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Abstract— Flexibility for operators is a Key Performance Area
(KPA) for Air Traffic Management (ATM). This paper presents
a framework for development of operator flexibility metrics, with
a first test-case application to management of depare queues.
Through the use of virtual queuing (VQ) in departure operations,
operators are provided with additional flexibility in prioritizing
flights for departure. VQ allows flights whose delgs are more
expensive to skip ahead in the departure queue, wai other
flights with less expensive delays move back. Opd¢oas are
expected to benefit significantly from the additioml flexibility of
VQ because the cost of departure queuing delays caary widely
among different flights due to differences in delayalready
accumulated, different number and types of passenge and
considerations such as crew time limits. Flexibilit metrics
derived from delay recovered with VQ relative to plysical
queuing (PQ) are compared under a variety of operabnal
scenarios. These scenarios include: non-linear dglacosts,
variable costs by aircraft type, flexibility acrossall flights and
flexibility constrained to intra-operator exchanges as well as
small physical queues at the departure runway endFlexibility
measures have been defined that are not dependent dhe
specifics of the operator business case (i.e., casttucture or
decision criteria). This is accomplished through acomparative
assessment of flexibility metrics derived from fastime
simulations assuming a variety of operator cost fuctions and
optimization objectives. Results show that metricscan be
normalized to allow operators, based upon their casstructure
and optimization objectives, to infer a value of irproved
flexibility. Results also indicate that constrainig exchanges to
intra-operator and including small physical queues at the
departure runway end substantially reduce the flexiility
performance of VQ, which implies that operational nechanisms
to permit inter-operator exchanges and to reduce th size of small
physical queues could substantially improve operatoflexibility
performance.

Keywords- flexibility, key performance area; investment;
performance measurement; benefits; metrics; departure queues,
departure queue management; virtual queuing

I INTRODUCTION

For decades operators have argued for the provisfon
greater flexibility on the part of Air Traffic Magament
(ATM) [1]. The desire for flexibility benefits iseriterated in
the International Civil Aviation Organization (ICAGGlobal
ATM Operational Concept [2] as one of the perforomn
expectations of the ATM system. Thus, flexibility & Key

Performance Area (KPA) for the ATM system. The RTCA
Task Force 5 report [3] emphasizes flexibility as axea of
benefits. Both Single European Sky ATM ResearchS/SE)

[4] and Next Generation Air Transportation SystéextGen)

[5, 6] have qualitatively described flexibility stfalls and
benefits. With both NextGen and SESAR relying on
capabilities requiring investment on the part ot thser
community, it is imperative that these qualitatbenefit stories
be developed into quantitative measures to helpatpes and
the Air Navigation Service Provider (ANSP) develtpeir
business cases.

Literature relevant to flexibility in ATM operatign
includes work by the U.S. Joint Planning and Depelent
Office (JPDO) to develop NextGen performance megric
which calls out flexibility as a “fundamental aliate” that
remains a challenge for metrics development [7heDpapers
[8-13] describe trajectory flexibility metrics, wwitfocus on
strategically-planned flexible aircraft trajectarifor mitigation
of traffic complexity in the airspace. The litenaualso
describes modeling of operator decision-making biehan
schedule disruptions with ground delay programs R§DD
using simple non-linear costs as a function of yl¢ilme [14-
16] to drive decision-making, an approach thapigliad in this
paper as well. Bayesian network analysis [17] sstpgéhat
actual operator decision-making behavior in schedul
disruptions varies widely in ways that depend owrrafors’
business models. Thus, individual operators ulétyateed to
analyze the flexibility benefits to their own optoas.

Flexibility metrics measure the range of potengialseful
options available to operators. Increased flextipiprovides
benefit to operators because they can use fleyiliti make
their own choices based on their own valuationswi€omes.
For example, in today's U.S. ATM system, Collabiweat
Decision Making (CDM) increases operator flexilyilftelative
to no CDM) by allowing each operator to exchange th
positions of its flights in a GDP for an arrivalr@ort with
reduced capacity because of bad weather. Withrntweased
flexibility provided by CDM, an operator can reduagival
delays for higher-priority flights at the expenserelatively
low-priority flights, and in this way reduce the pact of the
schedule disruption to the operator. CDM is a ssgftd and
widely-used flexibility-increasing feature of the.3J ATM
system. The CDM principles have been applied tcadaepe
queue management on the surface to provide opsrator
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flexibility to reorder flights within the departurgequence to
reflect their business needs [18].

