
Efficient Covariance Encoding

James R. Van Zandt

July 28, 2011

Abstract

We describe, optimize, and compare covariance encoding schemes. Several current systems encode
three dimensional covariances in terms of their eigenvalues and Euler angles. We generalize this method
to n dimensions. We precondition covariances to ensure that reconstructed matrices will be positive
definite. We propose a new scalar measure of merit for covariance encodings, the Bhattacharyya distance.
We compare the schemes in terms of the encoding error and the encoding length in bits. We recommend
using enough bits to make the encoding error small compared to the error described by the covariance
itself. The most efficient scheme uses logarithmic encoding of the variances andlinear encoding of the
Cholesky factor of the correlation matrix.

1 Introduction

In a networked tracking system for airborne or ballistic targets, it is usualto exchange not only track states
(position, velocity, and possibly acceleration), but also their covariances, to facilitate cross-sensor cueing
(determining what region to search for a target), track association (determining whether tracks are close
enough to correspond to the same object), and track fusion (optimally combining two tracks). For covariance
encoding, the most important requirement is that the recipient must always construct a positive definite
matrix, which represents physically plausible track state uncertainties. Secondarily, the encoding should
efficiently compromise between communications bandwidth used and error introduced in the covariance.

To characterize the error introduced by encoding, we propose using the Bhattacharyya distance [2, 5].
This scalar measure is easily calculated, and accounts for all the possible perturbations. It also permits the
encoding error to be directly compared with the errors (from measurements, navigation, etc.) described by
the covariance itself. We use this to establish a criterion for choosing field sizes: that the error introduced
by the encoding be small compared to the error already present in the trackstate.

We discuss encoding methods that can be applied to more than three dimensions.Several current systems
encode three dimensional covariances in terms of their eigenvalues and Euler angles. We generalize this
method ton dimensions. If communications bandwidths are severely constrained, it may be appropriate
to encode only partial covariance information (e.g. only horizontal components, or only variances). Such
schemes are not considered here.

The remainder of this paper is organized as follows: Section 2 discusses measures of merit for co-
variance encoding. The testing method is described in Section 3. Section 4 describes several alternative
encoding schemes and shows their individual performance. The schemes are compared in Section 5, and
recommendations appear in Section 6.

2 Measures of Merit

Several measures of merit have been used in the past to evaluate covariance encodings [10, 11]. Some
measures are most applicable to track association, and others to sensor cueing. I propose a new measure

1

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 11-2903

which accounts for all the possible effects of encoding on the covariance.

2.1 Association-Related Measures of Merit

Consider two tracksx1 andx2 with corresponding track covariancesP1 andP2. The likelihood these reports
should be associated (that is, that they plausibly represent the same object) may be estimated using the
Mahalanobis distanceDm

D2
m = (x1 − x2)T (P1 + P2)−1(x1 − x2), (1)

whereT denotes the transpose, andD2
m has a Chi-square distribution.

D2
m is a function of the sum of the two track covariances. Assume one track is local and known very

accurately, so the distance is dominated by the covariance of the remote track(the one with encoding error).
Let P be the true covariance of the distant track, andP2 be the covariance after encoding and decoding. One
reasonable figure of merit is the ratio of the two Mahalanobis distances

xT P2x

xT Px
, (2)

averaged over test displacementsx on the unitn-sphere [10]. The optimum value of this metric is one. This
measure is more sensitive to changes in a small eigenvalue than a large one (e.g. a 10 percent change in the
smallest eigenvalue makes a much larger difference than a 10 percent change in the largest eigenvalue).

The following MATLAB code estimates this metric using a Monte Carlo method.1:

function merit = mah(p,p2)

% this measure should be near one, can be either greater or

% smaller than one, and small values are especially bad

% 18 quasi-Monte Carlo trials

mah=zeros(3,6);

for k=1:3

[r,q]=qr(randn(6,6));

if det(r)<0, r(:,1)=-r(:,1); end % r is now a random 6D rotation

for j=1:6

x=r(:,j); % x is uniformly distributed in the unit 6-sphere

mah(k,j)=x’*(p2\x)/(x’*(p\x));

end

end

merit=mean(mean(mah));

The first parameter ofmah is the original covariance of the remote track, and the second parameter is the
covariance after encoding and decoding.

The inverse of the error covariance is known as the Fisher information matrix [1]. It represents the
amount of information in a measurement, in the following sense. Suppose we have an estimate of the
current state of a system, and a linear measurementy with covarianceP. We could use a Kalman filter to
update the state with the measurement. As a thought experiment, imagine instead ofthe one measurement,
we had two “sub-measurements”, the first with valuey and covarianceP1, and the second with the same
valuey but with covarianceP2. Using the same Kalman filter, we could update the state with each sub-
measurement in turn. It turns out that the effect on the state would be the same, ifP−1 = P−1

1 + P−1
2 , i.e. the

Fisher information matrix for the original measurement is the sum of the Fisher information matrices of the
two sub-measurements.

