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Abstract

We describe, optimize, and compare covariance encodirgyrseb Several current systems encode
three dimensional covariances in terms of their eigengadunel Euler angles. We generalize this method
to n dimensions. We precondition covariances to ensure thansticted matrices will be positive
definite. We propose a new scalar measure of merit for covagiancodings, the Bhattacharyya distance.
We compare the schemes in terms of the encoding error anditioeli@g length in bits. We recommend
using enough bits to make the encoding error small comparéukterror described by the covariance
itself. The most #icient scheme uses logarithmic encoding of the variancedirseat encoding of the
Cholesky factor of the correlation matrix.

1 Introduction

In a networked tracking system for airborne or ballistic targets, it is usumtchange not only track states
(position, velocity, and possibly acceleration), but also their covarg@rtoefacilitate cross-sensor cueing
(determining what region to search for a target), track association fjdeiag whether tracks are close
enough to correspond to the same object), and track fusion (optimally comlbivoriracks). For covariance
encoding, the most important requirement is that the recipient must alveagtroct a positive definite
matrix, which represents physically plausible track state uncertainties.n&arly, the encoding should
efficiently compromise between communications bandwidth used and error irgbauthe covariance.

To characterize the error introduced by encoding, we propose usrightattacharyya distance [2, 5].
This scalar measure is easily calculated, and accounts for all the possitlebptions. It also permits the
encoding error to be directly compared with the errors (from measurepmavigation, etc.) described by
the covariance itself. We use this to establish a criterion for choosing fiedd: dilzat the error introduced
by the encoding be small compared to the error already present in thestaaek

We discuss encoding methods that can be applied to more than three dimeSsi@rsl current systems
encode three dimensional covariances in terms of their eigenvalues $ardaBgles. We generalize this
method ton dimensions. If communications bandwidths are severely constrained, it enapgropriate
to encode only partial covariance information (e.g. only horizontal comapisn or only variances). Such
schemes are not considered here.

The remainder of this paper is organized as follows: Section 2 discussesirae of merit for co-
variance encoding. The testing method is described in Section 3. Secticstdbes several alternative
encoding schemes and shows their individual performance. The sst@meompared in Section 5, and
recommendations appear in Section 6.

2 Measuresof Merit

Several measures of merit have been used in the past to evaluate mowarecodings [10, 11]. Some
measures are most applicable to track association, and others to sesisgr. dyropose a new measure
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which accounts for all the possibl&ects of encoding on the covariance.

2.1 Association-Related M easures of Merit

Consider two trackg; andx, with corresponding track covariancBg andP»,. The likelihood these reports
should be associated (that is, that they plausibly represent the samé oiggcbe estimated using the
Mahalanobis distand®n,

DE = (X1 — X2)T(P1 + P2) " (x1 — X2), 1)

whereT denotes the transpose, abf has a Chi-square distribution.

D2, is a function of the sum of the two track covariances. Assume one trackabdad known very
accurately, so the distance is dominated by the covariance of the remotéiaoke with encoding error).
Let P be the true covariance of the distant track, Badbe the covariance after encoding and decoding. One
reasonable figure of merit is the ratio of the two Mahalanobis distances

X" Pox
XTPx’

(2)

averaged over test displacemertsn the unitn-sphere [10]. The optimum value of this metric is one. This

measure is more sensitive to changes in a small eigenvalue than a largegoael@percent change in the

smallest eigenvalue makes a much largéiiedence than a 10 percent change in the largest eigenvalue).
The following MATLAB code estimates this metric using a Monte Carlo method.

function merit = mah(p,p2)
% this measure should be near one, can be either greater or
% smaller than one, and small values are especially bad
% 18 quasi-Monte Carlo trials
mah=zeros(3,6);
for k=1:3
[r,q]l=qr(randn(6,6)) ;
if det(r)<®, r(:,1)=-r(:,1); end % r is now a random 6D rotation

for j=1:6
x=r(:,j); % x is uniformly distributed in the unit 6-sphere
mah(k, j)=x"*(p2\x) /(x’ *(p\x));
end
end

merit=mean(mean(mah));

The first parameter afiah is the original covariance of the remote track, and the second parameter is th
covariance after encoding and decoding.

