
1

Diversity as a Defense Strategy in Information
Systems
Does Evidence from Previous Events Support Such an Approach?

Charles Bain, Donald Faatz , Amgad Fayad, Douglas Williams
The MITRE Corporation 1820 Dolley Madison Blvd McLean Va 22102 USA

Key words: Security, survivability, diversity, intrusion and fault tolerance

Abstract:

One of the challenges facing computer systems is resisting attack
and compromise in a networked environment. Today’s computing
environment is fairly homogeneous, due to a relatively small number
of operating systems and application functions running on the vast
majority of computers. This environment allows attackers to focus
their efforts on the few types of systems deployed. Once an exploit is
found, the exploit is effective against a very large number of systems
running the same software. The large number of attack methods
available on hacker Web sites demonstrates the ease with which
attackers can exploit this homogeneous environment. This paper
examines several widespread computer attacks to understand the
effect of diversity on maintaining the integrity, and hence
survivability, of information systems.

3

1. INTRODUCTION

One of the challenges facing computer systems is resisting attack
and compromise in a networked environment. Today’s computing
environment is fairly homogeneous, due to a relatively small number
of operating systems (e.g., variants of UNIX or Microsoft Windows)
and application functions (e.g., networking based on TCP/IP) running
on the vast majority of computers. This environment allows attackers
to focus their efforts on the few types of systems deployed. Once an
exploit is found, the exploit is effective against a very large number of
systems running the same software. The large number of attack
methods available on hacker Web sites demonstrates the ease with
which attackers can exploit this homogeneous environment.

Most systems run similar software and/or support common
services. If systems were different, they might have an additional
defense against attacker exploits: a vulnerability discovered in one
system might not be effective in other systems if the systems are
different in ways that avoid the vulnerability. Additionally, this
diversity would increase the effort required to compromise systems,
since each system would be a unique environment for an attacker to
work against. This increase in effort could reduce the number of
exploits discovered (because of the additional effort required) and
perhaps decrease the attractiveness of exploiting systems.

Diversity as a defense is illustrated in attacks on systems. A
typical attack exploits a system and a specific vulnerability: different
systems are not (directly) affected. An attack effective against
Microsoft Outlook does not affect UNIX mail applications. However,
different computer systems support common services, such as the
TCP/IP networking protocol used for Internet access, or common
applications, such as the Netscape or Internet Explorer web browsers.
Thus, the advantages gained through diversity are offset by systems
with a common point of failure.

This paper examines several widespread computer attacks to
understand the effect of diversity on the survivability of attacked
systems. The described attacks are:

4 Charles Bain, Donald Faatz , Amgad Fayad, Douglas Williams

∑ the Morris worm, which spread by exploiting vulnerabilities in
TCP/IP capabilities

∑ the Melissa virus, which infected using the macro capabilities of a
Microsoft Word attachment to e-mail

∑ the LoveLetter worm, which infected using a Visual Basic script
attached to e-mail

∑ the Denial of Service attacks against high-profile web sites from a
network of compromised “slave” systems

The attack methods and effectiveness are described. In the
conclusion of the paper, the role of diversity in the survival of systems
is discussed.

2. THE MORRIS WORM

Introduction

On Wednesday, November 2, 1988, at 5:01:59 P.M. E.S.T. a
worm was released on the Internet [20]. It was brought under control
and eliminated from most machines 48-72 hours later [19, 26]. This
self-propagating worm easily spread by exploitation of well-known
vulnerabilities that had not been closed in the victim systems.

Technical Summary

The Morris Worm used four main methods for spreading:

∑ fingerd gets() buffer overflow: Only 4.3BSD VAX machines
suffered from this attack [19]. SunOS did not suffer, causing a
core dump, only because of different required offset on the
stack [18, 21, 26]. Ultrix, for example, was not vulnerable [8].

∑ Sendmail DEBUG option: Mostly Berkeley derived Unixes,
but also other varieties of Unix [25, 26]. SunOS binary
releases had this mode [8]. DEBUG was enabled as the default
for 4.2BSD, 4.3BSD and derived SunOS, while the

Diversity as a Defense Strategy in Information Systems 5

5

commercial release of Ultrix did not have DEBUG enabled as
a default [8].

