Approved for Public Release; Distribution Unlimited
Case # 10-4459

MTR 94B0000021V4

MITRE TECHNICAL REPORT

NCIC 2000 Image Compression Algorithms
Volume IV: Flat Live-Scan Searchprint
Compression

April 1994

David J. Braunegg
Eric J. Donaldson
Richard D. Forkert
Margaret A. Lepley
Sherry L. Olson

MITRE

Bedford, Massachusetts

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 10-4459

MTR 94B0000021V4

MITRE TECHNICAL REPORT

NCIC 2000 Image Compression Algorithms
Volume IV: Flat Live-Scan Searchprint
Compression

April 1994

David J. Braunegg
Eric J. Donaldson
Richard D. Forkert
Margaret A. Lepley
Sherry L. Olson

Sponsor: FBI Contract No.: J-FBI-93-039
Dept. No.: G034 Project No.: 3469M

Approved for Public Release: 10-4459.
Distribution Unlimited.

©1994 The MITRE Corporation

MITRE

Bedford, Massachusetts

ABSTRACT

Under the National Crime Information Center (NCIC) 2000 program, there is a need to
compress, transmit, and decompress flat live-scan, single finger searchprints. Due to the
limited bandwidth of police radios and the need for responsive transmission times, the
compressed file size goal on average for flat live-scan searchprints is 20,000 bits. In addition
to meeting the high rate of compression needed, the final decompressed fingerprint
representation must maintain a high degree of ridge positional accuracy, such as minutiae
points and relative ridge locations, for matching. This report presents an algorithmic process
for compressing and decompressing flat live-scan searchprints. The compression algorithms
were developed to remove all extraneous information from the fingerprint, thin the ridges to
a single pixel width, and mathematically encode the ridge information. The decompression
algorithm reverses this process to reconstruct the thinned ridge representation of the
fingerprint.

iii

iv

TABLE OF CONTENTS

SECTION PAGE
1 Introduction e 1
1.1 Background Information i iiiia.., 1
1.1.1 Flat Live-Scan Searchprintsc.ocun..... 1

1.1.2 Original Image Characteristicsccovvvuneennn.. 2

1.1.3 CompressedDataGoalscoviiiiiinnneninnnnnn... 2

1.1.4 Reconstructed Image Characteristics 2

1.2 Overview of Compression/Decompression Algorithms 3
1.2.1 Compression Algorithms, 3

1.2.2 Decompression Algorithmsc.oviinian.. 6

1.23 AlgorithmTuning iiiiiiiiiiiiiiiiiiennnn. ‘ 6

1.3 Notation and ASSUMPLONSouiineeenriinneenenneenneennns 7
1.3.1 Special Notation and Assumptionscvvuennnn. 8

2 Dynamic Thresholdingc ittt 9
2.1 Algorithm Descriptionc.ccuvtiiiiiiiiiiieiiiiiieennnnnn 9
22 SUMMATY ..ttt ittt ittt ittt ettt et e 10

3 ThresholdedImage Cleaningiiitiiiinrreeineneenanennnnn, 13
31 CreaseTrimmingcciiiiiiiiiinneneeennnnnn. S 13
3.1.1 Algorithm Description [13

312 Summary ... i i it e 22

32 SpurRemoval............coiiiiiiiiiiii i 23
3.2.1 Algorithm Descriptioncccoueun... e 23

322 SUMMATY ...t i i i e e ... 27

4 PoreFillingo i e e e 29
41 Algorithm DesCriptOnouveneeeneinsineeneeaneanns, 29
4.1.1 SmallPoreFilling ciiiiiiiiiiiininnnnnns 30

412 LargePoreFillingccoiiiiiiiiinnnnnnnnnnn. .. 32

4.1.3 Neighborhood Average RidgeWidth 41

42 Summary PP 44

SECTION L ’ PAGE

5 RidgeThinningottt ittt iiineennnns 45
51 Algorithm Description USRI 45
5.1.1 Chamferingttt 46

5.1.2 Local Maxima Detectionccovvviieeeeeennnnnnn. 51

5.1.3 Recursive Ridge Following 53

514 SUMMATY ...ttt it it i e e 58

6 Curve EXtractioncciuuiiiiiiiineeeneernreninnninnnnnnnnns 59
6.1 AlgorithmDescriptionottt 61
6.1.1 Conversion to Single-Pixel Wide Ridges 61

6.12 Curve EXtractionc.uiiruinnnnninennnnnnnnnns 65

6.2 Summary i . 80

7 RidgeCleaningciiiiunniiiiiiiiin i iiiieee e iiiiieeennnnenns ' 81
7.1 AlgOrithm DESCHPHON - « -« ..« et eeeeeeenn, 82
7.1.1 Definitionsccoviunn.... S {1

7.12 AverageRidgeWidth 87

7.1.3 Small Offshoot Curve Removal 88

7.1.4 Small Ridge Break Connection PP 90

7.1.5 Small Ridge ConnectionRemoval 97

- 7.1.6 Small Ridge SegmentRemoval 102

7.2 SUMMATY ...t e e 103

8 Ridge SMOOHING -t 105
8.1 AlgorithmDescriptioncciiiiiiiiiiiiiiiiiiieinennn. 106

B2 SumMmMary i i i e e e 108

9 Chord Splitting PP 1
9.1 Algorithm Descriptionciiiiiiiiiiiin i 111
92 Summary e e PR 115

vi

SECTION PAGE

10 CUIVE SOTHNg . . oiii ittt eieeenenaneennnnnnanns 119

10.1 Algorithm Descriptionoi ittt iiiee e, 120

10.1.1 First Stage: Selective Processingc.coiieuennn 120

10.1.2 Second Stage: CyclicProcessingccovvevnn.. 132

10,2 SUMMATY ...ttt i i ittt e e e e, 144

11 Encodingcioiiuiiiiiiiiiiiiii ittt tieeeierieaaaaenaanans 145

11.1 Explanationof Termscciitiiiiiiieeinnerneeneennnnns 146

11.1.1 Delta Offsetsivuiiiiiiiiii it iieeenennennanns 146

.11.1.2 Jump Values and Reference End 146

11.1.3 Monotonicity Typecoiiiii ittt ittt et ieenanns 147

"11.2 Description of Encoding Techniquescccoenen.. 148

11.2.1 Relative Valuesiiiiin i it i i e 148

11.22 Huffman Codescciiiiiiiiiinninnnnnnnennnnnn 149

11.2.3 Duplication Eliminationcccoiiiiiiiiiiennennn 151

11.24 Short Word/LongWordcoiiiiiiiinianenn.. 151

1125 BitPackingcoi ittt it i i i e 154

11.3 Bit Stream COmMPONentscouveuerenneeennereneenaeonnnns 154

11.3.1 The FingerprintHeader i iiiiiiiiiiiinnn. 154

11.3.2 TheRidge Informationcoiiiiiiiiiiinnennnn. 155

11.4 Algorithm Descriptionand Summary 159

- 11.4.1 Calculating Relative Distanceso 161

11.4.2 Determining Fingerprint Data Properties 162

1143 Encodingcviiiiiiiiiiiii ittt iiniieeaenannnns 166

11.5 FingerprintExample it 170

12 Decoding . ..ottt i i i ettt et 173
12.1 Algorithm Descriptioncoitiiiiiiiiiiiniinennennenn. 173

122 SUMMATY .. .iii ittt ettt ittt et aaeeas 175

123 Exampleot i i et e i i 181

13 Ridge Reconstruction e 185

13.1 Algorithm Descriptioncoiiiiiiiiiii it iiniinennn, 185

132 SUMMATY .. .iiiiii it i i i i i i e it 187

vii

SECTION . PAGE

Listof Referencesottt ittt 189
Appendix A Modified BHO Binarizationccoviiiunnnn, 191
-A.1 Source Code AIterationsc.ovvuiiinnennennenennennns 191
A.1.1 FORTRAN-to-C Conversionc.coevuveuneeennnenn. 191

A.1.2 Variable Image Size Accommodation 192

A.1.3 Change to BHO Algorithmic Behavior 192

A.1.4 Integration with Fingerprint Compression 193

A1lS CodeSpeedUpcvvviinn... et 193

A2 RidgeDirection MAPttt ittt 193
A.2.1 Ridge Direction Data Structureccovvuiennnn. 194

A.22 WrtingtheBlockFile 194

A3 SUMMATY ... i i i i i e e e e, 195
Appendix B Curved Ridge Ending Removal T 197
B.1 AlgorithmDescription 0ottt iinineennnn 197
B.l.l Summary ... i i i i e e 201

Appendix C BadBlockBlankingot 203
C.1 Algorithm Descriptionoiiiiiiiiiiiiirennnnennennnn. 203
C.1.1 Removing Curve Segments SN 203

C.1.2 Joining Curves at Lost Bifurcations 205

C2 SUMMAryttt i i it e e 206
Appendix D Partitioning for Neighborhood Average Ridge Widths 209
D.1 AlgorithmDescription0ttt 209
D.2 SUMMATY ...ttt ittt ittt i tenenenenanananeaeannnns 210
Appendix E Pseudocode Function Call Tree ettt 213
Appendix F Lists of Constants, Parameters, and Variables 225

viii

LIST OF FIGURES

FIGURE A_ : : PAGE

1 Compression/Decompression Algorithm Diagram 3
2 Compression Algorithm Flowchartcccivaae.... 5
3 Decompression Algorithm Flowchart iiniinnn... 6
4 Comparison Between Straight Thresholding and Dynamic Thresholding 10
5 Windows for Calculating a Pixel’s Neighborhood Mean Value, Myindow - -+ ... - 11
6 Determination of the Largest Vertical Runs and the Edges

of the Fingerprint Impression ittt iinennnnn.. 15
7 The Determination of the Largest Horizontal Runs 16
8 Combining horizontal_run and vertical_run to Produce the Row Scores 17
9 Calculation of the Peak Scores P 18
10 Trimming the Fingerprint Belowthe Creasecciivinnn.nn. 19
11 Examples of Small Single-Pixel Ridge Spurscoven.... 23
12 Flowchart for the Spur Removal Algorithm 25
13 Canonical SmallPore iiiiiiiiiiiiiiiiiie i, 30
14 LargePore Modelttt ittt 33
15 A Valley thatis Similar to0 aLarge POreoueueneeennenennenennn. 33
16 P,, P,, and the Search for Pp; in a Large Pore Candidate - 35
17 SearchFailure i i i it it it it ieeennnn 35
18 Comparison of Pore CandidatetoModelccooiiiiinnn.. 36
19 Partitioning of Fingerprint Image for Neighborhood Average Ridge

Width Calculation i i i i 42
20 Intermediate Products of the Ridge Thinning Algorithm Steps-............... 46
21 The First of Two Passes of the Chamfering Algorithm 48
22 The Second of Two Passes of the Chamfering Algorithm EET 49
23 An Example Portion of a Chamfered Image, 50
24 Filter for Detecting the Local Maxima Locations in a Chamfered Image 52
25 An Example of Recursive Ridge FOllowingouvuteninnennennennn.. 54
26 The Eight Conditions for Recursion Termination by Ridge Intersection 55
27 Diagonal Candidate Ridge PiXelscovtiviiriinnnennennnnnnnnn. 56
28 Rectilinear Candidate Ridge Pixelsccciiiiiiiiiiiiiinnennn.. 56
29 Conversion to Single-Pixel Wide Ridges, 59
30 Curve Extraction ata Bifurcation i i, 60

ix

FIGURE
31 Masks Used to Remove Nubs from Ridgesccovvviiniiien..
32 Masks Used to Remove Non-Topology-Changing Pixels from Ridges
33 Curve Following for a Non-Thinned Ridge and a Thinned Ridge Based on

Connectivity ASSUMPLONSvuueetttieeeeettinneerunnneeennneennnns
34 Flowchart of Overall Control of Curve Extractioncuvvnn..
35 Seed Curves at a BIFURCATION Point e
36 An Example of an Extraction of a Curvein TwoHalves
37 LOOPEA CUIVE .. vttetet ettt et e et e e e e,
38 Branches fromPointX e et iat et e ettt sanee s
39 Possible Branch Counting Examplecoiiiiiiiniiinnnnnnn.
40 Examples of the Artifacts and Details Removed in Ridge Cleaning
41 Flowchart of the Ridge Cleaning Processcccvveeriinnnnnn....
42 Examples of the Curve Connectivity Typesoviiiieeeninnennnnn.
43 Calculation of Average Ridge Width, ridge widthgye
44 Examples of Small Ridge Breakstobe Connected
45 Example of a Search Radius Calculation for the Small Ridge Break

Connection Algorithm i ittt iiinaeenns
46 Example of a Connection Scoring Function Calculation
47 Example of a SmallRidge Connectionccovuieiieriirnnnnennnnn
48 Definition of the Four Neighboring End Sections of a Doubly Connected Curve .
49 Criteria for Removing a Small Ridge Connection
50 Illustration of the Difference in the Number of the Spline Points on a Curve

and Its Smoothed Counterpartc.oviiinreiinrennnanneennnnn
51 Illustration of the Curve Smoothing Algorithm J
52 Effects of Allowable ErrororResidue e
53 Flowchart of Operationsc.oiuuiiiiuiitiinrinneennnenanennnns
54 Sequence of Iterations PP
55 Resultsof the Sorting Processc.ciiiiiiiiiniinennennennnn e
56 Flowchart of Selective Processingc.coiiiiiiiiiiiiiiiinnennnnn
57 The Four Possible Jumping Scenarioscccoiiienienienennennnnn
58 Example of Comparing the Four Jumping Scenarios Between the Last Curve

in the Sorted List and the Current Candidate Curve
59 Flowchart of Cyclic Processingcoiiiiiiiiiiniiinnnnnnnnnn.
60 Insertion of an Unsorted Curve into the-List of Sorted Curves
61 Encoded Fingerprint Componentsc.ccouiveneernernenennannnnns

PAGE

63
63

FIGURE PAGE

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
A-1
B-1
B-2
C-1
C-2
C3
D-1

Absolute Coordinates and Delta Offsets WithinaCurveo.... 146

Absolute Coordinates and Jump Values Between Curves 147
Reference End Values e e 147
Sign MonotoniCity TyPecvviiiiiinin ittt eieeeennnn. 148
Number of Deltas per Curve Exampleccciiiiiiniiiennnnen.. 150
Short/Long Word Sizes for Number of DeltasperCurve 153
Short/Long Word Sizes forDelta Offsetsccovviiieirinnnnnnnn. 153
.Short/Long Word Sizes forJump Valuesccuun... 155
Encoding Flowchartciiiiiiinnnnnnn. e 159
Encoding Example Ridgesooiiiiiiiiiiiiiii i, 170
Decoding Processing Stepsvvutiinttiii i i i 174
Fingerprint Header Parsing S 182
Ridge Information Decoding: FirstCurvecovviiiiiiinnnneenn.. 183
Ridge Information Decoding: Second Curvec.ccovuunn... 184
B-spline Curve Répresentation .. 185
Flow Chart of Operationsc.uiiiteitiiiintirneennnneennnnn. 186
Blocks Used in Ridge DirectionMap PP 194
Proximity of Ridge Endpointsto BadBlockccouun... 198
Criteria for Removing Curved Ridge Endsc.coivien... 199
Curve List Before and After the First Stage of Bad Block Blanking 204
Endpoint Map Before and After the First Stage of Bad Block Blanking 204
Curve List After Last Stage of Bad Block Blanking 205
Partitioning of Fingerprint Image for Neighborhood Average Ridge

Width Calculationo ittt oo 209

xi

LIST OF TABLES

TABLE PAGE
1 Monotonicity Typesand Huffman Codesccviinnennnn.. 150
2 Example of Monotonicity Type Assignments to Huffman Codewords 156
3 Monotonicity Type Codes cit ittt ittt ittt eiinianennnnnns 156
4 Fingerprint Headerccoiiiiiiiiiiiinneiiiiieinnnennnnn. 157
S RidgelInformation......... ..ottt iiiiiiieennann, 158
6 Encoded FingerprintHeaderooiiiiiiiiiineiiiineinnnnn, 171
7 Encoded Ridge Information i i, 172
D-1 Partitions for Typical Image Sizescccviiiiriiinininnnnn, 210
F-1 Constant GrOUPINgSuuuinetuinneeeeronnneeeeenneeesannnneens - 225
F-2 Listof Constantscuuuiiiitunnieeeernneeeeennnnneennneannns 226
F-3 List of Parameters e et et ettt it et 231
F-4 Listof Variablesiiiuiiiiiiiiiiiiiiiii ittt 248

Xii

SECTION 1
INTRODUCTION -

The National Crime Information Center (NCIC) maintains a national database that
includes information about wanted persons, missing persons, and identifiable stolen property.
As part of the NCIC 2000 program, law enforcement officers in police cars will be able to
access this database through their patrol car radio network. This will assist officers in
verifying if a detainee is a wanted or missing person, or to identify a stolen item. To assist in
this process, images maintained in the NCIC database can be transmitted to the patrol car. In
addition, the officer in the car can transmit a detainee’s fingerprint to the NCIC headquarters
in Washington, D.C. for processing and positive identification. The large amount of data
contained in these images and the limited data transmission capacity of police radio networks
necessitates a substantial level of image compression to make this new capability responsive
to law enforcement needs without adversely impacting critical radio communication.

This report describes compression and decompression algorithms developed for flat
live-scan searchprints to meet the requirements of the NCIC 2000 program.

1.1 BACKGROUND INFORMATION

A substantial level of image compression is required' to prepare flat live-scan searchprints
for transmission under the NCIC 2000 program. The requirements for a high rate of
compression and for an accurate representation of certain fingerprint information led to the
development of compression and decompression algorithms designed specifically for this
type of fingerprint. This section provides background information on flat live-scan
searchprints, as well as size and accuracy requirements for the compression/decompression
algorithms.

1.1.1 Flat Live-Scan Searchprints

Searchprints are the fingerprints of unidentified or suspect individuals, which are used for
identification purposes. Minutiae points (ridge endpoints and bifurcations), and possibly
other information, are extracted from the searchprint and automatically compared to the same
types of information extracted from fileprints contained in a central database. If a significant
amount of information from the searchprint matches the fileprint, a match is declared. In any
case, the requestor is informed of the comparison results.

Two types of searchprints are utilized in the NCIC 2000 system: flat live-scan
searchprints and non-live-scan (rolled, inked) searchprints. Non-live-scan searchprints are

generated using standard methods with ink and paper.. By contrast, flat live-scan searchprints
will be obtained from a scanning device either in a patrol car or at a user workstation. The
individual to be printed will place his or her right index finger on the scanning surface of the
device, and a beam of light will be passed over the pressed finger to provide detailed friction
ridge and valley information. The digital gray-scale image generated by this live-scan device
is the searchprint that will be discussed in this document. Another document describes
processing of non-live-scan searchprints.

1.1.2 Original Image Characteristics

The flat live-scan searchprints used to develop and test the compression algorithms
described in this document were simulated from hardcopy examples provided by the FBI.
The searchprints of the right index finger of 50 individuals were provided on 10-print cards,
each card containing one high-quality imprint of a laser-scanned image. The searchprint was
digitized from the card using either an Eikonix camera or a Truvel scanner at 500 dpi. The
area scanned was 0.88 inches by 1.2 inches, simulating the area that might be obtained from
a flat live-scan device. Gray-scale images were obtained with 256 shades of gray (eight
bits). Each searchprint file contained 270,000 bytes, or 2,160,000 bits, of image data.

1.1.3 Compressed Data Goals

Due to the limited bandwidth of police radios and the need for responsive transmission
times, the NCIC 2000 goal for the compressed bit stream of searchprint data was determined
to be 20,000 bits on average [1]. Not only must a high rate of compression be achieved to
reach this goal, but the final fingerprint representation must also maintain a high degree of
accuracy for matching. That is, the compressed, decompressed, and reconstructed fingerprint
must correctly maintain ridge positional data, such as minutiae points and relative ridge
locations.

1.1.4 Reconstructed Image Characteristics

In order to achieve the levels of compression needed to reduce 270,000 bytes of data to
20,000 bits, a series of steps is performed to remove any extraneous information from the
searchprint and reduce the data to only essential elements. The resulting reconstructed image
is actually a two-valued representation of the searchprint with all important positional
information preserved. The ridges are represented by single pixel-width curves that retain .
the general shape of the ridges and preserve minutiae locations.

1.2 OVERVIEW OF COMPRESSION/DECOMPRESSION ALGORITHMS

The process developed to compress and decompress flat live-scan searchprints, described
in this report, actually consists of a suite of algorithms encompassing several stages of
processing. Each step in the suite of algorithms is essential in preparing the data for the next
processing step. Figure 1 illustrates pictorially the suite of algorithms, and figures 2 and 3
show flowcharts of the processes involved. Detailed descriptions of each of these
algorithms, as well as pseudocode, are provided in the remaining sections of this document.

Compression
P> rﬂ : P> rg : > rﬁ > @ >
- e
Original Image Thresholding Image Cleaning Pore Filling Thinning
9 SN
> &_\\ > z > > & 1101001110...

Curve Ridge Ridge Chord | . .
Extraction Cleaning Smoothing Splitting Sorting Encoding
Decompression

1101001110... g >

PN

Encoded Data Decoding Reconstruction

Figure 1. Compression/Decompression Algorithm Diagram

1.2.1 Compression Algorithms

The following paragraphs briefly describe each stage in the compression process. It is
important to note that a gray-scale searchprint image is the input to the first stage of

processing, and a bit stream is the final output. In the operational system, the final bit stream
produced by compression will be transmitted and then decompressed upon receipt.

BHO Binarization: The oﬁginal gray-scale image is reduced to a two-valued image
using a modified version of the Home Office Automatic Fingerprint Recognition System
(HOAFRS) Encoder (see Appendix A).

Image Cleaning: Only enough of the ridge area below the flexion crease is retained for
context, the rest of this area is removed. Then, one pixel-wide ridge spurs, which are
artifacts of the thresholding, are removed.

Pore Filling: Sweat pores are eliminated from the processed fingerprint image in two
steps. First, small pores are eliminated based on their sizes. Then, certain large pores are
detected by comparing them to the surrounding ridge and eliminated.

Ridge Thinning: The thresholded and cleaned ridges in the searchprints are thinned
using a chamfering technique. This technique calculates the distance of every pixel in the
ridge to the nearest edge of the ridge, and only retains pixels whose distances indicate that
they are along the center of a ridge. This produces a thinned, single pixel-width
representation of each ridge.

Curve Extraction: Ridges are detected by scanning a thinned fingerprint image. Each -
detected ridge is followed in both directions until it terminates or bifurcates. The halves are
then combined into a single ridge curve and the bifurcations (if any) are also followed to
create additional ridge curves.

Ridge Cleaning: Ridge disconnects that are less than a specified size are reconnected,
and the majority of small, thin connections between ridges are removed. ’

Ridge Smoothing: The ridge curves are smoothed to remove unnecessary noise.

Chord Splitting: This process selects the fingerprint ridge points that will be used as
control points by the B-spline algorithm to reconstruct the ridge. A residue, or error, input
parameter determines the largest error from the original curve that the user is willing to allow
upon reconstruction.

Sorting: Spline point curves are sorted to reduce the intercurve distances and to arrange
the curves efficiently for encoding.

Data Encoding: Sorted curve points are encoded using differential encoding and several
other encoding strategies to produce the compressed data.

C Searchprint)

\ 4

BHO Binarization
(see Appendix A)

\ 4

Image Cleaning

A 4

Pore Filling

A 4

Ridge Thinning

\ 4

Curve Extraction

A 4

Ridge Cleaning

\ 4

Ridge Smoothing

A 4

Chord Splitting

A\ 4

Ridge Sorting

\ 4

Encoding

\ 4

CCompressed FiIeD

Figure 2. Compression Algorithm Flowchart

1.2.2 Decompression Algorithms

The transmitted bit stream is received and processed by the decompression algorithms.
The bit stream representing the searchprint data is the input to the decompression algorithms
and a reconstructed two-valued image is the final output.

Data Decoding: After transmission, decoding interprets and regenerates the spline points
from the compressed data. .

Ridge Reconstruction: B-splines are used to reconstruct the thinned ridges from the
decoded control points. This process consists of a standard technique that constructs a
smooth curve through a sequence of points. .

(Compressed File)

Decoding -

\

Ridge Reconstruction
(Reconstructed Searchp@

Figure 3. Decompreséion Algorithm Flowchart

1.2.3 Algorithm Tuning

Due to the high rate of compression, information in the original gray-scale flat live-scan
images is lost in the compression/decompression process. However, at each stage of
processing, the developers evaluated the information lost and modified the algorithms, if
necessary, to prevent the removal of any critical information. In addition, since details of the
matching algorithm were not known at the time of development, a very conservative

approach was taken in each stage of processing to ensure compatibility with the final

matching algorithm. Although the values of various input parameters to the routines were set

during testing to reflect this conservative approach, these parameters may be changed to
reflect a more liberal or an even more conservative approach when additional information
about the matching algorithms and system operational characteristics becomes available.
Descriptions and pseudocode in the following sections clearly indicate these input

" parameters.

1.3 NOTATION AND ASSUMPTIONS

Below are examples and descriptions of the standard notation used in the documents that
describe the NCIC 2000 Image Compression Algorithms.

Example
P

P(i, j)
p
p(i)
P

Po(i)

BLACK
MAX-DIST
x

if

*%

FuNnc[<args>]
FUNC[<args>]

x=4

(@, b,c)

. Orthography

Times, bold italic, uppercase
Times, italic, uppercase
Times, bold italic, lowercase
Times, italic, lowercase

Times, bold italic, lowercase,
subscript b

Times, italic, lowercase,
subscript b

Times, small caps
Helvetica, uppercase
Times, italic, lowercase
Times, bold, lowercase
Times, bold

Times, bold, capitalized small caps
or Times, bold, normal small caps

Parenthesized list of variables

Description
array

array element
vector

vector element

binary (bit) vector
binary (bit) vector element

constant

parameter

variable

reserved words (keywords)
begin comment

defined routine

“=" denotes assignment (except in
conditionals, where “=" denotes an
equality test)

Multiple values returned from a
function

1.3.1 Special Notation and Assumptions

The following special notation and assumptions are used throughout this document in
addition to those shown above:

(1)
()
3)

C))

®

(6)

)

All division is floating-point division, unless otherwise noted.

All arrays are assumed to be one-based, i.e., the first row/column is indexed as 1.
The first index into an image array is the row, and the second is the column. The
upper left corner of the image array is indexed by (1, 1); row indices increase
downward, and column indices increase to the right.

Curve points are described by ordered pairs of the form (x, y). The x-coordinate
corresponds to an image column index and the y-coordinate corresponds to an image
row index.

Parameters that may be changed to tune the algorithm are denoted in uppercase
Helvetica throughout the text and pseudocode. For example, J, Uy, and R are
selectable parameters, while j, u,, and r are variables. The values these parameters
were assigned during development are given at the ends of each section.
Mathematical set notation and logical symbols are used throughout the pseudocode.
The symbols used follow these conventions:

€ is not an element of .
{i:q(i)} set of all i such that g(i) is true

r the ceiling function (the closest integer 2 r)
Lr] the floor function (the closest integer < r)
ko the absolute value of x

[a, b] X [c, d] rectangle created by the intersection of two intervals

Common functions, e.g., maximum or cosine, are used in the text and pseudocode
without definition. They appear in roman typeface with their common function
names, e.g., max(x, y, z) or cos(8).

SECTION 2
DYNAMIC THRESHOLDING

The dynamic thresholding algorithm described in this section is no longer used to
threshold the fingerprint image. Instead, a modified version of the HOAFRS Encoder (BHO
binarization) is used. Details of the changes to the HOAFRS Encoder and references are
given in Appendix A. The remainder of this section should be ignored.

Dynamic thresholding is a process that creates a two-valued fingerprint image from a
gray-scale fingerprint image. In general, a thresholding process achieves this by assigning
all the pixels above the threshold value to one value and all the pixels below the threshold to
the other value. The image characteristics of the output from such a process are totally
controlled by the selection of the threshold value. Because gray-scale fingerprint images
vary in intensity levels between images and even within the same image, many thresholding
strategies had to be considered. Straight thresholding uses the mean value of the entire "
image as its threshold. This responds to the difference in brightness between different
images, but does not respond to the brightness variation across a single image. Dynamic
thresholding responds to both of these brightness variations by using the mean value of the
pixels in the neighborhood of each pixel as its threshold. Figure 4 compares straight
thresholding and dynamic thresholding. On the left is shown a cross section of gray-scale
fingerprint ridges that vary from high intensity to low intensity. The thresholds used by the
thresholding techniques are shown as lines through these cross sections. The resulting
two-valued cross section is shown on the right. Clearly the straight thresholding does not
represent the fingerprint ridges as well as the dynamic thresholding which maintains the
ridge size and spacing more accurately.

2.1 ALGORITHM DESCRIPTION

For each pixel /(i) in the original gray-scale image, I, dynamic thresholding sets the
corresponding pixel T(ij) in the thresholded image T to either BLACK or WHITE. This
thresholding process bases the thresholding decision for each pixel on the mean value of the
pixels in its neighborhood window (Wwindow), an absolute upper limit (,5¢,), and a lower
limit (#ower). The value of W, ingow for each pixel I(i,) is calculated by finding the mean
value of the pixels within the N x N neighborhood window centered on I(i,j). For pixels
within (N — 1)/2 pixels of an edge of the image I, the pixel values along the edge are repeated
out into the border for the purposes of this calculation. The calculation of pyindow is
illustrated in figure 5. The absolute upper and lower limits are calculated based on the
overall image minimum value miny, mean value 1y, and maximum value max. The upper

Gray-scale

seine ([T NN
Thresholding

prene - [IIIIIIIINR
Thresholding

Figure 4. Comparison Between Straight Thresholding and Dynamic Thresholding

limit, 4,5per, is set equal to (W + maxy)/2. The lower limit, 5w, is set equal to

(W + 3 ming)/4. These absolute limits prohibit the small variations in the brightness of the
white background from being enhanced and also reduces computation for those pixels that
are unquestionably black or white.

In processing the pixel (i, j), if /(i, j) is greater than f,p,,,, the corresponding pixel in the
thresholded image, T(i, j), is set to WHITE and if I(i, j) is less than ., T(i, j) is set to BLACK.
Otherwise, T(i, j) is set to WHITE if I(i, j) is greater or equal to Wyindow and to BLACK if I(i, j) is
less than Wyingow-

2.2 SUMMARY

Parameters :

N=9 Height and width (in pixels) of the pixel neighborhood window
Input

 § Gray-scale fingerprint image (A pixel in I is referred to as 1(i).)
Output

T Thresholded fingerprint image (A pixel in T is referred to as T(i).)

<

10

11

Image

= z
3
L]
N AEEEEE z
N SEEE o] o S
—2 -m o w0 o ll—cl =
—Z HBOG S =
n Z|voiviov{o]o zZ
= BIECEE E >
o~ Z|0j0]0iclo =
P~ L]
et
&£
2 &
(T
3 2
3 .
i g
]
a
[
]
o] o] o] of o] £3
o{o] o]0 8.9
0f 0 oj o] © E € u
oi.0i.0lolo w ‘W.
@ of af] oy !