The inverse of the error covariance is known as the Fisher informatiorixnilr It represents the
amount of information in a measurement, in the following sense. Supposewgeahaestimate of the
current state of a system, and a linear measuregeiith covarianceP. We could use a Kalman filter to
update the state with the measurement. As a thought experiment, imagine insteadioé measurement,
we had two “sub-measurements”, the first with vajuend covariancé®;, and the second with the same
valuey but with covariance,. Using the same Kalman filter, we could update the state with each sub-
measurement in turn. It turns out that tHéeet on the state would be the sameRift = Pil + Pgl, i.e. the
Fisher information matrix for the original measurement is the sum of the Fisteeniation matrices of the
two sub-measurements.

A random orthogonal matrix can be generated using the QR algorithm [8]



Recall that the trace of a matrix (the sum of the diagonal elements) is invaritmtotations. This
suggests that the trace of the inverse of the covariance could be &ssghr measure of the information
[11]. If the state elements haveidirent units, it is necessary to scale the covariance appropriately,ithg. w

a matrix
[ 1

S= ; 3)

T

T

wherer is some suitable time constant (e.g. the expected latency of the track repbdif ¢the update
interval). Suppose a covarianéeis encoded then decoded, resulting in a malix If an encoding is
guaranteed to be conservative, a suitable measure of the information lost is

tr {(SP2S) %}

EaGEEDR )

If the encoding is not conservative, we may first scale the recovenatiance to make it conservative and
then measure the information loss. llétbe the Cholesky factor d®~1, so thatP~1 = UTU. Then the
scaling constark is the smallest eigenvalue bfP,UT, and the measure of information lost becomes

tr {(SP2S)1}
For example:

% fraction of the information lost, so 0 is perfect
S=diag([1 11 6 6 6]);

u=chol(inv(p));

k=min(eig(u*p2*u’));
merit=1-k*trace(inv(S*p2*S’))/trace(inv(S*p*S’));

The information metric is largely determined by the best-known components wathestate (i.e., the small
eigenvalues oP).

2.2 Cueing-Related Measures of Merit

Another family of measures is related to sensor cueing. Suppose a track fisthe purpose of cueing a
second sensor, which will perform a search in two dimensions to acqeitaipet. If the cue is too large,
the sensor will wastefort on regions unlikely to contain the target (“waste’—see Figure 1) elttie is too
small, the sensor may fail to look in likely regions (“leakage”). If the measerd is characterized by the
2 x n measurement matrill, the most #icient search region is the ellipse defined by

XP o X < X%, (6)
wherePp,; is the two dimensional projection of the covariance
Pproj = MPMT, (7)

andy is chosen according to the chi-square distribution so the target is inclutiethes desired probability.
For example, to include the target 95 percent of the time, we would choes®.4477, sinceP(y?|v) =
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cued ellipse

searched ellipse

waste area leakage area

Figure 1: “Cookie Cutter” Model of Cueing.

1-Q(x?lv) = .95 forv = 2. Let thecue ellipse be derived from the original track covariance (for 95 percent
inclusion probability), and theearch ellipse be derived from the covariance reconstructed from the track
report. Thdeakage arearatio is the area in the cue ellipse but outside the search ellipse, divided by the are
of the cue ellipse [10]. E.g.:

function [leak,theta]=1leakage(p,p2)
% leakage - calculate leakage area ratio (area in ellipse p but not in p2,
% divided by area in p)
u=chol (inv(p)); % whitening transformation
eval=eig(u*p2*u’);
b=sqrt(min(eval));
a=sqrt(max(eval));
if 1<b
leak=0;
else
if a<1
leak=1-a*b;
else
theta=atan2(sqrt(a”2-1)*b,a*sqrt(1-b"2));
leak=-2*(a"2*b*asin(cos(theta)/a)...
-a*asin(cos(theta))...
+b*cos(theta)*sqrt(a”2-cos(theta) "2)...
-a*cos(theta)*sin(theta))/a/pi;
end
end

Thewaste area ratio is the area in the search ellipse but outside the cue ellipse, divided by thefdhea
search ellipse [10]. Each of these measures is non-negative, with optitaalof zero.

The leakage ratio and waste area ratio take a “cookie cutter” view, sucteduzhing anywhere outside
the cue ellipse is worthless, and failing to search anywhere inside it is isalsleu However, the actual
value of a given search region depends on its statistical distance frooetier of the cue. Suppose the
cue ellipse contains the target with probabilftyand the search ellipse contains it with probability The
leakage fraction [10] is then

fo — fe. (8)

It can be negative (indicating the sensor will acquire the target with morettieaexpected probability) as
well as positive.



