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Abstract. Data mining with taxonomies merged with categorical data has been 
studied in the past but often limited to small taxonomies.  Taxonomies are used 
to aggregate categorical data such that patterns induced from the data can be 
expressed at higher levels of conceptual generality.  Semantic similarity and re-
latedness measures can be used to aggregate categorical values for cluster based 
data mining algorithms.  Many aggregation techniques rely solely on hierar-
chical relationships to aggregate categorical values.   While computationally at-
tractive, these approaches have conceptual limitations that can lead to spurious 
data mining results.  Alternatively, categorical data can be aggregated using hi-
erarchical relationships and other semantic relationships that are expressed in 
ontologies and conceptual graphs thus requiring graph based similari-
ty/relatedness measures.  Scaling these techniques to large ontologies can be 
computationally expensive since there is a wider search space for expressing 
patterns.  An alternative representation of semantic data is presented that has at-
tractive computational properties when applied to data mining.  Semantic data 
is represented as vectors of cluster memberships.  The representation supports 
the use of cosine similarity measures to improve the run-time performance of 
data mining with ontologies.  The method is illustrated via examples of K-
Means clustering and Association Rule mining. 
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1 Introduction 

Data mining with taxonomies has been studied as an approach to include background 
knowledge in the mining process.  The background knowledge has been used to pre-
process data by replacing the original data with more general semantic concepts at 
arbitrary levels of generalization and augmenting data with all possible more general 
semantic concepts as defined by a small taxonomy [1].  The benefits of using taxon-
omies range from smaller search spaces, if the original values are replaced with more 
general values, to fewer and more intuitive patterns that are expressed at higher con-
ceptual levels.  When the original data is replaced with more general concepts, the 
data is compressed and thus the search space is reduced.  When the taxonomies are 
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used to aggregate two or more patterns, fewer patterns are returned and the resulting 
patterns tend to be more intuitive. 

Many of the aforementioned techniques are based on shallow taxonomies.  Often, 
the assumption is that if two or more concepts share a common ancestor then the con-
cepts are similar enough to aggregate under the common ancestor.  While this as-
sumption may be sufficient for many carefully organized taxonomies, there are occa-
sions in which some portions of ontologies were developed using individual charac-
teristics of concepts to aggregate them and ignoring other characteristics.  In such 
cases, the full semantics of the concepts are not captured in the hierarchical structures.  
To see this, consider Fig. 1 which contains a sample of the SocialRole branch of the 
SUMO ontology.  Many of the records used in this study contain values that are sub-
classes of SocialRole and measuring the semantic distance between these values sole-
ly on the basis of the ISA hierarchy is difficult.  For instance, Student and Teacher 
should be grouped together if they appear in database records but in Fig. 1 Student 
would be grouped with Terrorist and Teacher would be grouped with Lawyer poten-
tially leading to undesirable results. 

Detailed ontologies with relationships between concepts can provide more useful 
semantics that can be used to more accurately measure semantic similarity.  In this 
study many of the values for a feature are subclasses of a specific class in an ontolo-
gy.  Therefore, fine-grained distinctions that can be computed from non-hierarchical 
ontological relationships are important.  The disadvantage to using the full scope of 
ontologies is the added search space and computational complexity of aggregating 
concepts using more semantic information.  The problem addressed in this article is 
that of including hierarchical and non-hierarchical semantic information, expressed in 
ontologies, in the data mining process while retaining favorable computational prop-
erties. 

PoliceOfficer Lawyer MedicalDoctor Teacher

SkilledOccupation

SkilledOccupation

Position
TerroristStudent 

SocialRole

Fig. 1. Portion of the SocialRole branch of the SUMO ontology 



In this article, an approach to using ontologies in K-Means clustering and associa-
tion rule mining is presented that has favorable computational properties while allow-
ing the full scope of ontologies to be included.  The methods involves pre-computing 
semantic distance and relatedness based on semantic networks, clustering semantic 
values in which values from individual attributes are clustered separately, and repre-
senting the semantic information in attributes as vectors of cluster membership.  The 
computational benefits of this approach are demonstrated in an application of data 
mining designed to characterize the activities of organizations presented in the World 
Incident Tracking System (WITS) corpus. 

