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Abstract: Recently, the US experienced an economic crisis that shook confidence in key 
aspects of the financial system, and led to some calls for changes in the way the 
government tracks economic information that might warn of such a crisis. Among those 
changes was the creation of the Office of Financial Research (OFR), intended to collect 
and provide information to “anticipate emerging threats to financial stability or assess 
how shocks to one financial firm could impact the system as a whole” [OFR 2010]. These 
functions have been termed systemic risk: the risk that a threat to a large, single 
component of the financial system poses to the system as a whole, due to the inter-
connectedness of the system and potential lack of consumer confidence in the system that 
might be caused if one component failed. This paper considers the computational 
approaches that may be needed in support of the mission of providing information about 
systemic risk, and possible mitigations of that risk. We acknowledge that there are many 
schools of thought for why the recent crisis occurred, the degree of systemic risk it posed, 
and possible government actions to mitigate the risk. Our position is that an agency such 
as the OFR with responsibility for monitoring systemic risk must be prepared to analyze 
diverse, uncertain information about the financial system and threats to it. Such an 
agency must be prepared to evaluate this information from multiple perspectives, and 
assess possible future outcomes given a variety of assumptions and regulatory responses.  
 
Section 1: Computational Requirements 
While researchers have discussed the data collection and handling needs of the Office of 
Financial Research (OFR) [OFR 2010], the computational and analytical needs have 
received less attention. The primary customer of OFR’s information is the Financial 
Stability Oversight Council (FSOC). OFR is expected to develop standards for reporting 
of financial data, reducing uncertainty in this data and increasing transparency. OFR will 
use a Legal Entity Identifier (LEI) for each legally separable firm that engages in 
financial transactions. OFR was created with a large degree of independence [Schmidt 
2010], to allow it to conduct analyses while minimizing influences of politics. 
 
In some cases, a firm providing data to OFR is not incentivized to provide the best 
possible data for supporting OFR’s mission. Providing this data may weaken the firm’s 
position with respect to investors or competitors. The firm may need to collect additional 
data to provide to OFR, which may incur a substantial cost. The firm’s personnel may not 
have the skills and background needed to provide good data to OFR. Data provided by 
the firm may embody different assumptions and interpretations of data standards than 
used by the OFR. As was demonstrated in the recent crisis, ratings from third-party 
organizations may not be reliable. As a result, OFR will need the capability to produce 
useful analyses from uncertain data, in some cases using multiple sources of data about 
the same firm or security.  
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OFR will collect and analyze information on the financial system, to assess the current 
and potential future states of the system, as well as explore potential government 
interventions and their expected effects on future states. This may require maintaining a 
(long) history of information about the financial system, as firms come and go and 
government regulation and policy evolves. The financial system is a complex system, and 
there are a wide variety of possible government responses to given situations. Any 
assessment of future states of the system will not be 100% certain, and the certainty of 
these assessments will depend on the quality of the data and analysis done. However, 
there is evidence from the recent crisis that at least one firm (Goldman-Sachs) had 
enough information to foresee the crisis, so it should be possible for OFR to anticipate 
some systemic risks.  
 
This combination of requirements is not unique to OFR. Financial firms must analyze 
uncertain data about competitors and their own plans to evaluate strategies. Other 
government agencies are responsible for assessing other types of threats, using 
information from multiple sources. While the problem is not unique, expectations may be 
high, since OFR has been given broad power to collect data (albeit with significant 
privacy concerns), and the government is perceived as having significant ability to 
control the financial system.  
 
Section 2: Overview of Analytic Approaches 
There are several analytic approaches that might be used to assess systemic risk in the 
financial system based on data about the system. These approaches were designed to 
obtain actionable information from large, complex, noisy data, in a cost-effective manner. 
OFR might utilize all these approaches, or might focus on one or a few. Each approach 
requires different technology and skills, but they are all intended to be used by analysts, 
with expertise in information understanding, statistics, and deep understanding of the 
financial domain.  
 