Flexibility interacts with another KPA, predictabjil Over

a long period of time, predictability can be measuwith long-
term statistics of how well the originally intendechedules of
flights were met in actual operations. In the exiengh a GDP,
bad weather at the arrival airport disrupts schesjuthereby
contributing negatively to predictability, and CDOMa way for
operators to mitigate disruption costs. Thus, iaseel
flexibility may be used to limit the costs of ungigtability.

For the purpose of developing flexibility metriasr fnew
flexibility-increasing systems, the focus is on ufiative
measures indicating how much a system increasesehef
potentially useful options available to operatdfseful options
are those that are expected to reduce costs, st ftmasome
operators at some times. Whether or not the optianes
actually exercised by a specific operator in a ipalgr
operational scenario depends on the prioritieshefdperator,
which depend on a variety of factors including tperator’s
business model. Because priorities and valuatidrdifigrent
alternatives are operator-dependent, the use andfibef
increased flexibility may differ widely among difent
operators.

A fundamental question regarding flexibility megiis that
of whether it is possible to define operator-vahmat
independent measures of flexibility that can beliegdy both
the ANSP and operators to facilitate common undading
regarding performance of flexibility-enhancing &yss.
Valuation-independent flexibility metrics would lsemewhat
analogous to value-independent maximum servicermatecs,
like the number of operations that can be handbed given
time period, for the capacity KPA.

II.  FLEXIBILITY METRICSFORDEPARTURE
QUEUEMANAGEMENT

Today, at congested U.S. airports, long queuegpérding
aircraft develop when departure demand exceedddparture
capacity of a runway or the surrounding airspageeQaircraft
are in the queue, at many airports operators hittle |
opportunity to exchange positions among the fliglsts the
gueuing discipline with such physical queuing (P@n be
characterized as first-come first-served (FCFSEhE@perator
is motivated to enter each of its flights into theeue as soon
as possible, lest another operator take its place.

Virtual queuing (VQ) is defined generally to encasap
any number of processes or mechanisms that arkesinative
to PQ, in which flights that become ready to depam
considered for the departure sequence without @fore)
having to leave the vicinity of the gate to ent@hgsical queue
at the runway. A software system or other collatroea
process, similar to those defined in [18] is inwalvin
managing the flights in the “virtual queue” andithganned
order of departure or entry into a small physicaleug.
Benefits of VQ relative to PQ in terms of reduceglfburn
already have been studied [19], and are not adshiekere.
This paper focuses on the additional flexibilityoyided by
VQ, which can be used by operators to move flighith
higher delay costs ahead in the queue (at the egpafiflights
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with lower delay costs), thus allowing operators rezluce
overall delay costs.

There are multiple reasons why the cost of delaysotne
flights may be more than other flights. For examplélight A
already has accumulated significant delay priodéparture
and flight B has not, then the cost of additionabalture
queuing delay to flight A may be higher, becausghfl A's
departure queuing delays propagate to subsequgstolethe
airframe’s itinerary, whereas most of flight B’s paeture
queuing delays can be absorbed in the margins gedvby
operators in the aircraft's itinerary schedule. ébtHactors
influencing relative cost of delays among differdtights
include the number and types of passengers on litesf
direct operating costs while on the ground, andvctine
limits. Also, operators might want to move a fligitead in the
departure queue if, for example, the airframe isdee at
another airport more quickly than would be possikidn PQ.
And, with confidence that flexibility can be used a daily
basis to reduce queuing delays for select flighpgrators may
be able to re-schedule these flights to reduce bietk times.

