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Abstract—We describe a middleware framework conceived
to enhance the effectiveness and efficiency of existing simulation
applications by providing three capabilities: (1) access to grid-
based and cloud-based execution, (2) access to advanced Design
of Experiments (DOE) methodologies such as simulation-based
optimization, and (3) access to robust data processing and
visualization. The framework has been applied to a variety of
simulations in both commercial and open source programming
languages employing both discrete and continuous modeling
formalisms. A key design objective is to minimize the workload
necessary to adapt a simulation for use with the framework.
User experience to date reveals that the learning curve for the
framework is reasonable, but further automation of key tasks
would enhance the framework’s utility.
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I. INTRODUCTION

Simulation is a unique problem-solving technique, with
unique challenges—particularly in the areas of performance
and correctness. With respect to performance, for example,
you typically need to conduct many, many simulation runs
in order to obtain useful results. And this business of doing
many, many runs can end up taking quite a long time.
Fortunately, the issue of minimizing simulation runtime is
well-studied from a variety of different perspectives. For
example, the clever use of statistics allows a modeler to cull
several observations from a single simulation run without
incurring the overheads associated with simulation start-
up [1], and can also be employed to minimize the total
number of runs needed to derive an estimate for a system
variable, regardless of the number of system variables of in-
terest, their interrelationships, or underlying distributions [2],
[3]. You can build a model of your model, often called
a metamodel, that retains the essential features of your
model, but with many fewer variables and therefore much
shorter runtimes [4]–[6]. In addition to these statistical and
matematically-based performance enhancements, you can
also do clever things with computers to reduce runtimes.
If you have enough of them, for example, you can run each
replication on a different computer (since the replications
tend to be independent). Or, if you are very ambitious, you
can break an individual replication apart and execute it using
parallel processors [7].

With respect to correctness, one of the first things simu-
lation modelers come to understand is that “correctness” is

always a negotiation between the questions being asked with
the model and the model representation itself. Furthermore,
simulations are descriptive rather than prescriptive. That
is, the results of a simulation merely provide estimates
of the value of system output variables, for some given
combination of input variable values, after some amount of
time passes in the system. The simulation technique doesn’t
tell you if any of these values are “the best” in any sense.
As an analyst, it is up to you to explore the landscape of
estimates that can be generated by your simulation model. In
some cases, the entire landscape can be generated. In many
cases, the possible combinations of model input values is
too vast to explore completely. In this case, techniques from
Design of Experiments (DOE) are available to assist the
analyst in efficiently navigating the landscape [8].

This article describes a computing framework, initiated
through MITRE Independent Research and Development
(IR&D) funding, that seeks to enhance the effectiveness and
efficiency of simulation-based analysis and experimentation
by providing existing simulation applications with access to
three enablers:

• The capability to escape the computing limitations of
the engineer’s desktop, via grid and cloud computing.

• Goal-directed replication management, via broad sup-
port to Design of Experiments (DOE).

• Access to the robust marketplace of data processing and
visualization tools.

Our motivation for developing the framework was to be
able to enhance simulation use across an enterprise. The
article is organized as follows. In Section II, we describe the
computing framework, the motivation for its development,
the principles underlying its formulation, and its current
architecture. Section III presents a brief case study of the
application of the framework and a discussion of some
lessons learned. Related work in grid-based support for
simulation is reviewed in Section IV. Conclusions and a
discussion of future directions for our framework appear in
Section V.

II. MITRE ELASTIC GOAL-DIRECTED SIMULATION
FRAMEWORK

In addition to performance and correctness, yet another
defining aspect of simulations—at least in the defense
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arena—is that they tend to involve significant investment
in their development. Because of this, they also tend to
have very long shelf-lives, and are often re-purposed to
support new objectives. A particularly interesting version
of the “paradigm of re-purposing” is the simulation inter-
operability era that began within the United States Depart-
ment of Defense (DoD) during the 1980s and resulted in
the development and wide-spread adoption of High Level
Architecture (HLA, see [7], [9] for discussions of the history
of simulation interoperability).

The impetus for the HLA was the need to develop
multi-Service simulations to support analysis or training
(sometimes both). In almost all cases, individual Service
simulations existed, themselves costly investments. Given
budgetary constraints, there became a natural curiosity re-
garding whether these existing simulations could somehow
be integrated to form a larger simulation that would effi-
ciently and effectively serve the multi-Service objectives.
During the 1980s, ad hoc solutions supporting the inte-
gration of simulations proliferated, and were viewed as
successful enough to justify the development of a standard
in the mid-1990s, the HLA.