∑ Trusted logins using .rhosts and /etc/hosts.equiv with rexec
and rsh: This affected networking code based on BSD
extensions [25]. These are inherently insecure functions.

∑ Passwords where /etc/passwd file was not shadowed.

Once security was breached, a bootstrap program was sent to the
compromised machine, which was compiled after its transfer. This
program was then executed and proceeded to copy over two object
files (plus the bootstrap source code), one for the VAX BSD and one
for the Sun-3 SunOS. The bootstrap program linked the appropriate
file against the C library to produce an executable worm. Hence, the
worm "supported" only a BSD UNIX and derived operating systems
in use at the time of release. There were unused provisions in the
worm code to transfer an additional 17 files [17], indicating additional
targets may have been planned.

It was estimated that approximately 75 percent of the computers
then attached to the Internet used some version of Unix [27], but the
worm only affected code that included 4.2 or 4.3 BSD derivatives like
SunOS [21]. Furthermore, the worm only propagated over TCP/IP and
not UUCP, X.25, DECNET, or BITNET [21]. The worm did not
infect System V systems unless they had been modified to use
Berkeley network programs like sendmail, fingerd and rexec [21].

Extent of Infection

In November 1988 it was estimated that there were approximately
60,000 computers worldwide on the Internet [13, 25], composed of
over 500 unclassified national, regional and local networks [27]. The
NSF estimated that there were over half a million Internet users [27] at
the time.

There are no official estimates of the number of computers
attacked, in part because no one organization is responsible for
obtaining such information. The actual number of systems infected is

6 Charles Bain, Donald Faatz , Amgad Fayad, Douglas Williams

impossible to determine, but it's worthwhile to examine the frequently
quoted figures.

The first estimate came on Thursday, November 3, 1988, when in
the late evening MIT held a press conference stating that they had
suffered an estimated 10% infection rate of the 2,000 hosts belonging
to MIT. The infection rate was a guess at the time and was given when
the Internet was still under attack. The press extrapolated this
percentage to the entire Internet and concluded that 6,000 machines,
[20, 27] of the 60,000 estimated to comprise the Internet at that time,
were infected.

However, not all sites have the same proportion of vulnerable
machines as MIT. A Harvard University researcher who queried users
over the Internet contends that a more accurate estimate would be
between 1,000 and 3,000, or 2% to 5% of the computers infected [27].
Other estimates at the time ranged from 2,000 to 6,000 (3% to 10%),
but when the situation stabilized, consensus among published papers
centered around 2,000 to 4,000 (3% to 7%) [4, 5, 16, 25].

Remarks

One of the problems with the available information is that the
extent of infection of vulnerable machines is unknown. If this
information were available, it would be possible to map this
proportion into the total number of Internet hosts to yield an estimate
of infection that would have occurred if the Internet had been
homogeneous.

Security is a tradeoff, a measurement of the resolve of the attacker
and defender to commit resources to gain an advantage. In a
homogeneous computing environment, less expenditure of resources
will be required to defend the system. Similarly, a lesser commitment
of resource is required to attack the system as Shoch and Hupp found
when developing their worm [22]. In a heterogeneous system, the
reverse is true for both the defender and attacker. Hence, the issue is
whether the defender or the attacker has the resolve to commit greater
resources to the problem.

Diversity as a Defense Strategy in Information Systems 7

7

In the worm example, at the time of release, the attacker had only
committed resources to permit the attack of a subset of BSD based
systems. However, 17 additional operating systems may have been
considered as targets [23]. It is arguable that if the worm author had
committed the resources to the attack, the Internet would truly have
been brought down.

3. THE MELISSA VIRUS

The Melissa virus (W97M.Melissa.A) was released into the
Internet in March 1999. Melissa is a Microsoft Word Macro virus
which uses electronic mail (e-mail) to spread itself to additional
systems; however, it carries no malicious payload.