Section 2.1: Analytic Databases 
Perhaps the most familiar and mature approach is to use a data warehouse implemented 
in a relational database management system (RDBMS). In these systems, incoming data 
is transformed into the data model of the warehouse via an Extract, Transform and Load 
(ETL) process. The ETL process can be used to cleanse data, addressing data quality 
issues that might prohibit successful analysis. ETL can also be used to tag data with 
source and other metadata. Often, detailed data records in the warehouse are aggregated 
or summarized into data marts (also RDBMSes) that are used by data mining or statistical 
analysis tools. The warehouse and marts can be queried using Structured Query 
Language (SQL). When text or other unstructured data are included, they are either 
processed and analyzed separately, or structured information is extracted from them and 
loaded into the warehouse. All phases of this process are currently supported by 
commercial technologies. This approach is shown in Figure 2.1. 
 



 
Figure 2.1: Relational database approach 

 
Section 2.2: Parallel Databases 
In the classic database approach, it can be difficult and expensive to scale with growing 
data sizes, and to cope with the need for ever more complex analytics run against data 
that is constantly arriving. One response to these needs is a growing trend toward 
massively parallel processing (MPP) databases. In an MPP database, data is sharded, or 
distributed across a cluster of processing nodes, each with storage and compute 
capability. There are several key differences between MPP databases and classic 
databases: 

1. As data size grows, the MPP database can be scaled out with additional hardware 
more predictably. 

2. Rather than using indexes and highly optimized queries to achieve performance, 
MPP databases use parallelism. This saves the need to store and update indexes 
and simplifies the process to add a new type of data to the system.  

3. The MPP database requires a sharding function that spreads data and computation 
across the array to successfully use parallelism. 

4. Often data can be loaded into the MPP database in parallel. In addition, data can 
be transformed and cleansed after it is loaded (ELT) or both before and after 
loaded (ETLT), taking advantage of the parallelism and consistency checking 
provided by the database while possibly creating additional copies.  

5. Data marts may not be needed; analytics can often be done directly on the 
warehouse. Some analytic tools can push computation into the warehouse to save 
on I/O and data movement.  

 
The MPP database approach is shown in Figure 2.2. 
 



 
Figure 2.2: MPP database approach 

 
Section 2.3: NoSQL Databases 
Another growing trend in analytic databases is to relax some guarantees on atomicity or 
isolation of transactions, and drop native support for SQL queries. These databases are 
referred to as NoSQL databases, which we interpret as “Not Only SQL” databases, since 
add-on capabilities are often used to emulate subsets of SQL. NoSQL databases support a 
wide variety of data models, including semantic web triples, graphs / networks, and semi-
structured documents. We focus on one particular variety of NoSQL database, where the 
data model is the key-value model, which differs from the relational model in several 
important ways: 

1. Instead of a pre-declared schema, new attributes can be added at any time. These 
are often grouped in column families, allowing efficient storage and analytics. 

2. All records have a timestamp and are versioned. Instead of updating a record in 
place, a new version is created. Analytics use only the most current version for a 
given key, by default, or can access prior versions.  

3. Like MPP databases, the data is often sharded across an array of processing units. 
Indexes are typically not supported as opposed to less frequently used in MPP 
databases. The warehouse can be scaled out as needed. New data types can be 
added as needed.  

4. Tables are stored in sorted order, by key. This supports fast retrieval of a record 
by key, or of a range of keys.  

5. SQL is typically only supported by add-on tools.  
The NoSQL database approach is shown in Figure 2.3. 
 



 
Figure 2.3: NoSQL database approach 

 
One reason the NoSQL database approach was developed for complex data analytics is 
that it does not require ETL as a precursor step to making data available for analytics, 
because new data types can be added at any time so data need not be transformed to a 
common data model. This allows analytics to be done on a new type of data very quickly, 
with the risk that the new data may not be cleansed, integrated or even understood 
sufficiently to support sound analysis. Transformations can still be done in a NoSQL 
system, either before or after data is loaded into the database. Most users of NoSQL 
databases are currently using open source software, though this may reflect the early state 
of evolution of the NoSQL industry. Users of this technology currently build custom 
analytics using approaches like key-value lookup, MapReduce, and perhaps SQL. If 
desired, data from the warehouse can be loaded into data marts (relational databases that 
support SQL) that enable use of commercial analytic tools. 
 