In this paper, fast-time simulation is used to Btigate and
develop metrics to quantify the improvement in ity
provided by VQ relative to PQ. Many operationalailst of
departure management are omitted deliberately, amntain
focus on the aspects pertinent to development eitility
metrics. The analysis is not intended to be a lisnef
assessment of VQ.

Operational constraints typically are expectedettuce the
flexibility performance of VQ relative to PQ. Oneaich
constraint considered in this paper is the regtrictof
exchanges among flights to intra-operator-only exges,
rather than permitting exchanges between diffeoparators’
flights. Another operational constraint consideredhis paper
is the provision of small physical queues at thenay end to
ensure full utilization of runway departure capacisSmall
physical queues reduce flexibility because fligimsthese
queues cannot be exchanged with other flightshis paper,
fast-time simulation is used to develop flexibiliyetrics for
relatively-simple cases without these operatior@istraints,
and then the operational constraints are addduetsimulation
to show their effect on the flexibility metrics.

A. Fast-time simulation of departure delay recovery

To begin the analysis, PQ and VQ cases were siatllat
fast-time in a set of multi-hour operational scérgrbased on
departure demand data taken from actual multi-hBQr
scenarios at Newark Liberty International AirpoEWR)
departure runway 04L during year 2009. The demaaik d
includes actual pushback time plus scheduled pughbae
for each flight, as obtained from the Aviation %yst
Performance Metrics (ASPM) database. It is assumied
actual pushback time is the earliest the flightddwave pushed
back, in accord with the fact that operators ardivated to
push back as soon as possible. (It is recognizdrfic flow
management delays can constrain pushback and depart
times for some flights, and the simulation doesaemount for
these constraints. However, in the specific scenatescribed
in this paper, the number of such flights was snealinprising



less than 2% of the total number of flights.) Thus,

horizontal axis in order of increasing recoveredayleAlso

corresponding simulated PQ and VQ cases, the PQalact shown is the difference between VQ and PQ delayefmh

pushback time corresponds to the VQ pushback-reéiaaky.

The order of flights in the virtual queue withoutchanges is
assumed to be identical to the order of departirgbe PQ
case. Taxi times were assumed to be identicalriresponding
PQ and VQ cases. VQ flights are assumed to leavgate and
taxi with perfect timing to meet departure capacite limits.
Since perfect timing is unlikely in practice, théeet on

flexibility performance of introducing small phyalcqueues to
compensate for uncertainty is considered. In aapatations,
the order of departures may affect the maximum degarate
of the runway. However, as a first
corresponding VQ and PQ cases are assumed to deviical,
constant runway maximum departure rates, so todddyd

across all flights is identical in the simulated ¥d@Qd PQ cases.

“Recovered delay” for a flight is defined as thduetion in
delay in the VQ case relative to the PQ case. 4hfls
recovered delay can be positive, negative or A8fith VQ, it
is expected that operators will have positive recett delay
for flights where delay cost is relatively high anégative
recovered delay for flights where delay cost istreély low,
during times when the virtual queue is not empom§ flights
with high delay cost may have zero recovered dbkegause
the virtual queue happens to be empty when thegrheaceady
to push back.
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Figure 1. Simulated Delay Recovery with Virtual Qing

The pattern of flight exchanges depends upon tkeabqr's
valuation of the departure times, which may depepon the
delay already accumulated by the flight at pushbaekly time
as well as various other factors such as numberntypes of
passengers and considerations related to crewlitinis. An
operator’s flight-exchange behavior in a VQ scemai$
modeled by assuming the operator attempts to nueirtotal
cost of delays. For the purpose of developing [flidiky
metrics, very rough non-linear operator costs dsnation of
departure delay are adequate, and a quadraticfa@ostion
originally developed for arrival delays [20] is dsén this
paper. Other non-linear cost function estimateanfrthe
literature [21] could be used as well.