2 Related Work 

In [1] Skrikant and Agrawal present their algorithm for generating association rules 
with taxonomies.  In this work, transactions are augmented with information from a 
taxonomy by identifying all items that are referenced in a taxonomy and traversing 
the IS-A links to the root of the taxonomy.  All concepts encountered along the way 
are added to the transactions.  The association rule induction algorithm is then ap-
plied.  The result is a collection of association rules that can potentially include con-
cepts from the taxonomy.  This approach does not include rich semantic information 
from ontologies but rather relies on IS-A links to aggregate categorical values.  By 
adding concepts to the transactions, the number of items in a transaction is increased.  
For large taxonomies, this approach can significantly increase the search space. 

In [2] Cheung presents an attribute oriented induction algorithm to generate char-
acterization rules using small rule-based taxonomies defined over categorical attrib-
utes.  A rule-based taxonomy for attribute A1 is a taxonomy in which the IS-A links 
are conditioned on other attributes.  The attributed–oriented induction algorithm is a 
bottom-up mining approach but can apply drill-down operations to specialize rules 
that are too general.  This approach relies solely on taxonomies but uses a more ex-
pressive taxonomy.  The rule-based taxonomy could contain expressions that more 
accurately convey the semantics of concepts and thus has the potential to avoid the 
pitfalls of relying on unconditional IS-A links.  The research presented in this article 
is similar to [2] in that conceptual aggregation is based on the relationships other than 
unconditional IS-A links.  The algorithm described in [2] explores a larger search 
space than the one discussed in this article. 

In [3] Taylor presented a discrimination rule induction approach to using taxono-
mies for data mining.  In this approach, rules are created by repeatedly extending 
queries using the attributes of a database as constraints and IS-A links to refine the 
queries.  The process is an iterative deepening process in which attributes are initially 
constrained to the highest level of generalization and repeatedly specialized by trav-
ersing down the hierarchies.  This approach repeatedly uses a query evaluation opti-
mization technique based on the observation that a query Q’=c+Q derived from query 
Q can be evaluated by constraining the results of Q to those results that satisfy c with-
out scanning the entire data set.  The taxonomy may have to be scanned if c is a hier-
archical constraint. 



In [4] Zhang present the AVT-DTL algorithm to produce decision trees from par-
tially specified datasets and taxonomies.  The algorithm is top-down search in which 
attributes are constrained to the most general values, in a taxonomy, that are the most 
informative.  Initially all attributes are constrained to the roots of the respective tax-
onomies defined for the attributes.  The algorithm builds decisions trees by repeatedly 
constraining attributes by replacing classes with their immediate descendants based 
on how well the set of constraints partitions the classes.  This algorithm maintains 
access to taxonomies and split decisions are based on IS-A links.  The algorithm does 
not use non-hierarchical properties. 

In [5] Domingues and Rezenda present an algorithm that applies taxonomies to as-
sociation rules after the association rules have been created.  This algorithm merges 
association rules that contain antecedents and/or consequences that can be merged if 
the items share common ancestors in a taxonomy.  In [6] Marinica et. al. present a 
similar post-processing approach to including taxonomies with association rule induc-
tion.  Both of these approaches rely solely on the IS-A links.  The search spaces of 
[5,6] are not as large since the hierarchical information is not fused with the original 
records. 

In [7,8], Jozefowska presents an approach to discovering frequent patterns from 
data stored in graph based structures using OWL ontologies with rules.  The general 
approach begins with a user defined context which declares the semantic type of the 
data to anchor the search.  A query is generated using this context.  The query is re-
peatedly refined using the ontology and rules as the basis for extending the query.  
Queries that are supported by the number of examples that exceed minimum support 
thresholds are candidates for patterns.  The ontology and rules are used to filter que-
ries based on logical consistency checks.  The search is pruned by identifying those 
queries that are logically inconsistent.  This approach allows the full semantics of an 
ontology to be used in the mining process at the expense of repeatedly evaluating the 
consistency of an expression.  Consistency checks can be expensive based on the 
complexity of the rules and the axioms in an ontology. 

The techniques discussed in [1,3-6] rely solely on a taxonomy and are susceptible 
to the limited semantics expressed in a taxonomy.  The research presented in this 
article differs from [1,3-6] in that additional semantic information is used and the 
ontology is not repeatedly scanned during the mining process.  [2,7,8] demonstrates 
that using additional semantic information increases the complexity of mining with 
ontologies.  The research presented in this article addresses the complexity issue via a 
compromise of semantic fidelity.  The work presented in [7,8] preserves the full on-
tology during the mining process, while research presented in this article promotes 
scanning the ontology prior to data mining to make semantic commitments then sub-
sequently mining the data using the semantic commitments. 