The following function calculates the fractigg = 1 — fs of the distribution outside the search ellipse:

function p=exclude(pl,p2,f,tol)

% exclude - return integral of a bivariate normal distribution with

% covariance pl, outside the ellipse defined by p2, scaled by factor k.
% That is, the integral over x=[x1 x2]’ satisfying x’*p2°(-1)*x > 1

% of 1/(2*pi)*exp(-(1/2)*x’*pl1°(-1)*x), where f = -k"2/2

%

% Inputs:

% pl = 2*%2 covariance of the normal distribution function

% p2 = 2%2 covariance defining the elliptical boundary of the

% integration region

% £ = optional probability specifying the scaling factor for the

% integration boundary. The boundary ellipse is scaled by a factor
% k according to the chi squared distribution for two degrees of

% freedom, such that a fraction f would fall outside the radius

% k. (default=.05)

% tol = optional absolute integration error tolerance (default 1.e-6)

global axis_a axis_b

if nargin<3; f=.05; end

if nargin<4; tol=1.e-6; end

scale = sqrt(-2*log(f));

u = chol(inv(pl)); % whiten the error
eval = eig(u*p2*u’);

axis_a = scale*sqrt(eval(l));

axis_b = scale*sqrt(eval(2));

p = 4*quad(’integrand’,0,pi/2,to0l);

function r=integrand(theta)

% integrand - calculate integrand for function exclude
global axis_a axis_b

R = 1./sqrt((cos(theta)/axis_a). 2 + (sin(theta)/axis_b). 2);
r = exp(-R."2/2)/2/pi;

The area of the search ellipse is

As = m+/detPs)(-21og(.05)), 9)

where detd) is the determinant oA. An optimal search area including a fractidgof the distribution
would have area

Ao = mtydet(Ps)(-21og(@s) (10)

Thewaste fraction is the fraction by which the search area could be reduced, and still coin¢giiarget with
the same probability as the cue ellipse [10]:
As— Ao
As
All of these waste and leakage metrics should be averaged over projdoetions. If the track un-
certainty is much smaller in some directions than others (as is common for sidgietracks), then these
metrics are sensitive mainly to the large dimensions of the uncertainty (i.e., teeciganvalues d®). This

(11)
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is because the cued sensor rarely has the favorable geometry to takdviaitage of the well-measured
component of the target position. They are also sensitive to rotations ohtestainty ellipsoid.

2.3 Bhattacharyya Distance

Each of the above metrics accounts for only a subset of possible paiturbin the covariance (e.g., rotation
of the ellipsoid, or changes in small eigenvalues, or changes in largevaiges). | propose a new metric
that accounts for all these perturbations: Biattacharyya distance? [2, 5].

The Bhattacharyya distance is a scalar separability measure betweenotvedbifity distributions. If

two multivariate normal distributions have meagnand covariancd;, i = 1,2, then the Bhattacharyya
distance between them is L L det
b==6"P 15+ > Iog( etP) ) (12)
8 ’ Vdet(P;) det(P2)

wheres = my — mp andP = (P + Py)/2.

This distance summarizes all the possible ways an encoding could pertadi agport. The first terfn
is positive if the means of the two distributiondfdr. The second term is positive if their covariances
differ, i.e., the uncertainty ellipsoids havefdrent axes aridr orientations. It is invariant with rotations and
translations of the coordinate system. It is equally sensitive to changeslardgleeor small eigenvalues.

The encoding error will be greater for some messages than others, theedondition number of the
covariance and (for some encoding methods) how well the axes of tleetaimty ellipsoid align with the
coordinate axes. To account for this variability among messages, westugging as our metric tHoth
percentile of the Bhattacharyya distance over a representative sample of covariances.

To establish a reasonable criterion for this metric, we note that the Bhattgaldisyance depends on the
mean of the track report, so it will béfacted by measurement errdreet my andm, be twon-dimensional
estimated states, with the same covariaBcands = m; — mp. For example, they might be estimates from
different Monte Carlo trials of a tracking simulation. Without loss of generalityassimeP is diagonal.
The expected Bhattacharyya distance between the reports, due to emeasuerror alone, is then

1/02 ) 61
b = %[51 62 -+ O He .. 5:2 +0
vz Il s
2 2
_ %j_li j_zg +j_22 SR (13)

In the third expression, the sum of the normalized errorsisather tham, because both measurements
contribute errors t@.