Technical Summary

The Melissa Virus spreads by attaching an infected Word
document to an e-mail message. Recipients who open the attached
document in Word experience two side effects:

∑ Word documents created after the infection are also infected
with the virus.

∑ E-mail addresses from their address book are used to further
spread the virus.

Melissa also reduced the level of security warnings displayed to
Word users and modified the Windows Registry to indicate its
presence so future re-infections would have no additional affects.

Extent of Infection

It is difficult to assess the overall extent of the infection. None of
the sources located to date could say with any certainty how many
systems were infected. Computerworld [17] reported that 80 percent

8 Charles Bain, Donald Faatz , Amgad Fayad, Douglas Williams

of the 150 organizations that contacted Network Associates for
assistance were infected. This article also reports that a single
customer had 60,000 desktop systems infected and over 500,000 e-
mail copies in circulation within the company.

The Risks Digest [28] (comp.risks) noted that Microsoft blocked
all outgoing e-mail to guard against propagation of the virus outside
the company.

In its FAQ, [24] the Software Engineering Institute's (SEI's)
Computer Emergency Response Team (CERT) noted first-hand
reports from 300+ organizations that had been infected. Across these
organizations, over 100,000 computers were infected. This infection
spread rapidly. From first reported infection to over 100,000
infections took less than three days.

Remarks

Melissa, like the Internet worm, targeted very specific software. In
the Melissa case, Microsoft Word versions 8 or 9 were the only
software that could be infected. Systems that did not use this software
could not be infected. Note, however, that Word version 8 was
available for both the Microsoft Windows operating system and the
Apple MacOS operating system so both systems could be infected.

Melissa used only the Microsoft Outlook e-mail client to
propagate itself to other systems. Users of Microsoft Outlook Express,
Netscape Mail, Eudora, or other e-mail clients could themselves be
infected if they used MS Word, but would not automatically spread
the virus. Of course, having been infected, any Word files e-mailed
manually would spread the infection.

Further, while users of e-mail clients other than MS Outlook did
not automatically propagate the virus, they were frequently victims of
colleagues and acquaintances who did use Outlook and were flooded
with e-mail sent by Melissa infections on other systems.

Diversity as a Defense Strategy in Information Systems 9

9

4. THE LOVELETTER WORM

The LoveLetter worm (VBS.LoveLetter.A) was released to the
Internet in May 2000. LoveLetter is a Microsoft Visual Basic script
(VBScript) worm that is delivered to victims as an e-mail attachment.

Techincal Summary

The LoveLetter worm takes advantage of the Windows Scripting
Host (WSH) capability of Microsoft Outlook. When a victim clicks on
an e-mail script attachment in Outlook, Outlook invokes WSH to
execute the VBScript, which infects the victim’s system. Other VBS-
enabled e-mail clients can also execute the worm script. The worm is
restricted to Microsoft environments because the Visual Basic
programming language is only available from Microsoft.

The worm performs the following actions:

∑ Copies of the VBScript program are stored in several folders on
the C: drive. The copies ensure that the worm is restarted after a
re-boot.

∑ The Windows registry is modified so that the worm script file is
invoked each time the system is restarted. This ensures that the
worm is always running.

∑ The Windows Registry is modified to remove keys that disable
password caching and that hide shared passwords.

∑ The Windows Registry is modified so that starting Microsoft
Internet Explorer causes the download of a password-stealing
Trojan program. This program sends stolen passwords to an e-
mail address at system startup and at certain other times. The
Windows Registry is modified to ensure that this Trojan runs at
each re-boot of the system.

∑ A copy of the e-mail and infected script is sent to every entry in
the Microsoft Outlook address book. Recipients who open the e-
mail attachment become infected, thus spreading the virus.

10 Charles Bain, Donald Faatz , Amgad Fayad, Douglas Williams

Additionally, the volume of e-mail causes a significant increase in
e-mail activity, impacting e-mail servers.

∑ A copy of the virus, encapsulated inside an HTML file, is sent to
users who join IRC chat groups used by the victim.