Many NoSQL databases lack mature security and access control capabilities. A notable 
exception is the Accumulo database, a government-developed, key-value NoSQL 
database that was released into the open source community in 2011 [NSA 2011]. 
Accumulo is modeled after Google’s BigTable, and is comparable to HBase and other 
key-value NoSQL databases. Accumulo supports an information security approach where 
each data record (or potentially, cell) is labeled with visibility attributes that govern 
access to the data. The visibility attributes are then used in combination with user 
certificates and enterprise attributes (e.g., roles of each user) to manage access to the data, 
at the desired granularity.  
 
Section 2.4: Semantic Web  



Some have argued that systemic risk assessment would benefit from semantic web data 
models and reasoning [NSF]. Commercial and open source DBMSes are available that 
support semantic web models. We refer to these as semantic triple stores. Semantic triple 
stores represent data as triples, of the form: 
 Subject: Relationship => Object 
For example, a financial firm (subject) might offer (relationship) a given financial 
instrument (object). To represent the price at which the instrument is offered, one might 
reify the offer relationship: 
 Financial Firm: Has-Relationship => Offer Relationship 
 Offer Relationship: Has-Object => Instrument 
 Offer Relationship: Has-Price => Price 
Recently, semantic triples stores have been demonstrated with up to 1 billion triples (see 
for example published claims by Franz’s AllegroGraph, and the Billion Triple 
Challenge). However, doing reasoning on triple stores of this size remains a research 
challenge. These stores are being explored to support graph analytics like social network 
analysis, since the intrinsic data model naturally supports vertices (subjects and objects) 
and edges (relationships).  
 
Section 2.5: Analytic Cloud Computing 
Some analytics efforts have abandoned databases all together, often in attempts to 
analyze massive amounts of data in a cost effective manner. In the most basic form of 
analytic cloud computing, data is stored in a distributed file system in an array, and a 
parallel program written is used to perform data processing. Hadoop is an open source 
implementation of this approach. Hadoop includes two key components: 

• The Hadoop Distributed File System (HDFS), which gives the view of a single 
file system, implemented over an array of servers (each with its own storage). 
HDFS automatically replicates file blocks for fault tolerance. HDFS is designed to 
manage very large files, using large block size for greater disk I/O throughput.  

• MapReduce is a simple language for writing programs that execute in parallel 
across the array. In the first step, a Map function is applied to each object in a set, 
producing an intermediate result set. The intermediate result set is shuffled and 
written to disk in the array. Then, a Reduce function is used to aggregate final 
results from the intermediate results.  

 
Hadoop manages the sharding of data in the array. Each Map and Reduce step is executed 
by a number of Map and Reduce processes, each working with a subset of the data. These 
processes can work in parallel without inter-process communication, which greatly 
simplifies the task of writing a correct parallel program. Hadoop manages the startup, 
execution and completion of these processes, and deals with faults that occur by starting 
new Map or Reduce processes, perhaps using replicated copies of the data. In essence, 
Hadoop supports parallel analytics that work over massive data, in a way that is tolerant 
of faults that occur during long-running programs. A typical analytic consists of a 
sequence of MapReduce jobs, each taking as input the output of the prior job.  
 
Hadoop and MapReduce are often used in combination with key-value NoSQL databases. 
In fact, many key-value NoSQL databases use HDFS for file management. The resulting 



analytic system supports MapReduce parallel programs running on underlying files or 
key-value tables. These systems also use key-value tables to pre-compute complex 
analytics (akin to materialized views in traditional databases). MapReduce can be used to 
cleanse or transform data as it is ingested into the system, and as analytics are pre-
computed in key-value tables. MapReduce can also be used to compute transformed data 
sets that can be fed to analytic tools or other databases. A variant of the analytic cloud 
approach is shown in Figure 2.4. 
 

 
Figure 2.4: Analytic cloud approach 

 
Section 2.6: Complex Event Processing  
 
The approaches we have discussed so far are designed to support complex analytics on 
massive amounts of data. If data is continuously arriving, they typically ingest data in 
batches, where data is cached until enough has been received or a time period has 
elapsed, then the data is ingested into the system. This approach can be described as high 
throughput, but potentially high latency, meaning that massive amounts of data can be 
processed by the system over time, but the time from arrival of a new data object until 
analytic results are first available that use the new data can be long.  
 