We suggest that sensor systems are typically much more expensive theonthmunication network
used to report their measurements, so in tradifighe investment in the two systems, the emphasis should
be on preserving as much as possible of the measurement informatioris, Maatwant the encoding error
to be small compared to the measurement €rrve also recognize that our metric will not accurately

2Hint: “ch” is pronounced as in “charcoal”, not as in “chaos”.

Swhich is proportional to the Mahalanobis distance

4The mean is alsoffected by round-§ errors during encoding. We assume the track state encoding has abiggheresolution
that round-d errors are much smaller than measurement errors. Roffirirors are not considered in this analysis.

5In that case, we feel it is not necessary to ensure the encoding isreatige (that the decoded covariance completely encloses
the original covariance [9]).
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Figure 2: Bhattacharyya Distane€0.05 due to Rotation and Scaling.

reflect the impact of the encoding error on each actual application. Ygestia factor of ten margin, giving
us this criterion:The 90th percentile Bhattacharyya distance should be less than n/40.

In 2D, the suggested criterion would be= 2/40 = 0.05. As an illustration, Figure 2 shows the “one
sigma” uncertainty ellipses for an original covariance, a rotated veraienaled version, and intermediate
rotated and scaled versions. All the perturbed covariances are atta@aryya distance of 0.05 from
the original. Similarly, ellipses perturbed by scaling and displacement avensihd~igure 3, and ellipses
perturbed by displacement and changed aspect ratio are shown ie Bigur

3 Testing

For best results, an encoding scheme should be matched to the expeetéanues.

The dificulty of encoding a correlation matrix increases according to its condition au(ttie ratio of
the largest to smallest eigenvalue). Single-sensor track covariance®tbave high condition numbers,
because a typical radar can measure range much more accurately glenGomposite track covariances
tend to have lower condition numbers, because they are updated bglsmresor§. Figures 5 and 6 show
distributions of condition numbers and of eigenvalues of position and veloaitgriance sub-matrices for
two sets of covariances.

Each proposed encoding was subjected to Monte Carlo testing with 10@@vastances. For example,
in the 6x 6 case, each test covariariéevas generated as

P = Rex6SPoST Rl (14)

6Similarly, in Global Positioning Satellite navigation, the Geometric Dilution of Pieei§GDOP) is reduced when more
satellites are visible.
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Figure 3: Bhattacharyya Distane®.05 due to Scaling and Displacement.
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Figure 4: Bhattacharyya Distane®.05 due to Displacement and Aspect Ratio.
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Figure 5: Covariance Matrix Characteristics for Single-Sensor Tracks
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Table 1: Axis Limits for Test Covariances

Axis Lower Limit Upper Limit  Units

i Ii U;
1 22 500 m
2 5 106 m
3 1 22 m
4 4 1000 s
5 4 64 ns
6 4 16 ms
7 12 50 mis?
8 6 25 mis?
9 3 12 mis?
where )
01
o3
Py = o5 (15)
0'31 ’
o2 ,
0'6 |

theith semi-axisr; is log-uniformly distributed betweenandu; as shown Table 1,

1 0 0 p O O]
01 0O0pO
|0 0 1 0 0p
S= p 00 1 0 0O (16)
0p 0010O0
| 0 0 p O O 1]
p is uniformly distributed in J5, .9], Rexs iS @ block diagonal rotation matrix
| Rexa O
R6><6 - [ o R3><3 ] s (17)

andRs«3 is a uniformly distributed random 3D rotation. Distributions of eigenvaluesandition numbers

for the test covariances are shown in Figure 7.

Each of these test covariances was encoded, decoded, and theBdrgtta distance between the orig-
inal and decoded covariances calculated. The random number tpersmad was reset before each run, so
the same covariances were used to test each encoding method.

4 Encoding Methods

Several covariance encoding methods have been suggested:
¢ Encode the covariance elements directly.

e Encode the variances and the correlation matrix.
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Figure 7: Characteristics of Test Covariances.

e For 3x 3 covariance, encode the eigenvalues and the Euler angles needeahtsimect the eigenvec-
tors (i.e. the lengths and directions of the principle axes of the uncertaintgaatlip

The first two classes of encodings generalize immediately to more dimensioafoWwd two ways to
extend the third class to more dimensions.