1A random orthogonal matrix can be generated using the QR algorithm [8]

2

Recall that the trace of a matrix (the sum of the diagonal elements) is invariantwith rotations. This
suggests that the trace of the inverse of the covariance could be a useful scalar measure of the information
[11]. If the state elements have different units, it is necessary to scale the covariance appropriately, e.g. with
a matrix

S =

1
1

1
τ

τ

τ

, (3)

whereτ is some suitable time constant (e.g. the expected latency of the track report, orhalf the update
interval). Suppose a covarianceP is encoded then decoded, resulting in a matrixP2. If an encoding is
guaranteed to be conservative, a suitable measure of the information lost is

1−
tr

{

(S P2S)−1
}

tr
{

(S PS)−1}
. (4)

If the encoding is not conservative, we may first scale the recovered covariance to make it conservative and
then measure the information loss. LetU be the Cholesky factor ofP−1, so thatP−1 = UT U. Then the
scaling constantk is the smallest eigenvalue ofUP2UT , and the measure of information lost becomes

1− k
tr

{

(S P2S)−1
}

tr
{

(S PS)−1}
. (5)

For example:

% fraction of the information lost, so 0 is perfect

S=diag([1 1 1 6 6 6]);

u=chol(inv(p));

k=min(eig(u*p2*u’));

merit=1-k*trace(inv(S*p2*S’))/trace(inv(S*p*S’));

The information metric is largely determined by the best-known components of thetrack state (i.e., the small
eigenvalues ofP).

2.2 Cueing-Related Measures of Merit

Another family of measures is related to sensor cueing. Suppose a track is sent for the purpose of cueing a
second sensor, which will perform a search in two dimensions to acquire the target. If the cue is too large,
the sensor will waste effort on regions unlikely to contain the target (“waste”–see Figure 1). If the cue is too
small, the sensor may fail to look in likely regions (“leakage”). If the measurement is characterized by the
2× n measurement matrixM, the most efficient search region is the ellipse defined by

xP−1
pro jx

T < χ2, (6)

wherePpro j is the two dimensional projection of the covariance

Ppro j = MPMT , (7)

andχ is chosen according to the chi-square distribution so the target is included with the desired probability.
For example, to include the target 95 percent of the time, we would chooseχ = 2.4477, sinceP(χ2|ν) =

3

searched ellipse

cued ellipse

waste area leakage area

Figure 1: “Cookie Cutter” Model of Cueing.

1−Q(χ2|ν) = .95 forν = 2. Let thecue ellipse be derived from the original track covariance (for 95 percent
inclusion probability), and thesearch ellipse be derived from the covariance reconstructed from the track
report. Theleakage area ratio is the area in the cue ellipse but outside the search ellipse, divided by the area
of the cue ellipse [10]. E.g.:

function [leak,theta]=leakage(p,p2)

% leakage - calculate leakage area ratio (area in ellipse p but not in p2,

% divided by area in p)

u=chol(inv(p)); % whitening transformation

eval=eig(u*p2*u’);

b=sqrt(min(eval));

a=sqrt(max(eval));

if 1<b

leak=0;

else

if a<1

leak=1-a*b;

else

theta=atan2(sqrt(aˆ2-1)*b,a*sqrt(1-bˆ2));

leak=-2*(aˆ2*b*asin(cos(theta)/a)...

-a*asin(cos(theta))...

+b*cos(theta)*sqrt(aˆ2-cos(theta)ˆ2)...

-a*cos(theta)*sin(theta))/a/pi;

end

end

Thewaste area ratio is the area in the search ellipse but outside the cue ellipse, divided by the areaof the
search ellipse [10]. Each of these measures is non-negative, with optimalvalue of zero.

The leakage ratio and waste area ratio take a “cookie cutter” view, such that searching anywhere outside
the cue ellipse is worthless, and failing to search anywhere inside it is inexcusable. However, the actual
value of a given search region depends on its statistical distance from thecenter of the cue. Suppose the
cue ellipse contains the target with probabilityfc and the search ellipse contains it with probabilityfs. The
leakage fraction [10] is then

fc − fs. (8)

It can be negative (indicating the sensor will acquire the target with more than the expected probability) as
well as positive.

4

The following function calculates the fractionqs = 1− fs of the distribution outside the search ellipse:

function p=exclude(p1,p2,f,tol)

% exclude - return integral of a bivariate normal distribution with

% covariance p1, outside the ellipse defined by p2, scaled by factor k.

% That is, the integral over x=[x1 x2]’ satisfying x’*p2ˆ(-1)*x > 1

% of 1/(2*pi)*exp(-(1/2)*x’*p1ˆ(-1)*x), where f = -kˆ2/2

%

% Inputs:

% p1 = 2*2 covariance of the normal distribution function

% p2 = 2*2 covariance defining the elliptical boundary of the

% integration region

% f = optional probability specifying the scaling factor for the

% integration boundary. The boundary ellipse is scaled by a factor

% k according to the chi squared distribution for two degrees of

% freedom, such that a fraction f would fall outside the radius

% k. (default=.05)

% tol = optional absolute integration error tolerance (default 1.e-6)

global axis_a axis_b

if nargin<3; f=.05; end

if nargin<4; tol=1.e-6; end

scale = sqrt(-2*log(f));

u = chol(inv(p1)); % whiten the error

eval = eig(u*p2*u’);

axis_a = scale*sqrt(eval(1));

axis_b = scale*sqrt(eval(2));

p = 4*quad(’integrand’,0,pi/2,tol);

function r=integrand(theta)

% integrand - calculate integrand for function exclude

global axis_a axis_b

R = 1./sqrt((cos(theta)/axis_a).ˆ2 + (sin(theta)/axis_b).ˆ2);

r = exp(-R.ˆ2/2)/2/pi;

The area of the search ellipse is

As = π
√

det(Ps)(−2 log(.05)), (9)

where det(A) is the determinant ofA. An optimal search area including a fractionfs of the distribution
would have area

A0 = π
√

det(Ps)(−2 log(qs) (10)

Thewaste fraction is the fraction by which the search area could be reduced, and still containthe target with
the same probability as the cue ellipse [10]:

As − A0

As
(11)

All of these waste and leakage metrics should be averaged over projectiondirections. If the track un-
certainty is much smaller in some directions than others (as is common for single-radar tracks), then these
metrics are sensitive mainly to the large dimensions of the uncertainty (i.e., the large eigenvalues ofP). This

5

is because the cued sensor rarely has the favorable geometry to take fulladvantage of the well-measured
component of the target position. They are also sensitive to rotations of theuncertainty ellipsoid.