Although efforts are underway to reduce this latency for database approaches, an 
alternative is to not store the data persistently. Complex event processing (also referred to 
as stream mining) has been developed specifically for problems where massive data is 
continuously arriving and analytics are primarily used on most recent data and aggregates 
over time windows. In this approach, data is cached temporarily but not persistently 
stored. Analytics or queries are stored persistently and executed continuously, rather than 
run once as is typical for database approaches. Notionally, as data streams through the 



system, analytics are applied to identify patterns of interest and route data to other 
systems. These other systems can include analytic systems, and any of the previously 
discussed database and analytic cloud approaches. This approach is shown in Figure 2.5. 
In this figure, the complex event processing system performs “Stream Analytics” on 
incoming streams of text or structured data. Alerts are generated for threshold crossing 
and other low-latency analytic results. Some data is selected to feed into a more 
traditional data warehouse; the rest is discarded. 
 

 
Figure 2.5: Complex event processing approach 

 
Section 3: Analysis Approaches  
 
We have discussed some approaches for preparing data for analysis, and some of the 
basic means of analysis they support (e.g., SQL queries). In this section, we explore 
perhaps the most important analysis approach for the systemic risk community: modeling 
and simulation. We also give a brief overview of multi-party computation, which has 
been suggested for use in assessing systemic risk.  
 
Section 3.1: Modeling and Simulation 
 
Here we discuss approaches that rely on models of the financial system, rather than 
focusing on data about the system.  There are models that are recognized to represent the 
way that portions of the financial system work (e.g., European Central Bank (2009, 
2010)) and these models sometimes allow us to perform high confidence analyses with 
great efficiency. There are also times when a lack of data forces us to rely on approaches 
that may be rule driven (heuristic), probability driven (stochastic), or behavior driven 



(agent-based). Lack of data may result from a change in policy or business climate that 
results in previous records no longer being applicable to the current environment (such as 
the repeal of the Glass-Steagall Act in 1999), or from the recognition that an important 
factor in the analysis has not previously been measured.   
 
In addition, when conjecture about future conditions is required, our models of how 
elements of the financial system interact may allow us to forecast with more confidence 
than we could by only relying on trends embedded in data from the past. Lastly, what-if 
analyses that explore the potential impacts of various policy interventions under 
consideration may require the use of models that can support an analysis by generating 
their own data about events that never actually happened, through simulation.   
 
Heuristic models such as Principal Components Analysis (PCA) use Granger causality to 
derive linkages and interconnections within the financial system that lead to contagion 
risk from measures of correlation between equity returns Billio, et al. (2010). The PCA 
method represents the financial system as four interacting sectors: banks, brokers, 
insurance companies, and hedge funds.  
 
Stochastic models like Systemic Contingent Claims Analysis (CCA) have been used to 
estimate the government’s contingent liabilities in the event of a systemic crisis [Gray 
and Jobst (2010)].  The CCA method was originally developed for firm-level risk 
management using stochastic processes and has since been extended to evaluating 
systemic risk. 
 
Agent based models similar to the Zero Based Intelligence model (Farmer, et al. (2005)) 
use a simulation of the behavior of a community of agents, following their separate 
motivations, to demonstrate market order-book structure and price behavior with respect 
to randomly placed (zero intelligence) trades.   
 
Most of these model types can be used in the analysis of the same data organized under a 
range of computational approaches, as described in this paper. 
 
Section 3.2: Managing Model Runs 
There are many competing models used in financial analysis. In addition, new models 
will always be needed, as the financial system evolves, and as we learn more about it and 
the associated systemic risks. Thus, use of models to assess systemic risk requires an 
ability to manage the runs of models, so the provenance of model results can be tracked 
and their results can be used to make assessments.  
 
A given model may take variety of input parameters, including time period simulated and 
other aspects under the analyst’s control. These inputs must be tracked as part of the 
provenance of model results. Automatic capture of this information is strongly preferred, 
for traceability. While simulation tools may include this capability, each is likely to track 
provenance in its own way – standards and translators will be needed. 
 