3 Modeling Semantic Attributes in Records 

Let R = {r1, r2, …, rn} represent a set of records containing numerical and categori-
cal attributes.  For the remainder of this article, the emphasis will be placed on the 



categorical attributes.  Let Ac = {a1, a2, …, ak} represent the set of all categorical 
attributes for records in R.  Categorical attributes are allowed to have multiple values.  
Let O = {C, H, P} represent an ontology with a set of concepts C, a set of hierarchical 
relationships H defined over concepts C, and a set of non-hierarchical relationships P 
between concepts in C. The set H denotes the set of all IS-A connections between 
concepts.  The set P represents the set of relationships that detail the semantics of 
concepts beyond that which can be expressed with just IS-A links.  Every allowable 
value for attribute ai is either a term(s) that has at least one interpretation in ontology 
O or is a concept(s) in ontology O.  The challenge of data mining with ontologies is to 
find interesting patterns in R expressed as constraints using concepts from C on at-
tributes in Ac. 

Conceptual aggregation is the primary goal of data mining with ontologies.  Given 
two or more records in R, the challenge is to determine if there are any semantic rela-
tionships between the records and to determine if those relationships are strong 
enough to aggregate those records to contribute to meaningful clusters or interesting 
patterns.  As mentioned earlier, categorical data can be aggregated by searching for 
common ancestors and measuring similarity/relatedness based on common ancestors 
or analyzing the semantics of the concepts via relationships in P and measuring simi-
larity/relatedness base on P.  Data mining algorithms tend to iterate over the infor-
mation in R many times to produce interesting patterns and as such can compute the 
same results repeatedly.  Computing semantic similarity/relatedness for the same set 
of concepts repeatedly can be computationally expensive. 

To address this issue, the semantic similarity/relatedness measures can be cached 
and similar concepts can be aggregated into clusters based on similarity/relatedness.  
In doing so, terms and concepts that are similar are pre-aggregated solely on the basis 
of the semantics of the terms and concepts.  The values for attributes in Ac can then 
be represented as vectors of cluster memberships and records in R can be compared 
using vector based measures which are computationally more efficient than repeated-
ly scanning ontologies and repeatedly comparing classes. 

Let R1 = {S#Teacher,…}, R2 = {S#Student,…}, R3 = {S#PoliceOfficer,…}, R4 = 
{S#SecurityGuard,…} represent records from R in which the semantic attribute a1 is 
presented using concepts in the SUMO ontology1.  Intuitively, records R1 and R2 
should cluster well together on attribute a1 and records R3 and R4 should cluster well 
together.  Given this observation, the unique concepts for attributes ai in Ac can be 
clustered based on semantic similarity/relatedness prior to data mining operations.  
Let P contain the following statements expressed in F-Logic: 

S#PoliceOfficer[hasSkill -> CE#Protecting]. 
S#SecurityGuard[hasSkill -> CE#Protecting]. 
 
S#Teacher[hasSkill -> S#EducationalProcess]. 
S#Student[patient -> S#EducationalProcess]. 

                                                           
1  The namespaces have been abbreviated. S is used from SUMO.  M is used for MONTY 

(proprietary).  CE is used from CriminalEvent (proprietary). 



Given the contents of R1-4 and P above, the following clusters could be created based 
on semantic connections: 

1. S#Teacher, S#Student 
2. S#PoliceOfficer, S#SecurityGuard. 

The records can then be represented as vectors of cluster membership with 
R1={[1,0]…}, R 2={[1,0],…}, R3={[0,1],…}, R4={[0,1],…]}.  A non-zero value in 
position l denotes that a record has a semantic value that is in cluster l for some attrib-
ute.  Using this alternative representation, records can be compared for similarity 
using the cosine similarity measure.  Let R5={{S#Teacher,S#PoliceOfficer},…} rep-
resent a record with multiple values for attribute a1.  Using the alternative representa-
tion, R5={[1,1],…} represents that R5 contains values for attribute a1 that have seman-
tic interpretations that belong to clusters 1 and 2.  Comparing R5 with the other rec-
ords along the a1 dimension reduces to cosine similarity calculations instead of multi-
ple semantic distance and semantic relatedness calculations. 