2.3 Bhattacharyya Distance

Each of the above metrics accounts for only a subset of possible perturbations in the covariance (e.g., rotation
of the ellipsoid, or changes in small eigenvalues, or changes in large eigenvalues). I propose a new metric
that accounts for all these perturbations: theBhattacharyya distance2 [2, 5].

The Bhattacharyya distance is a scalar separability measure between two probability distributions. If
two multivariate normal distributions have meanmi and covariancePi, i = 1,2, then the Bhattacharyya
distance between them is

b =
1
8
δT P−1δ +

1
2

log

(

det(P)
√

det(P1) det(P2)

)

, (12)

whereδ = m1 − m2 andP = (P1 + P2)/2.
This distance summarizes all the possible ways an encoding could perturb a track report. The first term3

is positive if the means of the two distributions differ. The second term is positive if their covariances
differ, i.e., the uncertainty ellipsoids have different axes and/or orientations. It is invariant with rotations and
translations of the coordinate system. It is equally sensitive to changes in thelarge or small eigenvalues.

The encoding error will be greater for some messages than others, due tothe condition number of the
covariance and (for some encoding methods) how well the axes of the uncertainty ellipsoid align with the
coordinate axes. To account for this variability among messages, we suggest using as our metric the90th
percentile of the Bhattacharyya distance over a representative sample of covariances.

To establish a reasonable criterion for this metric, we note that the Bhattacharyya distance depends on the
mean of the track report, so it will be affected by measurement errors.4 Let m1 andm2 be twon-dimensional
estimated states, with the same covarianceP, andδ = m1 − m2. For example, they might be estimates from
different Monte Carlo trials of a tracking simulation. Without loss of generality, weassumeP is diagonal.
The expected Bhattacharyya distance between the reports, due to measurement error alone, is then

b =
1
8

[δ1 δ2 · · · δn]

1/σ2
1

1/σ2
2
. . .

1/σ2
n

δ1
δ2
...

δn

+ 0

=
1
8

δ21

σ2
1

+
δ22

σ2
2

+ · · · +
δ2n

σ2
n

=
2n
8
=

n
4
. (13)

In the third expression, the sum of the normalized errors is 2n rather thann, because both measurements
contribute errors toδ.

We suggest that sensor systems are typically much more expensive than thecommunication network
used to report their measurements, so in trading off the investment in the two systems, the emphasis should
be on preserving as much as possible of the measurement information. Thatis, we want the encoding error
to be small compared to the measurement error.5 We also recognize that our metric will not accurately

2Hint: “ch” is pronounced as in “charcoal”, not as in “chaos”.
3which is proportional to the Mahalanobis distance
4The mean is also affected by round-off errors during encoding. We assume the track state encoding has a high enough resolution

that round-off errors are much smaller than measurement errors. Round-off errors are not considered in this analysis.
5In that case, we feel it is not necessary to ensure the encoding is conservative (that the decoded covariance completely encloses

the original covariance [9]).

6

bhatrotscale

original covariance
rotated covariance, b=.05 from original
intermediate rotation and scales, b=.05 from original
scaled covariance, b=.05 from original

Figure 2: Bhattacharyya Distance= 0.05 due to Rotation and Scaling.

reflect the impact of the encoding error on each actual application. We suggest a factor of ten margin, giving
us this criterion:The 90th percentile Bhattacharyya distance should be less than n/40.

In 2D, the suggested criterion would beb = 2/40 = 0.05. As an illustration, Figure 2 shows the “one
sigma” uncertainty ellipses for an original covariance, a rotated version,a scaled version, and intermediate
rotated and scaled versions. All the perturbed covariances are at a Bhattacharyya distance of 0.05 from
the original. Similarly, ellipses perturbed by scaling and displacement are shown in Figure 3, and ellipses
perturbed by displacement and changed aspect ratio are shown in Figure 4.

3 Testing

For best results, an encoding scheme should be matched to the expected covariances.
The difficulty of encoding a correlation matrix increases according to its condition number (the ratio of

the largest to smallest eigenvalue). Single-sensor track covariances tend to have high condition numbers,
because a typical radar can measure range much more accurately than angle. Composite track covariances
tend to have lower condition numbers, because they are updated by several sensors.6 Figures 5 and 6 show
distributions of condition numbers and of eigenvalues of position and velocitycovariance sub-matrices for
two sets of covariances.

Each proposed encoding was subjected to Monte Carlo testing with 1000 testcovariances. For example,
in the 6× 6 case, each test covarianceP was generated as

P = R6×6S P0S T RT
6×6, (14)

6Similarly, in Global Positioning Satellite navigation, the Geometric Dilution of Precision (GDOP) is reduced when more
satellites are visible.