The general problem confronted here is the one of
reuse—whether it is best to conceive, design and con-
struct a new simulation expressly for newly imposed ob-
jectives/requirements, or whether to conjoin existing, so-
called legacy simulations to accommodate new missions.
The wisdom of coupling two simulations together that were
not conceived to be coupled together can only be judged on
a case-by-case basis. But certainly, given the costs associated
with the development of new simulations and the realities of
budgetary constraints, developing standards that provide the
option to economically re-purpose legacy simulations seems
a sensible course.

Inspired by the development and success of the HLA,
and informed by our participation in its development and
success, and by recent advances in grid-enabled simulation
(described in Section IV), we initiated the development of
the MITRE Elastic Goal-Directed Simulation Framework, or
MEG, for short.

Our objective in the development of MEG has been to
develop a middleware framework that will add value to
existing simulation applications. As Computer Scientists
working in parallel and distributed simulation, with access
to lots of computing power—whose cycles were not always
heavily utilized—we were initially interested in finding a
convenient way for MITRE staff to access this computing
with their simulations. Developing and offering grid-based
replication management seemed a fairly obvious, and easy to
accomplish, approach. Our initial thinking was that we could
simply install Condor [10] (or another grid management
framework) on our compute clusters, provide a few tutorials
to the engineers on how to submit and monitor jobs, and
that would be enough. But, upon reflection, we convinced

ourselves that we could, and should, do more: as long as
we are providing access to compute cores for executing
replications, is there anything we can offer from the exper-
imental design domain to help identify which replications
to execute? Are there any tools and techniques from the
robust data management and visualization marketplace that
we could integrate within our framework to help engineers
better understand and communicate the results of their
models?

A. MEG Design Principles

The development of MEG has been driven by five primary
design principles:

• Learn by Doing. Get the framework in users hands early
and often. Discover system requirements. Don’t design
in a vacuum.

• Provide Transparency. The reason for MEG faults and
failures must be visible to end users. Even if they
cannot repair/correct MEG themselves, user satisfaction
with—and ultimately, their adoption of—the framework
will benefit from transparent failures. Most users can
accept working with system that is under development.
They will tolerate occasional system failures, as long
as the cause of the failures is communicated, and the
repair can be effected in a reasonable time.

• Support any modeling language or formalism. MITRE
engineers employ dozens of modeling languages (com-
mercial, open source, general and special purpose) and
a range of formalisms in both the discrete and contin-
uous regimes. The framework should not preclude the
use of any of these.

• Provide a Low Barrier for Entry. The framework must
be sufficiently easy for the first-time user. The amount
of work needed to initially adapt a simulation for use
with MEG must be kept to a minimum. Automation
is essential here. However, during the early phases
of framework development this may mean that the
MEG team must do much of the work needed to
manually integrate a new simulation with MEG, until
this workload can be automated.

• A Good Idea Applies to Itself. We will use simulation
and simulation-based optimization to identify the opti-
mal operating characteristics for any MEG installation.

B. Adapting a Simulation for Use with MEG

The primary difficulties confronted by first-time users
involve making the necessary changes to their simulation to
work within the MEG framework. Our goal as framework
designers is to minimize the work necessary to adapt a
simulation, with the recognition that completely automating
the process may never be achievable. In its current form,
there are two primary capabilities that a simulation must
have in order to work with MEG. First, the simulation must
be capable of being launched and able to run to completion
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without any user intervention/interaction. Generally, this im-
plies that the model must support the ability to be launched
from a command-line interface (rather than a Graphical User
Interface) and that any input to the running model can be
read from an input file. Second, since the physical location
for model execution is not generally known a priori in
grid computing contexts, all file/data paths specified in the
simulation must be relative (or parameterized) paths.

In addition, for users taking advantage of MEG’s support
for advanced DOE methods such as simulation-based op-
timization, a file that identifies the model input variables,
their types and ranges must be provided. And a routine that
parses model outputs to compute the value of a user-defined
objective function must be developed. In both these cases,
MEG provides assistance to a user in the development of
these files/routines.