Fig. 1 depicts the results of PQ and VQ simulaibased
on data from 17 December 2009 for the 04L deparume/ay
at EWR. The 365 flights in the scenario are arrdrajeng the
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flight. All 365 flights in this scenario were all@d to exchange
with each other in the VQ case, even though thghtiii are
those of different operators. There are no smajsjgll queues
in the VQ case. Departure delay cost is assumbd tpuadratic
as a function of total departure delay [20], andbtiter factors
(including aircraft size) influence delay cost. Elertotal

departure delay is defined as the excess timesajdte beyond
schedule (i.e., pushback delay) plus time in qu&merators
are assumed to re-order departures by sendingliie &t

every departure time with highest marginal delagtdg.e.,

approximation,with the largest first derivative of cost as a fiime of delay),

which for a cost function quadratic in delay istjtise most-
delayed flight. A departure capacity of 0.533 pemnute
resulted in a simulated maximum departure queue ci221,
which is well within maximum departure queue lesgth
estimated for major U.S. airports with departurexgastion
issues [22, 23].

Flights on the right-hand side of Fig. 1 are thogth
positive recovered delay and those on the left-teidd have
negative recovered delay. Flights on the right-hsidd of Fig.
1 have, on average, larger PQ delays than flightshe left-
hand side, so with cost a quadratic function ofageltheir
delays are more expensive per unit time. Thus, Wih delay
is reduced for flights with more expensive delayg arcreased
for flights with less expensive delay, and overadist is
reduced.
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Figure 2.Maximum Recoverable Delay (MRD) and Actual Recoddbelay
(ARD) for Each Flight in a Scenario

B. Flexibility metrics at the individual-flight and scenario
levels

Recovered delay in a specific scenario expresses th

increase in scope of the potentially useful outcapace to
operators from VQ, but recovered delay is operafbnation-
dependent. A valuation-independent metric for adividual
flight in a specific scenario is maximum recoveeallelay
(MRD), defined as the delay a flight could recoifehe flight
is moved to the head of the virtual queue and dgeparsoon as



possible. MRD is not necessarily actual recoveredayd
(ARD); rather it is an upper limit to a flight's AR For a
constant departure rate, MRD is the quotient of dueue

length at the time the flight first becomes ablelépart and the

departure rate. Fig. 2 shows MRD and ARD for edigftfin

the 17 December 2009 EWR 04L departure scenaricrided
above, plotted as a function of the pushback-reimly for the
flights. At the peak queue length in this scenal&®D is about
39 minutes, and the flight able to depart at thigetactually
recovered the full MRD. However, since total detagovered
across all flights is zero in the simulation, ifre® flights get
positive ARD, then other flights must get negahRD. Thus,
while MRD is valuation-independent, it is limited its utility

for expressing flexibility, because MRD fails tocaant for
delay-recovery interactions among flights in a scin
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Figure 5. DRS Dependence on Flight-Exchange Assomgpand Maximum
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The existence of interactions between recovereadydel
among flights implies that scenario-level flexityilimetrics
need to be considered. To begin, three scenar@-laetrics
are defined, all of which are valuation-dependend are
computed by comparing PQ and VQ simulation resfoltsa
particular scenario day with an assumed flight atdun.
Average positive recovered delay (APRD) is the agerdelay
recovered per flight in the scenario, where negatiglays do
not contribute to the measure. Greatest actuavezed delay
(GARD) is the largest value of ARD among all thigiits in
the scenario. Delay recovery spread (DRS) is defiae the
standard deviation of both positive and negativevief3us-VQ
delay differences across all flights in the scemaas suggested
by the difference curve in Fig. 1. The value of DR%ffected
by delay recovery of each flight in the scenariat eights
large differences more than smaller differencesgettuer,
APRD, GARD and DRS quantify key aspects of the
distribution of recovered delay among flights indeparture
scenario, assuming a particular flight valuatiolnesoe.