7

bhatgrow

original covariance
scaled covariance, b=.05 from original
intermediate scales and displacements, b=.05 from original
displaced covariance, b=.05 from original

Figure 3: Bhattacharyya Distance= 0.05 due to Scaling and Displacement.

bhataspect

original covariance
perturbed aspect ratio, b=.05 from original
intermediate aspect ratios and displacements, b=.05 from original
displaced covariance, b=.05 from original

Figure 4: Bhattacharyya Distance= 0.05 due to Displacement and Aspect Ratio.

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

fr
ac

tio
n

of
 r

ep
or

ts

values

cdf

single-sensor tracks

velocity root eigenvalue
position root eigenvalue

6x6 condition number

Figure 5: Covariance Matrix Characteristics for Single-Sensor Tracks.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

fr
ac

tio
n

of
 r

ep
or

ts

values

cdf

composite tracks

velocity root eigenvalue
position root eigenvalue

6x6 condition number

Figure 6: Covariance Matrix Characteristics for Composite Tracks.

9

Table 1: Axis Limits for Test Covariances

Axis Lower Limit Upper Limit Units
i li ui

1 22 500 m
2 5 106 m
3 1 22 m
4 4 1000 m/s
5 4 64 m/s
6 4 16 m/s
7 12 50 m/s2

8 6 25 m/s2

9 3 12 m/s2

where

P0 =

σ2
1
σ2

2
σ2

3
σ2

4
σ2

5
σ2

6

, (15)

theith semi-axisσi is log-uniformly distributed betweenli andui as shown Table 1,

S =

1 0 0 ρ 0 0
0 1 0 0 ρ 0
0 0 1 0 0 ρ
ρ 0 0 1 0 0
0 ρ 0 0 1 0
0 0 ρ 0 0 1

, (16)

ρ is uniformly distributed in [.5, .9], R6×6 is a block diagonal rotation matrix

R6×6 =

[

R3×3 0
0 R3×3

]

, (17)

andR3×3 is a uniformly distributed random 3D rotation. Distributions of eigenvalues andcondition numbers
for the test covariances are shown in Figure 7.

Each of these test covariances was encoded, decoded, and the Bhattacharyya distance between the orig-
inal and decoded covariances calculated. The random number generator seed was reset before each run, so
the same covariances were used to test each encoding method.

4 Encoding Methods

Several covariance encoding methods have been suggested:

• Encode the covariance elements directly.

• Encode the variances and the correlation matrix.

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

fr
ac

tio
n

of
 r

ep
or

ts

values

condit

test covariances

velocity root eigenvalue
position root eigenvalue

6x6 condition number

Figure 7: Characteristics of Test Covariances.

• For 3× 3 covariance, encode the eigenvalues and the Euler angles needed to reconstruct the eigenvec-
tors (i.e. the lengths and directions of the principle axes of the uncertainty ellipsoid).

The first two classes of encodings generalize immediately to more dimensions. We found two ways to
extend the third class to more dimensions.

4.1 Covariance Element Encoding

The simplest scheme directly encodes each element of the covariance matrix.Logarithmic encoding is used,
to cover a large dynamic range. The resolution depends on the field size and the dynamic range of the values
being encoded. This is shown in Figure 8. We assume a dynamic range of 2000:1. For variances (which are
always positive), it then takes 8 bits to give 3 percent resolution. I.e. theratio between encoded values is

(

Pmax

Pmin

)1/28

= 20001/256 = 1.030 (18)

If bm bits are used for each diagonal element, a valueV is encoded by an integer

i =

⌊

c
log(V/Pmin)

log(Pmax/Pmin)
+

1
2

⌋

, (19)

wherec = 2bm − 2. The decoded value is

Vdecoded = Pmin

(

Pmax

Pmin

)i/c

. (20)

Off-diagonal elements of the covariance can be of either sign, so we need anextra bit to encode those
elements with the same resolution. If we usebc bits for each off-diagonal element, then the length of the

11

 0.001

 0.01

 0.1

 1

 100 1000 10000

re
so

lu
tio

n

dynamic range

res

bm = 5

6

7

8

9

10

11

12

Figure 8: Resolution of Logarithmic Encoding.

encoding (i.e. the number of bits to encode the upper triangular portion of thesymmetric covariance matrix)
is

nbm +
n(n − 1)

2
bc. (21)

Here, we assumebc = bm + 1.
With this scheme, a large fraction of reconstructed matrices would not be positive definite, making them

invalid covariance matrices (i.e. withimaginary uncertainties). Figure 9 shows distributions of ratios of
eigenvalues (i.e. the largest eigenvalue of the reconstructed matrix divided by the largest eigenvalue of the
original matrix, etc.) withbc = 9 andbm = 8. For our test matrices, 58 percent of the reconstructed matrices
have at least one negative eigenvalue, and 15 percent have two!

To ensure the reconstruction of positive definite matrices, we canprecompensate by multiplying each
off-diagonal element of the covariance by 1− ǫ. This kind of precompensation has the effect of inflating the
uncertainty ellipsoid, more significantly for the smaller axes than the larger axes. We find empirically that
ǫ = 25−bc is sufficient.

The encoding efficiency of this scheme, with and without precompensation, is shown in Figure 10, in
terms of the 90 percentile Bhattacharyya distance. Precompensation makes the encoding very conservative—
the eigenvalues are never negative, but mostly they are too large.