We adopt the “CSP-Preinstalled Approach” defined
in [11]. A job launched by MEG may be arbitrarily
complex, in that it involves many separate stages, and
includes both pre-run and post-run operations, including the
installation/removal of ancillary software to support model
execution. As long as these operations can be done in the
user’s space, without user intervention, or need for root
privileges, all is well. If, however, the ancillary software
required to support the run needs manual intervention for
its installation, or must be installed with root privileges,
the software must be pre-installed on the target compute
platform. MEG can take advantage of the Condor classAd
mechanism (and similar capabilities in other grid schedulers)
to identify compute platforms that have the necessary pre-
installations.

C. MEG Concept of Operations

The typical MEG user is an engineer or scientist, with an
existing simulation, often written in a commercial simulation
package, who is in need of convenient access to large-
scale computing or automated support for sophisticated
experiment design techniques, such as simulation-based op-
timization. Once the simulation has been adapted as outlined
above, a typical MEG use case has the following phases:

1) A user logs into the MEG system. Currently, this
consists of loading a web page into a browser.

2) The user identifies the simulation model to be run,
its input files and their locations. MEG automatically
generates the input file templates necessary to support
replication management based on the user’s input files.

3) The user defines an experiment by specifying model
input variables to be manipulated by MEG, and by
constructing, if desired, an objective function in terms
of model output variables, and selecting a search
technique to guide MEG’s replication management.

4) The user may view the status of available comput-
ing resources, and select one of these for his/her
experiment. Or the user may allow MEG to select
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appropriate computing resources from those available.
The user may schedule jobs for execution immediately,
or for some specific time in the future.

5) MEG begins the experiment by configuring model
input files, as appropriate, and moving the necessary
files into locations suitable to support execution on the
target computing platforms.

6) As replications are executed, results are consolidated
and made available to support realtime visualization
of the model response surface being generated. Users
may also subscribe to a variety of notification services
to monitor the progress of their experiment.

7) At the conclusion of the experiment, model results are
delivered to a location specified by the user.

To accommodate users with varying technical back-
grounds, some of whom have limited experience with (and
patience for) programming, scripting and command-line
interaction, MEG has been developed with a rich graphical
user interface (GUI) that provides dialogue-driven “wizard”
support for most of the commonly performed tasks. Our
experience and informal assessments, to date, indicate that
users have found the learning curve associated with MEG
to be reasonably low.

D. MEG Architecture

The overall architecture for MEG is depicted in Figure 1.
The framework consists of approximately 20,000 lines of
code, primarily Java, and is comprised of five principal sets
of services: (1) user interface, (2) job scheduling (replication
management), (3) DOE support, (4) visualization, and (5)
data management. We briefly describe each of these below.

1) User Interface: The MEG Graphical User Interface
(GUI) serves two primary functions: (1) it insulates the
user from developing and manipulating the litany of scripts
associated with typical grid computing software, and (2) it
provides a persistent workspace and dashboard for experi-
ment design and monitoring.

2) Scheduler Services: The MEG scheduler services ar-
chitecture is depicted in Figure 2. Our objective is to support
the widest range of grid schedulers available, and to permit
a user to submit jobs to MEG without having to select a
particular target cluster for their execution. To support this
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Figure 2. MEG Scheduler Services Architecture

objective, we have adopted the Gridway metascheduler [12]
which is part of the Globus Toolkit. Gridway works with
many of the common Distributed Resource Management
(DRM) systems, inlcuding Condor, Sun Grid Engine and
the Portable Batch System (PBS). MEG currently supports
execution on four named compute clusters in MITRE, two
Linux clusters (one scheduled by Condor, the other by Sun
Grid Engine) and two windows clusters (both scheduled
through Condor). In addition, MEG employs native thread-
ing to schedule replication execution on a user’s multi-core
desktop.

3) Design of Experiments Services: The MEG DOE ser-
vices facilitate control of simulation parameters and creation
of simulation experiments. Once the model, input files,
output handlers, and parameter definitions have been con-
figured, a user may select from a suite of built-in designers
to guide replication management:

• A set of “standard” Genetic Algorithms (GA) - used to
optimize a model with a defined single scalar objective
function, and configurable with a variety of standard
GA choices.

• Constrained Genetic Algorithm - used to optimize a
model where the input parameters or model outputs are
subject to constraints. The constraints are referenced by
name and defined via standard scripting during MEG
configuration.