4.1 Covariance Element Encoding

The simplest scheme directly encodes each element of the covariance inagaxithmic encoding is used,

to cover a large dynamic range. The resolution depends on the field sizleeathynamic range of the values
being encoded. This is shown in Figure 8. We assume a dynamic rang@@fi26or variances (which are
always positive), it then takes 8 bits to give 3 percent resolution. |.gatfebetween encoded values is

I:)mi n

=) 1/28
( max) = 2000"2°¢ = 1.030 (18)

If by, bits are used for each diagonal element, a v&lieencoded by an integer

, log(V/Prin) 1
_ 1 1
! {Clog(Pmax/Pmm) * 2J ’ (19)
wherec = 2° — 2. The decoded value is
Proax|/°
Vdecoded = Pmin(P—_) : (20)
min

Oft-diagonal elements of the covariance can be of either sign, so we neextrarbit to encode those
elements with the same resolution. If we Ugebits for each f&-diagonal element, then the length of the

11
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Figure 8: Resolution of Logarithmic Encoding.

encoding (i.e. the number of bits to encode the upper triangular portion sjthmetric covariance matrix)

is
nin-1)

Nbm + be. (21)

Here, we assumie; = by, + 1.

With this scheme, a large fraction of reconstructed matrices would not itespaefinite, making them
invalid covariance matrices (i.e. witlmaginary uncertainties). Figure 9 shows distributions of ratios of
eigenvalues (i.e. the largest eigenvalue of the reconstructed matrixdiividene largest eigenvalue of the
original matrix, etc.) withb; = 9 andby, = 8. For our test matrices, 58 percent of the reconstructed matrices
have at least one negative eigenvalue, and 15 percent have two!

To ensure the reconstruction of positive definite matrices, weposgompensate by multiplying each
off-diagonal element of the covariance by &. This kind of precompensation has théeet of inflating the
uncertainty ellipsoid, more significantly for the smaller axes than the largsr &¥e find empirically that
e = 257% is sufficient.

The encoding ficiency of this scheme, with and without precompensation, is shown in Figura 1
terms of the 90 percentile Bhattacharyya distance. Precompensation me&asdtling very conservative—
the eigenvalues are never negative, but mostly they are too large.

The basic problem with this encoding scheme is that accommodating a largaidyaage in covari-
ance element values forces us to use a coarse resolution, which maitgsuttdo keep the reconstructed
covariances positive definite.

4.2 Root Variance/Correlation Matrix Encoding

We may make the encoding morffieient by first expressing the covariance in terms of root variances (the
square roots of diagonal elements of the covariance matrix) and a tiometzatrix, as suggested by Jerardi
[4]. Then root variances have a large dynamic range, and can be encodeithlodgzally as above using

12
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Figure 11: Hficiency of Root Variang€orrelation Matrix Encoding.

a relatively coarse resolution. The positive definiteness of the coearidepends only on the correlation
matrix elements. These have a finite rang#, (L), and can be encoded linearly with a fine resolutiorn If
bits are used for each correlation element, a v&lweould be encoded by an integer

i = min{lcC|,c—1}, (22)

wherec = 2°%-1 and the decoded value would be

i+1/2
Cdecoded = R (23)

The length of the encoding is again given by (21). We find it is adequatetmmpensate using= 2170,
which is much less than in Section 4.2. Thatency is shown in Figure 11. Since there are two parameters,
there is actually a family of curves. For the mofii@ent encodings (thefigcient frontier, or Pareto bound),
we have approximatelygm, = be — 3.

4.3 Root Variance/Correlation Factor Encoding

As mentioned above, thefiiculty of encoding a matrix increases with its condition number. Using the
Cholesky decomposition, we may find an upper triangular matrisuch thaiC = UTU. The condition
number ofU is the square root of the condition numbei@fsoU is much easier to encode th&r{6].

U hasn(n + 1)/2 nonzero elements. We encode all but the first row dinearly using (22). The first
row of U is the same as the first row Gf so the first element is always 1 and need not be encoded. We use
n — 1 bits to encode only the signs of the remaining elements. Each column obeys#tmmt

Z Uz =1, (24)
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Figure 12: Hiciency of Root Variang€orrelation Factor Encoding.

and this can be used to find the magnitudes of those elements. The length o€ditkng is again given
by (21). For precompensation, we can aise 22, which is much less than in Section 4.2 or 4.1. The
encoding éiciency is shown in Figure 12. For the mofii@ent encodings, we halsg, = 0.6b; + 4.4.