The basic problem with this encoding scheme is that accommodating a large dynamic range in covari-
ance element values forces us to use a coarse resolution, which makes it difficult to keep the reconstructed
covariances positive definite.

4.2 Root Variance/Correlation Matrix Encoding

We may make the encoding more efficient by first expressing the covariance in terms of root variances (the
square roots of diagonal elements of the covariance matrix) and a correlation matrix, as suggested by Jerardi
[4]. The n root variances have a large dynamic range, and can be encoded logarithmically as above using

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

fr
ac

tio
n

of
 c

as
es

decoded eigenvalue/original eigenvalue

ratio0

mbits=8
cbits=9

 58% have a negative eigenvalue

smallest eigenvalue
2nd smallest

largest eigenvalue

Figure 9: Distribution of Eigenvalue Ratios for Covariance Element Encoding.

 0.01

 0.1

 1

 10

 50 100 150 200 250

90
th

 p
er

ce
nt

ile
 B

ha
tta

ch
ar

yy
a

di
st

an
ce

total bits

score1xx

bm=bc-1=5
6

7
8

9
10

11

bm=bc-1=5

6
7

8

9
10

11
suggested requirement

with precompensation
without precompensation

Figure 10: Efficiency of Encoding Covariance Matrix Elements.

13

 0.01

 0.1

 1

 50 100 150 200 250

90
th

 p
er

ce
nt

ile
 B

ha
tta

ch
ar

yy
a

di
st

an
ce

total bits

score7xx

6x6 covariances

 bm=5
 bm=12

Pareto bound
bm=bc-3

suggested requirement

bc=8
bc=9
bc=10
bc=11
bc=12

Figure 11: Efficiency of Root Variance/Correlation Matrix Encoding.

a relatively coarse resolution. The positive definiteness of the covariance depends only on the correlation
matrix elements. These have a finite range (−1,1), and can be encoded linearly with a fine resolution. Ifbc

bits are used for each correlation element, a valueC would be encoded by an integer

i = min {⌊cC⌋, c − 1} , (22)

wherec = 2bc−1, and the decoded value would be

Cdecoded =
i + 1/2

c
. (23)

The length of the encoding is again given by (21). We find it is adequate to precompensate usingǫ = 21−bc ,
which is much less than in Section 4.2. The efficiency is shown in Figure 11. Since there are two parameters,
there is actually a family of curves. For the most efficient encodings (the efficient frontier, or Pareto bound),
we have approximatelybm = bc − 3.

4.3 Root Variance/Correlation Factor Encoding

As mentioned above, the difficulty of encoding a matrix increases with its condition number. Using the
Cholesky decomposition, we may find an upper triangular matrixU such thatC = UT U. The condition
number ofU is the square root of the condition number ofC, soU is much easier to encode thanC [6].

U hasn(n + 1)/2 nonzero elements. We encode all but the first row ofU linearly using (22). The first
row of U is the same as the first row ofC, so the first element is always 1 and need not be encoded. We use
n − 1 bits to encode only the signs of the remaining elements. Each column obeys the constraint

∑

i

U2
i j = 1, (24)

14

 0.001

 0.01

 0.1

 1

 50 100 150 200

90
th

 p
er

ce
nt

ile
 B

ha
tta

ch
ar

yy
a

di
st

an
ce

total bits

score4xxrel

6x6 covariances

suggested requirement

recommended

 bm=5

 bm=12

Pareto bound
bm=0.6*bc+4.4

bc=5
bc=6
bc=7
bc=8

Figure 12: Efficiency of Root Variance/Correlation Factor Encoding.

and this can be used to find the magnitudes of those elements. The length of the encoding is again given
by (21). For precompensation, we can useǫ = 2−2bc , which is much less than in Section 4.2 or 4.1. The
encoding efficiency is shown in Figure 12. For the most efficient encodings, we havebm = 0.6bc + 4.4.

Applying this scheme to the 3×3 and 9×9 test covariances results in the performance shown in Figures
13 and 14. (The knees in the 3× 3 figure are nearbm = bc + 1, but thebm = 0.6bc + 4.4 points are still near
the Pareto bound, and we expect 6× 6 covariances will be sent more often.) In each case, the encoding with
bc = 6 andbm = 8 meets the suggested requirement.

4.4 Eigenvalue/Rodrigues Parameter Encoding

In 3D, a covariance may be encoded using its three eigenvalues together with three Euler angles, as in a re-
cent patent [9]. This can be generalized ton dimensions as follows. Using the singular value decomposition
algorithm, we may factor a covarianceP as

P = US UT , (25)

whereS is diagonal (the diagonal elements are the eigenvalues ofP) andU is orthogonal. In general,U has
n2 independent elements. However, we may use theCayley transform [3] to parameterize it as a function of
a skew-symmetric matrixQ

U = (I − Q)(I + Q)−1 = (I + Q)−1(I − Q), (26)

where
Q = (I − U)(I + U)−1 = (I + U)−1(I − U). (27)

(This fails if U has an eigenvalue at -1 — for example, in two dimensions, a 180 degree rotation.)

15

 0.001

 0.01

 0.1

 1

 0 50

90
th

 p
er

ce
nt

ile
 B

ha
tta

ch
ar

yy
a

di
st

an
ce

total bits

score4xx3

3x3 covariances

 bm=5

 bm=12
suggested requirement

Pareto bound
bm=0.6*bc+4.4

bc=5
bc=6
bc=7
bc=8

Figure 13: Efficiency of Root Variance/Correlation Factor Encoding for 3× 3 Covariances.