∑ Files with certain file extensions are deleted, and a copy of the
worm is stored using the name of the deleted file combined with a
new extension .vbs. If a user clicks on this new (but familiar-
looking) file name, the worm is re-executed.

The worm avoids casual detection by taking advantage of common
Microsoft conventions:

∑ Installation of Microsoft Internet Explorer also installs WSH by
default. This also links WSH to Outlook, such that clicking on an
e-mail attachment automatically launches WSH to execute the
script. While many users had installed Microsoft Internet
Explorer, few realized that this installation gave Outlook the
capability to execute scripts via WSH.

∑ A common Windows default is to suppress the display of file
extensions. The e-mail attachment is named LOVE-LETTER-
FOR-YOU.TXT.vbs. If file extensions are suppressed, the user
sees a file name of LOVE-LETTER-FOR-YOU.TXT. Users may
assume that the attachment is a text file with no associated
application, and assume that it is “safe” to open the attachment.
However, rather than displaying a text file, the VBScript file is
executed and the victim is infected. The virus also replaces certain
files on the user’s hard drive with similarly named versions of the
virus. Thus clicking on files with certain extensions (.jpeg or
.mp3, for example) will re-launch the virus.

Copies of the virus and associated files are stored with “Windows-
like” file names: MSKernal32.vbs, Win32DLL.vbs, and WIN-
BUGSFIX.EXE. It is difficult for an average user to recognize
whether a “Windows-sounding” file name is legitimate or not.

Diversity as a Defense Strategy in Information Systems 11

11

Extent of Infection

It is difficult to assess the overall extent of this infection.
Symantec reports the worm “has wide-spread distribution, infecting
millions of computers.” [12] Such numbers are, at best, merely
guesses. With many organizations reluctant or unwilling to provide
accurate numbers of systems infected, the extent of such widespread
infections will never be accurately known.

The worm causes much damage when a system is infected:

∑ Files are destroyed

∑ Passwords are stolen

∑ E-mail servers are clogged by copies of the worm

Additionally, it takes time to recover from infection of a host.
Even uninfected users typically had to spend time dealing with the
worm, either deleting the e-mail sent by infected hosts or updating
anti-virus software to prevent infection.

Variants of the LoveLetter worm were easily created and re-
introduced. Early variants had a different subject for the e-mail or
different text in the e-mail body. (One version purported to be from
Symantec Anti-Virus Research Center containing a file to protect
against the worm: the file was the worm itself.) Other versions
changed the processing of the worm. As of August 2000, there were
29 reported variants of the LoveLetter worm [12], and detection
systems continue to report interception of the worm.

Remarks

The LoveLetter worm is written to exploit both the human “weak-
link” and vulnerabilities in the Windows environment. It illustrates
how easily a homogeneous environment can be exploited. The worm
is written in a Microsoft-specific language, is launched (with a user
action) from any e-mail application which supports Microsoft WSH,
installs itself on the system using the Microsoft Registry, and spreads
itself using the Microsoft Windows Address Book facility. With

12 Charles Bain, Donald Faatz , Amgad Fayad, Douglas Williams

Microsoft products installed on the vast majority of end-user systems,
it is easy to exploit Microsoft vulnerabilities (and normal capabilities)
to have a significant impact on users.

However, running a non-Microsoft environment (and thus
avoiding Microsoft-only programs) is not free of impact:

∑ The ILOVEYOU worm flooded e-mail systems. This impacted
many servers, as they crashed or were taken offline for repair /
protection. This impacted all e-mail users, whether running the
Outlook client or not.

∑ The script was written in VBScript, an ActiveX scripting
language. ActiveX can host many scripting languages, including
Perl and TCL/TK. Scripts written in these languages have the
potential to run on systems other than Microsoft. Using those
languages, it would be easy to write a script that could be
destructive in additional environments. One variant of the
LoveLetter worm is a version written as a generic UNIX shell
script.