Applying this scheme to thex33 and 9x 9 test covariances results in the performance shown in Figures
13 and 14. (The knees in the<33 figure are neay, = be + 1, but theby, = 0.6b; + 4.4 points are still near
the Pareto bound, and we expect 6 covariances will be sent more often.) In each case, the encoding with
b. = 6 andb, = 8 meets the suggested requirement.

4.4 Eigenvalue/Rodrigues Parameter Encoding

In 3D, a covariance may be encoded using its three eigenvalues togéthénnee Euler angles, as in a re-
cent patent [9]. This can be generalizedhtdimensions as follows. Using the singular value decomposition
algorithm, we may factor a covarianBeas

P=USUT, (25)

whereS is diagonal (the diagonal elements are the eigenvaluB¥ afidU is orthogonal. In general) has
n? independent elements. However, we may useXgey transform [3] to parameterize it as a function of
a skew-symmetric matrig

U=(-QU+Q ' =(1+Q7(-Q) (26)

where
Q=(>1-U)(1+U)t=(0+U)1-). (27)

(This fails if U has an eigenvalue at -1 — for example, in two dimensions, a 180 degréengta
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Figure 15: Hiciency of Encoding using Rodrigues Parameters.

TheM = n(n- 1)/2 independent elements Qfare theextended Rodrigues parameters[7]. Let g be the
vector of extended Rodrigues parameters, e.g. in 3D

0 -z
Q=| @ 0 -a |, (28)
-2 ¢ O

orin 6D

0 -0i5 Q4 —-0O13 Q2 —Ou1 |
s O -0 Qo -0s ar
—Qus Qo O -0 05 -O4

Q= gz -G G O -0z 02 | (29)
Oz 9 -5 @ O -4
Juu —Qr B -G o 0

Theg; take on all values including infinity.However, for a random orthogonal mattix the elements o
have a tangent distribution—i.e. the arc tangents of elemer@sawé uniformly distributed in-{x/2, 7/2].
Therefore, we encode an element of Q usipdits as

m = 2%71C atang). (30)

The encoding length is again given by (21). With this scheme, the recotedmnatrix is always positive
definite, so no precompensation is necessary. flisiency is shown in Figure 15. For the moslig@ent
encodings, we have approximatdly = (b; + 1)/3.

Since any three-parameter parameterization of three-dimensiortidmsthas singularities, we should expect\aparameter
description ofU to have singularities too.
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Figure 16: Hiiciency of Encoding using Once-Redundant Parameters.

When Q has large elements, encoding using this scheme does not improve much ageesenthe
number of bits. The degradation may be reduced by encoding an elenrant us

_ [ 2%71C atan(yG) g >0 31)
T | -2%7IC atan(yigl) g <O °

However, the scheme in the following section is even better.

45 Eigenvalue/Once-Redundant Encoding

A relatively dhicient covariance encoding can be designed using the once-redwrdarding for am-
dimensional rotation introduced by Schaub, Tsiotras, and Junkins [&]ste¥t with SVD factoring and a
Cayley transform as in the previous section. Let the Rodrigues paranbegr i = [1... M]. Introduce a
scaled set of paramete8s= Boq;, with the constraint

Bo+BE+-+ By =1, (32)

so that
1

0= .
\/1+q§+q§+---+qf,I

Like the Euler parameters (quaternions) in 3D, these once-redundearngters have no singularitiés.
They have a finite range-(, 1), and can be encoded linearly. Th@ency of this method is shown in
Figure 16. The mostfcient encodings are fdy,, = max.38b¢, b, — 7}.

(33)

B

8This advantage is of course lost if, as here, they are calculated in tétives Rodrigues parameters. It is possible to calculate
them directly (see [7, equation 52]). However, as shown below, theytlturn out to be &icient enough to warrant thefert.
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5 Comparison of Encoding M ethods

The Pareto boundfiéciency curves for encoding 6D covariances using the encoding ssheéeseribed in
Chapter 4 are collected in Figure 17. The mditent scheme encodes the root variances and all but the
first row of the correlation matrix factor.

The cumulative distributions of errors for th& 6 test covariances are shown in Figure 18. The encoding
with by, = 8 andb, = 6 meets the suggested criterion on the 90th percentile Bhattacharyya distance
b < n/40 = 0.15 for n=6 dimensions.