SCCCEEEEE

of @] @ @] @e=] Of L2 =

N x N window

i o ol @i @j«] ofCi—

alalalalal<{w ==

Figure 5. Windows for Calculating a Pixel’s Neighborhood Mean Value, pwindow

Calculated values

tupper Absolute upper limit

Yower Absolute lower limit

Hwindow Mean pixel value of a pixel’s neighborhood window
maxy Image overall maximum pixel value

miny Image overall minimum pixel value

W Image overall mean pixel value -

DYNAMIC_THRESHOLDING] I] ,
** The image I is thresholded to produce image T

1 miny = minimum pixel value of 1
2 maxy = maximum pixel value of I
3 W = mean pixel value of I
4 tupper=(maxl+|»ll)/2
S tower =@ ming +1y)/4
6 for each pixel (i) inI
7 if (1Gy) > lupper)
8 T(ij) = WHITE
9 else if /(i) < ower)
10 T(ij) = BLACK
11 else
12 {
13 calculate pyindow for the N x N neighborhood window centered on 1(i,)
14 if (IGy) < Kwindow)
15 T(ij) =BLACK
16 else
17 T(i,j) = WHITE
18 }

19 returnT

SECTION 3
THRESHOLDED IMAGE CLEANING

Thresholded image cleaning is composed of a spur removal algorithm that detects and
removes single-pixel-thin ridge spurs from the thresholded image. To remove a ridge spur,
the spur removal algorithm finds the spur’s end and removes the ridge spur until it intersects
the ridge. Although crease trimming used to be part of thresholded image cleaning, it is no
longer used with BHO binarization, as indicated in the pseudocode below.

IMAGE_CLEANING] I]

** This algorithm modifies 1

Crease trimming is not used with BHO binarization
1 SPUR_REMOVAL[I} , ** Modifies I
2 return

3.1 CREASE TRIMMING

The crease trimming process should not be used after BHO binarization. The remainder
of section 3.1 is retained for historical reference, but it should not be implemented. Proceed
to section 3.2 for a description of the spur removal algorithm.

Crease trimming removes ridges from the thresholded fingerprint image that are a fixed
distance, which is a modifiable system parameter, below the flexion crease. The flexion
crease in a fingerprint image is a large white area within the impression corresponding to the
crease in the skin near the end joint of a finger. The crease trimming algorithm automatically
detects this crease and erases all ridges a selectable distance below this crease. This allows
the retention of the flexion crease for alignment purposes, while reducing the number of
ridges to be encoded. The process first detects the crease as a large white area within the
impression of the thresholded fingerprint image. Then the fingerprint is trimmed a fixed
distance below the detected crease. This algorithm requires that the fingerprint impression
be reasonably centered and large enough to cover the central portion of the fingerprint image.

3.1.1 Algorithm Description

The first step in crease trimming is to detect the fingerprint flexion crease, so that a
portion of the fingerprint impression below the crease can be removed. In order to detect the
crease in the thresholded fingerprint image, the algorithm must look for a large horizontal
white area within the fingerprint impression. Care must be taken not to include the white
border surrounding the fingerprint impression, as this would influence the definition of the
large white areas within the fingerprint.

13

The algorithm considers only the bottom half of the thresholded fingerprint image since a
crease is not likely to appear in the upper half of the image. As part of detecting the large
horizontal white area defining the crease, the algorithm determines the largest vertical run of
consecutive white pixels contained within this region for each column in the thresholded
fingerprint image. A vertical run is defined to be a set of connected white pixels within a
column. Note that a column may contain more than one vertical run. Given a column j,
vertical_run(j) is defined to be the largest vertical run in the lower half of column j not
touching the top or bottom of the lower half of the image. These restrictions prevent the
white borders at the top and bottom of the fingerprint impression from being considered.
The entire collection of largest vertical runs for all columns in the image is referred to as
vertical_run.

Next, the algorithm processes vertical_run to find the left and right edges of the
fingerprint impression. First, it calculates some statistics on the central SVERTICAL_RUN
columns in vertical_run. During development the value of SyERTICAL RUN Was set to select
the central half of the fingerprint image. The statistics are calculated on the lengths of the
runs in this central section of vertical_run for each image: the mean (Wyertical run)s
maximum (maxyertical run), and standard deviation (6vertical run). These values are used to
determine the usable columns of the runs data. Starting at the center column of the image
and iterating towards the left edge of the image, the algorithm searches for the first
vertical_run element whose length exceeds the threshold #,,4, calculated as the maximum
plus one standard deviation (maxyersical run + Svertical run)- If such a column is found, the
algorithm iterates from this column toward the right edge of the image, searching for the first
column whose vertical_run length is less than the threshold ¢, calculated as the mean plus
one standard deviation (Wyersical run + Overtical run)- This column is the left edge of the
fingerprint impression,‘edgeleﬁ.-Otherwise, _if a column outside the central SygrTicAL_RUN
columns is found whose vertical_run length is zero, then the following column is edgey;.
This removes the border around the left side of fingerprint from consideration.

The algorithm then performs a similar process on the right side of the thresholded
fingerprint image to find the right border. Starting at the center column of the image and
iterating towards the right edge of the image, the algorithm searches for the first vertical_run
whose length exceeds fnqx. If such a column is found, the algorithm iterates from this
column toward the left edge of the image, searching for the first column whose vertical run
length is less than . This column is the right edge of the fingerprint impression, edge,gn;.
Otherwise, if a column outside the central SygrTICAL RUN columns is found whose
vertical_run length is zero, then the preceding column is edgerign;. Figure 6 illustrates the
determination of vertical_run, edge,.s;, and edgeign:.

Now that the left and right edges of the actual fingerprint impression have been
determined, the algorithm finds the largest horizontal run of white pixels for each row in the

14

L SVERTICAL_RUN '

.—
bottom half

| , |
|vemcal_run|
| Iy

laannlly
I

| o

:]

| usable columns |
edg €lefi edg €right

Figure 6. Determination of the Largest Vertical Runs
and the Edges of the Fingerprint Impression

region under consideration. A horizontal run is defined to be a set of connected white pixels
within a row. Note that a row may contain more than one horizontal run. Given a row i,.
horizontal_run(i) is defined to be the largest horizontal run in row i between edgej. and
edgerign;. Note that horizontal_run(i) may contain a pixel from either column edgejf; or
edgeyigns; the horizontal run simply can not extend past these limits. The entire collection of
largest horizontal runs for all rows in the image is referred to as horizontal_run. The
determination of horizontal_run is illustrated in figure 7. At this point, the largest horizontal
and vertical runs of consecutive white pixels within the fingerprint impression for each
column and row have been determined.

15

- edgelef edgeright
| usable columns | -

|
1Y

N\

bottom half

{ F%} Ny

horizontal_run

Figure 7. The Determination of the Largest Horizontal Runs

Once these largest runs are found, a score is associated with each row that approximates
the area of the largest, thickest white portion touching that row. Given a row i, row_score(i)
is determined by first finding the vertical runs of vertical_run that intersect
horizontal_run(i), then multiplying the length of horizontal_run(i) by the sum of the lengths
of the intersecting vertical runs. The entire collection of scores for all the rows is referred to
as row_score. Figure 8 illustrates this process of calculating row_score.

16

\ : row_score(i) = R; X; (8(i.j) Cj)
where:

R; = length of horizontal run(i) -
C; = length of vertical_run(j)

—_—
) &ij) = 1 if vertical_run(i)
_ intersects horizontal_run(j)
bottom half ﬁ e — 0 otherwise
Ll“
T
N row_score

Figure 8. Combining horizontal_run and vertical_run to Produce the Row Scores

17

To detect the crease of the fingerprint, row_score is searched for the best broad high peak
indicating the crease row, creasecenter. The best broad high peak is selected by calculating a
peak score for each row whose row score is a local maximum. Given such a row i,
peak_score(i) is calculated as the sum of all the row_score(k) that are greater than half the
peak value, row_score(i), where k is such that no row score less than half of this peak value
exists between rows i and k. This calculation of peak score is illustrated in figure 9, which
represents row_score as a bar graph. The best broad high peak is chosen as the peak with the
largest peak score. In the unlikely event of a tie, the best broad high peak is selected to be
the peak closest to the bottom of the thresholded fingerprint image. The row having the best
peak score corresponds to the crease row, creasecenser, of the fingerprint. The first row below
the crease row whose peak score is less than half of peak_score(creasecenser) corresponds to
" the crease bottom creasepoyom. The trimming row is calculated as ToppseT rows below
Tootom- All the pixels in the rows of the thresholded fingerprint image below this trimming
row are set to WHITE. Figure 10 illustrates calculation of the trimming row and trimming
below the crease in the fingerprint image.

peak scores are sums of the row scores
within the half-height width of the peak
peak height

half-height

width
peak score(i)= I { row_score(k) : row k is within the peak;’s half-height width }

Figure 9. Calculation of the Peak Scores

18

now creasecen[e’-

Creaseécenter - row with largest peak score
P = row_score(creasecenter)

creasebo“om = ﬁl’Sl row below creasecenter
with row score < P/2.

Trimming row = creasepotom + 1OFFSET

row

L creasepottom
Set area below trimming row to white to remove the ridges below the crease

X N\

>

—~ |
— s ¥ —- Trimming row P

Figure 10. Trimming the Fingerprint Below the Crease

CREASE_TRIMMING[I

** The fingerprint in I is modified by trimming ToprsgT rows below the fingerprint
crease ‘
** Find the largest vertical runs of consecutive white pixels (vertical_run)
for each column jin I
2 vertical_run(j) = longest vertical run of white pixels in the lower half of column j
not touching the top or bottom edge of the lower half of I

[S=Y

** Calculate statistics on the sampled vertical_run lengths
3 Wvertical_run = mean{length of vertical_run(i) :
(widih—SVERTICAL_RUN)/2 < i < (heidin+SVERTICAL_RUNY2))
4 Overtical_run = standard deviation{length of vertical run(i) :
. (widin—SVERTICAL_RUN)Y/2 < i < (hwidin*+SVERTICAL_RUN)/2)}
S maXertical run = max {length of vertical run(i) :
(Iwidth—SvERTICAL_RUN)2 < i < (lwiath+SVERTICAL_RUN)/2)}

19

~

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27

28

29
30
31
32
33
34
35

*#+ Set the threshold to be used in cleaning vertical_run of extrema
! = Wyertical_run + Overtical_run
Imax = MQXvertical_run + Overtical_run

** Find left edge of fingerprint impression (edgejs;) and remove extreme vertical runs
from left side of image ‘
edgeles; = 1 ** Initialize edgey,y; to left side of image
for each column j from L4, / 2 down to 1
if(length of vertical_run(j) > tyax)
{
for each column edgej,s; from column j to Ly / 2
if (length of vertical_run(edgen) <1)
exit from loop
exit from loop
}
else if(length of vertical_run(j) = 0 and i < (l;ian—SVERTICAL_RUN)/2)
{
edgen =j+ 1
exit from loop

)

** Find right edge of fingerprint impression (edgey;gn;) and remove extreme
vertical runs from right side of image
edgerighs = Lyidin ** Initialize edgeyign, to right side of image
for each j from L,z / 2 to Ly
if (length of vertical_run(j) > tmax)
{
for each column edgeyign; from column j to Lyigm / 2
if (length of vertical_run(edgerign) < 1)
exit from loop
exit from loop
}
else if(length of vertical_run(j) = 0 and i 2 (lyidn*+SvERTICAL_RUN)/2))
{
edgerigh =j — 1
exit from loop

20

36
37

38
39

41
42
43

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59

61
62
63
64
65
66
67
68
69

Find the largest horizontal runs of consecutive white pixels (horizontal_run)

for eachrow iin [/ -
horizontal_run(i) = longest run of consecutive white pixels in row i
between edgey.f; and edgerigh

*# Calculate the row scores for each row
for each row i from Jjgign:/2 t0 Ipeight
{
sum=0
for each column j from edge.; to edgerign
if (vertical_run(j) intersects with horizontal_run(i))
sum = sum + length of vertical_run(j)
row_score(i) = sum x length of horizontal_run(i)

)

** Find the largest, broadest peak in row_score
best_score =0
Coottom = Iheight
for each row i from l,iop, down to Ipeign/2 + 1
if (row_score(i) 2 row_score(i-1))
{
sum = row_score(i)
k=i-1
while ((row_score(k) > row_score(i)/2) and (k 2 Ineign/2))
if (row_score(k) < row_score(i))
sum = sum + row_score(k)
k=k-1
else
sum=0
exit from loop
if (sum =0)
continue loop for next row ,
k=i+1
while ((row_score(k) > row_score(i)/2) and (k < Ipeighs))
if (row_score(k) < row_score(i))
sum = sum + row_score(k)

k=k+1
else
sum=0

exit from loop

21

70 if (sum > best_score)

71 best_score = sum
72 Ceenter =i

73 Coottom =k

74 } :

Trim the fingerprint below Cponom + TOFFSET
75 for each row i from Cporom + TOFFSET t0 Iheight

76 for each column jinJ
77 I(i, j)) = WHITE
78 return

3.1.2 Summary

Parameters
TorrseT =40 Number of rows below the crease where trimming begins
SveRTICAL_RUN = 0.5 Lian Width of image central region used in collecting statistics
' on vertical_run

Input

I Dynamically thresholded fingerprint image (see section 2)
Output

I Crease trimmed fingerprint image

Calculated Values
vertical_run The longest run of consecutive white pixels for every column
Hvertical run Mean of the sampled vertical_run lengths
ma.xvmi—cal run Maximum of the sampled vertical_run lengths
ove,,,-cal_m; Standard deviation of the sampled vertical_run lengths

tmax Maximum threshold of vertical_run lengths
t Threshold of vertical_run lengths

edgeef The left edge of the fingerprint impression
edgeright The right edge of the fingerprint impression

horizontal_run The longest run of consecutive white pixels for every row

row_score The score proportional to the area of the white region around each
horizontal_run(i) ‘

peak_score The score proportional to the area of each peak in the row_score

creasecenier ROw with the largest peak score closest to the bottom of the thresholded
fingerprint image

" creaseponom First row below the Crease_row whose peak score is half the Ceepnrer peak

score

22

3.2 SPUR REMOVAL

Spur removal removes the small, single-pixel ridge spurs and isolated BLACK pixels
which may occasionally occur in the thresholded image due to either the fingerprint scanning
or the dynamic thresholding process. These thin ridge spurs must be removed for correct
ridge processing. An example of several ridge spurs is illustrated in figure 11. The ridge
spurs are removed by detecting single black pixel spur ends, then removing these single pixel
spurs down to the fingerprint ridge. The algorithm removes BLACK pixels starting from the
end of a thin ridge spur in order not to remove the single-pixel borders between some
fingerprint pores and their neighboring fingerprint valley. If a single-pixel border is
removed, the associated pore will open onto the neighboring fingerprint valley.

small single-pixel ridge spurs

\ single-pixel pore border

Figure 11. Examples of Small Single-Pixel Ridge Spurs |

3.2.1 Algorithm Description

Spur removal operates on a thresholded fingerprint image that has been processed by
crease trimming. The algorithm scans the entire image, checking each pixel for the
possibility of being the end of a single-pixel ridge spur. If such a spur is found, it is
immediately removed down to the actual ridge. Once the spur is removed, the algorithm
. returns to the point at which the removal of the spur began and continues the image scan in a
manner such that all remaining pixels in the image are considered. '

As the algorithm scans through the image, it checks if the current pixel is a ridge pixel
(BLACK). If so, the algorithm considers its eight neighboring pixels and determines the
number of these neighboring pixels that are ridge pixels. If, in the process of counting, the
number of neighboring ridge pixels exceeds three, the count terminates and the algorithm
continues by examining the next pixel of the image scan. This early termination decreases
the processing needed for ridge pixels that are definitely not part of a thin ridge spur. The
spur removal process considers several alternatives:

23

® If the current pixel has three neighboring ridge pixels that are all touching and
are in a straight four-connected line, the current pixel is erased and the
algorithm continues by examining the next pixel of the image scan.

® If three or more neighboring pixels are ridge pixels and they are not in a
straight four-connected line, the current pixel is not part of a thin ridge spur,

- hence the algorithm continues by examining the next pixel of the image scan.
L)

for example:

® If the current pixel has no ridge neighbors (i.e., is an isolated pixel), the
current pixel is erased and the algorithm continues by examining the next

pixel of the image scan. -

- ® If the current pixel has only one ridge neighbor, the current pixel is erased and
the algorithm continues by examining the current pixel’s neighboring ridge
pixel. ' ‘

® If the current pixel has only two neighboring ridge pixels that are
four-connected to each other, the current pixel is erased and the algorithm
continues by examining the neighboring ridge pixel that is four-connected to

this erased pixel.

The spur removal process is illustrated by a flowchart in figure 12.

24

Examine Begin image scan
next ridge pixel
found in image

scan

Count
>3 neighboring
ridge pixels

Erase
current
pixel

does
neighborhood
match one of :

(1} a
L] LB L]
L] L] »
.

Are these
neighbor pixels
four-connected
to each other?

Examine
current pixel’s
neighboring

yes ridge pixe

no

Definitions :
1. O Valley pixel
B Ridge pixel
8 Current ridge pixel

Examine
current pixel’s
four-connected
neighboring
ridge pixel
(see def. 3)

2. Four-connected pixels
touch each other
either @ or B

3. Four-connected neighbor pixels

match one of :
’E & g‘_ < indicates
g current pixel’s
: four-connected
i - B8 e neighboring
ridge pixel

Figure 12. Flowchart for the Spur Removal Algorithm

25

SPUR_REMOVAL[I']

W -

** This algorithm modifies 1
** Every BLACK pixel in image I is checked for being the end of a ndge spur by a call to
ProOCESS_CANDIDATE_SPUR_PIXEL[]. If a pixel satisfies the conditions of being part of a
spur, PROCESS_CANDIDATE_SPUR_PIXEL[] is recursively called until the spur is
completely removed. At that point, the image scan proceeds from the pixel that began
the ridge spur.
for each pixel (i,) in I

 if (I, j) =BLACK) ,

PROCESS_CANDIDATE_SPUR_PIXEL[i, j] ** Modifies 1

return

PROCESS_CANDIDATE_SPUR_PIXEL[i, j]

m OV NOWN A WN -

Pk ek ek ek
AWV bW

** To keep the data stack for this recursive process from growing larger than necessary,
image I is not explicitly passed to this routine, instead, image I is considered to be a
localized global value accessible and modifiable from within this procedure.

n = number of pixels neighboring the current pixel (i, j) whose value equals BLACK
if(n=0)

I(i, j) = WHITE ** Erase the current pixel
elseif(n=1))
I(i, j) = WHITE ** Erase the current pixel

set (i, j) to the coordinates of the neighboring ridge pixel
PROCESS_CANDIDATE_SPUR_PIXEL[i, j]
elseif(n=2)
if the neighboring ridge pixels are four-connected to each other
I(i, j) = WHITE ** Erase the current pixel
set (i, j) to the coordinates of the neighboring ridge pixel that is four-connected
to the current pixel (See figure 12)
PROCESS_CANDIDATE_SPUR_PIXEL[i,]
elseif (n=3)
if all three neighboring pixels are touching and in a straight line
I(i, j) = WHITE ** Erase the current pixel
return

26

3.2.2 Summary

Input

I Dynamically thresholded, crease-trimmed fingerprint image
Output

 § Clean thresholded fingerprint image

27

28

SECTION 4
PORE FILLING

Sweat pores in fingerprints are naturally occurring features that result from sweat glands
breaking through the skin surface. However, pores are not reliably present in fingerprints
and they can be obliterated or altered by pressure or other factors [2].

After the fingerprint images are thresholded into binary images, the pores that are
internal to the ridges become apparent. These pores do not need to be retained for the
automated matching task. Therefore, the algorithm attempts to remove as many as possible
without changing the important fingerprint characteristics, i.e., without changing the
fingerprint topology as represented by the ridges and ridge minutiae (terminations and
bifurcations). Because the algorithm must be conservative when removing the pores in order
not to change the fingerprint characteristics, a small number of pores may remain in a
fingerprint after pore removal. However, the criteria for pore retention can be varied by
adjusting certain input parameters.

4.1 ALGORITHM DESCRIPTION

Pore removal proceeds in two phases: small pore removal and large pore removal. Small
pores are first identified in a binary fingerprint image based on consideration of the widths of
the ridges in neighborhoods around the pore candidates. After the small pores are removed,
the large pores are identified based on a comparison of the widths of the ridges across the
pores with the widths of the ridges on the sides of the pores. Finally, identified large pores
are also removed.

For purposes of the following discussion, the distinction between ridge pixels and pore
and valley pixels must be defined. Following the standard for inked fingerprints, black
pixels are taken to be ridge pixels and white pixels are taken to be pore or valley pixels.
Ridge pixels are considered to be connected if they are adjacent horizontally, vertically, or
diagonally, i.e., if they are eight-connected. Pore and valley pixels are considered to be
connected if they are adjacent horizontally or vertically, i.e., if they are four-connected. This
distinction is important since the algorithm may deal with ridges that are one pixel wide.

Parameters associated with the pore filling algorithm are described in section 4.2. In the
algorithm descriptions, “distance” refers to the Euclidean distance between two pixels in the
image, using the pixel coordinates as the point locations. In the text and pseudocode, image
pixels are referred to as Py, where g3 is an identifying subscript.

29

PORE_FILLING[IMAGE]
** This function has the side effect of modifying IMAGE

1 if (REMOVE_SMALL_PORES[IMAGE] = TRUE) ** Section 4.1.1
2 return .

3 REMOVE_LARGE_PORES[IMAGE] ** Section 4.1.2
4

return

4.1.1 Small Pore Filling

The goal of small pore filling is to fill in the white spaces in a fingerprint image that can
be reliably and quickly identified as pores. The smaller a white space is, the more likely it is
to be a pore. Based on this fact, the algorithm developers have created a canonical definition
of a “small pore” that will be reliable for most fingerprints to be processed. The magnitude
of “small” is determined relative to the width of the ridges in the region surrounding the pore
candidate. The canonical small pore is defined to be a circular white space inside a ridge,
where the diameter of the pore is one pixel less than the average ridge width in the
surrounding neighborhood (see figure 13). Use of the average neighborhood ridge width
(see section 4.1.3) ensures that small pore filling is sensitive to the ridge width variations
across the fingerprint without being overly sensitive to individual ridge width behavior. If
the area of a small pore candidate is less than the area of the canonical small pore in its
neighborhood, that candidate is declared to be a small pore and is filled. Note that the
candidate need not be a circular region; the circular canonical pore was only defined in order
to provide a reliable maximum area for a small pore.

0.5 pixel

neighborhood average
ridge width w,

¥

Figure 13. Canonical Small Pore

Given the above definition of a canonical small pore, the algorithm for identifying and
filling small pores is straightforward. First, a connected-components analysis is performed

30

on the fingerprint image and the connected white regions are identified and labeled. Using
the labels, the area (number of pixels) of each region can be found in a lookup table (see
Appendix A of [3]). Second, the fingerprint is broken into fixed-sized regions and the
average ridge width is determined for each region (see section 4.1.3). Each of these regions
serves as the neighborhood for every small pore candidate that is contained in them. If
analysis of these regions shows that there are no pores or no ridges, pore filling is complete.
Otherwise, the image is scanned (left-to-right, top-to-bottom) and the labeled white regions
are selected in turn as candidate small pores. Given P,, the first pixel of the candidate small
pore encountered by the scan, the average ridge width w, in the neighborhood containing the
candidate is found through the methods of section 4.1.3 by using P, as the location of the
candidate. If the area of a candidate pore, i.e., the number of pixels it contains, is less than
= ((wg — 1)/2)?, then the candidate is identified as a small pore and is filled in.

REMOVE_SMALL_PORES[IMAGE]

** This function has the side effect of modifying IMAGE

** 1 abel white regions (connected components), as discussed in Appendix A of [3]
1 (num_regions, LABEL_IMAGE, area_vector)
= FOUR-CONNECTED_COMPONENTS[IMAGE, BLACK, LABEL _IMAGE)

2 if (num_regions = 0)

3 exit . ** Error: IMAGE is all black
4 elseif (num_regions = 1)

5 if (area_vector[1] = width * height)

6 exit ** Error: IMAGE is all white
7 else

8 return TRUE ** A single white area not covering the whole image, so no pores
9 PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS[IMAGE] ** Section 4.1.3
10 if (all average neighborhood ridge widths are 0)

11 return TRUE ** There are no ridges with width between Wyyn and Wax

12 for i from 1 to height
13 for j from 1 to width

14 if IMAGE(i, j) is wrrTE and IMAGE(i, j — 1) is BLACK)

15 W, = AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH[, j]

16 if (area_vector(LABEL IMAGE(i, j)) <[n ((wg — 1)/ 2)2]

17 fill white region containing IMAGE(i, j) *#* Fill the pore
18 return FALSE , ** Proceed with large pore filling

31

4.1.2 Large Pore Filling

The goal of large pore filling is to fill in as many of the pores as possible that were not
filled in by the small pore filling algorithm, without filling in white spaces that are not pores.
This process is more difficult than small pore filling because some large pores are similar to
valleys and vice versa. To identify large pores, the algorithm compares candidates to the
model of a large pore that was developed for this task (see below). If the candidate pore
matches the pore model, it is further checked to verify that it is not a small valley. If the
verification succeeds, the pore has been identified and is filled in.

4.1.2.1 Large Pore Model

To identify large pores, the algorithm first needs a model of a large pore. A large pore is
identified based on its width and the width of the ridge containing it. If the width of the
ridge across the pore candidate is sufficiently small with respect to the minimum ridge width
to either side of the candidate (figure 14), then the candidate matches the large pore model.
If the candidate matches the model, it is further checked to ensure that it is a pore and not a
valley.’ o

Because the ridge width calculation can inadvertently span more than one ridge

(figure 15), the ridge widths measured to the sides of the candidate are compared to the
average ridge width in the neighborhood around the candidate. If the minimum side ridge
width is sufficiently greater than the neighborhood average ridge width, the algorithm

- assumes that the measurement of the side ridge width spanned more than one ridge and is
thus invalid. In this case, the candidate is declared to be a valley. Otherwise, the candidate is
declared to be a pore and is filled in. This process is designed to be conservative to avoid
filling in valleys at the expense of not filling in questionable pores.

4.1.2.2 Candidate Selection

The algorithm for identifying and filling large pores once again uses the average ridge
width w;, for regions of the image (section 4.1.3), but these widths must first be recalculated
because the small pores have now been filled in. After this recalculation, the large pore
candidates are selected by considering each white region that still remains in the fingerprint
image after small pore elimination. Given the parameter Lyax (see section 4.2), if the area
of a white region (the number of pixels it contains) is greater than w,Lpax, that candidate is
assumed to be a valley; otherwise, it identified as a large pore candidate. (This size
consideration implies that a white space larger than one average ridge width wide and Lyax
average ridge widths long is taken to be a valley.) To fill large pores, the image is scanned
(left-to-right, top-to-bottom) until a black-to-white pixel transition is encountered. If the
region that contains the white pixel of this transition meets the criterion for a large pore
| candidate, the pixel is labeled P, and identifies the pore candidate; P, and the pixels in the

32

pore

left side ridge width pore width right side ridge width

valley

Figufe 14. Large Pore Model

left side ridge width measured pore width right side ridge width

Figure 15. A‘ Valley that is Similar to a Large Pore

white region containing it are then labeled LARGE_PORE_CANDIDATE. (The labels could be
implemented, for example, by maintaining a separate label array of the same size as the
image.) Each pore candidate found is checked against the large pore model and filled in if it
matches. After the check, the scan resumes until all the pore candidates have been tested.

REMOVE_LLARGE_PORES[IMAGE]

*# This function has the side effect of modifying IMAGE
** The array IMAGE should be available globally to the subroutines
under REMOVE_LARGE_PORES

1 PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS[IMAGE] ** Section 4.1.3
2 for i from 1 to height

3 for j from 1 to width

4 if IMAGE(i, j) is wHITE and IMAGE(i, j — 1) is BLACK)

5 W, = AVERAGE_NEIGHBORHOOD RIDGE WIDTH(, j]

6 if (area of white region containing IMAGE(i, j) < waLimax)

7 {

8 for pixel in white region containing IMAGE(i, j)

9 label pixel as LARGE_PORE_CANDIDATE
10 LARGE_PORE_TEST{i, j] ** Removes large pores, section 4.1.2.3
11 }
12 return

4.1.2.3 Large Pore Model Test

To compare a candidate pore against the large pore model, the width of the ridge must be
calculated both across the white space and at the sides of the white space (figure 14).
" (Because a ridge edge actually is a black-pixel-to-white-pixel transition, one side of this
transition must be selected to represent the ridge edge. For this algorithm, the white pixels of
the transition are chosen to define the ridge edge.) First, the edges of the enclosing ridges are
located. Because the candidate was found using a raster scan of the image (left-to-right,
top-to-bottom), it is guaranteed that black (ridge) pixels are to the left of and above the initial
candidate pixel, P, (figure 16). To find the edges of the enclosing ridges, the image pixels
are searched to the left of, and searched up from, P, until the first black-to-white
(ridge-to-valley) transition found in each direction. If the white pixel of either transition has
been labeled LARGE_PORE_CANDIDATE, (i.e., it is contained in a large pore or large pore
candidate, see figure 17), or if the distance from P, to the white pixel exceeds LUmax, the
transition is invalid and is discarded. (Note that, because of the order of the raster scan of the
image, all large pore candidates to the left of P, and all large pore candidates above P, have
already been labeled.) If both transitions are valid, the white pixel of the transition closest to
P, is selected as P,, the edge of the ridge surrounding the pore candidate. If only one
transition is valid, it is used to select P,. If neither transition is valid, no decision can be
made about this large pore candidate, so it is not filled in and the scan continues for the next
candidate.

34

counterclockwise search
* -

-
........
- * -

= - o clockwise search

Figure 16. P,, P,, and the Search for P,; in a Large Pore Candidate

(a)

Figure 17. Search Failure. This figure shows an example of a failure in the search for the

black-to-white transition of the enclosing ridge edge of a large pore candidate. (a) A ridge

containing a large pore on the left and a large pore candidate on the right. (b). The search

to the left from the candidate finds a black-to-white transition, but the transition is invalid
because the white pixel is contained in a large pore.

After finding the enclosing ridge, the point on the ridge closest to the center of the pore
candidate must be found. First, the center of area of the candidate’s (white) pixels, P, is
found. Then, given P, and P, the algorithm finds the pixel P, on the ridge edge that is
closest to the candidate’s center of area. The search used to find the minimizing pixel Pp; is
described in section 4.1.2.4. This search is conducted in both the clockwise and
counterclockwise directions along the ridge edge from P, (see figure 16). If no point P,; can
be found, no decision can be made about this large pore candidate, so it is not filled in and
the scan continues for the next candidate. :

The local tangent is calculated at P,; using Pp; and two edge pixels to either side of it.
(By fitting a line in rho-theta form to these points using the least squares technique described
by Horn [4] instead of using the more common slope-intercept formulation, lines that are

35

vertical or near vertical pose no special problem.) The perpendicular to this tangent is then
searched across the ridge to find the other side of the ridge. The first black-to-white crossing
should be at the pore candidate. If it is not, the ridge width across the candidate cannot be
measured and the candidate is declared (by default) to be a valley. Otherwise, the search
along the perpendicular is continued until the next black-to-white transition is found,:
ignoring any white regions encountered that are also part of the pore candidate. (The shape
of the pore candidate may cause its white region to be encountered more than once.) The
white pixel of this black-to-white edge transition across the pore from Pp; is labeled Py, (see
figure 18). The distance from Pp; to Pp; is the width across the pore candidate, wj.