To cluster the concepts used in attribute ai, a hierarchical clustering technique is 
used.  The clustering is based on pre-computed semantic relatedness based on seman-
tic relationships expressed in P and hierarchical based semantic similarity.   

Let SR(C1,C2) denote the pre-computed semantic relatedness between concepts C1 
and C2.   
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SR(C1,C2) is computed using a shortest path traversal from C1 to C2 based on the rela-
tionships expressed in P.  SR(C1,C2) is set to a maximum value if the length of the 
shortest path between C1 and C2 is greater than a predetermined maximum distance.  
This optimization prevents the process from computing relatedness values for con-
cepts that are intuitively not related even if there exists a path between them.  Values 
close to 1 suggest strong relatedness and values close to 0 suggest weak relatedness.  
SR can be pre-computed since the ontology does not change with records in R.  
Therefore, when ontology O is used many times for different data mining runs and/or 
R is large, the cost of pre-computing SR is negligible. 

When computing SR(C1,C2), the graph traversal should be limited to relationships 
that convey positive connections between concepts.  Since the goal is to aggregate 
concepts based on similar semantics, those expressions in P that convey semantic 
differences should be avoided.  An example of a relationship to avoid that often ap-
pears in semantic networks is “antonym”. 

Let SD(C1,C2) denote the semantic distance between concepts C1 and C2.  The se-
mantic distance can be computed using a variety of semantic distance measures that 
are based on traversing IS-A hierarchies such as those presented in [9,10,11].  The 
class of techniques mentioned in [9,10,11] is based on finding the Least Common 
Ancestor (LCS) of a pair of concepts and computing similarity based on the LCS. 

The semantic distance measure that is used in this research emphasizes the depth of 
concepts in a taxonomy.  The semantic distance is measured by the path between two 



concepts (along IS-A links) that includes the LCS.  Many semantic distance measures 
use a uniform distance measure between concepts and ancestors.  These measures 
assume that the semantic distance between child-parent pairs at all depths are uni-
form.  However, the semantic distances between concepts close to the root are greater 
than the semantic distances of concepts further from the root.  This phenomenon has 
also been observed in [12,13,14].  Given two concepts C1 and C2 and their LCS we 
define the semantic distance between C1 and C2 as 
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where γ iterates over the concepts on the shortest path from C1 to the LCS and � iter-
ates over the concepts on the shortest path from C2 to the LCS. 

Let SDR(C1,C2) denote the combination of SD(C1,C2) and SR(C1,C2). 

���(��, ��) = ��(��, ��)- + (1 − ��(��, ��)).																													(3) 
where α and φ denote the contributions of semantic distance and semantic relatedness 
respectively and both values combine to a value of 1. 

The cluster generation algorithm is presented below: 

For each a in Ac Repeat 
  Let U(a) = {unique values of a in R} 
  θ = maximum cluster distance 
  Create a cluster for each value in U(a) 
  Repeat until all cluster distances > θ 
    Merge the 2 closest clusters using the pairwise aver-
age of SDR as a measure of cluster distance. 

The resulting clusters contain classes that are closest to one another based on the con-
tents of T and P and the value of θ.  Given the problems of relying on IS-A hierar-
chies to measure semantic relationships, the semantic quality of the clusters will be 
largely based on the amount of information available in P.  The value of θ can also 
influence the quality of the clusters but more so based on space and not semantics.  
Values of θ closer to 1 tend to force classes into clusters simply because they are the 
closest and not because they share significant semantic overlap.  Values of θ closer to 
0 tend to produce more coherent clusters since clusters are less likely to be merged 
together if there is little semantic overlap among the classes.  However, if θ is too 
small, concepts that are naturally similar could appear in different clusters.  Determin-
ing the most appropriate value of θ is beyond the scope of this research.  In this study, 
θ=0.6. 

A hierarchical clustering approach was selected because the clusters produced tend 
to be consistent between separate executions and thus the mining results will be re-
peatable.  Clustering techniques based on random selections should be avoided for 
this phase as they tend to produce slightly different clusters between executions. 