As mentioned above, even if the covariance were encoded perfecthgdbiged state would still dier
from the truth due to measurement error. We would expletbdbe chi-square distributed withdegrees of
freedom. This contributiorR(4b|6), is plotted in the same figure for reference.

6 Recommendations

We recommend that covariances be encoded using the scheme descBbetian 4.3 (root variangeorrelation
factor encoding), with one of these parameter settings:

[ ] bC=5aﬂdbm=8,
e b, =6andb,=8,or
e b. =6 andby, =9.

This recommendation is based on the set of test matrices adopted for testimg.bitéomay be needed
for the magnitude if the dynamic range of encoded root variances is sextear for the correlation matrix
factor if covariance matrix condition numbers are found to be higher.
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A Sample Program

997.

The recommended encoding method (root varifgareelation factor encoding) was analyzed using the
following MATLAB /Octave program:

function precomp4(mbits, c
% precomp4 - test precompe
if nargin<3; n=6; end % #

bits, n, oname, plotting)
nsation when encoding all but first row of U
states (may be 3, 6, or 9)

if nargin<4; oname=[mfilename ’'.dat’]; end

if nargin<5; plotting=0; e

% These values are only fo
if nargin<l mbits 8; end
if nargin<2 cbhits = 8; end
pmin [T11111111]
pmax [2000 2000 2000 10

nd

r illustration

% bits for magnitudes

% bits for covariance elements
; % m, m/s, m/s"2
00 1000 1000 100 100 100];

% upper and lower bounds for root variances

du = [ 500 106 22 1000 6
dl= [ 2251 4 44

mbit_total=n*mbits;

% bits for signs, off-diag
cbit_total=n-1 + cbits*(n-
bit_total=mbit_total+cbit_

fprintf([’ -----------———-
omitting first ro
cbits, cbit_total)
fprintf(’ --------------—-—-
mbits, mbit_total,

mcode

2 mbits-2; %

ccode = 2" (cbits-1); %

epsilon = 27 (-2*cbits);

eval2_worst=1e9;

if exist(’OCTAVE_VERSION’)
rand(’state’,42);

randn(’state’,42);
else

4 16 50 25 12];
12 6 3];

onal elements, diagonal elements:
D*(n-2)/2 + (cbits-1)*(n-1);
total;

w, %d bits for correlation ----------- \n’],
mbits=%d, %d bits for magnitudes, %d bits total
bit_total);

root variance codes are in [0:mcode],
2"mbits-1 = "no statement"

"no statement" not permitted, covariance
codes are in [-ccode: ccode-1]

% rand(’twister’,5489); % MATLAB 7.7 accepts this syntax, but doesn’t
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% actually reset the random number generator
reset (RandStream.getDefaultStream); % reset random number generator
end

N=1le3;
ratio=zeros(N,n);
K=0; % # valid test cases so far
for KK=1:N
d =dl.*(du./dl). " rand(1,9); % log-uniformly distributed between bounds

S diag(d(l:n));
rho=diag(.5*%.4*rand*ones(1,3)); % position-velocity correlation
% ranges from +0.5 to +0.9 (typically 0.7)
[r,ql=qr(randn(3,3));
if det(r)<0®, r(:,1)=-r(:,1); end; % r is now a random 3D rotation matrix
switch n
case 3
cr=eye(3);
case 6
cr=[eye(3) rho;rho eye(3)];
r=blkdiag(r,r);
case 9
cr=[eye(3) rho zeros(3,3); rho eye(3) rho; zeros(3,3) rho eye(3)];
r=blkdiag(r,r,r);
end

p=floor(r*s*cr*s*r’);

% encode the covariance

sig=sqrt(diag(p)); % root variances

d=diag(l./sig);

c=d*p*d; % correlation matrix

if minCeig(c))>0 % valid correlation matrix?
K=K+1;

evall=sort(eig(p));

% precompensate

c=(1l-epsilon)*c;

for k=1:n
c(k,k)=1;

end

u=chol(c); % Cholesky factor such that u’*u = c
% note k=n here
% linear encoding of Cholesky factor
msg = zeros(l, n + n-1 + n*(n-1)/2); % n for root variances + n-1 for
% signs + n*(n-1)/2 for U
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% log encoding of root variances

for k=1:n
msg(k)=floor( mcode*log(sig (k) /pmin(k))/log(pmax (k) /pmin(k))+1/2 );
msg(k)=max(®, min(mcode, msg(k))); % sanitize

end

msg(n+1:2*n-1)=u(l,2:n)<0; % signs of elements in top row

% linear encoding of U
k = 2*n;
for j=2:n
for i=2:j % omit first row
msg (k)=min(floor(ccode*u(i,j)),ccode-1);
k=k+1;
end
end