Pecwi | Pp]

sz Pcw2

Figure 18. Comparison of Pore Candidate to Model

After the width across the pore candidate is determined, the width of the ridge to either
side of the candidate must be found. First, the minimum and maximum row and column
(mins imaxs Jmin, and jimax) are found for the white candidate region. Then, given the average
ridge width w; in the neighborhood of the candidate pixel P,, the ridge is traced from Pp; in
both directions (clockwise and counterclockwise) until the row and column are outside the
rectangle [imin = Wa, imax + Wa)] X Umin — Wa» jmax + wa]. These (white) ridge points are
labeled Py and Peoyg (see figure 18). If tracing the ridge in the clockwise
(counterclockwise) direction does not yield a ridge point outside the bounds stated above
within Epmax pixels of Py, the search is abandoned and Py (Pcews) is not defined. Given
Pewi (Peewr), the point Pey (Peew) directly across the ridge is found by starting at Py, and
tracing along the ridge edge in the counterclockwise (clockwise) direction until the distance
between the white ridge pixel and Pcy; (Pcewi) is minimized. (See section 4.1.2.4 for the
minimizing procedure.) The pixel that minimizes this distance is labeled Pgyp (Peew2). If
Pry2 (Peew?) is found to be the same as Pgyy (Peewi), then the search has wrapped around the
ridge and Pgy (Peew?) is not valid. The ridge width we,, (weew) is calculated as the distance

36

between the points Py and Poy2 (Peewr and Pecywz2). The minimum of wg,, and weq, is taken
to be the ridge width w;, of the ridge containing the pore candidate. If any of Py, Pecwis
P2, ot Py cannot be found, the corresponding ridge width is not used and w is set to the
other ridge width. If neither ridge width wy,, nor w,., can be found, the candidate is
declared to be a valley.

Now that w;, and w, have been calculated, the pore candidate can be compared to the pore
model. If wj, is less than w,PpN, then the candidate matches the pore model. Otherwise, it
is declared to be a valley. If the candidate matches the pore model, the next step is to verify
that the candidate is a pore and not a small valley (figure 15). If w, is greater than w,Ppax,
then w; is assumed to have inadvertently spanned more than one ridge and the candidate is
declared to be a valley. If wj, is greater than w,;Ppmax, then the pore candidate is too wide and
w) is assumed to have been measured across the valley between two ridges; the candidate is
declared to be a valley. Otherwise, the match of the candidate to the large pore model is
accepted and the pore is filled in.

LARGE_PORE_TEST[i, j]

1 Po=(i,)) .
2 candidate = white region containing P,

** Find enclosing ridge edge P,
3 Pg et = NOT_VALID
4 P, up = NOT_VALID
5 search left from P, for black-to-white transition
© 6 Pymp = white pixel of transition
7 if (distance(Premp, Po) < LUmax and Prepyp is not labeled LARGE_PORE_CANDIDATE)
8 P eleft = P, temp
9 search up from P, for black-to-white transition
10 Pymp = white pixel of transition
11 if (distance(Premp, Po) < LUmax and Prepyp is not labeled LARGE_PORE_CANDIDATE)
12 P, eup = P, temp
13 if (P, ieft # NOT_VALID and P, ,,, # NOT_VALID)
14 P, = closer of (Pe tefts Peup) 10 P
15 elseif (P, e # NOT_VALID and P, ,, = NOT_VALID)
16 P, =P, Jdeft
17 else if (P, e = NOT_VALID and P, ,, # NOT. _VALID)
18 Pe=Peyp
19 else if (P jey = NOT_VALID and P, ,, = NOT_VALID)
** Not a pore, so return without filling the candidate
20 return

37

21
22
23
24
25
26
27
28
29
30

31

32
33
34

35
36
37
38
39

41
42
43

45

46

47
48

** Find point Pp; on enclosing ridge closest to candidate center P,
P. = pixel at center of candidate
Pp1,cw = SEARCH_EDGE _ FOR_MINIMIZING_PIXEL[P,, P,, clockw1se]
Pp} ccw = SEARCH_EDGE_FOR_MINIMIZING_PIXEL[P,, P,, counterclockwise]
if (Pp1,cw # NOT_VALID and Pp; ccw # NOT_VALID)
Ppy = closer of (Pp1,cws Pp1,ccw) 10 P
else if (Pp,cw # NOT_VALID and Py} ¢y = NOT_VALID)

P pl = P, pl,cw .
else if (Pp7,cw = NOT_VALID and Py ¢,y # NOT_VALID)
P pl = P, pl.cow

else if (Pp; cw = NOT_VALID and Py} ¢,y = NOT_VALID).
** Not a pore, so return without filling the candidate
return |

** Find point Ppy on enclosing ridge edge opposite from Pp; and pore width w),
find local tangent to Pp;
search from Py, across ridge perpendicular to tangent until first black-to-white transition
if (white pixel of transition ¢ candidate)
** Not a pore, so return without filling the candidate
return
else
continue search until first black-to-white transition where white pixel ¢ candidate
Pp2 = white pixel of transition
w)p = distance(Ppy, Pp2)

** Find ridge edge pixels to either side of candidate
P.,1 = NOT_VALID
Poyw2 = NOT_VALID
imins imaxs min> Jmax = Minimum and maximum rows and columns of candidate
trace at most Epax pixels clockwise along ridge edge from Pp; until outside the
rectangle [imin — Was imax + Wal X Umin — Was Jmax + Wal '
if (trace succeeded)
P, = final white pixel of trace
trace at most Epax pixels counterclockwise along ridge edge from Pp ; until outside the
rectangle [imin — Wa, imax + Wal X Umin — Was Jmax + Wal
if (trace succeeded)
Py = final white pixel of trace

38

49
50
51
52
53
54
55
56

57
58
59

61
62

63

65
66
67
68
69

70

** Find opposite ridge edge pixels to either side of candidate
Powi = NOT_VALID
Py2 = NOT_VALID
Piemp = SEARCH_EDGE_FOR _ MINIMIZING PIXEL[PCM, Pp2, counterclockwise]
lf(Ptemp # Pewl)
Pew2 =P, temp
Ptemp = SEARCH_EDGE_FOR_MINIMIZING_PIXEL[Pccwi, Pp2, clockwise]
if (Premp # Pecwi)
Pecw2 =P temp

Find ridge widths to sides of candidate

Wew = NOT_VALID '

Weew = NOT_VALID

if (Poy1 # NOT_VALID and P, # NOT_VALID)
Wew = distance(Poywg, Pow2)-

if (Pecw # NOT_VALID and P, # NOT_VALID)
Weew = distance(Pecwy > Pecw2)

** Find ridge width to side of candidate

if (Wey # NOT_VALID and w,,, # NOT, VALID)
Wy = min(Wew, Weew)

else if (W # NOT_VALID and w,,, = NOT_VALID)

Wr = Wew

else if (Wsy = NOT_VALID and w,cy # NOT_VALID)
Wr = Weew

else if (W, = NOT_VALID and w,¢, = NOT_VALID)

** Not a pore, so return without filling the candidate
return

39

- ** Compare candidate to pore model
71 if (wp <w,PMIN)
72 if (W, > waPmax or wp > w;Ppmax)
*# Not a pore, so return without filling the candidate

73 return
74 else
** A pore

75 fill in candidate
76 return
77 else

** Not a pore, so return without filling the candidate
78 return
79 end

4.1.2.4 Searching a Ridge Edge to Minimize the Distance between the Edge and
Another Point

Given a point P and a white pixel Q on a ridge edge, various steps of the algorithm need
to find the pixel Qi On the ridge edge that minimizes the distance between the edge and P.
Depending on the step in the algorithm, Q,,;, must be found in the clockwise or
counterclockwise direction along the ridge edge from Q. To find Quin, first let the current
minimum m be the distance PQ and the minimizing pixel Qmmin be Q. Then, choose the next
neighboring white pixel Q" of Oy, in the clockwise (counterclockwise) direction and
compare the distance PQ’ to m. If PQ’ is less than m, it becomes the new minimum distance
m and Q" becomes the new minimizing pixel Q;;». Otherwise, the search continues in the
same direction to the next neighboring white pixel of Q” and the process is repeated. If a new
minimizing pixel is not found within H pixels along the edge from the current minimizing
pixel Quuin, then the search ends and O, is the minimizing pixel. (This hysteresis H allows
for small variations in the smoothness of the ridge edge.) To limit the search, if Epax edge
pixels have been examined and the last pixel examined is less than H pixels from the current
QOmin, the search has failed and no minimizing pixel is found.

40

SEARCH_EDGE_FOR_MINIMIZING_PIXEL[P, Q, direction]

. ** P is the fixed pixel to which this routine minimizes the distance along a ridge edge
** @ is a white pixel on a ridge edge and serves as a starting point for the search
** direction is the search direction: either clockwise or counterclockwise
m = distance(P, Q)

Omin=0
n=0
n_past_min=10
while (n_past_min < H and n < Epay)
Q’ = neighboring white pixel of Qp;n in direction
increment n
if (distance(P, Q") <m)
m = distance(P, Q")

10 Q' = Omin

11 n_past_min =0

12 else

13 increment n_past_min

14 if (n 2 Epgax)

15 return NOT_VALID

16 else

17 return Qnin

18 end

Voo~ S WN -

4.1.3 Neighborhood Average Ridge Width

The algorithms for identifying large and small pores use the average ridge width in the
neighborhood of each pore candidate. Rather than calculate the average ridge width in
neighborhoods centered on each candidate, which would be computationally expensive, the
average ridge width is found for fixed regions across the fingerprint image. The average
ridge width in the neighborhood of a pore candidate is then approximated by the average
ridge width in the fixed region in which it lies.

The R x C (rows x columns) fingerprint image is partitioned into Rp sections vertically
and Cp sections horizontally (figure 19). Each resulting R/Rp x C/Cp rectangle is used as a
neighborhood for the average ridge width calculation. (The parameter values used during
development and testing of the Pore Filling algorithms are given in section 4.2. The values
of Rp and Cp were chosen to evenly partition the image so that the resulting neighborhoods
were roughly 60 x 60, thus covering large enough portions of the fingerprint to yield
meaningful average ridge widths. See Appendix D.) The widths for all ridges within each
rectangle are calculated and the average ridge width is stored for each rectangle. To calculate

41

the average ridge widths, a raw thinned image and a chamfered image are created from the
binary fingerprint image (see section 5). Then, for each rectangle, the pixels in the raw
thinned image are scanned. When a black (ridge) pixel is encountered, the corresponding
value v, from the chamfered image is found. The ridge width at this pixel is then calculated
as w = 2v, / 1000. (The algorithm for calculating the ridge width at a pixel is described fully
in section 7.1.2. Note that although section 7.1.2 addresses the calculation of the average
ridge width along a fingerprint curve, the part of the calculation that determines the ridge
width at a pixel is used here in determining the average ridge width in a rectangle.) The sum
of all the ridge widths w in a rectangle, divided by the number of raw thinned image ridge
pixels in that rectangle, yields the average ridge width w, for that rectangle. If the ridge
width at any pixel falls outside of the inclusive bounds [Wpn, Wmax], however, the width is
assumed to be in error and is not used. For development and testing of the algorithm, Wpn
was chosen to prevent the inclusion of one- and two-pixel wide ridges, which typically
correspond to pore edges. Wax was chosen so that large “smudge” regions, which do not
correspond to valid ridges, are not included in the average ridge width calculation.

€— (Cp sections —™

b @ = =

Rp sections

P rrecdoecccndeacecchacacabanad

Y

Figure 19. Partitioning of Fingerprint Image for Neighborhood Average Ridge Width
Calculation

Given a point in the fingerprint image, the average neighborhood ridge width algorithm
returns the average ridge width w, for the rectangle containing that point. One possible
implementation of the average ridge width routines is to store the average ridge widths for
the rectangles of the partitioned image in an array and to access the array based on the given
point’s coordinates, the size R x C of the fingerprint image, and the number of sections Rp
and Cp of the image partition.

42

PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS[IMAGE]
** This function has the side effect of modifying IMAGE

** rows_per_section and columns _per_section should be available globally to the
subroutines dealing with average ridge widths
** See Appendix D for information on setting the parameters Rp and Cp
rows_per_section=[R/Rp]
columns_per section =[C /Cp]|
create RIDGE_WIDTH_ARRAY with Rp rows and Cp columns
initialize RIDGE_WIDTH_ARRAY with zeros
(CHAMFER, RAW_THIN) = RIDGE_THINNING[IMAGE] ** Section 5
** - Store the average ridge widths of the sections of the fingerprint image
for row from 1 to Rp '
for column from 1 to Cp
** Determine the upper-left corner and extent of the current section
8 ilow = ((row — 1) * rows_per_section) + 1
9 Jiow = ((column — 1) * columns_per_section) + 1
10 isize = min(rows_per_section, height — ij5,, + 1)
11 Jsize = min(columns_per_section, width — ji,,, + 1)
12 RIDGE_WIDTH_ARRAY(row, column)
= AVERAGE_SECTION_RIDGE_WIDTH[ijow, jiow, isize, Jsizel

wn A W=

~N

13 return

AVERAGE_SECTION_RIDGE _WIDTH([ijow, Jiows isizes Jsize]
1 count=0
2 sum=0
** Sum the ridge widths in this section of the fingerprint image

3 for i from ij,,, 10 iy + isize — 1
4 for j from jiy 10 jiow + Jsize — 1
5 if (RAW _THIN(i, j) is BLACK)
6 w =2 * CHAMFER(, j) / 1000
7 if (w2 Wpyn and w < Wpyax)
8 Sum = sum +w
9 increment count
10 if (count = 0)
11 return 0
12 else
13 return sum / count
14 end

43

AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH[i, j]

1 row= l_(i -1)/rows _per_section_] +1
2 column =L(j- 1)/ columns_per_section] + 1

** Return the average ridge width for the section containing (i, /)
3 return RIDGE_WIDTH_ARRAY(row, column)

4.2 SUMMARY

The parameter values used during development and testing of the algorithms described in
this section, as well as the input and output variables, are listed below.

Parameters
C =450
Cp=9
Emax =50
H=5
Lmax =10
LUpax =15
Pmax = 2.5
Pmin=3.0

R =600
Rp=10

Wpax = 8.0

Wuin=14

Input
IMAGE

Output
IMAGE

Number of columns in the fingerprint image

Number of horizontal sections in the partition of the fingerprint image
used to calculate average ridge widths (see Appendix D)

The maximum distance for a search along a ridge edge, in pixels

When choosing a ridge edge pixel to minimize the distance to a point, a
pixel is considered to minimize this distance if no ridge edge pixel within
H pixels yields a smaller distance.

Maximum ratio between the white area of a large pore candidate and the
average ridge width in its neighborhood

Maximum distance to the left of, or up from, an initial pore pixel to its
enclosing ridge edge, in pixels '

Maximum ratio between the pore and ridge widths of a candidate and the
average neighborhood ridge width in the large pore model

Minimum ratio between the width of a pore candidate and the ridges to
either side of it in the large pore model

Number of rows in the fingerprint image

Number of vertical sections in the partition of the fingerprint image used
to calculate average ridge widths (see Appendix D) '
Maximum width of a ridge for the average ridge width calculation, in
pixels

Minimum width of a ridge for the average ridge width calculation, in
pixels

Binary fingerprint image

Pore-filled binary fingerprint image

44

SECTION §
RIDGE THINNING

Ridge thinning processes the thick fingerprint ridges of the trimmed, thresholded image
to produce a raw thinned image containing mostly single-pixel lines that represent the
fingerprint ridges. This ridge thinning algorithm is used twice in the flat live-scan
searchprint compression process. It was used previously by the pore filling process to
generate the chamfered and thinned images required for calculating average ridge widths (see
section 4.1.3). The ridge thinning algorithm is now applied to the pore-filled image to
produce a raw thinned image. A further processing step described in curve extraction (see
section 6) will process this raw thinned image before extracting the curves. This processed
image will be referred to as the thinned image and will be free of the artifacts that remain in
the raw thinned image after the thinning process-described in this section.

5.1 ALGORITHM DESCRIPTION

Three major steps characterize the ridge thinning process: chamfering, local maxima
detection, and recursive ridge following. The products of these steps are represented in
figure 20. Chamfering generates an image whose pixel values represent approximate
distances to fingerprint ridge edges. The chamfered image is used extensively, not only in
the other two steps of this process, but also for calculation of average ridge widths in the pore
filling (section 4) and ridge cleaning (section 7) processes, and must be retained until no
further needed. Local maxima detection finds local maxima points within the chamfered
image that serve as seed points for the recursive ridge following step. These local maxima
points are placed in the final raw thinned image as part of the raw thinned ridges. The
recursive ridge following step fills in the gaps between local maxima points. The recursive
nature of the ridge following algorithm allows the trimming of unwanted spurs that may be
generated by other methods of thinning.

RIDGE_THINNING[I]

C = CHAMFER[I]
T = DETECT_LoCAL_MAXIMA[C]
for each pixel (i, j) in T marked as a LOCAL_MAXIMUM pixel
FoLLoW_RIDGE] i, j, UNDEFINED_DIRECTION] ** Refers to C & T and modifies T
return (C, T)

wn oA WN -

45
© 1992, 1993 The MITRE Corporation

Thresholded Raw
Image \ Thinned
.) Image

Recursive
Chamfering Ridge
Following

Local

Maxima NN,
Detection NN
R ZARROUCE
Chamfered » I a Y Local
Image HETRARICINEN Maxima

Figure 20. Intermediate Products of the Ridge Thinning Algorithm Steps

Inputs

I Thresholded, cleaned, fingerprint image
Outputs

C Chamfered image

T Thinned image

5.1.1 Chamfering

The chamfering algorithm processes a binary image to produce an image in which each
non-zero pixel value represents the shortest path distance to the closest edge pixel (i.e., the
shortest path distance from each BLACK pixel to its nearest black pixel of a BLACK to WHITE
transition). This shortest path distance was defined as the sum of diagonal pixel jumps and
the rectilinear pixel jumps between two pixels. The chamfering algorithm is originally

46

described in a paper by Barrow et al. [S]. In the chamfering algorithm used here, the shortest
path distances are calculated for the pixels within the ridges, providing the basis for a fast
algorithm to thin the fingerprint ridges to single-pixel widths. The resulting chamfered
image also provides the capability to calculate the average ridge widths which is used in pore
filling (section 4) and ridge cleaning (section 7).

The chamfering algorithm consists of an initialization pass and two chamfering passes.
First, a new integer-typed image, the chamfered image, is created and initialized to zero.
Then, initialization is completed by setting every chamfered image pixel corresponding to a
thresholded image ridge pixel to a very large integer (see below). The very large integer
used in the initialization must be larger than the largest possible chamfer value, ¢pax, of the
final chamfered image, which can be calculated from the size of the image and the scaling
factor as follows:

Cmax = floor ((min_size x (V2-1.0) + max_size) x scaling_factor +0.5)
Where:
min_size = the minimum of heighyy and widthy
max_size the maximum of height; and widthy
scaling_factor is an integer larger than min_size.

The scaling factor specifies the precision retained in the integer arithmetic. Because the
integer values of the square root of two and of one are both one, all numbers must be scaled
by the scaling factor in order to preserve enough precision to differentiate between these two
values. In the case of the 450x600 pixel live-scan fingerprint images, the scaling factor is set -
to 1000. Hence, all rectilinear jumps between pixels have a distance of 1000, and all
diagonal jumps between pixels had a distance of 1414. The value of ¢4 computes to
782,254, requiring the chamfer image to have at least 20 bits per pixel.

Once the chamfered image is initialized, two passes of a similar operation are iterated
over the image. The first chamfering operation is applied to the image from the top-left
corner to the bottom-right corner of the image; scanning from left to right and from top to
bottom. As this operation is applied to each pixel, the chamfered image values of the pixel
and its neighboring pixels to the top-left, top, top-right, and left are considered. The chamfer
value of the pixel is replaced with the minimum of the following values: its original chamfer
value, the top-left value plus the diagonal jump distance, the top value plus the rectilinear
jump distance, the top-right value plus the diagonal jump distance, and the left value plus the
rectilinear jump distance. When a pixel under consideration is at the border of the image,
only those neighboring pixels that are contained within the image are considered. This first
pass, illustrated in figure 21, finds the shortest path distances from each ridge pixel to its
nearest top-left ridge-edge pixel. The efficiency of this operation can be dramatically
improved by first checking if the pixel being operated on has a value of zero before

47

alelal G
d
Window

rectilinear distance = integer of (1 X 1000) = 1000
diagonal distance = integer of (V2 x 1000) = 1414

chamfer image value C(i, j) = minimum of :
a+1414,

b+1000,
c+1414,
d+1000,
Chamfer Image - C(L))

Figure 21. The First of Two Passes of the Chamfering Algorithm

calculating the above minimum. Approximately half of the pixels in the chamfered image
have been initialized to zero (fingerprint valley pixels) and will continue to be zero.

The second chamfering operation on the image is identical to the first chamfering
operation, except it is applied to the image as if it were rotated by 180 degrees. This second
operation is applied from the bottom-right corner to the top-left corner of the image;
scanning the image from right to left and from bottom to top. As this operation is applied to

“each pixel, the chamfer image values of the pixel and its neighboring pixels to the
bottom-left, bottom, bottom-right, and right are considered. The chamfer value of the pixel
is replaced with the minimum of the following values: its original chamfer value, the
bottom-left value plus the diagonal jump distance, the bottom value plus the rectilinear jump
distance, the bottom-right value plus the diagonal jump distance, and the right value plus the
rectilinear jump distance. Again, when a pixel under consideration is at the border of the
image, only those neighboring pixels that are contained within the image are considered.
This second pass, illustrated in figure 22, finds the shortest path distances from each ridge
pixel to its nearest ridge-edge pixel by completing the consideration of the bottom-right
ridge-edge pixels. An example of the steps in generating the final chamfered image is shown
in figure 23.

48

(i.J)

| Je]
[flelh]
Window
rectilinear distance = integer of (1 %< 1000) = 1000
diagonal distance = integer of (v2 X 1000) = 1414
‘ chamfer image value C(i, j) = minimum of :
Ca,pn,
e+1000,
f+1414,
a ‘ 2 g+1000,
Chamfer Image h+ 1414

Figure 22. The Second of Two Passes of the Chamfering Algorithm

49

00 | O | o0 | 0O | OO0 | 0O

©O | 0O | 0O | ©O | 0O | ©O } OO

o0 | OO | 00 §J OO | ©© | ©O | 00 | OO
00 | 00 | 00 | ©©0 | 0O | ©0O | ©© | ©O
0O | 00 | ©© J 00 J 0O | OO | OO0 | ©O

oo 05
0 00
Initialized

oo is the largest possible chamfer value, Cpqx

1000

1000

1000

1000

1000

1000

1000 1414 2000 | 2000 | 2000 | 2000 | 2000

1000| 1000 | 1000 | 1000 | 1000 | 1000

1414 2414 3000| 3000 | 3000 | 3000 | 3000

1000

1000

1000

First Pass

1000

1414

2000

2000

2000

2000

2000

1414

2414

2414

1414

1414

2414

2414

2000

2000

2000

1000

2000

2000

2000

1414

1414

1000

1000

1000

1000

Second Pass

1000

1000

1000

1000

[] rmaE pixels

B vaLLEY pixels

Figure 23. An Example Portion of a Chamfered Image

50

CHAMFER[I]

N WN -

O 003

10

12

13

14
15

16

17
18
19
20

** Initialization of the chamfered image C
for each pixel (i, j) in image I
if (I(i, /) = RIDGE)

C(, j) = Cmax
else
Ci,np=0

** First pass of the Chamfering algorithm
for each row i in C from 1 to heighyy
for each column j in C from 1 to widthy
a=C(@-1,j-1)+ 1414
b= C(-1, j) + 1000
c=C(i-1, j+1) + 1414
d=C(,j-1) + 1000
C(i, j) = minimum of a, b, ¢, d, C(i, j)

** Second pass of the Chamfering algorithm
for each row i in C from heighy to 1 step —1
for each column j in C from widthy to 1 step -1
e=C(, j+1) + 1000
f=C(@i+1,j-1) + 1414
g =C(@i+1, /) + 1000
h=C(i+1, j+1) + 1414
C(i, j) = minimum of e, f, g, h, C(i, j)
return C ‘

5.1.2 Local Maxima Detection

The local maxima detection algorithm generates a local maxima image in which the
pixels are marked as either BACKGROUND pixels or LOCAL_MAXIMUM pixels. The
LOCAL_MAXIMUM pixels are part of the thinned ridge and serve as seed pixels to the recursive
ridge following algorithm. To generate the local maxima image, the algorithm scans the
chamfer image from left to right and from top to bottom, applying the local maximum test to
each pixel. If a pixel passes the local maximum test, its corresponding location in the output
image is marked as a LocAL_MAXIMUM pixel. Otherwise the pixel is marked as a

BACKGROUND pixel.

51

A pixel must pass at least one of two following tests to be declared a LOCAL_MAXIMUM
pixel. The first test has two conditions: (1) the pixel’s chamfer value must be strictly greater
than the chamfer values of the two pixels above that pixel and the pixel two rows below that
pixel, and (2) the pixel’s chamfer value must be greater than or equal to the chamfer values
of the neighboring pixels to the left, right, and bottom. The second test has three conditions:
(1) the pixel’s chamfer value must be strictly greater than the chamfer values of the two
pixels toward the left and the pixel two columns toward the right, (2) the pixel’s chamfer
value must be greater than or equal to the chamfer values of the neighboring pixels above,
below, and to the right, and (3) the neighboring pixel above the pixel has not already been
declared to be a LOCAL_MAXIMUM pixel in the output image. This local maximum detection

_algorithm is illustrated in figure 24. Notice that second condition is the reason that the rows
of the chamfered image must be scanned from top to bottom. A pixel’s neighbor toward the
top must have already been considered as possibly being a LOCAL_MAXIMUM pixel before the
second condition can be applied to the pixel. '

F 5 F

" | Filter Window
- >
Pixel P is a local maximum if
<P AND this[pixel
1S NO!
<P OR <P ‘/a local maximum
<PRP <P <P|<PjPJ<Pj<P
<P ' <P
Chamfered Image <P

Figure 24. Filter for Detecting the Local Maxima Locations in a Chamfered Image

52

DETECT_LocAL_MAXmMA[C]

1 for each row i in C from 3 to heighic -3

2 for each column j in C from 3 to widthe -3

3 if (CG-1, /) < C(, j)) and (C(i+1, j) < CG,)
and (C(, j-1) < C(, p)) and (C(i, j+1) £ C(,)
and (C(-2, j) < C(,) and (C(i+2, j) < CG, j)))

{
4 mark T(i, j) as a LOCAL_MAXIMUM
)

5 else if ((C(i-1, j) < C(,) and (C(i+1, j) £ C(,)))
and (C(, j-1) < CG, j)) and (C@, j+1) < C(, j))
and (C(i, j-2) < C(,) and (C(, j+2) < C(,)))
and T(i-1, j) is not marked as a LOCAL_MAXIMUM)

{ ,
6 mark T(i, j) as a LOCAL_MAXIMUM
)

7 else

8 mark T(i, j) as BACKGROUND

9 returnT

5.1.3 Recursive Ridge Following

Recursive ridge following fills in the missing thin ridge pixels between the local maxima,
using the local maxima pixels as starting pixels for the recursive algorithm. To find these
starting pixels, the output image generated from local maxima detection is scanned to find
pixels that are marked as LOCAL_MAXIMUM. As each local maximum pixel is found, it is
processed by the recursive ridge following algorithm. Given a local maximum pixel, the
recursive ridge following algorithm considers each neighboring pixel to check if that
neighbor meets the conditions of being a candidate ridge pixel. If these conditions are met, a
recursive call to the ridge following algorithm is made using that candidate pixel. A pixel
that produces a candidate ridge pixel is referred to as the spawning pixel of that candidate
(e.g., the local maximum pixel is the spawning pixel for any candidate ridge pixel found in
searching its neighboring pixels). This recursion allows the exploration of candidate
segments before committing to their inclusion as thin ridge segments. A thin ridge segment
ends either with a local maximum pixel or with an intersection with another thin ridge. An -
example of recursive ridge following is illustrated in figure 25.

A call to the recursive ridge following algorithm must pass the position of the candidate
ridge pixel being considered and the direction toward its spawning pixel. The candidate’s

53

ends at
. local maximum pixel

or re==
intersection with another ridge
- - --d
......................... T
L
-
]
starts at v ; .
local M
maximum M
pixel

— recursive ridge following
==> pixel removal upon return

spawning ~ candidate
ridge pixel E ridge pixel

Figure 25. An Example of Recursive Ridge Following

position must include the image coordinate to allow for image boundary checking, and may
include pixel pointers into the raw thinned image and the chamfered image to improve
implementation efficiency. The pixel direction of the spawning pixel refers to the direction
from which the current candidate pixel was discovered and is necessary to check for
termination caused by intersecting another ridge. When this algorithm is first called, the
candidate pixel is a local maximum and does not have a spawning direction. In this case, a
null direction is passed in.

Upon entering the algorithm, the value of the corresponding pixel in the chamfer image is
examined. If it is zero or greater than 14140, the algorithm returns a value of FALSE to
indicate that the ridge has terminated and did not end on a local maximum or an intersection
of ridges or to indicate that the ridge is too wide. These types of terminations will cause this
pixel and the candidate pixels that are on this branch of recursion to be removed (in reverse
order from that in which they were found) until a local maximum pixel is encountered.

Termination also occurs if the candidate pixel intersects another existing thin ridge. This
terminating condition is tested by considering all eight neighboring pixels. If a neighboring
pixel is marked as a RIDGE_PIXEL in the raw thinned image, further conditions are checked.
These conditions ensure that the neighboring ridge pixel found is not part of a local section
of ridge currently being followed. This is verified by considering the direction to the
spawning pixel of this candidate pixel. If the direction to the neighboring ridge pixel is not
closer than 90 degrees to the direction of the spawning pixel, the neighboring ridge pixel is
considered to be from another ridge; hence the terminating condition of intersection with
another ridge has been satisfied. These conditions are illustrated in figure 26. By ending in

54

an intersection to another ridge, this branch of the recursion ended as an actual raw thinned
ridge causing, the algorithm to return the Boolean value of TRUE to indicate that the spawning
pixels of this ridge should be kept. :

At this point in the algorithm, the Boolean value that keeps track of the validity of the
candidate ridge is initialized. If this candidate thin ridge pixel is a local maximum the
validity value is set to TRUE, otherwise it is set to FALSE. If the candidate pixel is not a local
maximum, it is marked in the raw thinned image as a RIDGE pixel. This marking will be
removed in the recursion if this branch of the recursion is determined not to be an actual thin
ridge. :

Next, the four diagonal neighbor pixels are considered as candidate ridge pixels. In order
to be a candidate ridge pixel, a pixel’s chamfer value must be larger than the chamfer values
of neighboring pixels on either side of the direction of travel from the spawning pixel. The
actual conditions for being a diagonal candidate ridge pixel are illustrated in figure 27. If the
condition is TRUE, a recursive call to the ridge following algorithm is made, passing in the
position of this candidate ridge pixel and the direction to its spawning pixel. When the
recursive call returns to this point in the algorithm, the current ridge validity value is updated
by a “logical or” with the returned Boolean value. This is done so that the algorithm knows
if any of the recursive branches from this candidate pixel ended as an actual thin ridge.