Figs. 3, 4 and 5 plot APRD, GARD and DRS for the
December 17, 2009 EWR 04L scenario as a function of
assumed maximum small physical queue (sPQ) sizehdth
intra- and inter-operator exchange assumptionsh wich
metric computed across all flights in the scenafitight
valuation is assumed to be based on marginal d&sty as in
the results depicted in Figs. 1 and 2. Operatoesad ASPM
were used to distinguish different operators in thea-
operator exchange simulation, ignoring potentialsitess
relationships that could permit exchanges betwéght$ with
different codes. A maximum sPQ size of zero in F&§yst and
5 corresponds to no small physical queues. Rastgict
exchanges to intra-operator-only reduces APRD bsertitan a
factor of two, with somewhat smaller reductionsDRS and
even less change in GARD. There is a sharp drojmdi#PRD
as a function of maximum sPQ size, and a linearedee in
GARD for inter-operator exchanges. GARD shows nufra
step-function behavior for intra-operator-only exiobes,
reflecting the disappearance of exchange oppoisniat



specific levels of sPQ size. DRS behavior is intgiate
between APRD and GARD, as expected.

C. Valuation-independent, scenario-level flexibility metrics
Among all possible flight valuations for a partiaul
departure scenario, there must be a valuation-gmtgmt
upper limit to the values of APRD, GARD and DRSeTdheer
number of possible departure re-orderings (whiateegs 18°

in the 17 December 2009 EWR 04L scenario) makes

exhaustive search for the upper limit a practiogbassibility.
Instead, the observation is made that the last-dirsteserved
(LCFS) queuing discipline maximizes recovered deligach
departure time relative to FCFS, hence LCFS masmiall
three metrics, APRD, GARD and DRS. The upper bowfds
the metrics can be computed easily by simulatingayde
recovery in a VQ scenario with LCFS queuing disogl
These upper bounds for flexibility metrics are swinat
analogous to maximum service rate (operations pirtime)
metrics for the capacity KPA in the sense that maxn
service rate is an upper limit to operations pet time that can
be handled in a given scenario. Also, flexibility multi-
dimensional, as suggested by the three differesttitfility
metrics, just as capacity is multi-dimensional. ldeer, the
upper bounds for flexibility metrics are unlike nraym
service rates for capacity metrics in that theyans unlikely
to ever be approached in actual operations invglsignificant
departure queues.

The “consumption” of a flexibility metric (APRD, GRD,
or DRS) for a given flight valuation scheme in &rsario is
defined as the fraction of the LCFS upper boundaist used.
Thus, flexibility consumption is analogous to “thghput” for
capacity. A flexibility metric’s “stability” indictées how little
the consumption of the metric varies across diffeseenarios,
for a fixed valuation scheme. A stable, valuatindependent
metric is most likely to be useful to operators &nel ANSP,
since the metric can be computed across a setesfagos
under PQ and VQ conditions, and each operator, kpwts
own valuation scheme, can readily make rough estgnaf
valuation-dependent flexibility metrics for its owperations.

D. Metric stability analysis
To assess flexibility metric stability, VQ simulatis were
run across the following set of operator valuasohemes:

In the “delay only” valuation scheme, the operaitways
sends the most-delayed flight in queue at everadege time.

are run, each with a different weight shuffle. the results
reported below, 100 simulations were run.)

In the “weighted cost” valuation scheme, the operat
always sends the flight with the largest marginadtcat the
departure time. Cost as a function of delay timasisumed to
be quadratic [19], multiplied by a factor proponidd to number
of passenger seats on the aircraft.

The “weighted cost (shuffled)” valuation schemeth®
same as weighted cost, except that, prior to siionlaweights
among all flights in the scenario are randomly #&df During
simulation, weights are kept fixed. Shuffling theights prior
to running the scenario is for sensitivity analygith respect to
how the values of flexibility metrics vary with thepecific
characteristics of the departure demand. Multipheukations
are run, each with a different weight shuffle. {he results
reported below, 100 simulations were run.)

In the “random valuation” scheme, prior to simwati
weights between 0 and 1 are assigned at randomcto féght
in the scenario. During simulation, weights are tképed.
Random valuation thus assigns different weightfights that
are completely independent of delay. This valuatcheme
provides a limiting case where factors unrelatedcmumulated
departure delay drive the prioritization. Multiptgmulations
are run, each with a different random assignmenwveifjhts.
(In the results reported below, 100 simulationseein.)