 0.01

 0.1

 1

 200 250 300 350 400

90
th

 p
er

ce
nt

ile
 B

ha
tta

ch
ar

yy
a

di
st

an
ce

total bits

score4xx9

9x9 covariances

 bm=5

 bm=12 suggested
 requirement

Pareto bound
bm=0.6*bc+4.4

bc=5
bc=6
bc=7
bc=8

Figure 14: Efficiency of Root Variance/Correlation Factor Encoding for 9× 9 Covariances.

16

 0.001

 0.01

 0.1

 1

 10

 50 100 150 200 250

90
th

 p
er

ce
nt

ile
 B

ha
tta

ch
ar

yy
a

di
st

an
ce

total bits

score8xx

6x6 covariances

Pareto bound
bm=(bc+1)/3

suggested requirement

 bm=3
 bm=12

bc=7
bc=8
bc=9
bc=10
bc=11
bc=12
bc=13
bc=14

Figure 15: Efficiency of Encoding using Rodrigues Parameters.

TheM = n(n−1)/2 independent elements ofQ are theextended Rodrigues parameters [7]. Let q be the
vector of extended Rodrigues parameters, e.g. in 3D

Q =

0 −q3 q2

q3 0 −q1

−q2 q1 0

, (28)

or in 6D

Q =

0 −q15 q14 −q13 q12 −q11

q15 0 −q10 q9 −q8 q7

−q14 q10 0 −q6 q5 −q4

q13 −q9 q6 0 −q3 q2

−q12 q8 −q5 q3 0 −q1

q11 −q7 q4 −q2 q1 0

. (29)

Theqi take on all values including infinity.7 However, for a random orthogonal matrixU, the elements ofQ
have a tangent distribution—i.e. the arc tangents of elements ofQ are uniformly distributed in (−π/2, π/2].
Therefore, we encode an element of Q usingcb bits as

mi = 2cb−1C atan(qi). (30)

The encoding length is again given by (21). With this scheme, the reconstructed matrix is always positive
definite, so no precompensation is necessary. Its efficiency is shown in Figure 15. For the most efficient
encodings, we have approximatelybm = (bc + 1)/3.

7Since any three-parameter parameterization of three-dimensional rotations has singularities, we should expect anM parameter
description ofU to have singularities too.

17

 0.001

 0.01

 0.1

 1

 10

 50 100 150 200 250

90
th

 p
er

ce
nt

ile
 B

ha
tta

ch
ar

yy
a

di
st

an
ce

total bits

scoreAxx

6x6 covariances

Pareto bound
bm=max(.38*bc,bc-7)

suggested requirement

 bm=3
 bm=12

bc=7
bc=8
bc=9
bc=10
bc=11
bc=12
bc=13
bc=14

Figure 16: Efficiency of Encoding using Once-Redundant Parameters.

When Q has large elements, encoding using this scheme does not improve much as we increase the
number of bits. The degradation may be reduced by encoding an element using

mi =

{

2cb−1C atan(
√

qi) qi ≥ 0
−2cb−1C atan(

√

|qi|) qi < 0
. (31)

However, the scheme in the following section is even better.

4.5 Eigenvalue/Once-Redundant Encoding

A relatively efficient covariance encoding can be designed using the once-redundant encoding for ann-
dimensional rotation introduced by Schaub, Tsiotras, and Junkins [7]. We start with SVD factoring and a
Cayley transform as in the previous section. Let the Rodrigues parameters beqi, i = [1 . . .M]. Introduce a
scaled set of parametersβi = β0qi, with the constraint

β2
0 + β

2
1 + · · · + β

2
M = 1, (32)

so that

β0 =
1

√

1+ q2
1 + q2

2 + · · · + q2
M

. (33)

Like the Euler parameters (quaternions) in 3D, these once-redundant parameters have no singularities.8

They have a finite range (−1,1), and can be encoded linearly. The efficiency of this method is shown in
Figure 16. The most efficient encodings are forbm = max{.38bc, bc − 7}.

8This advantage is of course lost if, as here, they are calculated in terms of the Rodrigues parameters. It is possible to calculate
them directly (see [7, equation 52]). However, as shown below, they donot turn out to be efficient enough to warrant the effort.

18

 0.001

 0.01

 0.1

 1

 50 100 150 200 250

90
th

 p
er

ce
nt

ile
 B

ha
tta

ch
ar

yy
a

di
st

an
ce

total bits

scores

suggested requirement

6x6 covariances

covariance matrix
correlation matrix
Rodrigues parameters
once-redundant
correlation factor, omit 1st row

Figure 17: Summary of Covariance Encoding Efficiency.

5 Comparison of Encoding Methods

The Pareto bound efficiency curves for encoding 6D covariances using the encoding schemes described in
Chapter 4 are collected in Figure 17. The most efficient scheme encodes the root variances and all but the
first row of the correlation matrix factor.

The cumulative distributions of errors for the 6×6 test covariances are shown in Figure 18. The encoding
with bm = 8 andbc = 6 meets the suggested criterion on the 90th percentile Bhattacharyya distance:
b < n/40= 0.15 for n=6 dimensions.

As mentioned above, even if the covariance were encoded perfectly, thereceived state would still differ
from the truth due to measurement error. We would expect 4b to be chi-square distributed withn degrees of
freedom. This contribution,P(4b|6), is plotted in the same figure for reference.