Other mail clients, such as Netscape Communicator and Eudora,
can launch VBScript attachments to e-mail on a Windows platform
via WSH. Thus, even different e-mail applications are exposed to
vulnerabilities in common facilities.

5. DISTRIBUTED DENIAL OF SERVICE ATTACKS

During February 2000, several high-profile Internet sites were
crippled by Distributed Denial of Service (DDoS) attacks. During a 3-
day period, Yahoo, Buy.com, eBay, CNN, Amazon.com, ZDNet, and
others were flooded with network traffic, either crashing servers or
rendering them inaccessible to users. A 16-year old youth is accused
of launching the attacks from his home.

Diversity as a Defense Strategy in Information Systems 13

13

Technical Summary

The DDoS attacks were launched from a network of compromised
systems running the attack software. Using this hierarchical network
of “slave” and “master” systems, a single attacker is able to mount a
massive attack against a victim on a scale that overwhelms it. With a
large number of attacking machines, an attacker does not need to
exploit vulnerabilities in the victim: the victim can be overwhelmed
with an extremely large flood of valid transactions.

The tool used to execute the February DDoS attacks is reported to
be the Tribal Flood Network (TFN), which runs on UNIX systems.
To install TFN, the UNIX host must first be compromised by
exploiting a vulnerability. Once compromised, the host is modified to
install both the TFN tool and a “root kit,” which helps prevent the
detection of tools such as TFN. This compromised host becomes a
“slave” or “master” in the attack network hierarchy, and is ready to be
used in a DDoS attack.

 When an attack is launched, the attacker selects a victim,
generally by specifying an IP address. The master systems each direct
several slave systems to begin the actual attack. Several attack
methods are available, using different methods to flood the victim.
The TFN tool can attack with either a UDP flood, a TCP SYN flood,
an ICMP flood, or a smurf attack [3].

Extent of Infection

There are two groups of systems affected by DDoS attacks:
victims and compromised hosts.

Victims are selected by the attacker. Therefore, the attacker
decides the extent of an attack. If the attack is directed against a
server, other systems are affected indirectly, as they cannot access the
server’s services. For these DDoS attacks, all victims are attached to
the Internet, and are important sites on the Web. Every system
connected to the Internet is a potential victim of a DDoS attack, so the
potential extent of impact is enormous.

14 Charles Bain, Donald Faatz , Amgad Fayad, Douglas Williams

Compromised hosts are used as slave or master hosts by the
attacker. The TFN tool used in the attacks runs on UNIX systems,
primarily Sun Solaris and Linux. Recently, some DDoS programs
have been ported to the Windows environment, but UNIX machines
are most often used for DDoS attacks. In order to mount a strong
attack, a network of compromised hosts is created. These networks
are often large. The February DDoS attack network is reported to
consist of at least 50 computers. In a report on the trinoo DDoS tool
[23], some attack networks consisted of 227, 888, and 10549
compromised hosts.

It appears to be easy to create a network of compromised systems.
Attackers can scan systems connected to the Internet, obtaining
information about the operating system level in use. With this
information, the attacker selects a tool that can compromise the
system. Many of these tools are collected into toolkits and are readily
available on the Web. These toolkits effectively “automate” the
process of finding and compromising systems.

The I-CAT Metabase [10] has been collecting profile statistics
about vulnerabilities reported by CVE. These vulnerabilities are
categorized by the targeted operating system. For 1999, 286 new
vulnerabilities showed the following distribution of target systems:

∑ UNIX 51%

∑ Windows 95 family 23%

∑ Windows NT family 37%

For the year 2000, the distribution of vulnerabilities is similar.
There is a continuous stream of new vulnerabilities found and
available for compromising the systems in use today.

Remarks

DDoS attacks overwhelm the victim by sending far more IP
transactions at one time than it can handle. Although other attack
methods may crash the victim by exploiting flaws in the software, it is
equally effective to overwhelm the victim with a massive amount of
legitimate traffic, leaving the victim unable to process other requests.