Section 3.3: Multi-Party Computation 



 
The approaches we have discussed so far would typically be used within an organization. 
Addressing systemic risk will require cooperation between multiple organizations, 
including government agencies and financial firms. Although laws will require sharing of 
some sensitive information to address systemic risk, each organization may have relevant 
data that cannot be shared, and may have unique capabilities to analyze the data available 
within the organization. For this reason, researchers have been developing a theory of 
multi-party computation, in which parties do not need to share their most sensitive data. 
 
In multi-party computation, the first step is to identify what data can and cannot be 
shared. Data that can be shared can also be used to coordinate the multi-party 
computation. In some cases, raw data cannot be shared, but aggregates or masked data 
can. Algorithms have been developed in which the computation can proceed with 
minimal data sharing. Sometimes the computation is asymmetric; where different parties 
(e.g., bank and government) contribute different sorts of data.  Other times it is 
symmetric; for example, a group of financial firms may want to assess whether they 
jointly perceive a systemic risk in the financial services they offer, without disclosing the 
data they individually use to assess risk. A multi-party computational approach partitions 
the assessment into analytics that each organization can execute privately.  
 
Many multi-party algorithms have been developed, and shown to have good security 
properties. However, many of these approaches are fragile, no longer working if one 
alters the problem formulation slightly. Organizations in a multi-party computation could 
each use their own preferred computational approach, or could use a shared approach. In 
some cases, a neutral third party is used to perform the multi-party computation and 
distribute appropriate results to each participating organization.  
 
Section 3.4: Information Security 
 
The data used to assess systemic risk, and the resulting assessments, will be sensitive and 
must be protected from disclosure, corruption and theft. While it is beyond our scope to 
give a full description of all the steps required to protect information, here we touch on 
two aspects: labeling of data, and sensitivity of analysis results.  
 
The approaches we have discussed vary in their ability to label data records with 
sensitivity metadata. There are many possibilities for this metadata: disclosure may be 
limited by law or policy, retention may be limited by law or policy, access may require 
verification of a certain level of trust in the person or system accessing, etc. In addition, a 
given piece of information may be highly sensitive for one period of time, then less 
sensitive afterwards. In some cases, sensitivity metadata might need to be tracked at a 
fine granularity – for individual records or even values (cells). Most commercial database 
systems support sensitivity metadata at the table level, and can emulate it at the record or 
value level (with significant performance impact and space overhead). Accumulo also 
supports sensitivity metadata down to the value level.  
 



It might seem that the sensitivity of an analysis result could be determined as the 
maximum of the sensitivities of all the inputs that went into the result. However, this 
approach has two well-known limitations: 

1) Sensitivity of the result might be over-estimated if a highly sensitive input doesn’t 
really affect the result 

2) Sensitivity of the result might be under-estimated if the analysis creates new 
information beyond the straight-forward combination of the inputs – often, the 
whole is greater than the sum of the parts 

Despite these limitations, it is important that analysis results have sensitivity metadata. If 
a human analyst is involved in creating the results, the human should have some input to 
the sensitivity of the result. Where necessary, results might be tentatively labeled based 
on the maximum of the sensitivities of the inputs. In any case, it should be recognized 
that sensitivity of analysis results may be less certain than that of data inputs.  
 
Information security will likely be an essential element of a successful approach for 
assessing systemic risk. Firms asked to provide sensitive data will need a high degree of 
trust in the information security of the approaches used.  
 
Section 4: Discussion and Future Work 
 
We have presented several approaches for assessing systemic financial risk, using large 
amounts of data in a variety of formats that are constantly arriving. Some approaches can 
be used in combination. Choosing the right approach or combination of approaches is a 
complex systems engineering task, involving a deep understanding of the types of data 
available, the kinds of analyses to be conducted, and the policies for protecting and 
sharing sensitive data. We believe the systems engineer needs to be versed in a variety of 
approaches – choosing the right combination depends on a clear understanding of what 
data will be used, and what kinds of analysis will be performed.  
 