After the four diagonal neighboring pixels are considered, the rectilinear neighbor pixels
are considered as candidate ridge pixels. As with the diagonal neighbor pixels, a rectilinear
neighbor pixel is a candidate ridge pixel if the chamfer value of that pixel is larger than the
chamfer values of the neighboring pixels on either side of the direction from the spawning
pixel. The actual conditions for being a rectilinear candidate ridge pixel are illustrated in

If there exists a neighboring pixel marked as a RIDGE or a LOCAL MAXIMUM
and the direction toward the pixel which spawned this candidate pixel
is any one of the directions indicated by the arrows
then the candidate pixel has intersected with another ridge. (return TRUE)
otherwise the candidate pixel has not intersected with another ridge (return FALSE)

% [®] Candidate ridge pixel
i'E ;il | % Marked as a RIDGE pixel
B oraLOCAL_MAXIMUM pix-

el
Figure 26. The Eight Conditions for Recursion Termination by Ridge Intersection

Direction toward
& spawning pixel

55

if
pixels C, a, & d are marked as BACKGROUND pixels

e] [5] Slalb] [e]dlS d
Cld] [a]C d|C Cla an
lblalsS] |Sld]e] [e b 2Cz2@+b)and2C=2>(d+e)
B d o then
chamfered image values

Pixel C is a candidate ridge pixel spawned by pixel S

Figure 27. Diagonal Candidate Ridge Pixels

figure 28. Again, as with the diagonal neighboring pixels, if the condition is to TRUE, a
recursive call to the ridge following algorithm is made, passing in the position of this
candidate ridge pixel and the direction to its spawning pixel. When the recursive call returns
to this point in the algorithm, the current ridge validity value is updated by a “logical or”
with the returned Boolean value. This is done so that the algorithm knows if any of the
recursive branches from this candidate pixel ended as an actual thin ridge.

if
: rir v pixels C, b & e are marked as BACKGROUND pixels
elClb SIC |3 S ld cls - and
diS la 15 biCle 4 C+S=z@+b)yand (C+S)>(d+e)
then

chamfered image values Pixel C is a candidate ridge pixel spawned by pixel S

Figure 28. Rectilinear Candidate Ridge Pixels

At this point in the recursive ridge following algorithm, appropriate clean-up is done. If
the above processing for the candidate pixel has resulted in the ridge validity value being set
to TRUE, this candidate pixel is part of an actual ridge and will be kept in the raw thinned
image. Otherwise, it will be removed by resetting the pixel in the raw thinned image to
BACKGROUND. If the candidate pixel is an actual ridge pixel and was marked as a
LOCAL_MAXIMUM, it is now downgraded to be simply a ridge pixel by marking it as RIDGE in
the raw thinned image.

56

FoLLow_RIDGE[i, j, direction]

W N -

** This process returns a Boolean value indicating the status of the followed ridge
** The chamfered image C and the thinned image T must be globally addressable from
“within this process

if ((C({,H=0) ** No longer on aridge or
or (C(i, j) >14140)) ** ridge is too wide, remove the candidate ridge pixel
return FALSE '

if (T'(i, j) intersects with another ridge) ** Keep this ridge (see figure 26)
mark T'(i, j) as a RIDGE pixel
return TRUE

** If the candidate pixel is a local maximum, keep it labeled as such, for now
if (T'(i, j) is marked as a LOCAL_MAXIMUM pixel)
status = TRUE
else ** Otherwise label it as a potential ridge pixel
mark 7'(i, j) as a RIDGE pixel
status = FALSE
** Consider whether the diagonal neighbors are ridge pixels
if (pixel (i-1, j+1) is a candidate ridge pixel) ** Top right (see figure 27)
if (FoLLow_RIDGE] i-1, j+1, BOTTOM_LEFT] = TRUE)
status = TRUE
if (pixel (i+1, j-1) is a candidate ridge pixel) ** Bottom right (see figure 27)
if (FoLLow_RIDGE[i+1, j~1, TOP_LEFT] = TRUE)
status = TRUE
if (pixel (i+1, j-1) is a candidate ridge pixel) ** Bottom left (see figure 27) -
if (FoLLow_RIDGE[i+1, j~1, TOP_RIGHT] = TRUE)
status = TRUE
if (pixel (i-1, j-1) is a candidate ridge pixel) - ** Top left (see figure 27)
if (FoLLow_RIDGE[i-1, j—1, BOTTOM_RIGHT] = TRUE)
status = TRUE

57

** Consider if the rectilinear neighbors are ridge pixels

24 if (pixel (i-1, j) is a candidate ridge pixel) ** Top (see figure 28)
25 if (FoLLow_RIDGE] i-1, j, BOTTOM] = TRUE)

26 status = TRUE

27 if (pixel (i, j+1) is a candidate ridge pixel) ** Right (see figure 28)
28 if (FoLLow_RIDGE] i, j+1, LEFT] = TRUE)

29 status = TRUE

30 if (pixel (i+1, j) is a candidate ridge pixel) ** Bottom (see figure 28) .
31 if (FoLLow_RIDGE[i+1, j, TOP] = TRUE)

32 status = TRUE

33 if (pixel (i, j-1) is a candidate ridge pixel) **] eft (see figure 28)
34 if (FOLLOW_RIDGE[i, j~1, RIGHT] = TRUE)

35 status = TRUE

36 if (T(i,) is marked as a LOCAL_MAXIMUM pixel)

37 mark T(i, j) as a RIDGE pixel
38 else if (status = FALSE) ** Otherwise if a ridge wasn’t found above, remove it
39 mark 7(i, j) as a BACKGROUND pixel

40 return status

5.1.4 Summary

Inpht

I Cleaned thresholded fingerprint image
Output

C Chamfered image

T Thinned image

58

SECTION 6
- CURVE EXTRACTION

After the fingerprint ridges have been thinned by the previous procedure, they must be
represented by abstract data structures. These data structures, called “curves,” are used to
encode the ridges efficiently for transmission. Curve extraction derives curves from the
ridges in a thinned fingerprint image.

The thinning process may leave behind certain artifacts that are extraneous to the thinned
ridges. For example, the ridges may have areas that are more than one pixel wide (figure 29)
or there may be single-pixel “nubs” that do not represent true ridge structures. These
artifacts are removed to convert the thinned ridges to single-pixel wide ridges prior to curve
extraction.

R -«— redundant pixels

-
4—-| | - nub
[11 HEER

L1

EINEEEEEEEEE

Figure 29. Conversion to Single-Pixel Wide Ridges

After all artifacts have been removed and the ridges are guaranteed to be one pixel wide,
the individual curves are extracted from the ridges. A curve is an ordered list (or other
structure) of points that correspond to the pixels along a thinned ridge. An individual curve
must be a simple curve that extends between an endpoint or bifurcation at each end, with no
intervening bifurcation. The curves must preserve the minutiae, i.e., the terminations and
bifurcations, of the thinned ridges from which they are extracted. When a ridge terminates,
the curve extracted from it must contain the termination point as an endpoint. On the other

59

hand, when multiple ridges meet at a bifurcation, the extracted curves must all contain the
bifurcation point as an endpoint (figure 30). This shared endpoint ensures that the
reconstructed fingerprint ridges based on these curves will intersect at the same point.

(a)

endpoint —» -¢— endpoint

‘ -¢— endpoint shared
(b) by
‘ all three curves

<«¢— endpoint

Figure 30. Curve Extraction at a Bifurcation. (a) A ridge bifurcation. (b) The three
curves extracted from the ridge bifurcation, showing the endpoints and shared endpoint.

Throughout this section, the term neighbors refers to the eight-neighbors of a pixel, i.e.,
the eight adjacent pixels above, below, to the left of, to the right of, and to the diagonals of
the pixel. A neighbor of a ridge (black) pixel is another ridge pixel that is one of its
neighbors.

In the pseudocode contained in this section, the construct “switch on »” is used. Such a
construct is followed by several blocks of code, each headed by a statement of the form
“case m;.” If one of the m; matches n, then the block of code headed by that matching case
statement is executed. In the event that none of the m; match n, none of the case blocks is
executed. ‘

60

6.1 ALGORITHM DESCRIPTION

Curve extraction proceeds in two phases: a pre-processing conversion of the raw thinned
fingerprint image to a thinned fingerprint image guaranteed to contain only single-pixel wide
ridges, followed by curve extraction. In the pre-processing stage, the locations on the ridges
in the raw thinned fingerprint image that are not one pixel wide or that are inconsequential
protrusions, or nubs, are first detected using masks and removed. The individual curves are
then extracted from the resulting thinned fingerprint image.

CuUrVE_EXTRACTION[IMAGE]
** This function has the side effect of modifying IMAGE

1 CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES[IMAGE) ** Section 6.1.1 -

~ ** IMAGE now contains a thinned fingerprint
2 curve_set = EXTRACT_CURVES[IMAGE] ** Section 6.1.2
3 return curve_set

6.1.1 Conversion to Single-Pixel Wide Ridges

Conversion of the thinned ridges to single-pixel wide ridges ensures that the curve
extraction algorithm can make certain assumptions about the connectivity of ridge pixels.
Thus, these assumptions simplify the curve extraction algorithm. Once the conversion
algorithm has ensured that only single-pixel wide curves exist in an image, the assumptions
for any given ridge pixel can be enumerated based on the number of neighbors of that pixel.

1. The pixel has no neighbor. Assume that the ridge consists of only one pixel.

2. The pixel has one neighbor. Assume that the pixel is a ridge endpoint.

3. The pixel has two neighbors. Assume that the ridge passes from one nelghbor
through the pixel, and then through the other neighbor.

4. The pixel has more than two neighbors. Assume that the pixel is an intersection
(bifurcation) point and that there is a ridge mtersectmg this pixel through each
neighbor.

The above assumptions dictate which pixels must be removed from the raw thinned
fingerprint image before curve extraction can take place (figure 29). First, any single pixel
that protrudes from a natural line of pixels (a nub) must be removed so that it does not form a
false bifurcation. Second, any ridge pixel that can be removed from the raw thinned
fingerprint image without changing the topology (connectivity) of the fingerprint ridges must
be removed. (Note that this implies that a pixel that has neighbors directly above, below, to
the left, and to the right cannot be removed; the removed pixel would constitute a one-pixel
valley.) The pixels to be removed are identified through the use of a set of masks.

61

Before the mask sets can be used, one other artifact of thinning must be removed. The
thinning process will occasionally create a white pixel whose four-connected neighbors (top,
bottom, left, and right) are all black. The image is scanned (left-to-right, top-to-bottom) and
all such isolated white pixels are changed to black. The mask sets are then applied to the
image. : ‘

6.1.1.1 Application of the Mask Sets

A set of masks (figure 31) has been defined that identify pixels that are nubs and that
therefore should be removed from a thinned fingerprint image. The thinned fingerprint
image is scanned (left-to-right, top-to-bottom) and at each ridge pixel, every nub mask is
applied. If a mask matches the black and white configuration of a pixel and its surrounding
pixels, then that pixel is removed from the thinned fingerprint image and the scan moves to
the next pixel. A set of masks has also been defined (figure 32) that identify pixels that are
not nubs but that can be removed from a ridge without changing its topology. The thinned
fingerprint image is again scanned (left-to-right, top-to-bottom) and this time at each ridge
pixel every topology mask is applied. Again, if a mask matches a pixel and its surrounding
pixels, then that pixel is removed from the thinned fingerprint image and the scan moves on.
(As an optimization, a mask set need not be applied at a ridge pixel if the number of
neighbors of that pixel is not consistent with any mask in the set.)

The nub masks and the topology masks are applied in turn to the entire image and this
process is repeated until no further pixels are removed in a complete application of all the
nub and topology masks. At this point, the remaining ridges are one pixel wide, with no
extraneous pixels, and the assumptions in section 6.1.1 about them are valid.

Although, conceptually, the mask sets are applied across the entire image, other
implementations can be used to improve the algorithm’s efficiency. One possible
improvement is to partition the image into blocks and then to apply the masks to the image
pixels on a per-block basis. Note that the blocks are used only to select the pixels to be
tested and do not restrict the pixels to which the masks are applied. If, during any pass, no
pixels in a particular block are removed by the application of either mask set, then that block
need not be considered again. The overall algorithm for conversion to single-pixel wide
ridges would then terminate when no blocks are left to consider.

62

D = white = at least one black
. = black = at least one black
: ﬂ = black pixel to be tested |

Figure 31. Masks Used to Remove Nubs from Ridges

-

[] =white [-=black
Ed = black pixel to be tested

Figure 32. Masks Used to Remove Non-Topology-Changing Pixels from Ridges

63

CONVERT_TO_SINGLE_PIXEL_WIDE RIDGES[IMAGE]
** This function has the side effect of modifying IMAGE

- #* Remove isolated white pixels
for each pixel (i, j) in IMAGE
2 if IMAGE(i, j) = WHITE
and IMAGE(i+1, j) = BLACK and IMAGE(i-1, j) = BLACK
and IMAGE(i, j+1) = BLACK and IMAGE(i, j—1) = BLACK)
3 IMAGE(i, j) = BLACK

i

** Initialize the flag that indicates whether any pixels were removed in the current pass
4 pixel_set_to_white = TRUE
** Loop until no pixels are removed in a pass over the image
while (pixel_set_to_white = TRUE) do
6 {

(7]

** Reset flag to show that no pixels have yet been removed in this pass
7 pixel_set_to white = FALSE

** Apply the nub masks (figure 31)
8 for each pixel (i, j) in IMAGE

9 if IMAGE(i, j) = BLACK)
10 if (APPLY_MASKSIi, j, nub_mask_set, IMAGE] = TRUE)
11 {
' ** The current mask matched, so remove this pixel
12 IMAGE(i, j) = WHITE
13 _ Dixel_set_to_white = TRUE ** Flag that a pixel was removed
14 }

** Apply the non-topology-changing masks (figure 32)
15 for each pixel (i, j)) in IMAGE

16 if IMAGE(i, j) = BLACK)
17 if (APPLY_MASKS(i, j, topology mask_set, IMAGE] = TRUE)
18 {
** The current mask matched, so remove this pixel
19 IMAGE(i, j) = WHITE .
20 ' pixel_set_to_white = TRUE ** Flag that a pixel was removed
21 }
22 }
23 return

64
© 1992, 1993 The MITRE Corporation

6.1.1.2 Mask Application

To apply a mask to a ridge pixel, the mask position labeled “X” is aligned with the ridge
(black) pixel being tested (figures 31 and 32). The surrounding pixels are then compared to
the mask pixels. For the surrounding pixels to match the mask, a black mask position must
correspond to a ridge pixel and a white mask position must correspond to a background or
valley pixel. Any pixel corresponding to a position not existing in the mask may be black or
white. (If a portion of the mask falls outside of the image, those mask positions must be
white for a valid match.) Finally, if left-to-right crosshatch mask positions occur, at least one
of them must correspond to a black pixel. Also, at least one right-to-left crosshatch mask
position must match a black pixel, if such mask elements occur. For each ridge pixel that
will be tested, every mask must be applied in each of its four possible orientations (90 degree
rotations). If any mask in any orientation matches the pixel and its surrounding pixels, that
pixel is removed (set to white). The scan then proceeds to the next pixel.

APPLY_MASKS] i, j, mask_set, IMAGE]
** This function has the side effect of modifying IMAGE

1 for mask in mask_set ,

2 for rotation in (0, 90, 180, 270) degrees ‘

3 if (mask at rotation matches IMAGE(i, j) and its surrounding pixels)
4 return TRUE '

S return FALSE

Although, conceptually, each mask in the mask set is applied to a given ridge pixel, this
need not be done in practice. The application of the set of masks to a ridge pixel can be
made more efficient by first checking the number of neighbors of that pixel and only
applying those masks that have the same number of neighbors for the pixel to be tested
(figures 31 and 32). For example, when applying the nub mask set to a pixel that has exactly
three neighbors, only the top left mask of figure 31 need be applied.

6.1.2 Curve Extraction

Conversion of the thinned ridges to single-pixel wide ridges ensures that the curve
extraction algorithm can make certain assumptions about the connectivity of ridge pixels.
The most important of these assumptions is that, given a ridge pixel, a curve exists that
connects that ridge pixel to each of its eight-neighbors that is also a ridge pixel, if such
neighbors exist (figure 33). A consequence of this connectivity is that a ridge can be
followed from any of its pixels. If a ridge pixel has no neighbors, then it forms its own
(one-pixel) ridge. If a ridge pixel has only one neighbor, then the pixel is a ridge endpoint;
the ridge can be followed from this endpoint. If a ridge pixel has two neighbors, then the

65

two halves of the ridge can be followed, one through each neighbor pixel, and the halves then
connected to form the full ridge. If a ridge pixel has more than two neighbors, then it is a
bifurcation point. In this case, although the algorithm could follow all the intersecting ridges
~ from this bifurcation point, the algorithm scan instead skips this point. Because the
algorithm scans the image searching for ridge points, it is guaranteed that it will find another
point on every ridge that intersects the bifurcation point. Using these other points, the
intersecting ridges can be followed using either singly connected endpoint processing or
doubly connected midpoint processing, as described above. Therefore, bifurcation points can
be skipped safely when encountered by the scan (figure 34).

[

(a) "

(b)

Figure 33. Curve Following for a Non-Thinned Ridge and a Thinned Ridge Based on
- Connectivity Assumptions. (a) The non-thinned ridge has many extraneous curves.
(b) The thinned ridge has a single curve. .

As aridge is followed to extract it from the thinned fingerprint image, a bifurcation point
may be reached. A bifurcation point is assigned the label BIFURCATION, and the curves
meeting (branching) there are initialized as two-pixel “seed” curves (see figure 35). . Each
seed curve consists of the BIFURCATION point where the curves meet and the next point on the
curve, which is assigned the label SEED. As the seed curves are created, they are stored on a
“to-do” list. After the original curve is completely extracted from the image, these seed
curves are taken from the to-do list and are also.extracted before the scan continues across
the image for the next initial curve pixel. Each of these processing steps is explained in more
detail in the following sections.

To extract the individual ridge curves from the thinned fingerprint image (consisting of
single-pixel wide ridges) the algorithm scans the image left-to-right, top-to-bottom until it
encounters a ridge pixel that has not been labeled BIFURCATION. (If the pixel were labeled
BIFURCATION, this would imply that the pixel had been processed previously, but had been left
in the image because multiple curves branch from it. See section 6.1.2.5.) If the ridge pixel

66

(Thinned Fingerprint Imagé)

Initialize Pixel
at Position
(0, 0)
.Move to
Next Pixel

Single-Pixel .
urve

One Yes

Neigohbor Follow Curve | .

from Endpoint

Yes

Two Follow Curve
Neighbors Halves, then |~
? Join

No

Figure 34. Flowchart of Overall Control of Curve Extraction

67

follow ridge

ol [111]1]

seed curve (f \secd curve

S] LS

L |
BIFURCATION point

@ SEED point

- Figure 35. Seed Curves at a BIFURCATION Point

has zero, one, or two neighbors, a curve is initialized at that pixel and followed, thereby
extracting it from the image. If the pixel has more than two neighbors, it is a bifurcation
pixel and is skipped by the scan.

In the algorithms for curve extraction, various labels are used on the ridge pixels. These
labels are associated with the image pixels themselves and not with the representations of the
pixels that are stored in the curve structures.

68

EXTRACT_CURVES[IMAGE]
** This function has the side effect of modifying IMAGE

** IMAGE, seed_index, curve_set, and to_do are available globally to the subroutines
under EXTRACT_CURVES
1 seed_index =0
2 curve_set = EMPTY -
3 to_do = EMPTY
4 for ifrom 1 to height
S for j from 1 to width
** INITIALIZE_BRANCHES (described in section 6.1.2.5) may have labeled this
pixel BIFURCATION

6 if IMAGE(i, j) = BLACK and IMAGE(i, j) is not labeled BIFURCATION)

7 if (number of neighbors of IMAGE(i, j) < 3) ** See page 60

8 curve = INITIALIZE_AND_FoLLOW_CURVE[}, j] *#* Section 6.1.2.1
9 i put curve into curve_set
10 FoLLow_To_Do_LisT{] ‘ *#* Section 6.1.2.6
11 if (curve_set = EMPTY)
12 exit ** Error: No curves found

13 return curve_set

6.1.2.1 Curve Initialization

For each curve to be extracted, a list (or other structure) is created to hold the curve
points. Given a ridge pixel found in the scan with zero, one, or two neighbors, the curve
extraction is initialized by putting that pixel on the point list and removing it from the
fingerprint image. If the pixel has no neighbors, the extraction of the curve is complete. If
the initial pixel has one neighbor, the extraction continues by following the curve as
described in section 6.1.2.2. Otherwise, the curve is initialized (and extracted) in two pieces,
which are then joined (see figure 36). '

- Given a curve initialized with a ridge pixel that has two neighbors, one neighbor is
arbitrarily chosen and the initialization for the first half of the curve continues by adding that
neighbor to the point list. If the chosen neighbor pixel has been labeled BIFURCATION, the
extraction of the first half of the curve is finished. Otherwise, the chosen neighbor pixel is
removed from the image and extraction of the first half of the curve continues by following
the curve as described in section 6.1.2.2. After the first half of the curve has been extracted,
the second half is initialized and extracted.

Because the first half of the curve may have looped back to the initial pixel (see
figure 37), before initializing and extracting the second half of the curve the algorithm first

69

initial pixel -
L N extract first half of curve

extract second half of curve \

Figure 36. An Example of an Extraction of a Curve in Two Halves

checks that there still is one remaining neighbor of the initial pixel (that was not the first
neighbor selected). If there is no remaining neighbor, the first half of the curve must have
looped back to the initial pixel. In this case, the initial pixel is added once again to the curve
(this time it appears at the end of the curve) to complete the loop, and the extraction of the
full curve is complete. Otherwise, the extraction for the second half of the curve is initialized
by putting the neighbor pixel on a new point list. If the neighbor pixel has been labeled
BIFURCATION, the extraction of the second half of the curve is finished. Otherwise, the
neighbor pixel is removed from the image and the extraction continues by following the
curve as described in section 6.1.2.2. If the second half of the curve exists, the curve is
completed by joining the halves together to form a single curve through the initial pixel. To
join them, care must be taken so that the order of the points in the joined curve is the same as
the order of the pixels along the curve in the image. Typically, the points in one half of the
curve must be reversed and the halves then joined at the ends that were adjacent in the image.

INITIALIZE_AND_FOLLOW_CURVE[i, j]

** This function has the side effect of modifying IMAGE

curve = EMPTY
curve_2 = EMPTY
put IMAGE(i, j) onto curve
IMAGE(i, j) = WHITE , ** Remove this pixel from IMAGE
switch on number of neighbors of IMAGE(i, j)

case 0 :

** No neighbors, so curve ends here

7 return curve

NN B W -

70

f
initial pixel _
3\ extract first half of curve

extract second half of curve \

Figure 37. Looped Curve. The figure shows an example of an extraction of the first
- half of a curve that loops back to the initial pixel so that the second half extraction
need not be done.

71

8 case 1

** One neighbor, so add it to curve and continue following curve

9 curve = FOLLOW[curve) ** Section 6.1.2.2
10 return curve '

11 case 2

** Two neighbors, so curve has two halves. Follow first half of curve

12 neighbor_1 = a neighbor of IMAGE(i, j)

13 put neighbor_1 onto curve

14 if (neighbor_1 is not labeled BIFURCATION)

15 neighbor_1 = WHITE ** Remove this pixel from IMAGE
16 curve = FOLLOW[curve] ** Section 6.1.2.2

** Check for second half of curve
17 if (no neighbors of IMAGE(i, j) exist
or only neighbor of IMAGE(i, j) is neighbor 1)
** curve looped back on itself

18 put IMAGE(i, j) onto curve

19 return curve
20 else

** Follow second half of curve

21 neighbor_2 = neighbor of IMAGE(i, j) that is not neighbor 1
22 put neighbor_2 onto curve 2
23 if (neighbor_2 is not labeled BIFURCATION)
24 neighbor 2 = WHITE ** Remove this pixel from IMAGE
25 curve_2 = FOLLOW[curve 2] ** Section 6.1.2.2
26 reverse curve_2
27 curve = append(curve, curve_2)
28 return curve
29 end

72

6.12.2 Curve Following

Given a curve that has been initialized with one or more points, the ridge that the curve
describes must be followed in the image to a termination or bifurcation and the pixels of the
ridge added to the curve. Each time a point is added to the curve, the curve following routine
is called again on the updated curve until the end of the curve is reached. Note that although
this process is conceptually recursive, non-recursive implementations are also possible. The
action taken at each invocation of the curve following routine depends on the number of
neighbors of the last point on the curve (the point most recently added to the curve). First,
the neighbors of the last curve point are counted in the thinned fingerprint image. This count
of the neighbors should: (a) include all neighbors that are ridge pixels, whether or not
labeled BIFURCATION, (b) not include (if it exists) the point before the last point in the curve,
and (c) not include any neighbor labeled sEED if the last curve point is also labeled SEeD and
if the seed index of the neighbor matches that of the last curve point. (If the pixel were
labeled SEED, this would imply that the pixel had been processed previously, but had been left
in the image because it is part of an initialized, or “seeded,” curve. See section 6.1.2.5.) (For
Condition b, note that the point before the last point may still be in the image if it was
previously labeled BIFURCATION.) If there are no neighbor points that match these conditions,
the curve is complete. If there is one such neighbor point, it is added to the curve. If this
neighbor point has been previously labeled BIFURCATION, the curve is complete. Otherwise,
the neighbor point is removed from the image and the curve following routine is invoked on
the updated curve. If there are two or more neighbor points that match these conditions, the
action of the curve following routine depends on the number of possible branches from the
current point. '

FoLLowW[curve]
** This function has the side effect of modifying IMAGE
1 last_point = last point on curve
2 previous_point = point before last point on curve

3 n_neighbors = COUNT_NEIGHBORS_FOR_FOLLOWING[curve]
4 switch on n_neighbors

5 - case0

** No neighbors, so curve ends here
6 + return curve
7 case 1
8 {

** One neighbor, so add it to curve and continue following curve
9 neighbor = neighbor of last_point that is not previous_point

73

© 1992, 1993 The MITRE Corporation

10

11 if (neighbor is not labeled BIFURCATION)
12 neighbor = WHITE ** Remove this pixel from IMAGE
13 curve = FOLLOW[curve]
14 return curve
15 }
16 case >1
17 { B
** More than one neighbor, so continue the extraction of curve based on the
number of possible branches from last_point of curve

18 possible_branches = FIND_POSSIBLE_BRANCHES[curve] ** Section 6.1.2.3
19 switch on number of possible_branches ** Section 6.1.2.4
20 {
21 case 0

** No possible branches, so curve ends here
22 return curve
23 case 1

One possible branch, so continue following curve down that branch
24 neighbor = first element of possible_branches
25 put neighbor onto curve
26 if (neighbor is not labeled BIFURCATION)
27 neighbor = WHITE ** Remove this pixel from IMAGE
28 curve = FOLLOW[curve]
29 return curve
30 case >1

** Multiple possible branches, so initialize them and end curve here

(see section 6.1.2.5)

31 INITIALIZE_BRANCHES[last_point, possible_branches]
32 return curve
33 }
34 }
35 end

put neighbor onto curve

74

© 1992, 1993 The MITRE Corporation

CoUNT_NEIGHBORS_FOR_FOLLOWING[curve]

last_point = last point on curve
previous_point = point before last point on curve
n_neighbors =0
for neighbor in the eight-neighbors of last_point
if (neighbor = BLACK :
and neighbor is not the same point as previous point
and (last_point is not labeled SEED or neighbor is not labeled SEED
or seed_index of last_point # seed_index of neighbor))
6 increment n_neighbors
7 return n_neighbors

DN AW -

6.1.2.3 Finding Possible Branches

The possible branches from a point with two or more neighbors are not always all of the
neighbors of that point for three reasons. First, the algorithm does not branch to the previous
point on the curve, which may still exist in the thinned fingerprint image. Second, the
algorithm does not branch to any pixel that is labeled seeD. Third, the algorithm does not
branch diagonally to a neighbor if it can be reached by first branching through a horizontal or
vertical neighboring ridge pixel. Thus, the neighbors to which the algorithm can branch are:
(a) the horizontal or vertical neighbors of the point that are not labeled SEED, and (b) the
diagonal neighbors of the point that are not labeled SEED and that are not neighbors of a point
identified in (a). (See figure 38.) The effect of these rules is to prevent unnecessary or
unnatural branching (figure 39). The outline of FIND_POSSIBLE_BRANCHES shown below is
one possible implementation of the branch finding and counting. '

A AlB
X X

B
(a) (b)

Figure 38. Branches from point X. (a) The afgoﬂthm can branch to point A and to
point B if neither is labeled seep. (b) The algorithm can branch to point B only if it is
not labeled SEED and if point A is labeled SEED (and is therefore not branched to).

75

(a) (b) | ©

- Figure 39. Possible Branch Counting Example. The rules for counting the possible
branches from point X in the ridge shown in (a) generate the curves shown in (b) instead
of those shown in (¢).

FIND_POSSIBLE_BRANCHES[curve]

last_point = last point on curve

previous_point = point before last point on curve
possible_branches = EMPTY

for neighbor in the eight-neighbors of last_point

if (neighbor = BLACK
and neighbor is not the same point as previous_point
4 and neighbor is not labeled SEED)
add label POSSIBLE to neighbor
for neighbor in the eight-neighbors of last point
if (neighbor is labeled POSSIBLE
and (neighbor is horizontal from last_point
or neighbor is vertical from last_point
or (neighbor is diagonal from last_point
and neither eight-neighbor of last_point touching neighbor
is labeled POSSIBLE)))

9 put neighbor onto possible_branches
10 for neighbor in the eight-neighbors of last point
11 if (neighbor is labeled POSSIBLE)
12 remove label POSSIBLE from neighbor
13 return possible_branches

N B WN -

(=)}

oo

76

6.1.2.4 Continued Curve Following Based on Number of Possible Branches

Given a point with two or more neighbors as described in section 6.1.2.2, the process
used in following the curve depends on the count of possible branches from that point. If no
branches are possible, the curve is complete. If only one branch is possible, the neighbor
point corresponding to that branch is added to the curve. If that neighbor point has been
labeled BIFURCATION, the curve is complete. Otherwise, the neighbor point is removed from
the image and the curve following routine is invoked on the updated curve. Finally, if two or
more branches are possible, the current point is a true bifurcation point; it will be labeled
BIFURCATION and branches will be initialized from it.