In the “upper bound” valuation scheme, prior todation,
weights are assigned to flights that corresponthéoreverse
order of departures in the FCFS scenario. This atimo
scheme implements the LCFS queuing discipline, lwkields
an upper bound to the flexibility metrics.

Each of the valuations described above were run feir
different EWR 04L runway scenario days (November 6,
November 12, November 17, December 17, all 200€)fan
several different departure capacities. For theetidovember
scenario days, a calibrated departure capacitydetermined
by finding the simulated departure capacity thaulted in the
same maximum departure queue size as the actual2dhy
Other capacities were chosen that were lower agldehithan
each of the calibrated departure capacities.

Fig. 6 plots APRD, GARD and DRS consumption for the
December 17 scenario day described previously. plbieon
the left includes the operational constraints dfaioperator-
only exchanges and small physical queues (maxinizerss in
the VQ cases, and the plot on the right excludesseth

In the “weighted delay” valuation scheme, delayg ar Operational limitations. In both plots, the flexity metrics are

multiplied by a weight proportional to the numbérseats on
the aircraft. The operator always sends the fligigueue with
the largest weighted delay at every departure time.

The “weighted delay (shuffled)” valuation schemethig
same as weighted delay, except that, prior to sitiau,
weights among all flights in the scenario are ranigoshuffled.
During simulation, weights are kept fixed. Shuffinthe
weights prior to running the scenario is for sevigjt analysis
of how the values of flexibility metrics vary withe specific
characteristics of the departure demand. Multipeukations
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assessed across all flights in the scenario. Uppends to
APRD and DRS are much less when operational contstrare
introduced, but flexibility consumption is fairlyable, except
that there is some spreading with operational caimss. Fig. 7
shows the same type of plot for the November 6,9200
EWR 04L scenario, also at a departure capacity .683
departures per minute. In this scenario, the mamahd pulse
is concentrated into a shorter time than in theebDdwer 17
scenario, so queues are larger and the upper bafi&RRD,
GARD and DRS are larger. In this, as well as otietatively
high-demand scenarios that were simulated, consompt
stability is observed across intra-operator and
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inter-operator exchange scenarios. In lower-densaedarios,
stability breaks down because fewer flights comtebto the
metrics, and therefore the metrics show more sjmgaatross

Scenario Day:
Nov 6, 2009

shuffles. Comparing Figs.6 and 7, flexibility consation is

fairly stable across different scenario days, desparge

differences in the upper bounds.
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.  CONCLUSION

This paper identifies APRD, GARD and DRS as scenari
level, valuation-dependent flexibility metrics thaticate the
average and distribution in delay recovery amomght$ in
departure scenarios with VQ. Upper bounds to tmestics,



computed by simulating a LCFS queuing disciplinee a [3]
valuation-independent flexibility metrics that patially could

be used by ANSPs and operators to facilitate a cmmm [4]
understanding of flexibility performance of VQ rile to PQ

in specific departure scenarios. Introduction ob tvealistic [
operational constraints, namely intra-operator-orflight
exchanges and small physical queues, significargtjuces [6]
delay recovery, with a steep fall-off in APRD awlealues of 7l
maximum small physical queue size. Thus, measueces {
facilitate inter-operator exchanges and reduceipalygueuing
could substantially improve operator flexibility ff@mance.
Flexibility consumption, for a given flight valuati scheme, is [8]
fairly stable when flexibility metrics have relatly high values
(hence the potential operator benefit of flexigilis relatively
high). In scenarios where flexibility metrics haeatively low
values (hence flexibility is less important), stiyibreaks
down.

Kol

(9]

Further work is needed to bring the flexibility mes for [10]

departure operations presented in this paper imeztipal
application by ANSPs and operators for use in dgmaknt of [11]
pre-implementation business cases and post-impl@iiamn
verification of flexibility performance improvemenfrom VQ.
In addition, the flexibility concepts presentedéh@eed to be [12]
extended to other flexibility-increasing ATM imprewents,

such as those to increase routing flexibility. 13
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