One challenge is to deal with ever-increasing volumes of data. Many of the approaches 
we have discussed aspire to scale linearly in the amount of data. In the ideal, this means 
that a given computation can be performed on twice as much data in the same amount of 
time, by using twice as much hardware. For some situations, the analytic cloud, MPP 
database and NoSQL database approaches in particular have been shown to have near-
linear scalability. Sometimes this near-linear scalability is limited by the network 
bandwidth available within the array of computing resources used. One important 
opportunity for future research is to identify (in ways that they can be anticipated) and 
overcome the theoretical and practical break points in near-linear scalability for different 
approaches. 
 
We expect that assessment of systemic risk will require the use of new types of data and 
new analytics over time, as the global financial services industry evolves and as 
experience is gained in assessing systemic risk. Some approaches (analytic cloud, MPP 
database, NoSQL database) achieve a high level of agility by deferring the data cleansing 
and performance tuning used in a traditional relational database analytic approach. 
Instead, they use brute-force parallelism and simplified programming models to allow an 



analytic effort to keep pace with rapidly-evolving problems. Data cleansing needs to go 
beyond simple value checks, e.g., to identify systematic biases. Data quality is not 
primarily technical, however – it is primarily about monitoring quality of what is 
supplied, setting priorities on what needs to be improved, and giving the provider 
incentives and feedback to improve what they supply. Another research opportunity is to 
extend these approaches to continuously cleanse and improve the data they use, and 
dynamically tune for performance as analysis access patterns emerge. In a sense, this 
would give the best of both worlds – new types of data could be exploited immediately, 
with strong caveats about the quality of the results, and over time further exploited with 
fewer caveats.  
 
The computational approaches we have described can support complex analytics over 
massive, varied data. The results of these analytics can be very difficult for the human 
analyst to understand, involving deep knowledge of the semantics of the data, and 
detailed information about how the analytic was implemented. Some researchers are 
investigating techniques for explaining the results of data mining algorithms to users, but 
we believe additional research is needed, especially for analytic approaches that do not 
use an integrated data model and do less cleansing of data.  
 
We discussed multi-party computation as a way to manage complex analytics over 
sensitive data. Multi-party computation is an active area of research. We also see many 
other opportunities for research in information security for analytic computational 
approaches. For example, these approaches are often designed to work across a diverse 
assortment of data sets, each of which may have different sensitivity or restrictions on 
sharing. One approach is to prevent computations from revealing sensitive information 
(even by inference); however, this is extraordinarily difficult. Alternatively, more feasible 
but less directly meeting security goals, one can limit what data is used by or visible to 
whom. 
 
We need techniques for managing which analytics can be performed on which data, to 
demonstrably ensure that the analytics adhere to data protection or usage policies. We 
also need techniques for deriving security attributes for analytic results, so that systems 
can automatically determine which users can see these results, and system behavior can 
be audited and shown to adhere to policy. While these research areas have long been 
explored for traditional relational databases, there is need to revise and apply them to the 
full range of approaches we have discussed. We also see a need for research in 
approaches to mask or anonymize sensitive data for some uses, including development of 
new analytics and research into new analytic techniques.  
 
In our view, one of the more difficult aspects of assessing systemic financial risk is 
dealing with the role of consumer confidence, or more generally, people’s perceptions of 
systemic risk and how government agencies are responding to it. For example, much has 
been written about financial firms that are perceived to be “too big to fail”, and the 
related expectation that government will bail out such firms if they falter. If 
understanding these issues is essential to assessing systemic risk, then the models need to 
include a variety of data, including social media and other sources for consumer 



confidence (which are structurally and semantically very different from traditional 
financial data sources). While researchers are currently addressing socio-cultural 
modeling and “smart power”, we see many opportunities to apply this to systemic risk 
and other financial analytic problems. Supporting such models will lead to a new 
generation of computational challenges.  
 
In a free market society, the challenge often involves finding a balance between 
regulation and freedom to innovate and compete. Much has been written about how some 
innovations in mortgage securities created systemic risks in the recent financial crisis. We 
see a need for analytic models that account for innovation in financial instruments and 
that include potential government responses other than just restrictions on innovation. 
These models should also have relevance in a world where there are multiple governance 
philosophies, including both national and international (e.g., the European Union). We 
see need for models that can help government agencies cope with financial innovation, 
while addressing systemic risk in a globally-connected economy. Addressing this grand 
challenge will require multi-disciplinary research, using a variety of computational 
approaches on large, complex data.  
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