6.1.2.5 Initializing Branches at a True Bifurcation Point

Given a curve with two or more branches possible from its last point (a true bifurcation
point), the algorithm initializes or “seeds” new curves from that point and then ends the
current curve. All seeds from this point are also labeled with the same seed index, which is
unique for each set of seeds. To initialize the new curve seeds, the seed index is first
incremented. (The seed index is initialized to 0 before processing a fingerprint.) The
following process is then repeated for each possible branch found that is not already labeled
BIFURCATION. First, a new curve is initialized with the last point of the original curve.
Second, a neighbor point that is a possible branch is added to the curve (but not removed
from the image). Third, this neighbor point is labeled SEED and is also labeled with the
current seed index. Finally, this initialized seed curve is put onto a list of curves to be
processed: the “to-do” list. This process is repeated until all of thé possible branches from
the last point of the original curve have been processed and the resulting seed curves have
been added to the to-do list. The last point on the original curve is labeled BIFURCATION, but
is not removed from the fingerprint image. The original curve is then complete.

Note that one possible implementation of seed labeling and indexing is through the use of
an auxiliary (seed) array of the same size as the fingerprint array. The locations of the seed
array can be initialized to O before the fingerprint is processed. If a point is to be labeled
SEED, its index can be entered into the corresponding location in the seed array. To check if a
point is labeled SEED, then, the algorithm simply accesses the location in the seed array that
corresponds to the point. If that location is non-zero, then the point is a seed and the value of
its location in the seed array gives its seed index.

77

INITIALIZE_BRANCHES] last_point, possible _branches]

1 increment seed_index
2 for branch in possible_branches
** branch is a neighbor point of last_point
if (branch is not labeled BIFURCATION)
curve = EMPTY
put last_point onto curve
put branch onto curve
label branch as SEeD
label branch with seed_index
put curve onto to_do
10 1label last_point as BIFURCATION
11 return

Voo~ HhWw

6.1.2.6 The To-Do List

When a black (ridge) pixel that has two or fewer neighbors is found by the scan across
the image, the curve associated with that pixel is extracted from the image by the curve
initialization and curve following routines described above. After each such extraction based
on a pixel found in the scan, the initialized seed curves in the to-do list must also be followed
before the scan continues. Of course, if the to-do list is empty, the scan can continue
immediately.,

Branches are placed on the to-do list instead of being followed immediately so that if the
image scan finds a pixel in the middle of a curve, it is guaranteed that the two halves of the
curve are extracted before any branches from that curve are extracted. If this were not the
case, one half of the curve might branch into other curves that in turn branch and that might
eventually contain the second half of the original curve. By completing the original curve
before considering any branches, the original curve will never be broken.

The second reason for using the to-do list can be demonstrated by considering three
curves that meet at a bifurcation point. Assume that one curve that enters the bifurcation has
been extracted from the fingerprint image. If the branches from the bifurcation were not
placed on the to-do list, the remaining two curves that terminate at the bifurcation point
would instead appear to be a single curve going through that point. By placing the branches
on the to-do list, the algorithm guarantees that each ridge entering the bifurcation will be
represented as a separate curve terminating at the bifurcation point. Because the curves that
form the bifurcation share a common endpoint, it is guaranteed that the reconstructed curves
(after the encoding/decoding process) will also share this endpoint, thus preserving the

78

bifurcation. If the bifurcation had instead been represented as one curve intersecting the
middle of a second curve, the curves might not intersect in the reconstruction since the
B-spline process does not guarantee that a reconstructed curve will pass through any of the
curve’s points other than its endpoints (see section 9).

Given a non-empty to-do list, the initialized seed curves on the list are removed and
processed in turn. After removing a seed curve from the list, the last point on the curve is
examined. If it is currently labeled BIFURCATION, the curve is complete. If the last point no
longer appears in the fingerprint image, the curve is discarded. Otherwise, the point is still in
the fingerprint image and the curve should be followed. First, the point is removed from the
fingerprint image. Then, the curve is followed as described in section 6.1.2.2. Note that the
curve following process may result in new seed curves being put onto the list. After a curve
on the list is processed, the next curve on the list is removed and processed as just described.
When the to-do list is empty, the scan of the image for black (ridge) pixels continues.

FOLLow_To_Do_LIST[] .
** This function has the side effect of modifying IMAGE

1 while to_do is not EMPTY

2 curve = next seed curve in to_do list ~ ** Removes the seed curve from to_do

3 last_point = last point on curve

4 if (last_point is labeled BIFURCATION)

5 put curve onto curve_set

6 else

7 if (last_point = BLACK) :

8 last_point = WHITE - ** Remove this pixel from IMAGE
curve = FoLLOW[curve] ** Section 6.1.2.2

10 put curve onto curve_set '

11 return

O

79

6.2 SUMMARY

After curve extraction, all ridges will have been extracted from the thinned fingerprint
image and represented as curves. Each curve is represented as an ordered list of points,
where each point contains the location of a ridge pixel in the image. Ridges that form a
bifurcation will be represented by curves that share a common endpoint (the bifurcation

point).

Inbut

IMAGE Raw thinned fingerprint image
Output

curve_set List of fingerprint curves

80

SECTION 7
RIDGE CLEANING

The ridge cleaning algorithm processes the list of curves generated by the curve
extraction algorithm in order to connect curves across small ridge breaks and to remove
small offshoot curves, small ridge connections, small ridge segments, and curved ridge
endings (see Appendix B for this last process). This has the effect of removing details and
artifacts that would require extra data to encode for transmission, and that would contribute
little or no relevant information about the fingerprint. Examples of these artifacts and details
are illustrated in figure 40. As a final step, any curve sections that cross a region of the
fingerprint denoted as a bad block during BHO binarization (see Appendix B) are removed.

o

small ridge breaks

AN

IHI

small offshoot curve small ridge connection
1 \G————
small ridge segments . curved ridge ending

(See Appendix B)

- Figure 40. Examples of the Artifacts and Details Modified in Ridge Cleaning

81

The cleaning process does not modify or remove minutiae from the fingerprint. The
small offshoot curves are artifacts that often occur in the ridge thinning process from a pore
that is at the edge of a fingerprint ridge, resulting in a small concavity or a small bump in the
ridge edge. These are removed because small variations in the contours of the ridge edges
are not relevant information in this context. The removal of small offshoot curves is
controlled by a selectable parameter indicating the length of the removed curves as a factor
of fingerprint average ridge widths. Small offshoot curves are also removed if they are short
and their ridges are thin relative to the neighboring ridges.

Curved ridge endings are often caused by a fold or scar in a finger that crosses ridges at a
slant. The fold or scar can create a curved appearance at the ridge ending that is retained by
thresholding. When these ridges are thinned to a single-pixel width, there may a a small flip
or curve at the end of the ridge. This curvature is removed so that the ridge direction at the
endpoint more accurately represents the true ridge ending orientation.

Connecting across small ridge breaks saves the overhead of encoding the separate curves
while still representing the fingerprint according to the established practices. This process of
connecting across small ridge breaks must take place after the small offshoot curves are
removed, otherwise two opposing small offshoot curves may be connected, creating a false
minutia. The connection across small ridge breaks is controlled by a selectable parameter
indicating the size of removed ridge break in terms of the number of overall fingerprint
average ridge widths.

Small connections between parallel ridges may come from foreign substances on the
finger at the time of printing or other unreliable sources, so these connections are detected
and removed. By removing these small ridge connections, the data required to encode the
small curve and the overhead associated with the additional curves is saved from having to
be transmitted. When these small connections are removed, the ridges on either side, which
are represented by two curves each, are joined with their appropriate mates to make single
curves.

The small ridge segments are removed last. These small ridge segments primarily reside
below the flexion crease of a fingerprint and are not considered to be important, hence they
are removed. They are also occasionally found between ridges above the flexion crease.
This removal of small ridge segments must take place after the small ridge break connection
step because, in some cases, small ridge segments may actually be connected into larger

curves.

7.1 ALGORITHM DESCRIPTION

The ridge cleaning process requires three input data items from the previous processes of
live-scan fingerprint compression: the curve list representing the fingerprint curve_list

82

generated in curve extraction, the chamfered image C generated in ridge thinning, and the
ridge direction map z_blockmap generated during BHO binarization. The algorithm
modifies curve_list by removing and joining curves. This reduces the amount of data needed
to encode the representation of the fingerprint. The algorithm uses the chamfered image C
generated in ridge thinning (section 5) for calculating average ridge widths. Since areas of
the chamfered image that correspond to bad blocks identified by z_blockmap do not contain
accurate ridge width information, all the values of C in bad block areas are set to zero.

Before the actual process of cleaning the curves in curve_list, several data items must be
initialized. The average ridge width of all ridges in the fingerprint and of neighborhoods in
the image must be calculated. These values will be calculated by applying the algorithm
described in section 7.1.2 on the ridges in curve_list to obtain the average values. The
resulting overall average will be referred to as ridge_widthgingerprini. The calculation of
average ridge width differs from the description of determining the neighborhood average
ridge width (section 4.1.3) used by pore filling in that the average ridge width used here is
based on the extracted curves in cur\}e_list. The value of ridge;widtly;,,ge,p,,-,;, will be used in
the cleaning steps to determine important curve size delimiters based on the selectable

system parameters ForrsHooT cURVE. FRIDGE_BREAK, and FUNCONNECTED_CURVE Which
control the curve connection and removal processes.

A thinned image T is generated by drawing all the points in every curve of curve_list into
a blank image of the same size as the original fingerprint image. T is used for some
condition checking and is updated to match the changes made to curve_list.

Initialization continues with the generation of a data item called the endpoint_map. The
endpoint_map serves as a tool to quickly find which curves have an endpoint at any specified
location in the fingerprint. The actual implementation of the endpoint_map may vary, but the
algorithm, by accessing endpoint_map, must be able to count the number of endpoints at a
location and determine the current locations of the these curves in curve_list. This
endpoint_map must be updated throughout the processing to stay current with any changes
made to curve_list.

Once the initialization is completed, the algorithm applies each ridge cleaning subprocess
in turn, modifying curve_list and updating the endpoint_map and T as required by the
cleaning subprocesses. The first cleaning subprocess to be applied is small offshoot curve
removal described in section 7.1.3. After the small offshoot curves have been removed,
curved ridge endings are removed by a subprocess described in Appendix B. The next
subprocess to be applied to curve_list is small ridge break connection described in-
section 7.1.4. After small ridge break connection is completed, the subprocess small ridge
connection removal is applied as described in section 7.1.5. The last two cleaning
subprocesses to be applied are small ridge segment removal described in section 7.1.6 and
bad block blanking described in Appendix C.

83

In all the ridge cleaning subprocesses, care must be taken when adding and deleting
curves from curve_list so that the algorithm’s iteration over curve_list can continue in a
proper fashion. If a curve under consideration is removed, the algorithm must be able to
continue onto the next curve on the list in the next step of the iteration. Also, if a new curve
is added to curve_list during a subprocess, it should be placed in the list in a manner that will
allow it to be also considered by the subprocess.

After the ridge cleaning process has been completed, curve_list has been modified and
will be further processed by the live-scan compression algorithm. The endpoint_map and the
thinned image T generated by this process can be deleted at this point because it is not used
in further processing. The chamfered image C generated by ridge thinning can be eliminated
at this point, also. A flowchart for the overall ridge cleaning process is illustrated in
figure 41. '

RIDGE_CLEANING] curve_list, C, z_blockmap]

** This algorithm modifies curve_list and C

** The chamfered image C, the thinned image T, endpoint_map, ridge_widthngerprin:
and curve_list are globally accessible for the routines called by RIDGE_CLEANING([]

1 for each block (bi, bj) in z_blockmap ** Zero bad block chamfer values

2 if (block (bi, b)) is bad) '

3 for each pixel (i, j) in block (bi, bj)

4 C@i,p=0

5 for each curve in curve_list ** Initialize endpoint_map

6 draw curveinto T

7 place both endpoints of curve into endpoint_map

8 ridge_widthngerprint = average of all ridge widths in the fingerprint

9 PREPARE_AVERAGE_NEIGHBORHOOD RIDGE_WIDTHS_CURVE[IMAGE]

** The five routines below may modify curve_list, endpoint_map and T
10 SMALL_OFFsHOOT_CURVE_REMOVAL[curve list]
11 CurvED_RIDGE_ENDING_REMOVAL[curve_list, z_blockmap] ** Appendix B
12 SMALL_RIDGE_BREAK_CONNECTION][curve_list]
13 . SMALL_RIDGE_CONNECTION_REMOVAL[curve list]
14 SMALL_RIDGE_SEGMENT_REMOVAL[curve list]
15 BAD_BLOCK_BLANKING[curve_list, z_blockmap] ** Appendix C

16 return

PREPARE;AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS_CURVE[IMAGE]

This function is the same as PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS of -
section 4.1.3, except that the ridges used to calculate the widths are taken from
curve_list instead of from the thinned fingerprint image.

84

Initialization

Y

FOFFSHOQC—URVE—D Small Offshoot Curve Removal
(Section 7.1.3)

!

Curved Ridge Ending Removal
(Appendix B)

!

FRIDGE_BREAK

- Small Ridge Break Connection
(Section 7.1.4)

!

Small Ridge Connection Removal
(Section7.1.5)

FUNCONNECTED CURVE Small Ridge Segment Removal

(Section 7.1.6)

!

Bad Block Blanking
(Appendix C)

'Figure 41. Flowchart of the Ridge Cleaning Process

85

7.1.1 Definitions

The thinned_image provides the ridge cleaning algorithm with a method to efficiently
check for collisions when connecting small ridge breaks. A collision occurs when the fill-in
curve section connecting across the small ridge break intersects with another curve already in
curve_list. A thinned_image containing the curves in curve_list is used for this check. The
thinned_image must be kept updated on modifications to curve_list so that it reflects accurate
curve information for this collision check. After the small ridge break removal process is
completed, the thinned_image can be discarded.

The endpoint_map is required to provide the ridge cleaning algorithms with the
capability to quickly find curves that have endpoints in common with other curves. (Curve
endpoints are defined as the first and last points of a curve.) Without the endpoint_map, the
algorithms below would need to scan each curve in curve_list, comparing a curve’s endpoint
positions with all the other curves’ endpoint positions. The endpoint_map is also used to.
find curves that have endpoints in the neighborhood of a given position. Again, to find these
curves is a simple matter of referencing the endpoint_map for all the positions within the
neighborhood. Without the endpoint_map, the algorithms would have to scan the entire list
of curves, calculating whether or not each curve had an endpoint within the neighborhood.
The endpoint information is used often enough to warrant the memory and processing to
generate this map. All that is required for an effective endpoint_map is that all endpoints
that share the same position are associated, that there is an efficient method of referencing
endpoints given a desired position, and that an endpoint’s originating curve is associated with
the endpoint.

Curve connectivity is determined using the endpoint map described above. The
connectivity of a curve can be either unconnected, singly connected, or doubly connected.
An unconnected curve does not intersect any other curve. A singly connected curve has
exactly one endpoint that intersects with at least one other curve and exactly one endpoint
that does not intersect with any other curve. For a doubly connected curve, both endpoints
intersect other curves. When curves intersect, their endpoints share the same position. By a
property of the extraction algorithm, any curve intersection will involve three or more
curves. An intersection of two curves is invalid because they will have been appended
together to make one curve. Whether or not an intersection exists at an endpoint can be
determined quickly by counting the number of endpoints in endpoint_map at the
corresponding position of the endpoint. An intersection exists at a position if there is more
than one endpoint at that position, but if there is only one endpoint at that position (itself),
there is no intersection at that endpoint. Using this quick endpoint intersection test on both
endpoints of a curve, the connectivity of the curve can be quickly determined to be either
unconnected, singly connected, or doubly connected. Examples of the curve connectivity
types are shown in figure 42.

86

. . z 7

unconnected curve singly connected curve doubly connected curve

Figure 42. Examples of the Curve Connectivity Types

7.1.2 Average Ridge Width

The average ridge width algorithm calculates the average ridge width (ridge_widthgy.)
along a section of a fingerprint curve (curve) between the specified starting and ending points
Pgart and P,,y. The chamfered image C, calculated in the ridge thinning process and
modified at the beginning of ridge cleaning, is used because the value of each pixel
represents the approximate distance to the nearest edge of its ridge. Only pixels not in bad
blocks are considered. To get the ridge width at a particular pixel, the chamfer value at the
corresponding location in C is divided by 500.0. The divisor 500.0 is determined to be twice
the chamfer value of the pixel normalized by the chamfer scaling factor (1000). This
division rescales the chamfer value to represent twice the distance to the nearest ridge edge
in pixels. To find ridge_widthg,, along a section of curve, the algorithm sums the values of
the pixels of C at the corresponding positions of the points within the section of curve
specified by psar: and pepg. This sum is then divided by the number of pixels in the curve
section and further divided by 500.0 for rescaling. The calculation of ridge_widthgy is.
illustrated in figure 43. If ridge_width,,,. of an entire curve is desired, all the chamfer values
of the pixels in the curve are summed and then divided by the number of points in the curve
and further divided by 500.0. If the average ridge width for the entire fingerprint
ridge_widthgngerprint is desired, the chamfer values of all pixels that corresponding to the
pixels in all curves of curve_list are summed, then divided by the total number of pixels, and
further divided by 500.0 for rescaling. The values of ridge_widthay. and ridge_widthfingerprint
must be maintained as floating point numbers for the accuracy needed in next steps.

RIDGE_SECTION_AVERAGE_RIDGE_WIDTH[Pgart, Pend, curve]
** The chamfer image C is accessed from RIDGE_CLEANING[]

number_of pixels =0
sum=0
for each point (i, j) between Pgy,,, and P,,4, inclusive, along curve
if (C@i,/))=0) ** Calculate using only pixels in non-bad blocks

sum = sum + C(i, j)

number_of pixels = number_of pixels + 1
ridge_widthgy, = sum [(500.0 X number_of pixels)
return ridge_widthgy,

00 ~J NV & WN =

87

2000
2414
3000
3000
2414
2414
2000
+ 2000

19242

ridge widthgye
(19242 /8)/500.0 = 4.81 pixels

) . good ridge pixels
ridge_widthgy, = (number of good ridge pixels) /500.0

Figure 43. Calculation of Average Ridge Width, ridge widthg,,

7.1.3 Small Offshoot Curve Removal

Small offshoot curve removal deletes curves from curve_list that share a common
endpoint on only one end (singly connected) and that are shorter than the smallest, singly
connected curve allowed. The algorithm iterates over curve_list, considering each curve. If
a curve is classified as singly connected, its length is checked. If the curve is either short
relative to the fingerprint as a whole (the number of pixels in the curve is less than
FOFFSHOOT CURVE X ridge_widthingerpring) OF both thin and short relative to neighboring
curves (both the width of the curve is less than Zw|DTH OFFsHoOT times the local average
ridge width and the length of the curve is less than ZLEr;GTH_OFFSHOOT times the local
average ridge width), the curve is removed from T, its endpoints are deleted from the
endpoint_map, and the curve is deleted from curve_list. Care must be taken when deleting
the curve from curve_list so that the iteration can continue in the proper fashion, not
neglecting consideration of any curve.

Once all the small offshoot curves are removed, curve_list must be further processed to
join curves that can be represented as one curve. When a small offshoot curve is deleted, two
intersecting curves may be left behind. These two curves can be appended into one larger
curve if they are the only curves sharing that endpoint position. To make these required
connections, the algorithm iterates over curve_list, considering each curve. If a curve has an

88

endpoint whose position is shared by the endpoint of exactly one other curve, all the points of
these two curves are joined to generate a new curve.
SMALL_OFFSHOOT_CURVE_REMOVAL][curve_list]

** This algorithm modifies curve_list, endpoint_map, and T
1 for each curve in curve_list

2 z_local_ridge_width = the average of the local average ridge widths at the
unconnected endpoint and at the midpoint of curve
3 if ((curve is singly connected)

and ((number of points in curve < Fogrrshoot curve % ridge_widthfingerprint)
or ((RIDGE_SECTION_AVERAGE_RIDGE_WIDTH[curve unconnected endpt,
curve midpoint, curve]
< ZW|DTH_Q|:|:5HOQT X z_IocaI_ridge_Width)
and (number of points in curve
< Z encTH_oFrsHooT X Z_local_ridge_width))))
remove curve from T
delete endpoints of curve from endpoint_map
delete curve from curve_list
set curve a and b to be the curves that shared an endpoint with curve
JoIN_CuURVES[curve a, curve b]
return

© oo ~NOO oA~

7.1.3.1 Join Curves

Join_Curves attaches together two curves that have an overlap of endpoints in order to
generate a single new curve. Care must be taken that the new curve is traceable between its
endpoints without redundant points. This is guaranteed if the points from the first curve are
copied into the new curve starting with its non-overlapping endpoint, then the points from
the second curve are copied into the new curve starting at its overlap end, skipping the first
endpoint in order not to have a repeated point. This new curve is inserted into curve_list and
the endpoints of this new curve are added to endpoint_map. The two curves joined by this
combination are deleted from curve_list and their endpoints are removed from the
endpoint_map. Updating of T is not necessary because the new curve completely overlaps
the two appended curves. Care must be taken when modifying curve_list so that the iteration
can continue in the proper fashion to insure the consideration of every curve, including the
newly generated curve.

89

JOIN_CURVES[curve g, curve b]
** This algorithm modifies curve_list and endpoint_map

1 if (curve a # curve b)

2 {

3 for each point p in curve a from non-connection endpoint to connection endpoint
4 append point p to end of curve ¢

5 for each pomt p in curve b from one past the connection endpoint

to non-connection endpoint

6 append point p to end of curve ¢

7 remove curve g and curve b from curve_list
8 append curve ¢ onto curve_list

9 update endpoint_map
10 }
11 return

7.1.4 Small Ridge Break Connection

The small ridge break connection algorithm attaches curves that can be considered to be
one ridge except for a small break in the ridge. These curves have the property of being
approximately colinear and have endpoints that are within an allowable distance. Examples
of small ridge breaks are illustrated in figure 44.

To search for these small ridge breaks, the algorithm iterates over curve_list, considering
each curve. If a curve’s number of points is greater than or equal to RIDGE_SIZEp); its
neighboring curves are examined for colinearity. Around each unconnected endpoint of the
curve, the algorithm searches for other nearby endpoints. An endpoint is unconnected if, in
endpoint_map, it does not share its position with any other endpoint. The algorithm searches
for nearby endpoints by scanning endpoint_map for other unconnected endpoints within a
specified neighborhood of the curve’s unconnected endpoint. The neighborhood is defined
as any pixel within the search radius radiussq,-n. The value of radiusgeg,ch is set to be the
minimum value between the default window size (RADIUSpgrauLT) and 3.5 x the ridge
width at the curve’s unconnected endpoint (see section 7.1.2). This calculation of

g -
~— Small Rldgc Breaks

to be Connected
Figure 44. Examples of Small Ridge Breaks to be Connected

90

radiusseqarch allows the algorithm to find other unconnected endpoints of nearby ridges that
are within a distance of FRipGE_BREAK X ridge_widthsingerprins. An example of the
calculation of the search radius is illustrated in figure 45. A list of unconnected endpoints
_ contained in the search area is made that includes their positions and curve identification.

Once this list of unconnected endpoints has been compiled, the algorithm searches for the
mutually best connection between curves. This search eliminates processing order
dependencies, allowing all candidate connections in a region to be considered at the same
time. Each legal ridge break connection between the curve’s endpoint and each unconnected
endpoint in the search region list is scored by a function (described in section 7.1.4.1) that
measures ridge alignment and ridge break size. The algorithm determines the maximum
value of all these scores. For each endpoint whose score is equal to the maximum score, a
list of the unconnected endpoints in its search region is compiled and scored. If the score for

Lot Tl RADIUSpgrauLT = 81
N FrRiDGE_BREAK = 1.0
chamfer image value =2414 ridge separation distance = 5 \

. \. s

' w N

’
' curve separation distance = 10 .
. . ’ ,'
L 3 ’

s, radiussearch = Minimum {floor(FRipGE_BREAK X (3.5 x C(i,j) / 500)),
_ RADIUSpgFauLT}
= Minimum {floor(1.0 x (3.5 X 2414 / 500)), 81} =16

-
oo -”
- -
- -
At I R it

Figure 45. Example of a Search Radius Calculation
for the Small Ridge Break Connection Algorithm

91

the connection to the initiating endpoint is equal to the maximum score of that list, then the
connection is considered to be mutually best and the curves of the initiating endpoint and the
current endpoint are connected using the curve connection algorithm in section 7.1.4.2.

SMALL_RIDGE_BREAK_CONNECTION[curve _list]

** This algorithm modifies curve_list, endpoint_map, and T

1 for each curve in curve_list
2 if number of points in curve > RIDGE_SIZE Ny
3 for each unconnected endpoint a in curve
4 {
5 status = FALSE
6 radiussearcha = min(RADIUSpErpaULT, 3-5 x ridge width at endpoint a)
7 candidate_list = all neighboring unconnected endpoints
within radiussearcha 0of endpoint a
8 for each endpoint b in candidate list
9 score of b = CONNECTION_SCORING_FUNCTION[endpoint a, endpoint b]
10 best_score, = maximum of all scores of endpoints in candidate_list
** Find the mutually best connection by considering all endpoints
in candidate _list whose score is equal to best_score,
11 for each endpoint b in candidate list whose score equals best_score,
12 { .
13 radiusgearchy = min(RADIUSpgrauLT: 3.5 x ridge width at endpoint b)
14 check_list = all neighboring unconnected endpoints
, within radiusseq,cnp of endpoint b
15 for each endpoint c in check_list
16 score of ¢ = CONNECTION_SCORING_FUNCTION[endpoint b,endpoint c]
17 best_score, = maximum of all scores of check_list
** Connecting endpoint b and endpoint a is mutually best if the score
of endpoint a in the list generated from endpoint b is a maximum
18 if score of endpoint a in check_list = best_score,
19 status = CONNECT_CURVES][curve of endpoint a, curve of endpoint b]
20 exit from loop
21 }
22 if (status)
23 exit from loop
24 }
25 return

92

7.1.4.1 The Scoring Function

The scoring function assigns a floating point value that is directly proportional to the
"desirability" of the connection being considered between two endpoints. This score is based
on the alignment of the two curves near those endpoints and the distance between those
endpoints, modified by the average ridge width of the curves near those endpoints. The ends
of the curves being considered for connection must first pass several tests. If any of these
tests fail, an illegal connection flag is returned to the function that called this scoring
function. This will remove the connection from further consideration. Otherwise the
floating point score value is returned.

In order to execute the curve end tests and calculate the score, several intermediate values
are calculated. First, the Euclidean distance between the endpoints is calculated. The value
of floor(distance + 1) is used as the default section size in the further calculations. Second,
the end section and end reference point for each curve are determined. This is calculated by
finding the curve end's section size (section_sizecre), Which is defined as the minimum of
the default section size and the curve's number of points. The end reference point is the
point that is section_sizeq,ne points down from the endpoint. The end section consists of all
the points between the endpoint and the end reference point, inclusive. Once both curve ends
are defined, the average ridge width for each end section is calculated as described in
section 7.1.2. The angle score for each curve is also calculated. The angle score is defined
as the cosine of the angle of change at an endpoint caused by traversing from the other
endpoint though this endpoint on toward its end reference point. An angle score of 1.0
indicates that the traversal was along a straight line. Before calculating the connection score,
the algorithm must determine whether each curve is small enough to be a small ridge
segment. This is necessary because if a curve is a small ridge segment, the angle score is
prone to error and should be ignored for that curve. If both curves are determined to be small
ridge segments, the connection is illegal and the scoring function returns an illegal
connection flag. For a curve to be considered a small ridge segment, the curve's number of
points must be less than the minimum ridge size and also less than the average ridge width
calculated for its end section.

If neither curve is considered to be a small ridge segment, the distance between the
endpoints, calculated earlier, is tested for being less than twice the average of the average
ridge widths of the two end sections multiplied by Fripce sreax. If this test fails, the
scoring function returns an illegal connection flag. Otherwise, each angle score and the sum
of two angle scores are tested for being less than the value of the cosine(AcoLinear), Where
Acouinear IS the angular limit for colinearity. During development Acovinear Was Set to
45 degrees so that curves within 45 degree of being colinear would be acceptable. A larger
value for AcoLinear Will result in a tighter colinearity requirement. If any of the angle
scores are less than cosine(Acouinear), the scoring function returns an illegal connection

93

flag. Otherwise, the score is calculated and returned as the product‘of the two angle scores
divided by the distance between the endpoints. An example of this calculation is illustrated
in figure 46.

Fripge_sreak = 1.0

distance = Jx2 + y? = V102 + 102 = 10.0
(default section size = 11)

*

- —
anglear_?\ - angley
|

11 pixels >pixel-s\‘

ridge_width, = 4.83 .ridge_widthb =7.36

angle_score, = cos (angle;) = 0.910 angle_scorep, = cos (angley) = 0.965

neither curve is smaller than RIDGE_SIZEpn
and angle_score, 2 Cos(ACOLINEAR)
and angle_scorep 2 cos(ACOLINEAR)
and (angle_score, + angle_scorey) 2 cos(ACOLINEAR)
and distance < FRIDGE_BREAK X (ridge_width, + ridge_widthy)
therefore
connection_score = (0.910 x 0.965) / 10.0 = 0.088

Figure 46. Example of a Connection Scoring Function Calculation

If only one of the curves is considered to be a small ridge segment, its average ridge
width and angle score are ignored. Instead, the average ridge width and angle score of the
larger curve is used in place of these values for the small ridge segment. The distance
between endpoints is tested for being less than twice the average ridge width of the larger
curve’s end section. If this test fails, the scoring function returns an illegal connection flag.
Otherwise, the angle score of the larger curve is tested for being less than the
cosine(AsegMENT). During development AgegMmeENT Was set to 60 degrees, which is
slightly less restrictive than AcoLINEAR used above in checking the colinearity of two larger
curves. If the angle score is less than cosine(AgggMENT), the scoring function returns an

94

illegal connection flag. Otherwise, the score is calculated and returned as the square of the
larger curve’s angle score divided by the distance between the endpoints.