The contents of P should contain semantic relationships that are sufficient to sup-
port reasonable conceptual comparisons along dimensions that are significant for the 
data mining goals.  Those relationships that do not convey information that is relevant 
to a particular task should be avoided when computing the semantic relatedness val-
ues.  Furthermore, P should contain expressions that are applicable to the concepts 
that appear in R.  To determine if P is sufficient for a particular data set, one can ex-
tract the unique semantic values in R and find relationships in P that are expressed 
using these values.  If many of the semantic values in R are not used in relationships 
expressed in P, then P may not be sufficient for data mining with ontologies.  In this 
case, P should be augmented with additional relationships that partially detail the 
semantics of the most frequently used concepts in R. 

The relationships in P can represent connections between concepts that vary in sig-
nificance.  For instance, it is not uncommon for semantic networks to contain very 
generic relationships such as simply “Related-To”.  “Related-To” suggests that there 
exists a relationship between two concepts but the nature of the relationship is not 
exposed.  When constructing the semantic relatedness cache, the type of relationship 
between concepts can optionally be weighted based on the significance of the rela-
tionship expressed. 

4 Data Mining Modifications 

This section presents applications of the semantic representations presented in the 
previous section.  The general approach to data mining with ontologies proposed in 
this study is illustrated in Fig. 2.  The first step is to pre-compute semantic clusters for 
those attributes that store semantic information.  The original records are then mod-
eled using the cluster identifiers to which the original semantic information belongs.  
Finally, apply the data mining algorithms on the altered records. 

 
4.1 Modified K-Means Clustering 

A key component of the K-Means clustering algorithm is the function used to 
compute the distance between the value for attribute ai for a record Rj and the value of 
attribute ai for the cluster center of cluster Gg.  Another component is the function that 

Pre-Computed 
Semantic Clusters 

Records  
Modeled w/ 
Cluster Id 

DM1 

DM2 

Fig. 2. Proposed diagram for data mining with ontologies. 



computes the contribution to the cluster center for attribute ai.  The functions that are 
used in the K-Means algorithm are presented in this section. 

Let CC(Gg, ai) denote the function that computes the value of the cluster center 
contributed by attribute ai.  CC(Gg, ai) returns a vector of length equal to the number 
of clusters created for attribute ai.  This center can be approximated by the vector 
average on attribute ai for all records in cluster Gg. 
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where r iterates over records in cluster Gg and l is the lth vector position.  This defini-
tion of cluster center maintains concise semantic centers when every record in a clus-
ter has a non-zero value in the same position.  The cluster centers don’t drift.  When 
the records have non-zero values in different positions this definition of cluster center 
maintains separation of semantic information from different clusters.  To see this, 
consider the example presented section 3.  In the event that the clustering algorithm 
places R1 and R3 in the same cluster because other attributes are similar enough to 
support that grouping, the cluster center would be [0.5, 0.5].  In this case, the cluster 
center is not a concept that connects S#Teacher and S#PoliceOfficer but rather partial 
contributions of the clusters to which the concepts belong. 

In contrast, the semantic center could be computed more precisely by collecting all 
unique values for attribute ai and treating the set of values as the center.  Calculating 
distance would then reduce to taking the average distance between the semantic val-
ues for a record and those of the cluster center.  Another approach would be to deter-
mine a semantic center by selecting a concept that is the closest to all concepts in the 
set of values for attribute ai for those records in cluster Gg.  In both cases, semantic 
distance/relatedness measures would have to be repeatedly computed. 

Let CD(Rj, Gg, ai) denote the function that computes the distance between a record 
and a cluster with respect to a single attribute that represents semantic values. 
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where X[l] is the value of lth vector element representing cluster membership for se-
mantic attribute ai. 

With these two functions, the K-Means algorithm can be implemented to efficient-
ly include information from an ontology without repeatedly scanning an ontology to 
compute the distance between two more concepts. 

4.2 Modified Association Rule Mining 

Association rule induction was first introduced by Agrawal in [15].  Given records 
of transaction, the goal of association rule induction is to produce rules of the form X 
-> Y where X is a combination of items in the records and Y is one or more items in 



the records.  In [2], Agrawal, introduced taxonomies to association rule induction.  
The approach presented involves merging hierarchical information with the original 
data from the records and execute the original association rule induction process.  In 
this study, instead of merging semantic information with the original data, the original 
data is replaced with cluster membership indices.  The attribute value pairs are con-
verted to items by concatenating the attribute identifiers with the cluster identifiers. 