Diversity as a Defense Strategy in Information Systems 15

15

There are few effective methods for dealing with these attacks. If
the victim is disconnected from the network in order to protect it, the
attacker has succeeded in removing the victim from normal service.
In some cases, the attack network traffic can be re-directed by changes
in up-stream components such as routers, but it takes time to
determine the source of the attack and implement the configuration
changes.

The same TCP/IP connectivity that enables the Web has become a
common point of vulnerability for attackers to exploit. Even entirely
different systems are vulnerable to attacks on the common
components. Each implementation of the common facility has
potential vulnerabilities that can be explored with a common set of
approaches and tools. Additionally, entirely different
implementations of a common facility will fail when the attack
exploits the normal functions of the common facility.

6. DISCUSSION

At best, the attacks presented here are "anecdotal" evidence that
diversity improves survivability. This is because many of the attacks
are targeted for one system: the non-targeted systems are not affected.
The available data on incidents is not complete enough to form the
basis of a conclusion. However, there is no evidence in any of the
examples presented that suggests diversity reduces survivability.

DesWarte et al. [6] describe many different examples of the use of
diversity in industrial software engineering and in business practices.
For example:

∑ Airbus A-300/600 digital fly-by-wire system is run by two
classes of computers with different microprocessors designed
independently and provided by different vendors.

∑ Boeing uses two different compilers to compile separate
instances of the fly-by-wire software on the 777 aircraft.

∑ Separation of duties, a common business practice to
prevent/deter fraud is a form of diversity.

∑ Software testing uses multiple approaches (e.g., code reviews,
functional tests, code coverage testing) because each approach

16 Charles Bain, Donald Faatz , Amgad Fayad, Douglas Williams

is likely to find different types of problems. Therefore,
collectively these approaches produce higher software quality.

Essentially, they argue that diversity must be good since it is used
in many different ways to provide security and reliability.

Most of the Morris worm's chroniclers took no position on the
issue of the advantages or disadvantages of a homogeneous versus
heterogeneous networking environment with respect to information
system survivability. However, Eichen and Rochlis did make the point
at the time that [8]: "Diversity is good. Though the virus picked on the
most widespread operating system used on the Internet and on the two
most popular machine types, most of the machines on the network
were never in danger. A wider variety of implementations are
probably good, not bad. There is a direct analogy with biological
genetic diversity to be made.”

The examples do support a need to better understand the role
diversity plays in survivability and defense. For example, it was noted
that the Morris Worm could only propagate over TCP/IP connections.
Potentially vulnerable systems (those running BSD 4.2 or 4.3 UNIX
derivatives) were not affected if they were connected via UUCP or
X.25. In the more recent Melissa case, network connection protocol
was not considered because all systems used TCP/IP. Connection
protocol diversity has been dramatically reduced in recent years with
the arrival of TCP/IP for virtually all commonly used hardware and
software.

Along these lines, the recent denial of service attacks against
Yahoo and other sites suggest that use of a single common
communication protocol makes everyone vulnerable to the same
attacks. Hence, diversity, like other protection mechanisms is likely to
require layering or "Diversity in Depth" to provide good protection.
Diverse service implementations that rely on a common
communication mechanism will not survive attacks on the shared
mechanism. This is another example of common mode failures
interfering with planned diversity. In other words, a homogeneous
information system consists of a logical single point of failure.

Another question that needs consideration is the level of diversity
required to derive significant benefit. In the examples presented, the
level of diversity was relatively low, a few different implementations
to perhaps tens of implementations in the case of UNIX variants. Is

Diversity as a Defense Strategy in Information Systems 17

17

this enough to "raise the bar" for a determined adversary or is
diversity on a large scale necessary (as in hundreds or thousands of
variants)? For example, automatic software mutation as described in
Michael et al. [15] can make each running copy of a program unique.
Other approaches to building diverse computer systems [9] could be
effective for attack techniques known today (e.g., the buffer overflow)
and suggest other methods for protecting system data (e.g., unique,
changeable signatures for files.)