CONNECTION_SCORING_FUNCTION[endpoint a , endpoint b]

10
11
12

13
14
15
16

17
18
19
20

21
22
23
24

25
26
27

curve, = the curve that contains endpoint a
curvep, = the curve that contains endpoint b
distance = Euclidean distance between endpoint a and endpoint b
section_size = floor(distance + 1.0)
section_size, = minimum(section_size, the number of points in curve,)
ref, = the point that is section_size, points down curve, from endpoint a
ridge_width, = RIDGE_SECTION_AVERAGE_RIDGE_WIDTH[endpoint a, ref, curve,)
angle_score, = cosine(angle of change traversed from ref;,

through endpoint a to endpoint b)
section_size, = minimum(section_size, the number of points in curvep)
refy, = the point that is section_size;, points down curve, from endpoint b
ridge_width, = RIDGE_SECTION_AVERAGE_RIDGE_WIDTH[endpoint b, refy, curvey |
angle_scorep, = cosine(angle of change traversed from ref,

through endpoint b to endpoint a)

if (number of points in curve, < minimum(RIDGE_SIZEmN, ridge_widthy))
curve, is a small ridge segment

if (number of points in curve, < minimum(RIDGE_SIZE N, ridge_width))
curvey, is a small ridge segment

if ((curve, is a small ridge segment) and (curve, is a small ridge segment))
return ILLEGAL_CONNECTION
if ((curve, is not a small ridge segment) and (curvep is not a small ridge segment))
if ((angle_score, < cos(AcoLINEAR)) Or (angle_score, < cos(ACOLINEAR))
or ((angle score, + angle_scorep) < cos(ACOLINEAR))
or (distance > FRIDGE_BREAK X (ridge_widtha + ridge_widthb))) '
return ILLEGAL_CONNECTION
connection_score = (angle_score, X angle_scorep) [distance
if ((curve, is not a small ridge segment) and (curve, is a small ridge segment))
if ((angle_score; < cos(ASEGMENT))
or (distance > FRipge_BREAK X (ridge_widthg + ridge_width,)))
return ILLEGAL_CONNECTION
connection_score = angle_score,? / distance

95

28 if ((curve, is a small ridge segment) and (curvep, is not a small ridge segment))
29 if ((angle_scorep < cos(ASEGMENT))
or (distance > FRipge_BREAK X (ridge_widthy, + ridge_widthy)))
30 return ILLEGAL_CONNECTION
31 connection_score = angle_score,? / distance

32 return connection_score

7.14.2 Curve Connection

Curves are connected by generating a single new curve from the two curves to be
connected and a fill-in curve section between their endpoints. First, the fill-in section to
connect the curves between the endpoints is calculated. This is done first because if the
fill-in curve section overlaps any other curve point in the thinned image, there is a potential
crossing of ridges. If this happens, the connection should not be made as it might add false
minutiae. This situation can be detected when generating the fill-in section. The fill-in
section is generated as a sequence of points calculated as a straight line starting at both
endpoints and meeting in the middle. Care must be taken that the resulting connectivity of
the complete curve follows the connectivity properties of the curve extraction algorithm (see
section 6).

Once the fill-in section is successfully calculated, the new curve is created with its size
equal to the sum of the number of points in the two curves and the number of points
generated by the fill-in section. The points of the first curve are copied into the new curve
starting with the end that will not be connected and ending with the connecting endpoint.
The fill-in section is then copied into the new curve maintaining the proper contiguous
connections. Lastly, the points of the second curve are copied into the new curve, again
maintaining proper connections so the final product is a continuous curve with each point
eight connected to its neighbors. The new curve is added to curve_list in a manner that
insures continued proper iteration over the list. The two curves that were connected are
deleted from curve_list. The endpoint_map is updated by deleting the endpoints from the
connected curves and adding the endpoints of the newly generated curve. The thinned image
T is updated by drawing in the fill-in section, thereby connecting the two curves in the
thinned image. When updating these items for the two connecting curves, care must be taken
to determine whether these two curves are actually just one curve; removing the same curve
twice from curve_list and endpoint_map must be prevented.

96

'\;‘
CoNNECT_CURVES] curve a, curve b]

** This algorithm modifies curve_list, endpoint_map,and T
1 generate the fill-in section between the connection endpoints of curves a and b

** If the fill-in section overlaps another curve, this is an illegal connection
2 if (fill-in section intersects any curve in thinned image, T)
3 return FALSE

4 for each point p in curve a from non-connection endpoint to connection endpoint
5 append point p to end of curve ¢
6 for each point p in the fill-in section
7 append point p to end of curve ¢
8 for each point p in curve b from connection endpoint to non-connection endpoint
9 append point p to end of curve ¢

10 remove curve a and curve b from curve_list
11 append curve c onto curve_list

12 update T and endpoint_map

13 return TRUE

7.1.5 Small Ridge Connection Removal

The small ridge connection removal algorithm deletes small doubly connected curves
from curve_list that bridge across two roughly parallel curves (see figure 47). The algorithm
iterates over each curve in curve_list to test for and remove such bridge curves. If a curve is
classified as doubly connected and is shorter than LpousLy CONNECTED points, the curve is
considered further, otherwise the iteration continues.

neighboring curves
]

~ "Q= doubly connected curve

neighboring curves

Figure 47. Example of a Small Ridge Connection

Given a curve for further consideration, the algorithm tests the number of endpoints in
the endpoint_map for each of the curve’s endpoints. If tests determine that exactly three
endpoints are present at each end, this curve is considered further, otherwise the iteration

97

continues. This check is done because, if the curve’s intersections are more complicated than
three-way overlaps, this curve may be in a very complicated section of the fingerprint where
appropriate removal decisions are not possible. Many of these complicated areas reside in
bad blocks and will be removed during bad block blanking (see Appendix C).

To continue testing of the doubly connected curve, the algorithm determines the
reference points and end sections for the four neighboring curves connected by overlapping
endpoints to the doubly connected curve (see figure 48). If luoubly connected TEPrESents the
number of points in the doubly connected curve, the reference point of a neighboring curve is
defined to be Lioubly connected Points down the curve from the curve’s overlapping endpoint.
The neighboring curve section between the endpoint and the reference point is referred to as
the end section and contains (loubly connected + 1) points, including the endpoint and the
reference point. If a curve contains fewer than max(lgoubly connectea/2, 3) points, which does
not allow reasonable accuracy in curve direction, the consideration of this doubly connected
curve is aborted and the iteration over curve_list continues. If a neighboring curve has fewer
than lioubly connected points, the entire curve is used as the end section. The four end sections
and their associated reference points will be used to test the relative thickness of the doubly
connected curve, the connection angle, and the parallelism of the two ridges connected by the
doubly connected curve to decide whether the curve should be deleted.

thinned ridge curve
overlapping endpoints
reference points

curve segments

BEE X O

ridge pixels

neighboring end sections

Figure 48. Definition of the Four Neighboring End Sections of a Doubly Connected Curve

98

If all four neighboring end sections and reference points are successfully determined, the
algorithm tests to see that the doubly connected curve is sufficiently thinner than the
neighboring ridges. This is accomplished by calculating the average ridge widths, as
described in section 7.1.2, for the doubly connected curve and the four neighboring end
sections. If the average ridge width of the doubly connected curve is less than or equal to
WbouBLy_CONNECTED X the average of the four neighboring end sections’ average ridge
widths, and the number of points of the doubly connected curve is less than
FoouBLy_CONNECTED X the average of the average ridge widths of the four neighboring end
sections, the algorithm continues its consideration of this doubly connected curve.
Otherwise, the algorithm no longer considers this curve and instead continues to iterate over
curve_list.

Next, the algorithm tests that the neighboring ridges are roughly parallel. This is
accomplished by testing the angle between the two neighboring curves that pass through the
reference points associated with each overlapping endpoint. If the angle is less than the
angular limit for parallelism (ApaRaLLEL), the neighboring curves are considered to be
parallel and the algorithm continues consideration of the doubly connected curve.
Otherwise, the algorithm no longer considers this curve and instead continues to iterate over
curve_list.

Finally, the algorithm tests that the angles of attachment at the overlapping endpoints
roughly form an “H”. To check the colinearity of the two neighboring curves at an endpoint,
the angle between the reference ends associated with the endpoint (with the vertex of the
angle located at the endpoint) is tested to determine if it is greater than the angular limit for
straightness (AsTRAIGHT)- If the angles at both endpoints meet the straightness criterion, the
algorithm continues to consider this doubly connected curve, otherwise the algorithm aborts
consideration of this curve and continues the iteration over curve_list. Next, the algorithm
tests the angle of attachment of the doubly connected curve to each of the four end sections.
If the angle between the doubly connected curve and each end section is within AATTACH
degrees of being perpendicular, this doubly connected curve has passed all the tests for being
a small ridge connection and can be removed. The criteria for removing a small ridge
connection are summarized in figure 49. The limits for sizes and angles indicated in the
parameter summary below were the values used during development and may be selectable.

If a doubly connected curve passes all the tests, the curve is removed from 7, its
endpoints are deleted from the endpoint_map, and the curve is deleted from curve_list. After
the doubly connected curve has been deleted, each pair of neighboring curves having
overlapping endpoints can be represented as a single curve. These pairs of curves must be
combined in the same manner described in section 7.1.3.1., resulting in two curves from the
original four. ‘

99

Neighbor curve parallelism criteria Endpoint overlap criteria

BC.-EF ine(A Three overlapping endpoints
=t = > COSINE{APARALLE on both ends of curve
IBCII HEFI J

— — — —
o < cosine(ASTAIGHT) _A_.D___é!i < cosine(AATTACH) i‘B—éC. < cosine(AATTACH)
IABIIACII IADII IABII IADIIACII

— — —

—— < cosine(ASTAIGHT) M < cosine(AATTACH) .P.A—E.E < cosine(AATTACH)
IIDEI IDFH IDAIIIDEI IIDAI HDF

Doubly connected ridge size criteria

doubly connected curve’s average ridge width
is less than or equal to
WbouBLY_CONNECTED X average ridge width of the end sections|
: AND

number of points in the doubly connected curve
is less than
FpoousLy CONNECTED X average ridge width of the end sections
- AND

number of points of each neighboring end section

is greater than
MAXIMUM(doubly connected curve number of points/2, 3)

Angle of attachment criteria

Il # is the Euclidean norm

i
AB indicates a vector from point A to point B
I lis the absolute value

- indicates the vector dot product

Figure 49. Criteria for Removing a Small Ridge Connection

100

SMALL_RIDGE_CONNECTION_REMOVAL[curve list

2

(= LV I -V

10
11
12
13
14

15

16

17
18
19
20
21

** This algorithm modifies curve_list, endpoint_ map,and T
1 for each curve in curve_list
if ((curve is double connected with exactly three common endpoints at each end)

return

and (length of curve <LpousLy_CONNECTED))
set endpointy and endpoint; to be the endpoints of curve

set curves a and b to be curves that share endpoints with curve at endpoingy
set endpoint; and endpointy to be the overlapping endpoints of these curves
set curves ¢ and d to be the other two curves that share endpoints with curve
at endpoint; ,
set endpoint, and endpointy to be the overlapping endpoints of these curves
reference_length = max(length of curve, 3)
if all of the lengths of curves a, b, ¢, or d > reference_length
refa = the point on curve a that is reference_length points from endpoint,
refy, = the point on curve b that is reference_length points from endpoint,
ref. = the point on curve c that is reference_length points from endpoint,
refs = the point on curve d that is reference_length points from endpointy
w = (RIDGE_SECTION_AVERAGE_RIDGE_WIDTH(endpoint,, ref,, curve a)
+ RIDGE_SECTION_AVERAGE_RIDGE_WIDTH(endpointy, refy, curve b)
+ RIDGE_SECTION_AVERAGE_RIDGE_WIDTH(endpoint., ref;, curve c)
+ RIDGE_SECTION_AVERAGE_RIDGE_WIDTH(endpointy, ref;, curve d))
/40 '
if ((RIDGE_SECTION_AVERAGE_RIDGE_WIDTH[endpointy, endpoint;, curve]

<WpouBLY_CONNECTED)

and (length of curve < FpousLY CONNECTED X W))
** Check angle of attachment criteria

if (DoT_PRrODUCT(ref,, endpointy, refy) < cos(ASTRAIGHT))
and (Dot_PRrRoDUCT(ref;, endpoint;, ref;) < cos(ASTRAIGHT))
and (IDot_PRODUCT(ref;, endpointy, endpoint;)l < cos(AATTACH))
and (IDot_PRrobpuCT(refy,, endpointy, endpoint;)l < cos(AATTACH))
and (IDot_PRoDUCT(ref;, endpoint;, endpoinip)l < cos(AATTACH))
and (IDoTt_PRoDUCT(refy, endpoint;, endpoiniy)l < cos(AATTACH)))
** Check neighbor curve parallelism criteria
if IDOT_PRODUCT(ref;, refy, refy — (refe — refy))l > cos(ApARALLEL)
remove curve from T
delete endpoints of curve from endpoint_map
delete curve from curve_list

101

Dot_ProbucT(points a, b, ¢]

1 return the normalized dot product of the vectors frém btoaand frombtoc

7.1.6 Small Ridge Segment Removal

The small ridge segment removal algorithm deletes curves from curve_list that do not
share endpoint positions with any other curve (hence they are unconnected) and that have
fewer numbers of points than the minimum allowed for an unconnected curve. The
algorithm iterates over curve_list considering each curve. The curve connectivity test
described above is applied to each curve. If a curve is classified as unconnected, its length is
checked. If the curve is either short relative to the fingerprint as a whole (the number of
pixels in the curve is less than FUNcONNECTED_CURVE X ridge_widthgngerprint) OF both thin
and short relative to neighboring curves (both the width of the curve is less than
ZwIDTH_UNCONNECTED times the local average ridge width and the length of the curve is
less than Z| eNGTH_UNCONNECTED times the local average ridge width), the curve is
removed from T, its endpoints are deleted from the endpoint_map, and the curve is deleted
from curve_list.

SMALL_RIDGE_SEGMENT_REMOVAL[curve_list]

** This algorithm modifies curve_list, endpoint_map, and T
for each curve in curve_list
z_local_ridge width = the average of the local average ridge widths at the -
endpoints of curve
3 if ((curve is unconnected)
and ((number of pts in curve < FUNCONNECTED_CURVEX ridge_widthfingerprint)
or ((RIDGE_SECTION_AVERAGE_RIDGE_WIDTH[curve first endpt,
curve last endpt, curve]

< ZWIDTH_UNCONNECTED * 2z_local_ridge_width)
and (number of points in curve

<Z| ENGTH_UNCONNECTED * z_local_ridge_width))))
remove curve from T
delete endpoints of curve from endpoint_map
delete curve from curve_list
return

N =

NN A

102

7.2 SUMMARY

Parameters

AATTACH = 30 degrees
ACOLINEAR = 45 degrees
ApARALLEL = 45 degrees
AsgGMENT = 60 degrees
ASTRAIGHT = 90 degrees
FpouBLy_CONNECTED = 2.25
ForFsHooT curve =2.0
FriDce_Break = 1.0
FUNCONNECTED_CURVE = 5.0

LoousLy_CONNECTED = 20

RAD|USDEFAULT =81

RIDGE_SIZEyn = 5

WpousLy_connecTeD = 0.95

Z| ENGTH_OFFSHoOT = 5.0
ZLENGTH_UNCONNECTED =10.0
ZwipTH_oFFsHooT = 0.65

ZwIDTH_UNCONNECTED = 0.65

Input .

curve_list
C

2_blockmap

Angular limit for perpendicular attachment
Angular limit for colinearity

Angular limit for parallelism of neighboring ridges
Angular limit for colinearity with a small segment
Angular limit for straightness

Maximum length of a doubly connected curve in
terms of the average of its neighboring end
sections’ average ridge widths

Length of the smallest allowable singly connected
curve in terms of ridge_widthfingerprint

Maximum length of a possibly connectable ridge
break in terms of ridge_widthgngerpring

Length of the smallest allowable unconnected curve
in terms of ridge_widthfingerprins

Maximum length of a doubly connected curve to be
considered for removal

Default search radius for the small ridge break
connection algorithm

Minimum length of a curve allowed to be used in
calculating colinearity

Maximum average ridge width of the doubly
connected curve in terms of the average of its
neighboring end sections’ average ridge widths
Length of the smallest allowable singly connected
curve in terms of the local average ridge width
Length of the smallest allowable unconnected curve
in terms of the local average ridge width

Width of the smallest allowable singly connected
curve in terms of the local average ridge width
Width of the smallest allowable unconnected curve
in terms of the local average ridge width

The list of curves for the live-scan fingerprint
Chamfered image calculated as part of ridge
thinning (section 5)

Ridge direction data structure

103

Output
modified curve_list

Calculated values
T

endpoint_map
r idg e_Widt }% ngerprint

Thinned image regenerated from curve_list and
update as the curve_list is modified

See definition in section 7.1.1

The average ridge width for the entire fingerprint

104

SECTION 8
RIDGE SMOOTHING

Ridge smoothing processes the cleaned, extracted curves of a fingerprint’s ridges to
produce smoother versions of those same curves. This smoothing of the fingerprint ridges
removes topologically insignificant deviations in the curve. A smoother curve will
ultimately require fewer spline points to represent it; hence it will compress more efficiently.
An illustration of this situation is shown in figure 50. Notice that at each small bump in the
curve there are several spline points wasted on representing more detailed information about
that curve than is desired. By smoothing the curve we eliminate those extra points, reducing
the information to be encoded about that curve. However, it should be noted that the
smoothing process preserves the general shape and the exact locations of the endpoints of
each curve, therefore preserving the precise location of minutiae points.

Original Curve

11 Spline Points

Smoothed Curve

5 Spline Points

Figure 50. Illustration of the Difference in the Number of the Spline Points on a Curve
and Its Smoothed Counterpart

Ridge smoothing is accomplished by a window filter that averages pixel coordinates
along each curve in the fingerprint curve list. A window filter is a filter that applies a
function on each subgroup of adjacent pixels as it traverses over the entire group of pixels.

105

Each curve consists of a list of pixel coordinates. In this algorithm, the window filter
averages the pixel coordinates of a small group of pixels in a curve as it traverses the entire
list of pixels in a curve. This has the effect of low-pass filtering the shape of each curve,
making the curve smoother. The amount of smoothing effect is controlled by the size of the
window used. The window size used during development was 15, but this value, like all
other parameters, is selectable. This parameter is referred to as the target window size in the
algorithm description below. '

8.1 ALGORITHM DESCRIPTION

It is assumed that each curve is represented as an ordered list of pixels and that the
positional coordinates are available for each pixel in the curve. Itis also assumed that the
first and last points in the ordered list of pixels are the endpoints for the curve. The
properties of the curve extraction algorithm described earlier in section 6 guarantee these
assumptions. In order to calculate a smoothed curve from an original curve, it is required
that a new ordered list of pixels be generated to represent the new smoothed curve. The
original pixels of a curve must be available throughout the smoothing process on that curve.
Once a new ordered list for a curve is completely generated, the original ordered list for that
curve may be discarded. By a property of the smoothing algorithm, the number of pixels in
the new ordered list is guaranteed to be less than or equal to the sum of the number of pixels
in the original ordered list and the target window size W. In practice, however, due to
overlapping pixel removal, the number of new pixels is less than or equal to the original
number of pixels.

The smoothing algorithm is applied to each ridge in the fingerprint independently. The
three components to the smoothing algorithm are window positioning, candidate pixel
calculation, and new pixel addition. Window positioning is the most complicated and the
most important component in the smoothing algorithm. It controls which pixel positions are
averaged together to create a candidate pixel position, and it also ensures the exact
preservation of the curve’s endpoints. Candidate pixel calculation generates a new candidate
pixel position that is considered by the new pixel addition step for inclusion into the new
smoothed curve.

Window positioning moves a window over the ordered list of pixels of a curve starting at
one endpoint and stopping at the other endpoint while maintaining the front and back
boundaries of the window and the current window size, w,yrren;. The front boundary is
defined to be the boundary over which new pixels are added to the window. The back
boundary is defined to be the boundary over which pixels leave the window. The value of
Weurrent indicates the number of pixels within the window at a particular iteration. At the
first iteration on a curve, Weyurren; iS initialize to be 1, and the front and back boundaries are

106

set to point at the starting endpoint. For the subsequent iterations until Weyrrent €quals W or

the front boundary reaches the stopping endpoint, Weyrrent IS incremented by one and the front
boundary is moved one pixel down the ordered list of pixels. If Weyrrent reaches W, the
subsequent iterations move the window by moving both the front and back boundaries one
pixel down the ordered list of pixels. When the front boundary reaches the stopping
endpoint, the subsequent iterations move and shrink the window by decrementing Weyrrent by
one and moving the back boundary one pixel down the ordered list of pixels. Iteration stops
when Weyrrent 1S ONe and the front and back boundaries are at the stopping endpoint.

At each iteration of the window positioning the candidate pixel position is calculated as
the average position of the pixels within the window. This is accomplished by averaging the
row coordinate values of the pixels within the window and averaging the column coordinate
values of the pixels within the window. The process of averaging these coordinates can be
accelerated by keeping a running sum of the row and column coordinate values currently
within the window. When the window is moved, the row and column coordinate values of
the pixel leaving the window is subtracted from the respective sums, and the row and column
coordinate values of the new pixel entering the window is added to the respective sums.
Then the average row and column positions can be obtained by dividing these sums by
Weurrent. This method reduces the algorithm complexity from an order n? to an order n.

These average values, which are real numbers, are rounded to integer coordinates by
selecting the nearest integer, (i.e., floor(average_value + 0.5)).

Before the new candidate pixel can be appended to the new ordered list of pixels, it
must be tested to ensure it is not identical to the previously added pixel on the new list.
This test is accomplished by checking if the new pixel's coordinate is the same as the
coordinate of the last pixel currently in the new ordered list. If the coordinates do not match,
the candidate pixel is appended to the end of the new ordered list. Otherwise, the new pixel
is redundant and is not added to the list. Note that in the first iteration of the window
positioning, the candidate pixel is automatically added because the new ordered list of pixels
is empty. This process of curve smoothing is illustrated on an example curve in figure 51.

107

=

Figure 51. Illustration of the Curve Smoothing Algorithm

Original Curve

- Average
pixel coordinates
within the window
to calculate
Inew pixel coordinate

- W pixel -
window

Smoothed Curve

B Endpoints

82 SUMMARY
Parameters
w
Input
curve_list
Output
smooth_curve_list
Calculated Values

Weurrent
Srow

Scolumn
Hrow

Heolumn

The window size constant for the smoothing window
The list of fingerprint curves from the ridge cleaning process
The list of fingerprint curves after having been smoothed

The current window size

The running sum of the row coordinate values within the current
window '

The running sum of the column coordinate values within the
current window

The mean value of the row coordinate values within the current
window

The mean value of the column coordinate values within the current
window

108

RIDGE_SMOOTHING| curve_list]

1
2
3

00 1 QN b

9
10
11
12
13
14
15

16
17
18

19

20
21
22
23
24

25
26
27
28

** This algorithm modifies curve_list
for each curve in the fingerprint curve_list
{

generate a smooth curve on the smooth_curve_list to contain the processed curve

Srow = 0.0

Scolumn = 0.0

Weurrent =0

set pixel b to first pixel in curve

n = minimum [W , number of pixels in curve]

** Expand window while moving it until w,y,ren, reaches n
for each pixel a in curve from first pixel to nth pixel
{
Srow = Spow + TOW coordinate of pixel a
Scolumn = Scolumn + column coordinate of pixel a
Weurrent = Weurrent + 1
Wrow = f100T(Syow/Weurrent + 0.5)
Meolumn = F100T(Scotumn/Weurrent + 0.5)

if (the pixel (Kyow, Keolumn) # the last pixel in smooth_curve)
add pixel (Mrow» Heotumn) to the end of smooth_curve

}

** Move window with Weyrrens Set to n until reaching last pixel in curve
while pixel a is not last pixel in curve
{
Srow = Srow + Tow coordinate of pixel a — row coordinate of pixel b
Scolumn = Scolumn + column coordinate of pixel a — column coordinate of pixel b
Wrow = floOr(Srow/Weurrent + 0.5)
Heotumn = fl001(Scotumn/Weurrens + 0.5)

if (the pixel (Mrow, Heolumn) # the last pixel in smooth_curve)

add pixel (Wyow» Ucolumn) to the end of smooth_curve
set pixel b to next pixel in curve

109

Shrink window while moving it until window only contains the last pixel

29 while pixel b is not the last pixel in curve

30 {

31 Srow = Spow — FOW coordinate of pixel b

32 Scolumn = Scolumn — column coordinate of pixel b

33 Weurrent = Weurrent — 1

34 Wrow = fl001(Srow/Weurrent +0.5)

35 Keotumn = f100r(Scotumn/Weurrens + 0.5)

36 if (the pixel (Mrows ;icolum,.) # the last pixel in smooth_curve)
37 . add pixel (Wyows Meotumn) to the end of smooth_curve
38 set pixel b to next pixel in curve

39 }

40 }

41 end

110

SECTION 9
CHORD SPLITTING

Chord splitting selects the fingerprint ridge points that will be used by the B-spline
algorithm to reconstruct the ridge during decompression. The input to the process is an array
containing an ordered set of all of the points representing a ridge. The output of the process
is an ordered subset of the original ridge points. The algorithm is iterative, selecting the
subset of points based upon the perpendicular distance to a line (chord) connecting the

_current ridge segment endpoints. This perpendicular distance is the error, or residue, for the

current chord segment. A greater number of selection points result from a smaller allowable
error (see figure 52). '

Larger Allowable Error Smaller Allowable Error

Figure 52. Effects of Allowable Error or Residue

9.1 ALGORITHM DESCRIPTION

The variables and parameters that the chord splitting algorithm uses are described below.

x(@) The x coordinate information for the ith point on a curve segment
¥(@) The y coordinate information for the ith point on a curve segment
d(i)r The perpendicular distance from point (x(i), y(i)) to the line segment with
endpoints described by (x()), y()) and (x(k), y(k)).
ALLOWABLE_RESIDUE The smallest acceptable perpendicular distance between
curve segment and the chord segment

The chord splitting process involves several steps (figure 53) described at length in the
following paragraphs. Two arrays, x and y, are passed to the chord splitting function. Array

111

x contains the x coordinate information for the given line segment; similarly, array y contains
¥ coordinate information. In the input arrays, the first endpoint is referenced by j, the second
endpoint is referenced by k. To calculate the residue distance, d(i)j, an array containing
intermediate values describing the endpoint ridge segment is maintained [6]. The values
within the array are

a(0) = y()) —y(k)
a(l) = x(k) — x(j)
a(2) = (y(k) x x(f)) — () x x(k)).

The algorithm begins by calculating the perpendicular distance from each point on the
input segment to the line segment connecting the ridge endpoints. For each point within the
input ridge (subscript i), the distance is calculated using the following formula:

d@jx = (a(0) x x(1)) + (a(1) x y(@)) + a(2).
The largest distance is found and the index is stored in m. If the largest distance is
greater than ALLOWABLE_RESIDUE, it is acceptable and the point indexed by m is added
to a linked list that stores valid spline points.

If the largest distance was above the threshold, the process is repeated for a new segment
defined by the first endpoint and the point indexed by m. The algorithm continues to find the
largest acceptable point. With each successful iteration a smaller line segment is defined.
When an acceptable distance is not found, the algorithm moves to areas not yet investigated.
The new areas are investigated by defining a new line segment with the last valid point found
and the unused endpoint of the previous segment, then repeating the process described
above. -

In the special case of a loop, which consists of a single endpoint, the ridge endpoints are
defined differently. One endpoint is defined as the actual ridge endpoint, while the other
endpoint is defined as the point along the ridge that is furthest away from the ridge endpoint.
The selection of these endpoints effectively divides the loop into two segments. Each-of the
two segments is then processed using the normal chord splitting process.

Figure 54 shows the sequence of iterations in processing a simple arc. In this figure, a
line segment is joined from the original ridge endpoints labeled A and B. The largest
perpendicular distance is found to be located at C. The second iteration creates a new line
segment AC. The largest perpendicular distance between the ridge points A and C is found
to be D. The process continues, using AD as a line segment. In this case, an acceptable
distance is not found. Next, the algorithm uses the line segment joining DC, where an
acceptable distance is not found. Point E is the largest distance from segment CB. A check
is then made for segments CE and EB, with no valid points being found. The final points

retained by the algorithm are A, D, C, E, B, in that order.
\

112

The chord splitting process is performed by a recursive function. The recursive function
maintains the ordering of the selected points. This is particularly important, since the
B-spline program that will use the points selected by the chord splitting algorithm expects the

points to be ordered.
Input Coordinate
Information
Calculate Chord Determined -
by Segment Endpoints

¥

Scan Ridge Points to
Find Largest Residue

\/

YES

Residue
Above Allowable
Threshold?

| A
Qutput Coordinate
nformation

Figure 53. Flowchart of Operations

Add Points to Chord List:
Update Endpoints

113

a. First Iteration

C

b. Second Iteration

- ¢. Third Iteration

@ Segment Endpoint
® Selected point

O Valid point not in
current iteration

Figure 54. Sequence of Iterations

114

9.2 SUMMARY

This section provides parameters, input variables, output variables, and pseudocode for
the chord splitting algorithm.
Parameters

ALLOWABLE_RESIDUE Smallest acceptable perpendicular distance between the
curve segment and the chord segment

Input
curve_list List of curves that represent the fingerprint
Output
modified curve_list List of curves which now includes chord points for each curve

** Algorithm to select the fingerprint ridge points to be used by the reconstruction algorithm
CALCULATE_CHORD_POINTS[curve_list]

** temp_chord_points and the arrays x and y are globally accessible by the routines
called by this process.
1 for each curve in curve_list :
** x is an array which holds x coordinate information for curve
y is an array which holds y coordinate information for curve

2 if (the number of points in curve > 1)
3 {
4 J = first index of the coordinate arrays for curve
5 k = last index of the coordinate arrays for curve
6 initialize temp_chord_points with the first and last point of curve
7 LINE_FITTING[j, k] ** Refers to x, y, and temp_chord_points,
and modifies temp_chord_points
8 copy the chord points in temp_chord_points into the chord points for curve

9 }

10 else

11 copy the one point of curve into the chord points for curve

12 return

115

LINE_FITTING[j, k]

** The values of temp_chord_points and the arrays x and y are globally accessible and
modifiable by this routine.

1 first_endpoint =(x(j), y(j))
2 second_endpoint =(x(k), y(k))

3 if (first_endpoint = second_endpoint)
4 {
** Special case if the curve is a loop
5 m = index between j and k where (x(m), y(m)) has
the largest distance from first_endpoint

6 residue = perpendicular distance from (x(m), y(m)) to first_endpoint
7 } '

8 else

9 {

10 chord = the line passing through first_endpoint and second_endpoint
11 residue =0

12 previous_residue =0

13 same_residue =0

14 forifromjtok

15 {

16 point = (x(i), y(i))

17 p_distance = perpendicular distance from the point on the

curve to the chord connecting the endpoints

** If there are consecutive points with the same perpendicular distance,

find the middle one
18 if (p_distance 2 residue)
19 {
20 residue = p_distance
21 if (residue = previous_residue)
22 {
23 increment same_residue
24 }
25 else
26 {

116

27 same_residue =0

28 }
29 m=i
30 }
31 previous_residue = p_distance
32 }
** Find the midpoint if there are consecutive points with the
same perpendicular distance
33 if (same_residue + 0)
34 m = m — (same_residue + 2)
35)
36 if (residue > ALLOWABLE_RESIDUE)
37 {

38 insert the point (x(m), y(m)) between the points in temp_chord_points that
correspond to first_endpoint and second_endpoint

** Recursive processing to continually divide segment into smaller segments

** Line fitting for left hand side
39 LINE_FITTING[j, m]

Line fitting for right hand side
40 LINE_FITTING[m, k]
41 }
42 end

117

118

SECTION 10
CURVE SORTING

After the chord splitting process has been completed, there is no particular order to the
resulting list of curves. Absolute coordinates could be used to encode the positions of the
curve endpoints from this list, but this would not, in general, be very efficient. It was found
that fewer bits are needed to encode the curve endpoint positions if relative offsets between
curves are used. Thus, to further improve encoding efficiency, the list of curves are
reordered to minimize the relative offsets between consecutive curves. Therefore, it is
desirable to sort the curve list by closest relative offsets, taking advantage of curves that are
grouped closely together to maximize encoding efficiency. The sorting process described
below generates a new sorted list. The first curve in this list is represented using an absolute
coordinate and the remaining curves are represented with relative offsets. Figure 55 shows
an example of the results of the sorting process applied to a list of four curves.