Consider the example records from section 3.  R1 would be modeled as {a1_1,…}.  
This set denotes that record R1 contains an item in which the value for attribute a1 is a 
term or concept that is assigned to cluster 1 from the set of clusters created for the 
unique semantic values extracted for attribute a1.  The item “a1_1” encompasses the 
semantic information for a single cluster of semantically related values.  Item “a1_1” 
encompasses the hierarchical similarity that is often used in other approaches and it 
encompasses other relationships that relate concepts to one another.  As a result, find-
ing records with semantic values similar to those in R1 is reduced to finding records 
with the item a1_1.  Following this modeling approach, R2 would be modeled as 
{a1_1,…}, R3 as {a1_2,…}, R4 as {a1_2,…}, and R5 as {a1_1, a1_2, …}.  The typical 
association rule mining algorithms are then applied to these records. 

There are two main benefits of this approach to association rule mining with ontol-
ogies.  First, there are fewer items per record compared to the approach of adding 
semantic data to the original items as in [2].  Fewer distinct items reduce the search 
space for association rule induction and thus leads to reduced execution times.  The 
semantic information encoded in the items includes hierarchical relationships as well 
as non-hierarchical relationships that often convey richer semantics of the terms and 
concepts that appear in the records.  As a result, association rules can be induced us-
ing more information from the ontologies while not incurring the computational cost 
of repeatedly calculating semantic similarity between sets of concepts. 

5 Performance Results 

To demonstrate the potential of this approach, two data mining algorithms were 
implemented to find patterns of activity for organizations mentioned in reports from 
the WITS corpus.  The documents describing violent criminal events attributed to a 
single organization were parsed and modeled as vectors of varying numerical and 
categorical information.  The categorical information includes instrument type, victim 
type, target type, location, and event type.  The SUMO ontology was used as the basis 
of a proprietary ontology that was used in this study.  The base ontology was aug-
mented with relationships that partially characterize the semantics of many of the 
concepts mentioned in the WITS corpus.  The bulk of the concepts mentioned in the 
WITS corpus with respect to the targets and victims of criminal activity are social 
roles.  The SocialRole branch of the SUMO ontology is too shallow to rely on typical 
semantic distance measures alone.  Therefore, the proprietary ontology was updated 
to include semantic relationships on many of the social roles expressed in the WITS 
corpus. 



Eight organizations were studied in this research.  Some of the organizations were 
very active while others were moderately active.  The number of records found for 
each organization reflects the number of events reported in the WITS corpus that were 
attributed to the organizations. 

For this experiment, the values of α and φ used in Equation 3 were both set 0.5.  As 
a result, the values SD(C1,C2) & SR(C1,C2) equally contribute to the semantic com-
parisons of concepts that appear in the records.  The decision was made to value SD 
& SR equally because P was not fully developed at the time of this publication.  Note 
that the value for SR(C1,C2) is 0 if there is not a path from C1 to C2 in P.  Therefore, 
the value SD(C1,C2) is the major contributor to Equation 3 when C1 and C2 are not 
sufficiently related. 

 
Records w/o Seman-

tic Clusters 
w/ Semantic 

Clusters 

21 40 15 

55 76 26 
106 98 31 

112 90 32 

179 97 35 

368 164 52 

1225 136 40 

1573 194 57 

Table 1. Number of distinct semantic items per data set availabe to the data mining algorithms 

Table 1 lists the number of distinct values for the original representation of docu-
ments from the WITS corpus and vector based representation.  Using the semantic 
clusters to represent the semantic values reduces the number of unique items that are 
available to the data mining algorithms. 

Table 2 includes the execution times in milliseconds for two implementations of 
the K-Means clustering algorithm using ontologies applied to the records produced 
from eight sets of documents from the WITS corpus.  The 1st column lists the number 
of records extracted per group.  The K-Onto column lists the execution times for K-
Means without the semantic clusters representation and the K-Vects column lists the 
execution time for K-Means using the semantic clusters representation.  The K-Vects 
times include the time to produce the semantic clusters and the time to execute the K-
Means algorithm.  The Speed-Up column lists the performance improvements 
achieved using the semantic clusters.  For all record sizes, there is a clear performance 
boost.  The highest performance gain is realized with the largest dataset.  The perfor-
mance boost does not uniformly increase with record size in part because the number 
of interesting patterns in records is not always a function of size but rather a function 
of distributions of values. 