• Island-Model GA - used to optimize many populations
of model parameters as independently evolving islands,
with migration of parameters between islands at a
configurable rate.

• Recursive Random-Descent Designer - based on the
heuristic developed in [13].

• Full-Factorial Designer - used to conduct parameter
sweeps and sensitivity studies with user-defined param-
eter ranges and step sizes.

• Plugin Designer - used for model validation, partial-
factorial experiments, and “what-if” scenarios mediated
by submitting sets of parameters directly through the

MEG interface via spreadsheet.
In addition, MEG provides an API for the development
of new designers, with methods supporting: (1) control of
parameters - the ability to access and modify defined model
inputs; (2) control of execution - the ability to notify the
scheduler that a model needs to be run (as when a new GA
population is ready for execution), or to query the scheduler
for job completion, (3) access to objective function values -
either the single scalar objective value or multiple objectives,
as defined; and (4) access to constraint information - how
many and which constraints were violated during a model
execution.

4) Visualization Services: MEG supports two broad
classes of visualization services. First, MEG’s browser-
based interface allows users to conveniently access grid
status reports such as those provided by Ganglia [14] and
Nagios [15]. The second class of visualization services
supports the user’s ability to interpret simulation results
both as the experiment is running, and post-run. MEG
provides a database that supports the Odata standard [16]
which can be exploited by tools such as Excel (PowerPivot),
QlikView [17] and Tableau [18]. MEG provides services that
translate a user’s native output files into the MEG generic
data format in realtime (see below).

5) Data Services: The MEG data services are based on
an application called Data Gin which runs as a set of
web services on any operating system that supports Java.
MEG users describe the nature of their output, e.g., text-
based comma-separated-value (CSV) files, mySQL database,
etc., within the MEG GUI. During model execution, the
Data Gin registers a file system “watcher” that detects
creation/modification of output files, and automatically refor-
mulates the data appearing in these files into a MEG generic
data format. The Data Gin has the ability to infer data typing,
and generates the necessary tags and metadata, per run, to
facilitate efficient execution of user queries.

III. CASE STUDY: ADAPTING SLX MODELS OF THE
NATIONAL AIRSPACE SYSTEM

Some of the earliest, and most instructive—from a de-
sign perspective—users for MEG were engineers from
MITRE’s Center for Advanced Aviation System Develop-
ment (CAASD). CAASD engineers employ a tremendous
variety of models to study all aspects of the National
Airspace System (NAS) in support of the Federal Aviation
Administration (FAA). They have very well-established tools
and analysis methods. Among these, are a suite of tools
written in the SLX programming language [19]. As an early
proof-of-concept for our approach, we adapted two of these
models, runwaySimulator [20] and systemwideModeler [21]
for use with MEG.

Prior to our involvement, runwaySimulator and sys-
temwideModeler analysts initiated model runs through ex-
tensions of the native SLX GUI running either on a set of
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Windows machines with a dedicated SLX license server,
or on the analyst’s local machine by accessing a network
license server. To support model execution under MEG, we
created a Condor pool associated with the dedicated-license
machines and additional Virtual Machines (VMs) that access
the network license server. The current “SLXGrid” has
32 compute cores, 24 of which are used to execute SLX
jobs and 8 of which are dedicated to Condor management
functions.

MEG integration for runwaySimulator was accomplished
by modifying the runwaySimulator GUI to launch jobs
through MEG (the user does not interact with the MEG GUI,
but rather a button on the runwaySimulator GUI initiates
a command-line launch of MEG). The analysis process
associated with runwaySimulator involves conducting many
related runs around specific design points, with specific
dependencies between these runs. We incorporated Condor
DAGMan [22] to describe and enforce these job dependen-
cies.

MEG integration for systemwideModeler involved cre-
ating a templating construct for the tens of input files
associated with the simulation, and developing a post-run
system that supported the post-run data processing needs for
the model—systemwideModeler generates several large flat-
files which are parsed and loaded into an Oracle database.
In addition, to support simulation-based optimization using
systemwideModeler, we developed a Python script that
parses the model output files, and computes an objective
function value, e.g., total NAS-wide delay, which is made
available to the MEG designers (part of the DOE services).