'*ofigin """ ¥ absolute distance |
.. ——» relative distance |
IS o .—-.-\ curve
s © center of image

USRI 2R3

Figure 55. Results of the Sorting Process

The algorithm developed to sort the curve list does not calculate the optimal curve order,
because this would be far too computationally intensive. Therefore, the algorithm described
in this section is a heuristic that is far less computationally complex than optimal ordering,
but still provides an efficient ordering of the fingerprint curves.

119

10.1 ALGORITHM DESCRIPTION

The sorting algorithm is a two stage algorithm that receives an unordered list of curves
and generates an ordered list of curves. The first stage sorts the curves by repeatedly
transferring the curve from the original unordered list (unsorted_list) that is closest to the last
curve of the ordered list being generated (sorted list) onto the end of sorted list. This first
stage (selective processing) usually places the entire original unsorted list of curves onto the
sorted list of curves. Only when the first stage fails to place all the curves onto sorted_list
(under conditions described in section 10.1.1.3) is the second stage reached. This stage
(cyclic processing) takes any remaining unsorted curves in the original list and inserts them
into the sorted list. |

In both stages of sorting, a curve is selected or inserted according to a “best fit” criterion
which is based on inter-curve offsets. When searching for a closest curve, the best fit
criterion must be applied to every inter-curve offset (jump) between each endpoint of the
curve being considered and each endpoint of every remaining unsorted curve to determine
which of the unsorted curves minimizes jump. This requires that a total of four inter-curve
offsets must be compared for every curve that is a candidate. Therefore, to uniquely identify
Jjump for a pair of curves, the endpoints of the two curves that define this inter-curve offset
must be recorded. (See section 10.1.1.1 for further details regarding the handling of these
situations.) :

CuURVE_SORTING[unsorted_list]

1 sorted_list = SELECTIVE_PROCESSING[unsorted_list]

2 if (unsorted_list is not empty)

3 sorted_list = CYCLIC_PROCESSING[unsorted_list, sorted_list]
4 return sorted_list

10.1.1 First Stage: Selective Processing

Selective processing sorts the original list of curves so as to minimize inter-curve offsets.
Prior to selective processing, the curve that has either endpoint closest to the center of the
image is found and is designated as the first curve in the sorted list. After the first curve is
found, the remainder of the processing repeatedly selects the unsorted curve that is closest to
the last curve in the sorted list and appends it to the list (see section 10.1.1.1). The flowchart
in figure 56 is an overview of the selective processing stage.

120

Gnsbrted List of Curves)

Make Centermost
Curve the First Curve
in the Sorted List

A
Is
Yes Unsorted List
Empty?
Search for Unsorted Curve
Closest to the Last Curve Reset Search
in the Sorted List Criteria
Was a Yes
Append Curve
Close Curve :
Found? to Sorted List
Is Original
List Now 75% Atter Search |
Sorted? !

Yes
. Sorted List of Curves
CSorted List of Curves) (Unsorted List not emptD

Figure 56. Flowchart of Selective Processing

121

SELECTIVE_PROCESSING[unsorted_list]

1 penalty size = PNt ** Initialized for global use

** First, find the curve closest to the center of the image and make it the first

W N

{

00 3O\ A

10
11

12
13
14

15
16
17
18

19
20 }

curve in the sorted list

curve = curve in unsorted_list that is closest to the center of the image
put curve into sorted_list

status = CONTINUE_FIRST_STAGE
while (status = CONTINUE_FIRST_STAGE)

last_curve = last curve in sorted_list ** Curve to be jumped from
max_offset = DggLecT ** Initialize the filter value

** The following three variables are initialized for global use. These values are
modified in SEARCH_FOR_THE_BEST FIT_CURVE[] and used in

RESULTS_CHECKING[] to indicate the closest curve to last_curve

closest_curve = NULL

endpoint_flag = NULL

reverse_flag = NULL

** Find next curve from unsorted_list, repeating the search
with larger limits if necessary

status = REPEAT_FIRST_STAGE_SEARCH

while (status = REPEAT_FIRST_STAGE_SEARCH)

{
** Look for a curve that is close to the last curve in the sorted list
SEARCH_FOR_THE_BEST-FIT_CURVE[max_offset]

** Check to see if a close curve was found and perform the appropriate actions
status = RESULTS_CHECKING]]
if (status = REPEAT_FIRST_STAGE_SEARCH)
max_offset =2 x max_offset ~ ** The search is repeated using
twice the filter value (max_offser)

}

21 return sorted_list

122

10.1.1.1 Search for the Best-Fit Curve

The search process examines the unsorted list of curves to find a close curve to jump to
from the last curve in the sorted list. This routine computes the distance from the last curve
in the sorted list to each curve in the unsorted list. Each distance comprises two values: an x
offset and a y offset. Each offset is a component of the jump vector and is the magnitude of
the coordinate difference from an endpoint of one curve to the endpoint of another curve.
For example, the distance between endpoints (180, 200) and (140, 235) is (40, 35).

When computing the jump vector from the last curve in the sorted list to a curve in the
unsorted list, there are four distance (jumping) scenarios to consider: the first point of the
last curve in the sorted list to the first point of the current curve; the last point of the last
curve in the sorted list to the first point of the current curve; the first point of the last curve in
the sorted list to the last point of the current curve; and, finally, the last point of the last curve
in the sorted list to the last point of the current curve. Figure 57 depicts the four distance
scenarios, where each arrow represents a different endpoint offset between the two curves.

In addition to the jump distance, the reference endpoint (first or last) of the last curve as
well as the closest endpoint (first or last) of the closest curve to the last curve must be noted.
The reference endpoint of a curve is the endpoint from which to jump to the next curve. In
situations where the closest endpoint of the closest curve is in fact its last endpoint, the list of
points representing this curve are reversed. The reference endpoint information is retained
using a flag, because it is required by the encoding and decoding processes. For example,
this flag (the reference_end_flag) would be set to LAST_ENDPOINT when jumping from its last.
_ endpoint, and to FIRST_ENDPOINT when jumping from its first endpoint. (The values
FIRST_ENDPOINT and LAST_ENDPOINT are used for the remainder of the document and reflect the
usage in the previous example.)

Given the last curve in the sorted list, the values of the best jump vector, (best_jumps,
best_jumpy), represent the jump to the closest curve in the unsorted list and are determined
by comparing the jumping scenarios of this last curve to every curve left in the unsorted list.
Prior to the search over the unsorted list, both offset values representing the best jump vector
are initialized to the value MAXoprseT. MAXoFgseT is defined as the larger of the width
and height of the image, plus one.

To avoid unnecessary computation, a filter test is applied before the distance comparison
for each jumping scenario. The components of the inter-curve offset (current_jump, and
current_jumpy) for a jumping scenario are compared to max_offset, the filter value. If both
current_jump, and current_jumpy are less than max_offset, the distance comparison
(section 10.1.1.2) is applied for this jumping scenario.

Empirical analysis during development has shown that 128 is the best initial value of
max_offset when dealing with an image of 450 pixels (horizontal) by 600 pixels (vertical).

123

For the remainder of the document, the value of Dggy gcT (initial max_offset during the
selection sort) is 128. :

The best jump vector values are then used by the distance comparison process to keep
track of the offset to the closest curve found so far in the current search. Therefore, if the
search finds a valid closest curve, best_jump;, and best_jumpy will reflect the offsets to this
curve. :

Last curve in the sorted list

First Point)
Last Point

~—
\\ \\\\ ///:/
-~ -
\ \\\\ /// /
\ e 9 7
\ - SN /
\ //’ N
\ -~ Last Point
First Point

Current curve

Figure 57. The Four Possible Jumping Scenarios

124

SEARCH_FOR_THE_BEST-FIT_CURVE[max_offset]

1 best_jump, = MAXOFFSET
2 best_jumpy = MAXoFFSET

3 for each curve in unsorted_list

4 |
** Distance comparison is called four times, once for each
of the four jumping scenarios
Evaluate the first-to-first scenario
5 current_jumpy = abs[CUrvesirst_endpoint_x — 1St_CUrvegirss_endpoint_x)
6 curmn em_jumpy = abs[curvefust_endpoint y last_curvefirss_endpoint_y)
7 if (current_jump, < max_offset and current_jump, < max_offsetr) ** The filter test .
8 if (DISTANCE_COMPARISON|current_jump, best_jump] = TRUE)
9 endpoint flag = FIRST_ENDPOINT
10 reverse_flag = FALSE
11 closest_curve = curve
12 best_jump = current_jump
Check to see if the first-to-last scenario is better
13 current_jumpy = abs[curveyss_endpoint_x — 1St_CUrvegrs endpoint_x)
14 current_jumpy = abs[curveiass_endpoint_y — 1ast_Curvefirss_endpoint_yl
15 if (current_jump, < max_offset and current_jumpy, < max_offset) ** The filter test
16 if (DISTANCE_COMPARISON[current_jump, best_jump] = TRUE)
17 endpoint_flag = FIRST_ENDPOINT
18 reverse_flag = TRUE
19 closest_curve = curve
20 best_jump = current_jump
** Check if the last-to-first scenario is better
21 current_jumpy = abslcurveftrst_endpoint_x ~las t_curvelast_endpoint_x]
22 current_jumpy = abs[curvefirst_endpoint_y — 1ast_curvelast_endpoint_yl
23 if (current_jump, < max_offset and current_jumpy, < max_offser) ** The filter test
24 if (DISTANCE_COMPARISON[current_jump, best_jump] = TRUE)
25 endpoint_flag = LAST_ENDPOINT
26 reverse_flag = FALSE
27 closest_curve = curve
28 best_jump = current_jump

125

** Check if the last-to-last scenario is better

29 current_jumpy = abs[curvel,ss endpoint_x — 1ast_cUrveys; endpoint_x)

30 current_jumpy = abs[curveyass endpoint_y — 1aSt_CUrvelass endpoint_y)

31 if (current_jump, < max_offset and current_jumpy < max_offset) ** The filter test
32 if (DISTANCE_COMPARISON[current_jump, best_jump] = TRUE)

33 endpoint _flag = LAST_ENDPOINT

34 reverse_flag = TRUE

35 closest _curve = curve

36 best_jump = current_jump

37 } '

** The global values of closest_curve, best_jump, endpoint_flag and reverse_flag
indicate the best fit curve found and its jump information
38 return

10.1.1.2 Distance Comparison

This section describes the distance comparison used to determine if a jump is better than
the best jump, which consists of the two values best_jump, and best_jump,. The variables
current_jumpy and current_jumpy contains the pair of endpoint offsets (jump vector) from the
last curve in the sorted list to the curve currently being processed.

Distance comparison uses several auxiliary functions and values. Max_BITS returns the
larger of the number of bits necessary to represent the x or y offset in a jump vector. .
SuM_BITS returns the aggregate number of bits necessary to represent both the x and y
offsets. SUM_DISTANCES returns the sum of the x and y offsets. These functions are used
with the current jump vector and best jump vector to obtain the values max_current_bits,
max_best_bits, sum_current_bits, sum_best_bits, sum_current_distance, and
sum_best_distance. The calculation of these values is explained in the pseudocode at the end
of this subsection.

To prefer jumps whose offset components are roughly equivalent in magnitude, the
algorithm first compares max_current_bits and max_best_bits to penalty_size (the penalty
test). If both max_current_bits and max_best_bits are less than or equal to penalty_size, the
current jump will be considered better than the best jump if sum_current_distance is less
than sum_best_distance and if sum_current_bits is less than or equal to sum_best_bits.

126

Otherwise, if either (or both) max_current_bits or max_best_bits is greater than
penalty_size, then the current jump will be considered better than the best jump if either of
the following two conditions are true:

1. max_current_bits is less than max_best_bits.

2. max_current_bits is equal to max_best_bits, and sum_current_bits is less than
the sum_best_bits.

Figure 58 shows an example of comparing the four jumping scenarios between the last
curve in the sorted list and the current candidate curve from the unsorted list. By passing
both the filter test and the penalty test, the current curve becomes the best curve and
best_jump is set to current_jump. Searching continues until every unsorted curve is
examined and the best_jump over the entire unsorted list is found.

Empirical analysis during development has shown that 6 is the best initial value of
penalty_size when dealing with an image of 450 pixels (horizontal) by 600 pixels (vertical).
For the remainder of the document, the value for Pyy1 (initial penalty size) is 6.

127

: A
(127, 90) (63,0) (190, 90)

Last curve in \\ / Current curve
sorted list /
/
/
/
/ (50,110)
/
\
\ /
Ny
N/
\X/.
/
/\
N
/ \
/ \
\
(140,200) ~ \
\\ \
@, # endpoint \\ \
. B \
-—=* ajump 0, 35)\\ \
(#,#) xandy jump offsets N
(180, 235)

jumps offsets sumbits

A (63, 0) 6+1=7 6 63+0=63
B (40,35) 6+6=12 6 40+35=175
C (53,150) 6+8=14 8 53 + 150 = 203
D (50,110) 6+7=13 7 50 + 110 = 160

Given that the penalty size is 6, only jumps A and B satisfy the penalty test.
Because max bits for jumps A and B are equal, the sum bits must be compared.
Based on this comparison, jump A is selected as the best jump.

Figure 58. Example of Comparing the Four Jumping Scenarios Between the Last Curve

in the Sorted List and the Current Candidate Curve

128

DISTANCE_COMPARISON| current_jump, best_jump]

** Now perform the penalty test
1 max_current bits = MAX_BITS[current_jump]
2 max_best_bits = MAX_Birs[best_jump]

** max_best bits is global

3 sum_current_bits = SUM_BITS[current_jump]

4 sum_best_bits = SUM_BITS[best_jump]

S sum_current_distance = SUM_DISTANCE[current_jump]

6 sum_best distance = SUM_DISTANCE[best_jump]

7 if (max_current_bits < penalty_size and max_best_bits < penalty_size) ** Penalty Test

8 {

** Offset components are roughly equivalent in magnitude
9 if (sum_current_distance < sum_best_distance
and sum_current_bits < sum_best_bits)
10 return TRUE
11 }
12 else
13 { :
*+ Offset components are not roughly equivalent in magnitude
14 if (max_current_bits < max_best_bits)
15 return TRUE
16 else
17 {
18 - if (max_current_bits = max_best_bits
and sum_current_bits < sum_best_bits)

19 return TRUE
20)
21 }

22 return FALSE

The function MAX_BITS[] returns the largest number of bits necessary to represent the
magnitude of the x or y offset.

Max_BrTs(jump]
1 return max[NUM_BITS[jump;], NUM_BITS[jumpy]]

129

The function SUM_BITS[] returns the sum of the number of bits necessary to represent the
magnitudes from a pair of x and y offsets. '

SuM_Brrs[jump]
1 return NuM_BITS[jump,] + NUM_BITS[jumpy)

The function SUM_DISTANCE[] returns the sum of the magnitudes from a pair of x and y
offsets.

SuM_DISTANCE[jump]
1 return jump, + jump,

The function NUM_BITS[#] returns the smallest number of binary bits needed to represent
the absolute value of the integer value n.

NuM_BITS[1]
1 return floor(logy(n) + 1)

10.1.1.3 Results Checking

Results checking determines if a sufficiently close curve has been found. If so, the
closest curve is added to the sorted list. This curve to be appended may need to have the
order of its points reversed. The assignment of the appropriate endpoint reference value to
reference_end_flag must take such a reversal into account. This is necessary because it has
been defined that a curve in the sorted list always jumps to the first point of the next curve in
the sorted list; therefore, if the last curve jumps to the last point of the closest curve, the
closest curve must be reversed prior to appending it to the sorted list. Also,
reference_end_flag of the last curve in the sorted list must be saved to indicate which
~ endpoint of the last curve was used to jump to the first endpoint of the closest curve. Before
continuing, the penalty value is set to be the larger of itself or max_best bits, because future
jumps should be allowed to use as many bits as do existing jumps in the sorted list.

If a curve is not found during this search that is close enough to satisfy the distance
comparison, there are two options available: the filter value is doubled and the selection sort
begins again, or cyclic processing begins. This decision is based on the length of the
unsorted list. If the length of the unsorted list is at or below 25 percent of its original length,
then cyclic processing begins; otherwise, the filter value is doubled and the selection sort

130

begins again. The capacity value, set at 25 percent during testing, is defined by the
parameter Co,. If the first option is chosen and a closest curve is found after further passes
through the unsorted list, then the value max_offset must be reset to its initial value of
DseLecT before continuing the selective process.

Given this closest curve, results checking will decide which of the following operations
to perform: to append the closest curve to the end of the sorted list; to indicate that the
search should be repeated with a larger filter value; or to indicate that first stage processing
has completed and second stage processing should begin.

RESULTS_CHECKING([]

** At least one of the best_jump offsets will no longer be set to its initialization value if
a close curve has been found
1 if ((best_jumpy # MAXorEseT) and (best_jumpy # MAXoFFSET))
2 { :
** A close curve has been found, so append closest_curve to the sorted list
3 last_curvereference end flag = endpoint_flag
4 if (reverse_flag = LAST_ENDPOINT)
5 reverse the order of the spline points of closest_curve

6 append closest_curve to sorted_list
** closest_curve is the new last curve in sorted_list

7 penalty size = max[max_best_bits, penalty_size]

8 if (unsorted_list is empty)

9 return FIRST_STAGE_FINISHED ** First stage has successfully sorted all curves
10 else
11 return CONTINUE_FIRST_STAGE ~ ** Find next curve using the first stage sorting
12) . :

** If a close curve was not found, determine if entry into the cyclic
stage is necessary by checking if the number of curves in the unsorted list
is down to Ce, or less, of its original size

13 else if (percentage of curves in unsorted_list < Ce, of curves in original unsorted_list)
14 return FIRST_STAGE_FINISHED ** Proceed onto the second stage sort

15 else ** Cyclic processing is not permissible try once again to find a close curve
16 return REPEAT_FIRST_STAGE

131

10.1.2 Second Stage: Cyclic Processing

If the cyclic stage in the sorting process is reached, the unsorted list is processed until it is
completely empty. This process iterates through the unsorted list and attempts to find a place
to insert each curve on that list between two curves in the sorted list. Like the first stage, the
cyclic stage has a search subprocess, a distance subprocess, and a results checking
subprocess. However, there exist some differences between the two processes. The first is
that during cyclic processing a filter value is associated with each unsorted curve. Second, in
the cyclic stage, if the search does not yield an insertion location in the sorted list, the curve
is put onto the end of the unsorted list and its associated filter value is doubled.

Upon entering the cyclic stage, the filter value for every unsorted curve is initialized to
DcycLic. The value of Doyeyic used during testing was empirically determined to be 64.
For the remainder of this document the parameter representing this value is referred to as
DcycLic- Each step in cyclic processing consists of three subprocesses: searching for an
insertion location, linkage comparison, and results checking. These steps are performed until
every remaining curve in the unsorted list has been placed in the sorted list. Once the
unsorted list is empty, the sorted list is the same size as the original unsorted list, since all of
the curves have been transferred to it. The flowchart in figure 59 is an overview of the cyclic
processing stage.

132

(Sorted List of Curves) (Unsorted List of Curves)

A
Is
Yesv Unsorted List
Empty?
SLearch for Besst Inge[tion
ocation in Sorted List ;

for First Curve in Unsorted Pu;:?:lig gfrv ©

List Unsorted List

T

Change Search
Critena for this

Was
a Location

Found? Curve
Yes
Insert Curve
_ Y ™1 in Sorted List
(Sqrted List of Curves)

Figure 59. Flowchart of Cyclic Processing

133

CycLIC_PROCESSING[unsorted_list, sorted_list]

** Initialize the filter value of every curve remaining in unsorted_list
1 for each curve in unsorted_list

2 curvesner_vae = DcycLic

3 while (unsorted_list is not empty)
** Initialize the following seven variables for global use
4 saved_endpoint_flag one = NULL
5 saved_endpoint_flag two = NULL
6 saved_reverse_flag_one = NULL
7 saved_reverse_flag two = NULL
8 first_curve = first curve in unsorted_list
9 best_insertion_linkage, offset to = first_curvefiier vaiue

10 best_insertion_linkagey ofset 1o = first_curvefilter value
11 best_insertion_linkagex offset from =first_curvesiier value
12 best_insertion_linkagey ofset from = first_Curvesitter vaiue

** Try to find an insertion location for first_curve in the sorted list
13 best_insertion_location = SEARCH_FOR_THE_BEST_INSERTION_LOCATION[]

** Test whether an insertion location was found for first_curve in sorted_list
14 RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE[best_insertion_location]

15 return sorted_list

10.1.2.1 Search for the Best Insertion Location

The search routine in cyclic processing operates similarly to the search routine in the first
stage; however, instead of searching the unsorted list for an appropriate curve to append, the
sorted list is searched for two curves (labeled i and i+1) that comprise an insertion location
for an unsorted curve. When searching for an insertion location for an unsorted curve, the
filter value max_offset, which is used for any distance comparisons, is set to the filter value
associated with that curve. The two curves i and i+1 must be adjacent in the sorted list and a
series of jumps must be found to go from curve i to the first curve in the unsorted list, then
from this unsorted curve to curve i+1. Figure 60 shows the “before” and “after” appearance
of an insertion location. Unlike the first stage, which has a single best jump, two different
sets of best jump values must be determined. One set describes the jump from curve i to the
candidate insertion curve, and the other set describes the jump from the candidate curve to

134

. A. Before insertion
curve i

curvei + 1

the unsorted curve u

B. After insertion

w\ curve i +2

curvei + 1
E— represents actual jump path
ceses- ')f represents suggested jump path (before insertion)
marks the first endpoint of a curve

\/\ a sorted curve

an unsorted curve

O R e e SRS s

Figure 60. Insertion of an Unsorted Curve into the List of Sorted Curves

135

curve i+1. These two best jumps are the best jumping scenario that leads o the unsorted
curve from curve i, and the best jumping scenario that leads from the unsorted curve to curve
i+1. The best jumping scenarios are determined by applying the distance comparison criteria
(from the first stage) over the four possible jumps between curve i and the unsorted curve,
and also over the four possible jumps between the unsorted curve and curve i+1. The two
best jumps together are called the insertion linkage for the insertion location between curve i
and curve i+1. If two sets of best_jumps are found that pass the distance comparison criteria
and result from the jumps of two adjacent sorted list curves and the unsorted curve, then a
complete insertion linkage has been found. Due to the relative distance between the unsorted
curve and curves i and i+1, however, it is possible that two best_jumps may not be found
because one or more of the curves might not pass the filter test (section 10.1.1.2). If two
feasible jumps are not found for.an insertion location then the insertion location is abandoned
as a possibility for the current unsorted curve. For each insertion location that yields a
complete insertion linkage, a comparison against the best_insertion_linkage is performed to
determine which insertion linkage represents the best insertion location. This comparison is
described in the next section.

SEARCH_FOR_THE_BEST_INSERTION_L.OCATION([]

1 max_offset = Jirst_curvesiter vatue
2 best_insertion_location = NULL ** Initialize to indicate no location found

3 for each curve from the first curve in sorted_list
' to the curve before the last curve in sorted_list
4 curve_plus_one = the curve following curve in sorted_list

** Initialize variables

best_jump to_unsorted _curve, = ﬁrst_curvqme,_value
best_jump_to_unsorted_curve, = ﬂrst_curveﬁl,e,_va;ue
best_jump_from_unsorted_curvex = first_curvesier value
best_jump_from_unsorted_curvey = first_curvegiter vaiue

00 N O\ L

136

10
11
12

13
14
15

16
17
18
19

20
21
22

23
24
25
26

27
28
29

Calculate and determine the best endpoint offset of the four endpoint offset
- pairs from curve to first_curve

** Check to see if the first-to-first scenario (from curve i to
the candidate unsorted curve) is acceptable
current_jumpy = abs|first_curvegrs_endpoint_x — CUrV€first_endpoint_x]
current_jumpy = abs|first_curvegrs; endpoint_y — CUVefirst_endpoint_y)
if (current_jump, < max_offset and current_jump, < max_offset) ** The filter test
if (DISTANCE_COMPARISON[current_jump, best_jump to_unsorted_curve]
= TRUE)
endpoint_flag_one = FIRST_ENDPOINT
reverse_flag one = FALSE
best_jump_to_unsorted_curve = current_jump

** Check to see if the first-to-last scenario (from curve i to
the candidate unsorted curve) is better
current_jumpy = abs[first_curveias;_endpoint_x — CUIrVefirst_endpoint_x)
current_jumpy = abs(first_curveiase_endpoint_y — CUrV€first_endpoint_y)
if (current_jump, < max_offset and current_jump, < max_offset) ** The filter test
if (DISTANCE_COMPARISON|current_jump, best_jump_to_unsorted_curve]
= TRUE)
endpoint_flag_one = FIRST_ENDPOINT
reverse_flag_one = TRUE
best_jump_to_unsorted_curve = current_jump

** Check to see if the last-to-first scenario (from curve i to
the candidate unsorted curve) is better
current_jumpy = abs(fir. SI_CUrvefirst endpoint_x — Curvelast_endpoint_x]
current_jumpy = abs[first_curvegrs_endpoint_y — CUrVelast_endpoint_y]
if (current_jump, < max_offset and current_jump, < max_offser) ** The filter test
if (DISTANCE_COMPARISON[current_jump, best_jump_to_unsorted_curve]
= TRUE)
endpoint_flag _one = LAST_ENDPOINT
reverse_flag one = FALSE
best_jump_to_unsorted_curve = current_jump

137

30
31
32
33

34
35
36
37
38

39

41
42

43

45

46
47
48
49

50
51
52

** Check to see if the last-to-last scenario (from curve i to
the candidate unsorted curve) is better
current_jumpy = abs[first_curveis; endpoint_x — CUrVelast_endpoint_x]
current_jumpy = abs[first_curveias:_endpoint_y — CUIrvVelast_endpoint_y] _
if (current_jump, < max_offset and current_jumpy < max_offset) ** The filter test
if (DISTANCE_COMPARISON[current_jump, best_jump_to_unsorted_curve]
= TRUE)

endpoint_flag_one = LAST_ENDPOINT
reverse_flag one = TRUE
best_jump to unsorted_curve = current_jump

** Now determine the best endpoint offset of the four endpoint offset pairs
from first_curve to curve_plus_one

** Check to see if the first-to-first scenario (from candidate unsorted curve
to sorted curve i+1) is better
current_jumpy = abs[curve_plus_onefirst_endpoint_x —first_curvesirs; endpoint_x)
current_jumpy = abs[curve_plus_onefirs;_endpoins_y —Jirst_Curvefirst_endpoint_y)
if (current_jump, < max_offset and current_jump, < max_offset) ** The filter test
if (DISTANCE_COMPARISON[current_jump.best_jump_from_unsorted_curve]
= TRUE)
endpoint_flag two = FIRST_ENDPOINT
reverse_flag_two = FALSE
best_jump_from_unsorted_curve = current_jump

** Check to see if the first-to-last scenario (from candidate unsorted curve
to sorted curve i+1) is better
current_jumpy = abs[curve_plus_onest_endpoint_x —first_Curveéfirst_endpoins_x]
current_jumpy = abs[curve_plus_oneiass_endpoint_y — first_curvefirss_endpoint_y)
if (current_jump, < max_offset and current_jump, < max_offser) ** The filter test
if (DISTANCE_COMPARISON[current_jump,best_jump_from_unsorted_curve]
= TRUE)
endpoint_flag _two = FIRST_ENDPOINT
reverse_flag two = TRUE
best_jump_from_unsorted_curve = current_jump

138

53
54
35
56

57
58
59

61
62
63

67

68
69

70

71

72
73

- 74

** Check to see if the last-to-first scenario (from candidate unsorted curve
to sorted curve i+1) is better :
current_jumpy = abs[curv e_PIus_oneﬁrst_endpoint_x —first_curv €last_endpoint_x]
current_jumpy = abs[curve_plus_onefirss_endpoint_y —first_curveias;_endpoint.yl
if (current_jump, < max_offset and current_jump, < max_offset) ** The filter test
if (DISTANCE_COMPARISON[current_jump,best_jump_from_unsorted_curve]
= TRUE)
endpoint_flag_two = LAST_ENDPOINT
reverse_flag two = FALSE
best_jump_from_unsorted_curve = current_jump

** Check to see if the last-to-last scenario (from candidate unsorted curve
to sorted curve i+1) is better
current_jumpy = abs[curve_plus_oneias;_endpoint_x —first_curveiass_endpoint_x}
current_jumpy = abs[curve_plus_onejss_endpoint_y —first_CUrveias_endpoint_y)
if (current_jump, < max_offset and current_jump, < max_offser) ** The filter test
if (DISTANCE_COMPARISON[current_jump,best_jump_from_unsorted_curve)
= TRUE)
endpoint_flag two = LAST_ENDPOINT
reverse_flag two = TRUE
best_jump_from_unsorted_curve = current ' jump

** If the best_jump values are all uninitialized, then this is a feasible insertion
location and therefore must be tested to see if it is better than the best
insertion location found so far

if (best_jump _to_unsorted_curve, # first _CUIVEfilter value)

and (best_jump_to_unsorted_curvey # first_Curveer vaiue)

and (best_jump_from_unsorted_curvey # first_curvefier vaiue)

and (best_jump_from_unsorted_curvey # first_curvefiyer vaiue))
current_insertion_linkage_jump = best_jump_to_unsorted_curve
current_insertion_linkagefrom_jump = best_jump_from_unsorted_curve

if (LINKAGE_COMPARISON(current_insertion_linkage, best_insertion_linkage)
= TRUE)
If the current insertion linkage is the best , set flags
{
saved_endpoint_flag one = endpoint_flag one
saved_endpoint flag two = endpoint flag two
saved_reverse_flag one = reverse_flag one

139

75 saved_reverse_flag_two = reverse_flag_two

76 best_insertion_linkage = current_insertion_linkage
77 best_insertion_location = curve
78 }

79 return best_insertion_location

10.1.2.2 Linkage Comparison

This section describes the conditions for determining the best insertion location among
all feasible candidate locations in the sorted curve list. The best_insertion_linkage is the
linkage that best satisfies the following two tests: (1) the linkage has the smallest value for
the maximum number of bits of the four component offsets in the insertion linkage, and (2)
the linkage has the most component offsets that are less than or equal to S, where S is a
parameter that was set to 15 during testing and has been empirically determined to give the
best encoding results.