 However, it is unknown at this time whether these methods are
effective or practical in creating an environment of diversity. Some
research indicates that it may be difficult to “create” diversity by
modification of software:

∑ The authors in Michael et al. encountered several problems with
the software mutation approach. They report “… doubts as to
whether source-code mutation is a viable way to create software
diversity.” Additionally, their work with abstract interpretation of
a program resulted in too many constraints to be processed by the
system. This lead them to believe that only random constraints
(i.e., a subset of the total number of constraints) could be
effectively monitored to detect software modification [15].

∑ In an e-mail note to the BUGTRAQ list, Crispin Cowan of the
Oregon Graduate Institute states “… we investigated the approach
of using diversity to resist attack, and found it to be VERY limited
in effectiveness” [1]. This was because the things that must be
preserved (for a program to work properly) and those that must be
changed (to ward off an attack) are largely unknown. Their
research efforts turned to “restrictions,” which essentially wrap
additional checking around critical components [2].

One thing that seems obvious from both the Morris worm and
Melissa discussions is that the authors could have made these attacks
capable of handling more systems. In the Melissa case, using the Mail
Applications Programming Interface (MAPI) instead of spawning
Outlook would likely have enabled Netscape and Eudora e-mail
clients to spread the infection automatically. The Morris worm had
capabilities that were not used that could have supported additional
UNIX platforms. Additionally, attack kits combine several attack tools
and provide easy selection of the tool which can exploit the target

18 Charles Bain, Donald Faatz , Amgad Fayad, Douglas Williams

system vulnerabilities. Hence, a determined adversary might easily
defeat small-scale diversity.

It may also be the case that extensive diversity creates additional
areas of exploitation. Where implementations are different, the
possibility exists for new errors caused by these differences. These
errors could potentially be exploited for attack, resulting in
vulnerabilities that did not exist in the homogeneous environment1.

7. CONCLUSION

The attacks studied here illustrate that diversity in computer
systems appears to be desirable: the specific systems / facilities not
targeted do survive an attack. In an environment with different
implementations of services, this diversity helps create forms of
redundancy: some implementations continue to operate when others
have failed. This creates a greater level of system availability and
reliability, and as a result there is an improved confidence in the
integrity of the information system.

However, the computer industry is moving toward a more
homogeneous environment. There has been a steady consolidation of
operating systems and applications, despite a tremendous growth in
the number of users. Additionally, there is increased popularity in
common services based on standards (e.g., TCP/IP) or open (i.e.,
shared) software (e.g., Linux). This homogeneous environment
remains highly vulnerable to attack.

It also appears that diversity may be difficult to “create” in a
homogeneous environment. Several researchers have reported
complex problems in attempting to modify software to introduce
immunity to certain attacks. The large number of attacks discovered
each year implies that new “diversity” methods will constantly need to
be created for effective defense. It remains to be seen whether

1 This opportunity to exploit inconsistencies among multiple implementations was suggested
by Julie Bouchard of Sandia National Labs during planning for the DARPA Information
Assurance program's RT 0001 exercise.

Diversity as a Defense Strategy in Information Systems 19

19

practical methods will be created to provide sufficient diversity to help
defend against attacks.

BIBLIOGRAPHY

1. Cowan, Crispin, e-mail subject ”Diversity (was: IIS Remote
Exploit (injection code)),” BUGTRAQ mailing list, June 16,
1999.

2. Cowan, Crispin and Pu, Calton, “Death, Taxes, and Imperfect
S o f t w a r e : S u r v i v i n g t h e I n e v i t a b l e , ”
http://www.cse.ogi.edu/DISC/projects/immunix/publications.h
tml; presented New Security Paradigms Workshop 1998.

3. Criscuolo, Paul J., “Distributed Denial of Service,” CIAC-
2319, Department of Energy Computer Incident Advisory
Capability, February 14, 2000.

4 . Denning, Dorothy, Information Warfare and Security,
Addison-Wesley, Reading, 1999.

5. Denning, Peter J., "The Internet Worm," in Peter J. Denning,
ed., Computers Under Attack: Intruders, Worms, and Viruses,
ACM Press, N.Y., 1990.

