
validation queries, Micali appears to be the route to take.  Our own suggestion of a combination of
CRLs and Micali Certificate Revocation Status yields the best performance in those architectures
where it is reasonable.

                                                                                                                                                            
the point of expiration.  Thus the average certificate will require the storage of 183 hash values, requiring 3.65GB of

storage at the Repository (again, before overhead).



6 Appendix

Non-Trusted Repositories

The above discussion assumes that trust in the Repository (as required by the on-line method and
the δ-CRLs / Micali hybrid) is not an issue.  Should external considerations dictate that the

Repository not be trusted, the picture changes somewhat.

In this case, Micali is still best at handling validation responses, and δ-CRLs are still best

for updating validation information.  However, both of these methods become prohibitively
expensive as the size of the PKI increases.  Of the two remaining methods, On-line methods and
CRTs, it appears that CRTs perform better.   See Tables 11 and 12.

Table 3: Non-caching Validators, untrusted directory

Architecture Small PKI Large PKI

Third-party (1),

Associated (2),

CA-repository (4)

• Micali

Local Repository (3),

Validator-Repository (5)

• δ-CRLs

• CRTs

Caching, of course, will help, but only under the same circumstances as before.

Table 4 – Caching Validators, untrusted directory

Architecture Small PKI Large PKI

Third-party (1),

Associated (2),

CA-repository (4)

• Client: Micali

• Server: δ-CRLs

Local Repository (3),

Validator-Repository (5)

• δ-CRLs

• CRTs



References

[BERK] Berkovits,Shimshon, Santosh Chokhani, Judith A. Furlong, Jisoo A. Geiter,
Jonathan C. Gould, Public Key Infrastructure Final Report, The MITRE Corp.,
Oct., 1994. Available at http://csrc.nist.gov/pki/documents/mitre.ps

[KOCH] Kocher, Paul, A quick introduction to Certificate Revocation Trees, 1998, Available
at http://www.valicert.com/resources/

[MIC] Micali; Silvio, Certificate revocation system, United States Patent No. 5,666,416,
Sept. 9, 1997

[NOAR] Naor, Moni and Kobbi Nissim, , Certificate Revocation and Certificate Update. 7th
USENIX Security Symposium, 1998. Available at
http://www.wisdom.weizmann.ac.il/~naor/onpub.html

[OCSP] Myers, Michael, Rich Ankney, Ambarish Malpani, Slava Galperin, Carlisle Adams,
X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP
P, Sep., 1998, <draft-ietf-pkix-ocsp-07.txt>, Available at
http://www.ietf.cnri.reston.va.us/internet-drafts/draft-ietf-pkix-ocsp-07.txt

 [OOR] Van Oorschot; Paul C., Warwick S. Ford, Stephen W. Hillier, Josanne Otway,
Method for efficient management of certificate revocation lists and update
information, United States Patent No. 5,699,431, Dec. 16, 1997.

[PERL] Perlman; Radia J.and Charles W. Kaufman, Method of issuance and revocation of
certificates of authenticity used in public key networks and other systems, United
States Patent No. 5,261,002, Nov. 9, 1993.

[X509] Housley, R., W. Ford, W. Polk, D. Solo, Internet X.509 Public Key
InfrastructureCertificate and CRL Profile.
<draft-ietf-pkix-ipki-part1-11.txt>, Available at
http://www.ietf.cnri.reston.va.us/internet-drafts/draft-ietf-pkix-ipki-part1-11.txt

**************

The Entrust paper on which our model was built:

T. Moses, Scalability of Public Key Infrastructures, May, 1997.