In terms of the performance of the SLXGrid, operational
use of the the grid to support runwaySimulator runs show
typical speedups of approximately 20 (over 24 cores). In-
strumented runs show that the scaling limit is due to licence
server contention. Through a temporary licensing agreement
with Wolverine Software, we conducted an experiment with
systemwideModeler and 136 nodes, and illustrated the abil-
ity to run 16,000 runs over a weekend, an approximately
100-fold speedup over non-MEG-based operations.

IV. RELATED WORK

Some of the earliest versions of MEG were based on
the design concepts used in the Unified Search Framework
(USF) [13]. USF provides a framework where multiple
heuristic search methods may be defined and used indepen-
dently or cooperatively to guide a search using simulation
replications launched onto a distributed computing platform
using Java Remote Method Invocation [23]. USF has been
used to demonstrate the effectiveness of the Recursive Ran-
dom Search (RRS) technique on the problem of determining
optimal values for network protocol parameters [24], [25].

Taylor et al. [11] discuss general principles for grid-based
simulation support frameworks, with particular attention to

the difficulties associated with deploying commercial simu-
lation packages in grid environments. They present two case
studies. The first employs Condor to distribute a Java-based
simulation for systems biology, SIMAP. Here, the SIMAP
application is directly adapted to submit jobs into the grid.
A query-based protocol, implemented using web services,
allows SIMAP to monitor the progress of jobs executing
under Condor control. Heuristics are defined to throttle query
frequencies in order to maintain grid performance. Similarly,
the authors observe that when individual runtimes of the
simulation replications are small (e.g., less than one minute)
then batching is needed to overcome Condor scheduling
overheads and attain scalable grid performance. For 4096
jobs (where each individual job has 20-second runtime and
requires 1MB memory/disk space), the authors observe a
maximum speedup of 12 using 32 cores. Additional tests
indicate that this scaling could be improved if more than
one Condor agent were assigned to handle the requests
from SIMAP. Taylor et al. [26] describe an implementation
of SIMAP on the SZTAKI Desktop Grid [27] running at
the University of Westminster, reporting speedups of 15 on
a grid with approximately 1600 machines registered in a
volunteer computing context.

The second case study from [11], which is further detailed
in [28], uses a commercial grid engine, SakerGrid [29],
to distribute the execution of simulations written using the
Flexsim commercial simulation package [30]. Techniques
for dealing with secure execution, access to runtime licences,
additional third-party software interactions, jobs with vary-
ing priority levels, and jobs that fail to run to completion
are discussed. The authors report a 10-fold speedup using
10 processors for 40 Flexsim jobs, where each individual
job has a 7.5 minute runtime.

Issues confronted in the ”grid enabling” of Witness [31]
within an industrial setting are discussed in [32].

V. CONCLUSIONS

Motivated by the success of the value-added middleware
approach taken by the HLA, and recent work in grid-
enabled simulation, we have developed a software frame-
work that seeks to enhance the effectiveness and efficiency
of simulation-based analysis and experimentation by provid-
ing existing, so-called legacy, simulation applications with
access to three enablers:

• The capability to escape the computing limitations of
the engineer’s desktop, via grid and cloud computing.

• Goal-directed replication management, via broad sup-
port to Design of Experiments (DOE).

• Access to third-party data processing and visualization
tools.

MEG is a nascent capability. To date, we have applied the
framework to ten modeling activities, and have integrated
simulations written in SLX, C, Java, RePast, iThink and
Matlab. During the course of our efforts, we have tackled
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many of the issues noted in [11], [26], [28], [32] such as
dealing with GUIs, license servers, and execution batching
to enhance speedup. Our informal assessments of the frame-
work suggest that the learning curve for new users is rea-
sonable. We are focusing future efforts on further reducing
the work necessary to integrate a simulation, including:

• Incorporating support for GUI-based simulations
(through an ability to simulate GUI interactions via
scripts such as those provided by automated GUI testing
frameworks [33]).

• Developing routines to parse models and identify their
input variables. (To support this feature, modelers may
need to tag variable declarations with special com-
ments.)

We are also hoping to extend MEG by:

• Incorporating support for the generation of metamodels.
• Developing and evaluating alternative approaches for

dealing with “Big Data.”

Most of all, we are actively seeking new users for the
framework within MITRE. And we are hopeful that we will
be able to make MEG available to the public domain in the
near term.
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