6. DesWarte, Kanoun, and Laprie, "Diversity against Accidental
and Deliberate Faults," Computer Security, Dependability, &
Assurance: From Needs to Solutions, IEEE Press, 1998.

7. Dittrich, David, “The DoS Project’s “trinoo” distributed denial
of service attack tool," University of Washington;
http://staff.washington.edu/dittrich/misc/trinoo.analysis.

8. Eichin, Mark W. and Rochlis, Jon A., "With Microscope and
Tweezers: An Analysis of the Internet Virus of November
1988," Massachusetts Institute of Technology, Cambridge,
1988.

9. Forrest, Spephanie, Somayaji, Anil, and Ackley, David H.,
“Building Diverse Computer Systems,” Proceedings of the 6th

20 Charles Bain, Donald Faatz , Amgad Fayad, Douglas Williams

Workshop on Hot Topics in Operating Systems, IEEE
Computer Society Press, Los Alamitos, CA., pp. 67-72 (1997).

10. http://csrc.nist.gov/icat/

11. http://www.attrition.org/mirror/attrition/stats.html

12. http://www.symantec.com/avcenter/venc/data/vbs.loveletter.a.
html

13. Kahney, Leander and Polly Sprenger , "Melissa, Spawned by
S p a m , " W i r e d N e w s ,
http://www.wired.com/news/news/technology/story/18819.htm
l

14. Lottor, Mark, "Internet Growth (1981-1991)," RFC 1296,
Network Working Group, January 1992.

15. Michael, C.C., Aron Bartle, John Viega, Alexandre Hulot,
Natasha Jarymowyzc, J. R. Mills, Brian Sohr, Brad Arkin,
"Two Systems for Automatic Software Diversification,"
DISCEX, 2000.

16 . Montz, Lynn B., "The Worm Case: From Indictment to
Verdict," in Peter J. Denning, ed., Computers Under Attack:
Intruders, Worms, and Viruses, ACM Press, N.Y., 1990.

17. Ohlson, Kathleen, "Melissa: The Day After," Computerworld
Online News, 30 March 1999.

18. Page, Bob, "A Report on the Internet Worm," Computer
Science Department, University of Lowell, November 7, 1988.

19. Reynolds, Joyce K., "The Helminthiasis of the Internet," RFC
1135, Network Working Group, December 1989.

20. Rochlis, Jon A. and Eichin, Mark W., "With Microscope and
Tweezers: The Worm from MIT’s Perspective," in Peter J.
Denning, ed., Computers Under Attack: Intruders, Worms, and
Viruses, ACM Press, N.Y., 1990.

21. Seely, Don, "A Tour of the Worm," Department of Computer
Science, University of Utah, n.d.

22. Shoch, John F. and Hupp, Jon A., "The 'Worm' Programs -
Early Experience with a Distributed Computation," in Peter J.

Diversity as a Defense Strategy in Information Systems 21

21

Denning, ed., Computers Under Attack: Intruders, Worms, and
Viruses, ACM Press, N.Y., 1990.

23. Slade, Rob, "Melissa Macro Virus," The Risks Digest Vol 20,
Issue 26, 1 April 1999.

24. Software Engineering Institute (SEI) Computer Emergency
Response Team (CERT) , "Mel i s sa FAQ,"
http://www.cert.org/tech_tips/Melissa_FAQ.html

25. Spafford, Eugene H., "The Internet Worm Incident," Technical
Report CSD-TR-933, Department of Computer Sciences,
Purdue University, West Lafayette, September 19, 1991.

26 . Spafford, Eugene H., "The Internet Worm Program: An
Analysis," Purdue Technical Report CSD-TR-823, Department
of Computer Sciences, Purdue University, West Lafayette,
November 29, 1988, revised December 8, 1988.

27. United States General Accounting Office, "Computer Security:
Virus Highlights Need for Improved Internet Management,"
GAO/IMTEC-89-57, United States General Accounting
Office, June 1989.

28. Woods, Lloyd, The Risks Digest Vol 20, Issue 26, 1 April
1999.