% decode covariance
u2 = zeros(n,n);

u2(1,1)=1;
k = 2*n;
for j = 2:n
sum = 1;
for i = 2:j
u2(i,j) = (msg(k)+1/2)/ccode;
sum = sum - u2(i,j) " 2;
k = k+1;
end

if msg(n+j-1); sign=-1; else sign=1; end
u2(l,j) = sign*sqgrt(max(®, sum));
end

c2=u2’*u2;

sig = pmin(l:n).*(pmax(l:n)./pmin(1l:n))."  ((msg(1l:n))/mcode);
s = diag(sig);
p2 = s*c2*s;

eval2=sort(eig(p2));
ratio(K, :)=eval2./evall; % assume the eigenvectors correspond
if eval2(l)<eval2_worst

eval2_worst=eval2(1l);

p_worst=p;

c_worst=c;

u_worst=u;

msg_worst=msg;

u2_worst=u2;

c2_worst=c2;
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end

pm=(p+p2) /2;
bhat (K)=.5*1log(det (pm) /sqrt(det(p)*det(p2)))/2; % Bhattacharyya distance
end

end

fprintf('worst eigenvalue = %13.6g, corresponding to:\n’, eval2_worst);
fprintf(’p="); disp(p_worst);
fprintf(’ eigenvalues= %10.3g %10.3g %10.3g %10.3g %10.3g %10.3g\n’, sort(eig(p_worst)));
fprintf('c="); disp(c_worst);
fprintf(’ eigenvalues= %10.3g %10.3g %10.3g %10.3g %10.3g %10.3g\n’, sort(eig(c_worst)));
fprintf(’\nu="); disp(u_worst);
fprintf(’\nmsg="); disp(msg_worst);
fprintf(’\nu2="); disp(u2_worst);
fprintf(’\nc2="); disp(c2_worst);

fprintf(’ eigenvalues= %10.3g %10.3g %10.3g %10.3g %10.3g %10.3g\n’, sort(eig(c2_worst)));
fprintf(’\n’);
fprintf("K eig(u3) eig(c3)\n’);

y=[.5:K]’/K;

ratio=sort(ratio(1:K,:));

if plotting>1
figure(4);
plot(ratio(:,1),y,ratio(:,2),y,ratio(:,3),y);
axis([.95 1.05 0 1]);

end

bhat=sort(bhat);
if plotting>0, figure(24); semilogx(bhat,y); end

ofile=fopen(oname, 'wt’);

fprintf('# encoding Cholesky factor of correlation matrix, omitting first row\n’);
fprintf(’# cbits = %2d, %3d bits for correlation\n’, cbits, cbit_total);

fprintf('# mbits = %2d, %3d bits for magnitudes\n’, mbits, mbit_total);

fprintf(’# %3d bits total\n’, bit_total);

fprintf('median Bhattacharyya distance = %f\n’, bhat(round(X/2)));

fprintf(’90th percentile Bhattacharyya distance = %f\n’, bhat(round(K*.9)));

fprintf(’%4d %f ##\n’, bit_total, bhat(round(round(K*.9)))); % for score*.dat file
fprintf(ofile, "# %s(%d, %d, %d, ’’%s’’, %d)\n’, mfilename, mbits, cbits, n, oname, plotting);
fprintf(ofile, ’'# encoding Cholesky factor of correlation matrix, omitting first row\n’);
fprintf(ofile, ’'# cbits = %2d, %3d bits for correlation\n’, cbits, cbit_total);
fprintf(ofile, ’'# mbits = %2d, %3d bits for magnitudes\n’, mbits, mbit_total);
fprintf(ofile, '# %3d bits total\n’, bit_total);

fprintf(ofile, ’'# median Bhattacharyya distance = %f\n’, bhat(round(X/2)));
fprintf(ofile, ’'# 90th percentile Bhattacharyya distance = %f\n’, bhat(round(K*.9)));
fprintf(ofile, '# fraction bhat ratio(l) ratio(2) ratio(3)\n’);

for i=1:K
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fprintf(ofile,’%f %f %f %f %f\n’, y(i), bhat(i), ratio(i,1),ratio(i,2),ratio(i,3));
end
fclose(ofile);
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