6 Recommendations

We recommend that covariances be encoded using the scheme described inSection 4.3 (root variance/correlation
factor encoding), with one of these parameter settings:

• bc = 5 andbm = 8,

• bc = 6 andbm = 8, or

• bc = 6 andbm = 9.

This recommendation is based on the set of test matrices adopted for testing. More bits may be needed
for the magnitude if the dynamic range of encoded root variances is increased, or for the correlation matrix
factor if covariance matrix condition numbers are found to be higher.

19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.001 0.01 0.1 1 10

fr
ac

tio
n

of
 c

as
es

Bhattacharyya distance

score4x

su
gg

es
te

d
re

qu
ire

m
en

t

bm=9 bc=7
bm=9 bc=6
bm=8 bc=6
bm=8 bc=5
bm=7 bc=5
measurement error

Figure 18: Error Distributions.

References

[1] Berger.Statistical Decision Theory and Bayesian Analysis, page 88. Springer-Verlag, New York, NY,
1985.

[2] A. Bhattacharyya. On a measure of divergence between two statistical populations defined by their
probability distributions.Bull. Calcutta Math. Soc., 35:99–109, 1943.

[3] A. Cayley. On the motion of rotation of a solid body.Cambridge Mathematics Journal, 3:224–232,
1843.

[4] Thomas Jerardi. Personal communication, 1992.

[5] T. Kailath. The divergence and Bhattacharyya distance measures insignal selection.Communication
Technology, IEEE Transactions on, 15(1):52 –60, February 1967.

[6] John Nordmann. personal communication, 1992.

[7] Hanspeter Schaub, Panagiotis Tsiotras, and John L. Junkins. Principal rotation representations of
propern × n orthogonal matrices.Intl. J. of Engineering Science, 33(15):2277–2295, 1995.

[8] G. W. Stewart. The efficient generation of random orthogonal matrices with an application to condition
estimators.SIAM Journal on Numerical Analysis, 17(3):pp. 403–409, June 1980.

[9] Robert E. Yang. Eigen-based method for covariance data compression. U. S. Patent 7574057B1,
August 2009.

[10] J. R. Van Zandt. Error analysis for covariance encoding. Technical Report MTR93B0000014, MITRE
Corporation, Bedford, MA, February 1993.

20

[11] J. R. Van Zandt. Tracklet covariance encoding. MITRE Paper MP97B0000095, MITRE Corporation,
Bedford, MA, December 1997.

A Sample Program

The recommended encoding method (root variance/correlation factor encoding) was analyzed using the
following MATLAB /Octave program:

function precomp4(mbits, cbits, n, oname, plotting)

% precomp4 - test precompensation when encoding all but first row of U

if nargin<3; n=6; end % # states (may be 3, 6, or 9)

if nargin<4; oname=[mfilename ’.dat’]; end

if nargin<5; plotting=0; end

% These values are only for illustration

if nargin<1 mbits = 8; end % bits for magnitudes

if nargin<2 cbits = 8; end % bits for covariance elements

pmin = [1 1 1 1 1 1 1 1 1]; % m, m/s, m/sˆ2

pmax = [2000 2000 2000 1000 1000 1000 100 100 100];

% upper and lower bounds for root variances

du = [500 106 22 1000 64 16 50 25 12];

dl= [22 5 1 4 4 4 12 6 3];

mbit_total=n*mbits;

% bits for signs, off-diagonal elements, diagonal elements:

cbit_total=n-1 + cbits*(n-1)*(n-2)/2 + (cbits-1)*(n-1);

bit_total=mbit_total+cbit_total;

fprintf([’ ---------------- cbits=%d bit/element correlation encoding,’...

’omitting first row, %d bits for correlation -----------\n’], ...

cbits, cbit_total);

fprintf(’ ---------------- mbits=%d, %d bits for magnitudes, %d bits total ---------\n’, ...

mbits, mbit_total, bit_total);

mcode = 2ˆmbits-2; % root variance codes are in [0:mcode],

% 2ˆmbits-1 = "no statement"

ccode = 2ˆ(cbits-1); % "no statement" not permitted, covariance

% codes are in [-ccode: ccode-1]

epsilon = 2ˆ(-2*cbits);

eval2_worst=1e9;

if exist(’OCTAVE_VERSION’)

rand(’state’,42);

randn(’state’,42);

else

% rand(’twister’,5489); % MATLAB 7.7 accepts this syntax, but doesn’t

21

% actually reset the random number generator

reset(RandStream.getDefaultStream); % reset random number generator

end

N=1e3;

ratio=zeros(N,n);

K=0; % # valid test cases so far

for KK=1:N

d = dl.*(du./dl).ˆrand(1,9); % log-uniformly distributed between bounds

s = diag(d(1:n));

rho=diag(.5*.4*rand*ones(1,3)); % position-velocity correlation

% ranges from +0.5 to +0.9 (typically 0.7)

[r,q]=qr(randn(3,3));

if det(r)<0, r(:,1)=-r(:,1); end; % r is now a random 3D rotation matrix

switch n

case 3

cr=eye(3);

case 6

cr=[eye(3) rho;rho eye(3)];

r=blkdiag(r,r);

case 9

cr=[eye(3) rho zeros(3,3); rho eye(3) rho; zeros(3,3) rho eye(3)];

r=blkdiag(r,r,r);

end

p=floor(r*s*cr*s*r’);

% encode the covariance

sig=sqrt(diag(p)); % root variances

d=diag(1./sig);

c=d*p*d; % correlation matrix

if min(eig(c))>0 % valid correlation matrix?