 



Records K-Onto 
(ms) 

K-Vects 
(ms) 

Speed-Up 

21 196 25 7.84 

55 949 119 7.97 

106 2922 281 10.39 

112 2328 282 8.25 

179 5985 506 11.82 

368 20648 2348 8.79 

1225 165563 20820 7.95 

1573 607270 20302 29.91 

Table 2. Execution times in milliseconds for K-Means using alternate approaches to include 
ontologies to measure semantic similarity. 

 
Records Attribute 

Cluster Crea-
tion (ms) 

K-Vects 
(ms) 

% Cluster 
Creation 

21 17 25 68% 

55 74 119 62% 

106 163 281 58% 

112 143 282 51% 

179 161 506 32% 

368 952 2348 41% 

1225 907 20820 4% 

1573 1474 20302 7% 

Table 3. Attribute semantic cluster creation times compared to total record clustering times. 

In Table 3 the attribute cluster creation times are compared to the total records 
clustering times.  For small data sets, the attribute cluster creation times dominate the 
total processing times.  For larger data sets, the attribute cluster creation times account 
for smaller percentages of the total record clustering times.  The values in Table 3 
suggest that a significant amount of time is consumed performing the initial semantic 
analysis of the terms and or concepts that are allowable values for the semantic attrib-
utes.  While the initial semantic analysis can dominate the overall executions, the 
values in Table 2 show that this initial cost is more than offset by the reduction in 
clustering with ontologies afterwards. 

A manual inspection of the cluster assignments produced by K-Onto and K-Vect 
when applied to the data set containing 21 records revealed that many of the docu-



ments were clustered together by both approaches.  An examination of the cluster 
centers revealed similar values. 

In Table 4 the execution times of the two Association Rule induction algorithms 
are compared.  AR-Onto is an association rule induction algorithm in which attribute 
value pairs are treated as items.  The ontology is accessed to find concepts that are 
related to semantic values in the records, and the related concepts are added to the 
records as new items.  For each semantic value, the ontology was accessed to find 
ancestors of concepts that were within 3 hops away following the IS-A links and 
those concepts that have a pre-computed relatedness value less than 0.26.   AR-Vects 
is an association rule induction algorithm in which attribute value pairs are treated as 
items, however, semantic attribute values pairs are represented as cluster identifiers as 
described in section 4.2.  The times reported in the AR-Vects column include the time 
of pre-clustering plus association rule induction and the association rule induction 
times separately in parentheses.  The results indicate that the benefits of pre-clustering 
semantic information are only realized in the 2 smallest datasets and the largest da-
taset where the speed-ups are significantly greater than 1.  There is no run-time bene-
fit to pre-clustering for the other data sets because the cost of pre-clustering is too 
large. 

 
Records AR-Onto 

Time (ms) 
AR-Vects 
Time (ms) 

Speed-Up 

21 79 25 (8) 3.16 (9.8) 
55 163 96 (22) 1.7 (7.4) 
106 170 200 (37) 0.85 (4.6) 
112 226 208 (65) 1.1 (3.5) 
179 203 228 (67) 0.9 (3.0) 
368 325 1082 (130) 0.3 (2.5) 
1225 3112 2700 (1793) 1.1 (1.7) 
1573 1177908 2220 (746)  530.6 (1579) 

Table 4. Execution times for Association Rule Induction with ontologies.  Times in parentheses 
are times – preclustering execution times 

The results of pre-clustering the semantic values are available to both data mining 
techniques.  If we compare the execution times of AR-Onto and AR-Vect, minus pre-
clustering times, the AR-Vect algorithm runs faster than the AR-Onto algorithm.  The 
difference in performance is attributed to the reduced number of distinct items availa-
ble to AR-Vect as listed in Table 1 and the total number of item sets that are tested as 
listed in Table 5.  The significant difference in performance on the dataset with 1573 
records is attributed to 269393 item sets that were tested compared to testing only 489 
item sets.  Many of the association rule induction optimization techniques could be 
applied to AR-Onto to reduce the run-times. 