K=K+1;

eval1=sort(eig(p));

% precompensate

c=(1-epsilon)*c;

for k=1:n

c(k,k)=1;

end

u=chol(c); % Cholesky factor such that u’*u = c

% note k=n here

% linear encoding of Cholesky factor

msg = zeros(1, n + n-1 + n*(n-1)/2); % n for root variances + n-1 for

% signs + n*(n-1)/2 for U

22

% log encoding of root variances

for k=1:n

msg(k)=floor(mcode*log(sig(k)/pmin(k))/log(pmax(k)/pmin(k))+1/2);

msg(k)=max(0, min(mcode, msg(k))); % sanitize

end

msg(n+1:2*n-1)=u(1,2:n)<0; % signs of elements in top row

% linear encoding of U

k = 2*n;

for j=2:n

for i=2:j % omit first row

msg(k)=min(floor(ccode*u(i,j)),ccode-1);

k=k+1;

end

end

% decode covariance

u2 = zeros(n,n);

u2(1,1)=1;

k = 2*n;

for j = 2:n

sum = 1;

for i = 2:j

u2(i,j) = (msg(k)+1/2)/ccode;

sum = sum - u2(i,j)ˆ2;

k = k+1;

end

if msg(n+j-1); sign=-1; else sign=1; end

u2(1,j) = sign*sqrt(max(0, sum));

end

c2=u2’*u2;

sig = pmin(1:n).*(pmax(1:n)./pmin(1:n)).ˆ((msg(1:n))/mcode);

s = diag(sig);

p2 = s*c2*s;

eval2=sort(eig(p2));

ratio(K,:)=eval2./eval1; % assume the eigenvectors correspond

if eval2(1)<eval2_worst

eval2_worst=eval2(1);

p_worst=p;

c_worst=c;

u_worst=u;

msg_worst=msg;

u2_worst=u2;

c2_worst=c2;

23

end

pm=(p+p2)/2;

bhat(K)=.5*log(det(pm)/sqrt(det(p)*det(p2)))/2; % Bhattacharyya distance

end

end

fprintf(’worst eigenvalue = %13.6g, corresponding to:\n’, eval2_worst);

fprintf(’p=’); disp(p_worst);

fprintf(’ eigenvalues= %10.3g %10.3g %10.3g %10.3g %10.3g %10.3g\n’, sort(eig(p_worst)));

fprintf(’c=’); disp(c_worst);

fprintf(’ eigenvalues= %10.3g %10.3g %10.3g %10.3g %10.3g %10.3g\n’, sort(eig(c_worst)));

fprintf(’\nu=’); disp(u_worst);

fprintf(’\nmsg=’); disp(msg_worst);

fprintf(’\nu2=’); disp(u2_worst);

fprintf(’\nc2=’); disp(c2_worst);

fprintf(’ eigenvalues= %10.3g %10.3g %10.3g %10.3g %10.3g %10.3g\n’, sort(eig(c2_worst)));

fprintf(’\n’);

fprintf(’K eig(u3) eig(c3)\n’);

y=[.5:K]’/K;

ratio=sort(ratio(1:K,:));

if plotting>1

figure(4);

plot(ratio(:,1),y,ratio(:,2),y,ratio(:,3),y);

axis([.95 1.05 0 1]);

end

bhat=sort(bhat);

if plotting>0, figure(24); semilogx(bhat,y); end

ofile=fopen(oname,’wt’);

fprintf(’# encoding Cholesky factor of correlation matrix, omitting first row\n’);

fprintf(’# cbits = %2d, %3d bits for correlation\n’, cbits, cbit_total);

fprintf(’# mbits = %2d, %3d bits for magnitudes\n’, mbits, mbit_total);

fprintf(’# %3d bits total\n’, bit_total);

fprintf(’median Bhattacharyya distance = %f\n’, bhat(round(K/2)));

fprintf(’90th percentile Bhattacharyya distance = %f\n’, bhat(round(K*.9)));

fprintf(’%4d %f ##\n’, bit_total, bhat(round(round(K*.9)))); % for score*.dat file

fprintf(ofile, ’# %s(%d, %d, %d, ’’%s’’, %d)\n’, mfilename, mbits, cbits, n, oname, plotting);

fprintf(ofile, ’# encoding Cholesky factor of correlation matrix, omitting first row\n’);

fprintf(ofile, ’# cbits = %2d, %3d bits for correlation\n’, cbits, cbit_total);

fprintf(ofile, ’# mbits = %2d, %3d bits for magnitudes\n’, mbits, mbit_total);

fprintf(ofile, ’# %3d bits total\n’, bit_total);

fprintf(ofile, ’# median Bhattacharyya distance = %f\n’, bhat(round(K/2)));

fprintf(ofile, ’# 90th percentile Bhattacharyya distance = %f\n’, bhat(round(K*.9)));

fprintf(ofile, ’# fraction bhat ratio(1) ratio(2) ratio(3)\n’);

for i=1:K

24

fprintf(ofile,’%f %f %f %f %f\n’, y(i), bhat(i), ratio(i,1),ratio(i,2),ratio(i,3));

end

fclose(ofile);

25