AR-Vect finds association rules involving closely related concepts that are allowa-
ble values for the same attribute.  AR-Onto finds associations involving individual 
concepts but can find associations involving related concepts if all permutations of 



related concepts are included as items which requires more search.  A manual analysis 
of the patterns produced by AR-Onto and AR-Vect applied to the data set with 21 
records revealed that the algorithms produced some patterns that were semantically 
equivalent. 

 
Records AR-Onto 

Item Sets 
AR-Vects 
Item Sets 

21 1225 220 
55 1824 361 
106 1138 383 
112 1307 512 
179 888 325 
368 601 300 
1225 1240 929 
1573 269393 489 

Table 5. Total number of item sets generated and tested 

AR-Vect can efficiently find item sets that AR-Onto cannot find efficiently.  If 
Val1 and Val2 are sufficiently related, but the 1-item item set {Val1} does not satisfy 
minimum support requirement, the 2-item item set {Val1,Val2} will never be explored 
using the optimized association rule algorithm in which all 1-item item sets have min-
imum support and the 1-item item sets are used to extend multi-item item sets.  To 
find item sets containing both Val1 and Val2 all 1-item item sets will have to be con-
sidered, although only those combinations of items that are closely related should be 
combined in multi-item item sets.  This expands the search space which increases 
execution times. 

In this study, multiple data mining algorithms are used to characterize the activities 
of organizations.  Since two data mining algorithms are used in this study, and pre-
clustering significantly improves the run-time performance of K-Vect the cost of pre-
clustering can be ignored in Table 4 when comparing the run-time performances of 
the AR-Onto and AR-Vect.  If multiple data mining algorithms are going to be used 
with ontologies, then performing a semantic analysis of those dataset attributes that 
are semantic in nature prior to executing the data mining algorithms can significantly 
improve the run-times of the data mining processes collectively. 

The records that are produced from the WITS corpus can contain multiple values 
for some of the semantic attributes.  An interesting property of using the semantic 
vectors for clustering, as in K-Vect, is that the cost of comparing records with multi-
ple values for attributes with semantic values does not change.  In contrast, methods 
that maintain the original values will have to compare all values for a given feature to 
determine similarity.  As the number of values per feature increases, the cost of com-
puting similarity increases. 



6 Conclusion 

The approach to data mining with ontologies presented in this article has favorable 
computational properties but presents a semantic challenge.  The semantic clusters 
that are created prior to executing the data mining routines encapsulate semantic in-
formation via cluster membership.  However, since these clusters can represent two or 
more semantic classes and the cluster identifiers are used during the mining processes, 
any relationships that may exist between individual values from different attributes 
may not be distinguishable.  For example, cluster 1 in section 3 represents S#Teacher 
and S#Student for attribute a1.  If an interesting relationship between S#Teacher and 
values from other attributes exist in R, it may be difficult to isolate the relationship 
since S#Teacher is always coupled with S#Student.  This potential loss of semantic 
fidelity is a trade-off that accompanies the computational advantages of the methods 
present in this article. 

The cosine distance measure as implemented in the K-Means example assumes 
maximum distance for concepts in different clusters.  To see this consider records R1 
and R3 in section 3.  The cosine based distance measure applied to the vectors for 
attribute a1 in these records would return a value of 1 suggesting that S#Teacher has 
no relationship to S#PoliceOfficer.  In fact, there is a weak relationship between these 
two concepts in the SUMO ontology but given the semantic commitments that are 
made, during the attribute pre-clustering phase, the relationship is ignored.  If the 
relationships between concepts in different clusters are important to a particular appli-
cation, the cosine based distance function could be altered to include average seman-
tic distances between clusters when one vector has a non-zero value in position l and 
another vector has a zero value in the same position. The vector for attribute a1 in R1 
could be replaced with [1, ∊] and that of R3 could be replaced with [∊, 1] where ∊ is 
the computed cluster distance between clusters 1 and 2 of attribute a1.  With this mod-
ification, the cosine based distance between R1 and R3 along the a1 dimension would 
be < 1 if ∊ > 0.  This modification would require pre-computing cluster distances after 
the attribute clusters have been created. 

The types of the relationships that justify clustering concepts together are not ex-
posed in the vector of cluster membership model.  As such, this approach does not 
lend itself well in environments where the particular relationships between concepts 
are more important than the fact that concepts are strongly related. 
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