LINKAGE_COMPARISON|[current_insertion_linkage, best_insertion_linkage)

** Set current_numbits to the number of bits of the largest offset magnitude in
current_insertion_linkage
1 current_numbits = NUM_BITS[max([current_insertion_linkagex ofset to
current_insertia_n_linkag—ey_oﬁse,_,o,
current_insertion_linkagex_ome, - from>
current_insertion_linkagey ofset froml]

** Set current_quantity smalls to the sum of the offsets from current_insertion_linkage
that are < S. This is determined by the function Is_SMALL(].
2 current_quantity smalls = Is_SMALL[current_insertion_linkagey ofset 1ol
+ Is_SMALL[current_insertion_linkagey offset 10}
+ Is_SMALL[current_insertion_linkagex ofset from]
+ Is_SMALL{current_insertion_linkagey ofset from]

** Set best_numbits to the number of bits of the largest offset magnitude
in best_insertion_linkage
3 best_numbits = NUM_BITS[max[best_insertion_linkagex offset to,
best_insertion_linkagey offset 105
best_insertion_linkagex ofset from.
best_insertion_linkagey ofset from]]

140

** Set best_quantity smalls to the number of offsets from best_insertion_linkage
. that are < S, which is calculated using the function Is_SMALL(].
4 best_quantity_smalls = Is_SMALL[best_insertion_linkage; ofset 10l
+ Is_SMALL[best_insertion_linkagey offset 10]
: + Is_SMALL[best_insertion_linkagex ofser from)
+ Is_SMALL[best_insertion_linkagey ofset from)

** If the current linkage uses as many or fewer bits to represent offsets as the best
linkage and also has more small words, then it is better than the best linkage
5 if (((current_numbits < best_numbits)
and (current_quantity _smalls > best_quantity smalls))
6 return TRUE

** If the current linkage uses fewer bits to represent offsets than the best linkage
and has as many or more small words than the best linkage, then it is better
than the best linkage .
7 else if ((current_numbits < best_numbits)
and (current_quantity_smalls 2 best_quantity smalls)))
8 return TRUE

** Otherwise, the current linkage uses as many or more bits and also has
as many or fewer small words and the best linkage remains unchanged
9 else
10 return FALSE

The function Is_SMALL[] determines if value £ S, and returns one if this condition is true,
otherwise it returns zero.

Is SMALL[value)]
1 if (value < S)

2 return 1
3 else

4 return 0

141

10.1.2.3 Results Checking and Insertion of Unsorted Curve

If an insertion location for a curve in the unsorted list is found, operations are performed
to insert that curve into the sorted list, reversing the order of its points if necessary, and
setting or resetting reference_end_flag for the appropriate curves. In figure 60, it is apparent
that the unsorted curve 4 would need to be reversed because the last endpoint of u is closer to
curve i than to the first endpoint. Reversing the unsorted curve u directly affects the
reference end flag for u. In part A of the figure, the reference end flag is initially set to
. represent jumping from the last endpoint. However, once u is reversed, the reference end
flag needs to be changed to represent jumping from the first endpoint (see part B of
figure 60). After the curve has been inserted, if the number of bits of any value in the
best_insertion_linkage is larger than the penalty value, penalty_size is set to this maximum
value.

If an insertion location is found for an unsorted curve, the curve is inserted there. If an
insertion location is not found, however, this unsorted curve is placed at the end of the
unsorted list and the filter value associated with this curve is doubled. In either case, the
unsorted list will now have a new first curve (unless the curve being processed is the only
remaining unsorted curve).

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE[]

** Best _insertion_location will be set to a value other than NULL
when a good insertion location has been found.

if (best_insertion_location # NULL)

1
2 | .

3 before_curve = best_insertion_location

4 after_curve = the curve after best_insertion_location

5 insert first_curve between the curves before_curve and after_curve
** The second curve in unsorted_list is now the first curve

6 before_curvergference end flag = Saved_endpoint ' flag_one
7 first_curvereference_end_flag = saved_endpoint_flag_two

8 if (saved_reverse_flag_one = TRUE)

9 toggle first_curvereference end flag
10 reverse the order of the spline points of first_curve
11 if (saved_reverse_flag two = TRUE)
12 toggle after_curvereference end flag

142

13 reverse the order of the spline points of curve after_curve

14 to_endpoint_offset = best_insertion_linkagey,_endpoint_offset
15 Jrom_endpoint_offset = best_insertion_linkagefrom_endpoint_offset
16 component_max = NUM_BITS[max[to_endpoint_offset,,

to_endpoint_offset,,
from_endpoint_offset,,
from_endpoint_offsety]]

17 penalty_size = max[penalty_size, component_max]

18 }

19 else

20 |

An insertion location was not found, therefore move this curve
to the end of the unsorted list and double its filter value

21 first_curvegyer value = fir St_CUrvefilter value * 2
22 move first_curve to the end of unsorted_list
** The value of max_offset will be larger the next time first_curve is processed
23 }
** The curve that was originally second on the unsorted list is now first
24 return

143

10.2 SUMMARY

The parameter values used during development and testing of the sorting algorithm, as
well as the constants, input variables, and output variables, are listed below.

Parameters

PnT=6 Initial value for the penalty variable

DseLect =128 Initial value assigned to the filter variable upon entering
the selective processing stage

DcycLic = 64 Initial filter value assigned to each curve upon entering
The cyclic processing stage

S=15 Limit used to test whether one insertion linkage has
more small offsets than another insertion linkage

Co, =25% Maximum percentage of curves that can exist in

the unsorted_list before the cyclic processing stage
will begin if SEARCH_FOR_THE_BEST-FIT_CURVE fails
MAXoprseT =601 The larger of the width and height of the image, plus one

Constants

FIRST_ENDPOINT Flag assigned to the reference end_flag of a curve when
the first endpoint is used as the reference endpoint for the jump
to the curve following this curve in sorted_list

LAST_ENDPOINT Flag assigned to the reference_end_flag of a curve when
the last endpoint is used as the reference endpoint for the jump
to the curve following this curve in sorted_list

Input

unsorted_list List of curves from the chord splitting process
Output

sorted_list List of curves sorted by inter-curve offsets

144

SECTION 11
ENCODING

The encoding step follows the sorting process and has two purposes: (1) to prepare the
fingerprint data for transmission, and (2) to compress the fingerprint information even further
by representing it in an efficient bit-stream format. Once the data has been encoded and
transmitted, the decoding step (described in section 12) reverses the process to extract and
reformat the information into a more usable form. This decoded data can then be interpreted
correctly by the spline reconstruction process to regenerate the image.

As shown in figure 61, the encoded data stream consists of two types of information: the
fingerprint header, and the curve or ridge information. The fingerprint header consists of
general data about the encoded fingerprint, which will be used by the decoding process.
There is only one header record in the data stream for each fingerprint. The second type of
information is the ridge data, including one ridge record for each of the ridges in the
fingerprint. The ridge data consists of jump information from the endpoint of the last ridge
encoded, a header of general ridge information, and the relative distances (delta offsets)
between points of the ridge. Each of these will be discussed in more detail in the following
sections. In summary, if the fingerprint being encoded has n ridges, the encoded data stream
will contain one header record and n ridge records.

Fingerprint Header Ridge Information

“
NN Z2=ENNN

Ridge Header
Jump Data Delta Offsets

Figure 61. Encoded Fingerprint Components

Many different techniques are used to encode the data efficiently, including relative
values (differential encoding), Huffman encoding, duplication elimination, a process referred
to as short/long word encoding, and bit packing. Each of these techniques is used to reduce

145

the number of bits required to represent data within the fingerprint. A savings of just a few
bits per curve (or per point within a curve) can amount to a savings of many bits for the
entire fingerprint.

11.1 EXPLANATION OF TERMS

In this section, several terms and concepts will be described that are used frequently in
the subsequent sections. The first two terms, jump values and delta offsets, describe relative
coordinate distances between points in separate ridges and within a ridge, respectively. The
third term, reference end, describes the end of the ridge from which a jump is made to reach
the next curve. The monotonicity type describes the sign fluctuation pattern for the x and y
relative coordinates (delta offsets) along a ridge.

11.1.1 Delta Offsets

Figures 62 and 63 illustrate two methods that can be used to describe relative distance
values used in encoding. Both relative distances are determined by computing the
differences between the respective x and y values of two adjacent, or consecutive, points.
The first term, delta offset, is used to describe relative distances between points along a
ridge. For example, if the absolute coordinates for the first and second points in a fingerprint
curve are (10,14) and (15,19), the second point can be represented relative to the first as
(dx,dy) or (+5,+5) (i.e.,dx = 15— 10, and dy = 19 — 14).

Gé.1n @@y . (3,1 2,0)

3,-1
AN
Curve A: Absolute Coordinates Curve A: Delta Offsets

Figure 62. Absolute Coordinates and Delta Offsets Within a Curve

11.1.2 Jump Values and Reference End

Jump values (see figure 63) describe the relative distances between an endpoint of one
ridge and the first endpoint of the next consecutive ridge as it is listed in the data stream.
This does not necessarily mean that the jump is from the last point of one curve to the first of
the next, since this may not create the shortest jump distance. The sorting process

146

determines the best way to make the jump from one ridge to the next, and the reference end
(see figure 64) is used to describe which end of the first ridge is jumped from to get to the
next.

6.5) (8.S5) (20)-
Curve A to B: Absolute Coordinate Curve A to B: Jump Value

Figure 63. Absolute Coordinates and Jump Values Between Curves

s
3

beginning end

Figure 64. Reference End Values

11.1.3 Monotonicity Type

Monotonicity type refers to the sign fluctuations determined for the delta offsets of a
particular ridge. The four types are monotonic both, monotonic delta x, monotonic delta y,
and non-monotonic (see figure 65). Recall that the delta offset values are relative distance
values calculated between adjacent points along a ridge. These offsets in x and y must
contain a sign flag in order to determine if there is a relative increase or decrease in the value
from the last point. For example, without sign information, a (5,5) delta offset value could
be interpreted as either (+5,+5), (+5,-5), (-5,+5), or (=5,-5). If a ridge can be characterized
as having constant positive or negative sign values in the x and/or y coordinate, a bit savings
can be achieved by encoding the pattern and sign once, and not explicitly for every value.

The sign fluctuations are determined independently for the x delta offsets and the y delta
offsets along a ridge. Monotonic both refers to the case where all of the x values have the

147

Monotonic Both
— delta x values have same sign (+2,+1)

— delta y values have same sign (+2,+2)

Monotonic Delta x

= delta x values have same sign T3.41) (+2,0)

" #3,-1)
= delta y signs oscillate between positive and negative

(+1,+2)
Monotonic Delta y
= delta x signs oscillate between positive and negative 0,42)
= delta y values have same sign
=141
Non-Monotonic (+2,0)

. . . . (+3,4+1) -, (+1-1)
— delta x signs oscillate between positive and negative
- delta y signs oscillate between positive and negative (-1,-2)

Figure 65. Sign Monotonicity Type

same sign and all of the y values have the same sign. Monotonic delta x and monotonic delta
y refer to consistent signs along either the x or y values, as appropriate. Finally,
non-monotonic describes those cases where both the x and y sign values fluctuate.

11.2 DESCRIPTION OF ENCODING TECHNIQUES

The following sections briefly describe several of the techniques used in encoding the flat
live-scan searchprint information.

11.2.1 Relative Values

The first encoding technique, relative values, allows numbers to be specified in terms of a
reference, which is provided in the fingerprint header information. Three areas where

148

relative values are used include coordinate distances between curves (jump values),
coordinate distances within curves (delta offsets), and the number of deltas per curve.
Encoding this information in relative terms can provide a significant savings in the number
of bits required to represent the word size(s) necessary for these values.

For relative distances, the reference value is the first ridge point of the fingerprint; this is
the only absolute coordinate given in the data stream. The rest of the coordinates are
determined by computing the differences between the respective x and y values of two
adjacent points or coordinates. Using relative distances can provide a substantial reduction
in the word size necessary to represent the position of a point. For example, since a flat
live-scan searchprint file size is 450 pixels by 600 pixels for this study, an absolute
coordinate may require as many as nine bits to represent an x value and ten bits to represent a
y value. If relative coordinates are used, many fewer bits may be required for both the x and
y values. Given that several hundred spline points have to be represented for a typical image,
this can amount to a substantial savings.

Relative values are also used to represent the number of deltas per curve. The number of
deltas per curve is important for later stages when the curves will be regenerated; however,
this value can never be zero, since one point curves are not allowed. The minimum number
of deltas per curve is calculated independently for each fingerprint and will generally be one,
although the algorithm allows higher values. The minimum number is recorded in the header
information for the fingerprint and all curves are specified relative to this value. That is, for
each curve, the number of deltas is calculated as the actual number of deltas for that curve,
minus the minimum number of deltas for all curves in the fingerprint. For example, given
that the minimum number of deltas per curve for a particular fingerprint is one, a curve
having 16 deltas will actually be encoded as having 15 deltas (i.e., 16 - 1 = 15).

An example of the bit savings achieved by relative values applied to the number of deltas
per curve is given in figure 66. In this example, the original minimum number of deltas for
all of the ridges in a fingerprint is one and the maximum is 32. Normally, six bits would be
required to represent the maximum number. If relative values are used instead, the new
minimum would be zero and the new maximum would be 31. Since 31 only requires five
bits to represent, there would be a savings of one bit for the word size required.

11.2.2 Huffman Codes

With Huffman encoding, bit savings are achieved based on the frequency of occurrences
of certain values (symbols), since this type of encoding assigns the most frequently used
symbols to the shortest codes [7,8]. Each Huffman code is unique in that no complete
Huffman code word comprises the initial sequence of bits in another Huffman code word.
An example series of Huffman codes for four symbols is: 0, 10, 110, 111. Notice that the

149

12

Number of deltas per curve:
10 N Original minimum = 1

8 Original maximum = 32 (6 bits)
Number of 6 For every curve, subtract 1 from number of deltas:
Curves New minimum = 0

4 New maximum = 31 (5 bits)

| T

0 ﬂﬂ

0 8 16 24 32
Number of Deltas | Curve

Figure 66. Number of Deltas per Curve Example

“0” code cannot be misinterpreted as any other code, since no other code starts with 0.
Similarly, in the case of the “10” code, no other code starts with 10, and so on.

Huffman codes are used to encode the sign monotonicity type of fingerprint ridges.
Assigning a monotonicity type allows the encoder to make certain assumptions about the
signs of the delta offsets within a ridge. The encoder can then take advantage of redundancy
by using another technique called duplication elimination, which will be discussed further in
section 11.2.3. For monotonicity type, suppose that the distribution of ridges of each type is
ordered by frequency and given in table 1. Using the Huffman codes given, the number of
bits required to represent this information is: (1 x 60) + (2 x20) + (3 x 15) + (3 x5) = 160
bits. Using a straight (natural) two-bit code to represent the four symbols (i.e., 00, 01, 10,
11) would require: 2 x 100 = 200 bits. In this simple example, the savings from using
Huffman codes is 40 bits over a straight two-bit code.

Table 1. Monotonicity Types and Huffman Codes

Monotonicity Type. #Curves Huffman Code # Bits

Non-Monotonic 60 . 0 1
Monotonic Delta x 20 10 2
Monotonic Delta y 15 110 3
Monotonic Both 5 : 111 3

150

11.2.3 Duplication Elimination

If sign monotonicity exists in the ridges, it is redundant (and costly) to assign a sign bit
for every offset value in the data stream. So, monotonicity types are determined for each
curve in order to identify patterns. Once the monotonicity type has been determined, the
encoder can specify the sign once in the ridge header and avoid designating a sign for every
offset value. For offset values with fluctuating signs along a curve, the sign bits are supplied
with every offset value.

11.2.4 Short Word/Long Word

In the cases of the number of deltas per curve, delta offsets, and jump values, it may be
advantageous to use more than one word size in representing the values. However, multiple
word sizes incur some overhead, since varying the word size requires a flag to indicate which
word size is being used. Therefore, it is necessary to perform a trade-off analysis to
determine the most efficient representation.

The encoding algorithm allows a maximum of two word sizes for the number of deltas
per curve and delta offsets (x and y), and three word sizes for jump values (x and y). As
discussed in the following sections, two word sizes are allocated a two-bit flag in the
fingerprint header (this can be implemented as a one-bit flag), and three word sizes for jump
values require a one or two-bit flag, since Huffman codes are used. Note that within the
delta offset and jump value categories, the word sizes for the x and y values are computed
separately. The results of the word size trade-off analysis may indicate that the best
. representation is for the x values to have a different number of word sizes than the y values.

Since the best word size or sizes to use depends upon the distribution of specific values in
a particular fingerprint, the calculations should be performed independently for each
fingerprint. The easiest way to perform multiple word size analyses is first to calculatea
frequency distribution by putting the values into bins indexed by the number of bits required
to represent the values. Examples of these frequency distributions by number of bits are
shown in figures 67, 68, and 69.

The calculation of the number of bits required for just one word size should be performed
for any case where multiple word sizes are allowed. This provides a value for comparison
that, for some distributions, may be the most efficient representation. Since the use of just
one word size does not require flag bits, the calculation of the number of bits required is very
straightforward, and is shown in the following equation:

L
B =LZf(i) (1)

i=1

151

where B denotes the total number of bits, L is the word size (number of bits) required for the
largest value calculated, and f{i) is the number of values to be encoded that can be
represented with i bits.

11.24.1 Delta Offset and Number of Deltas per Curve Calculations

For the number of deltas per curve and delta offsets, equation 1 is used to calculate the
number of bits required when only one word size is used. In addition, the minimum number
of bits required for two word sizes must be determined:

s
B=(S+n) Xfli)+ (L+n) if(i) - (2

i=1 i=S+1

where B denotes the total number of bits, S is the short word size (in bits), L is the word size
(in bits) required for the largest value calculated, n; and mjare the number of bits required for
a short flag and a long flag respectively, and f{i) is the number of values that can be
represented with i bits. When only two word sizes are used, the flag sizes n; and ny are equal
to one.

This value is calculated for every possible short word size, with the long word size
remaining fixed, since the long word size must always represent the largest value. The first
term gives the number of bits required for values representable by the short word size, the
second term is the number of bits for the rest of the values, and the third term expresses the
number of bits required for flag bits. The short word size that gives the minimum number of
bits is determined and compared to the number of bits required if only a single word size is
used. The best approach is then chosen.

Figure 67 shows an example of calculating the two best word sizes for the number of
deltas per curve. The resulting 1221 bits calculated for two word sizes (including flag bits) is
a much better choice than the 1795 bits required for a fixed word size.

Figure 68 provides an extensive example of calculating the best word sizes for the x and y
values of the given delta offsets. Note that the best two word sizes for x require 5893 bits
(including flag bits), and a fixed word size requires 7007 bits. For the y component of the
delta offset, 5548 bits (including flag bits) are required by the best two word sizes, compared
to 7007 bits for a fixed word size. The better choice is two word sizes for both the x and y
components.

11.2.4.2 Jump Value Calculations

Due to the distribution of jump values, a maximum of three word sizes is allowed. Since
ridge bifurcations are actually split into three curves by the curve extraction routine and these
curves have common endpoints, there are often many zero jump values. Another alternative

152

Number of Deltas per Curve Short/Long Word Size Calculations:

Distribution: ;
#bits #deltas #curves short word long word total # bits

l 0 - 1 222 B 1 5 907 S
2 2-3 89

3 5 1103
3. 4-7 3 4 5 1437
4 8-15 12
5

16- 31 1

Fixed Word Size; 5 bits x 359 curves = 1795 bits => no flag bits needed
Two Word Sizes:| 1221°bity = includes 359 flag bits

Figure 67. Short/Long Word Sizes for Number of Deltas per Curve

Delta Offset Distribution:

Fixed Word Size: #bits Value #ofdeltax #ofdeltay
Delta x: 1 0-1 99 155
7 bits x 1001 pts = 7007 bits 2 2-3 142 195
Delta y: 3 4-17 217 265
7 bits x 1001 pts = 7007 bits 4 8-15 247 197
=» no flag bits needed 5 16-31 224 136

6 32-63 70 49

7 64-127 2 4

Delta Short/Long Word Size Calculations:
short word long word delta x bits delta y bits

6413 6077
5802 5257
5175 4547

lag:bits *
6010

A WNEH WN -
NN NN

Figure 68. Short/Long Word Sizes for Delta Offsets

153

for calculating word sizes for jump values is to use zero as one word size, and calculate the
short and long word sizes from the distribution of jumps greater than zero. Again,
comparisons must be made to determine whether one, two, or three word sizes is best.

For one fixed word size, the calculation is the same as for equation 1; for the short and
long word values, the calculations are described by equation 2. The three word size
calculation is the same as described in equation 2 with the zero jump distances removed from
the distribution list. Short and long word sizes are calculated on all jumps other than zero,
since zero has its own word. Fixed Huffman codewords (i.e., 0, 10, 11) are used to represent
the three word size flags, where one bit is used for jump values of zero, and two bits are used
for the other two word sizes. The Huffman code “0” for jump distances of zero is actually
very efficient, since it requires no additional information (i.e., no sign or magnitude). Once
all of the calculations are done, the best choice is made from one, two, and three word sizes.

An example of jump values and the three types of word size calculations is given in
figure 69. In this example, a fixed word size for the x component of the jump value would
require 2506 bits, two word sizes would require a total of 1298 bits (including flag bits), and
three word sizes need only 1198 bits (including flag bits). For the y component, a fixed word
size would require 2506 bits, two word sizes would require a total of 1310 bits (including
flag bits), and three word sizes need only 1238 bits (including flag bits). Three word sizes is
the best choice for both the x and y components in this case.

11.2.5 Bit Packing

Bit packing refers to the creation of a bit stream with the bit patterns generated by the
encoding techniques described in the previous sections. The bit stream contains variable
length bit patterns concatenated, from which the decoding routines can reconstruct the
original information.

11.3 BIT STREAM COMPONENTS

As shown in figure 61, the bit stream consists of two major components: the fingerprint
header, and the ridge information. These two components are described in more detail in the
following sections.

11.3.1 The Fingerprint Header

The fingerprint header is composed of image size parameters and information necessary
to interpret the ridge data. Word sizes determined for delta offsets, jump values, and the
number of deltas per curve are found here, as well as the minimum number of deltas per
curve for the fingerprint and the Huffman codes for interpreting monotonicity type. For the
word sizes, the first value gives the number of word sizes expected to follow for that type of

154

Jump Offset Distribution:

Fixed Word Size: #bits Value #ofjumpx #ofjumpy
Jump x: 7 bits X 358 pts = 2506 bits e ——
Jump y: 7 bits x 358 pts = 2506 bits 0 0 206 203
= no flag bits needed 1 1 55 56

2 2-3 20 7
Two Word Sizes: 3 4-7 19 20
Jump x: 1298 bits 4. 8-15 30 37
Jump y: 1310 bits 5 16-31 15 22
=> includes 358 flag bits 6 32-63 12 11

7 64-127 1 2

Jump Short/Long Word Size Calculations:
short word long word jump x bits jump y bits

Jumpx: 1198bits

1 7 734 749
2 7 689 770 SNSRI
3 7 638 753 ifchides S10Magbits: -
4 7 725 1238 bit:

5 7 786

6 7 913 932

Figure 69. Short/Long Word Sizes for Jump Values

information, and then the actual word sizes. In the case of delta offsets and jump values,
word sizes are provided for both x and y components.

One Huffman code is assigned to each of the four monotonicity types depending upon the
frequency of occurrence (see section 11.2.2). The four fixed Huffman codewords in the
fingerprint header are listed in order in table 2. Also shown in this figure are two example
assignments of monotonicity types to the Huffman codewords. These assignments are based
on the frequency of sign types within two hypothetical fingerprints. The monotonicity types
are defined using a two-bit code. One example definition is given in table 3.

Table 4 describes the fingerprint header information in detail with the number of bits
expected for each field. The number of bits in the header can range from a minimum of 51
bits to a maximum of 79 bits.

1132 The Ridge Information

The information for a given ridge consists of three major data segments and is encoded
based upon the parameters given in the fingerprint header. The three segments are jump

155

Table 2. Example of Monotonicity Type Assignments to Huffman Codewords

Fixed Huffman Code Assignment 1 ~ Assignment 2
Code 0 01 11
Code 10 ' 11 01
Code 110 00 10
Code 111 10 00

Table 3. Monotonicity Type Codes

Monotonic Both 00
Monotonic Deltax 01
Monotonic Deltay 10
Non-monotonic 11

values, ridge header information, and delta offsets. This information structure is the same for
all encoded ridges.

The jump values provide relative distance data from the reference end of the previous
ridge (except for the first ridge where an absolute coordinate is used). The ridge header
provides specific information required for that particular ridge, such as the number of delta
offsets, the reference end, and the monotonicity type. Following the jump values and the
ridge header are the delta offset values, a set of x and y values for each offset along the ridge.
If the ridge is defined by n points, then the number of delta offsets is n—1. Zero/short/long
word flags and sign flags are provided as appropriate. Table 5 gives detailed information
about the fields and number of bits found in the ridge information for each curve. \

The first curve in the fingerprint is encoded slightly differently from the other curves.
Absolute coordinates are specified for the jump to this curve to provide context for every
other point. In addition, no sign bits are used, since the absolute coordinates are always
positive. For flat live-scan searchprints with a width of 450 pixels and a length of 600 pixels,
nine bits are used to represent the x value and 10 bits are used to represent the y value. Delta
offsets are then used for every other point in the first curve and jump values are used to reach
all remaining curves. '

156

Table 4. Fingerprint Header

Field

Number of Bits

Image Width

Image Height

Number of Ridges

Number of Word Sizes for Delta Offset x (maximum of 2)
Delta x Word Size 1
Delta x Word Size 2 (optional)

" Number of Word Sizes for Delta Offset y (maximum of 2)

Delta y Word Size 1

Delta y Word Size 2 (optional)

Number of Word Sizes for Jump Value x (maximum of 3)

Jump x Word Size 1
Jump x Word Size 2 (optional)
Jump x Word Size 3 (optional)
Number of Word Sizes for Jump Value y (maximum of 3)
Jump y Word Size 1
Jump y Word Size 2 (optional)
Jump y Word Size 3 (optional)

Number of Word Sizes for Number of Deltas/Curve (maximum of 2)

Number of Deltas Word Size 1

Number of Deltas Word Size 2 (optional)
Minimum Number of Deltas
Coordinate Sign Huffman Codes

Code 0

Code 10

Code 110

Code 111

16
16
11

2

NEANADLDLALANRAAEANNLEANDDL

NN

Minimum 83 bits
Maximum 111 bits

157

Table 5. Ridge Information

Delta y Sign

Field Number of Bits
Jump Values
Jump x Zero/Short/Long Word Flag 1-2
Jump x Value 0,S,orL
Jump x Sign 0-1
Jump y Zero/Short/Long Word Flag 1-2
Jump y Value 0,S,orlL
Jump y Sign 0-1
Ridge Header Information
Number of Deltas Short/Long Word Flag 1
Number of Deltas Value SorlL
Reference End 1
Monotonicity Sign Type 1-3
Sign (if Monotonic) 0-1
Sign (if Monotonic Both) 0-1
Delta Offsets
Delta x Short/Long Word Flag 1
Delta x Value SorL
Delta x Sign 0-1
Delta y Short/Long Word Flag 1
Delta y Value Sorl
0-1

Note: In this table, S represents the number of bits required for the short word
size, and L represents the number of bits required for the long word size.

158

114 ALGORITHM DESCRIPTION AND SUMMARY

Figure 70 shows the flowchart for the encoding process. The encoding process actually
consists of three stages: calculating relative distances, determining properties of the
fingerprint, and, finally, encoding the data. Pseudocode is provided in the following sections

for each of these steps.

(Sorted Curve Data)

Calculate Relative
Distances

v

Calculate Minimum and
Word Sizes for Number
of Deltas Per Curve

A

Calculate Jump
x and y Word Sizes

Calculate Delta Offset
x and y Word Sizes

Calculate Curve
Monotonicity

A

Encode Header

\J

Encode First Curve

A

Encode All Other
Curves

(Compressed Data)

Figure 70. Encoding Flowchart

159

Parameters

BITS|MAGE_sizE = 16
BITSNUMBER_OF WORD_SIZES =2
BITSwonrp _size =4

BITSHUFFMAN_INDEX = 2

BITSNuMBER_OF_CcURVES = 11

BITSx_coorpinaTE =9
BITSy_cooRrpiNaTE = 10

BITSMINIMUM_NUMBER_OF DELTA =2

- SIZESpeiTAs =2

SIZES jymps =3

SIZESNuM_DELTAS =2

The number of bits used to represent the image
size in pixels horizontally and vertically

The number of bits used to represent the number
of word sizes in a word_size coding scheme

The number of bits used to represent a word

size in a word_size coding scheme

The number of bits used to represent the sign
monotonicity type index that is assigned to a
particular Huffman symbol

The number of bits used to represent the number
of curves in the fingerprint curve list

The number of bits used to represent an absolute
x-coordinate in the live-scan fingerprint image
(based on the width of the image)

The number of bits used to represent an absolute
y-coordinate in the live-scan fingerprint image
(based on the height of the image)

The number of bits used to represent the
minimum number of deltas of any curve of the
curve list

Maximum number of word sizes allowed for
encoding the deltas of curves

Maximum number of word sizes allowed for
encoding the jumps between curves

Maximum number of word sizes allowed for
encoding the number of deltas in curves

Input _
curve_list The final list of curves from the live-scan fingerprint which are
to be encoded into a data stream
Output

An encoded data stream representing a live-scan fingerprint

Calculated Values

deltaminimum_per curve Minimum number of deltas of any curve of the curve list (not
‘ to exceed that which can be represented by

BITSMiNIMUM_NUMBER_OF_DELTA)

160

ENCODE_FINGERPRINT[curve_list]

** The value of deltaminimum _per curve is globally available to all the functions below.

1 CALCULATE RELATIVE_DISTANCES[curve_list] ** See section 11.4.1
2 DETERMINE_FINGERPRINT_DATA_PROPERTIES[curve_list] ** Sec section 11.4.2
3 ENcobpE_CURVE_LisT[curve_list] ** See section 11.4.3
4 return

11.4.1 Calculating Relative Distances

To prepare the data for further processing the relative distance values are calculated
between points passed from the sorting routine (see section 11.2.1). This includes both the
delta offset values for points within a ridge and the jump values from endpoint to endpoint.

CALCULATE_RELATIVE_DISTANCES[curve_list]

** Calculate the delta offsets for all the curves in curve_list

** The jumps and deltas calculated here are stored in association with their curves so
that they are available for further processing

for each curve in curve_list
DETERMINE_CURVE_DELTA_OFFSETS[curve]

N =

% Calculate jump offsets for all the curves in curve list
for each curve b from second curve to last curve in curve_list

curve a = the previous curve in curve_list before curve b

Jjump from curve a to curve b = DETERMINE_CURVE_JUuMP_OFFSETS[curve a,curve b]
return

[« QR I - V]

DETERMINE_CURVE_DELTA_OFFSETS[curve] *#* See section 11.1.1

1 for each point b in curve from second point to last point
2 point a = the previous point in curve before point b

3 delta, from point a to point b = by — a,

4 deltay from point a to point b = by — a,

S5 return

161

DETERMINE_JuMP_OFFSET[curve a, curve b]

1
2
3
4
5
6
7
8

if (reference_end of curve a = FIRST_ENDPOINT)
ref_pt = first point in curve a

else if (reference_end of curve @ = LAST_ENDPOINT)
ref_pt = last point in curve a

first_pt = first point in curve b

Jumpy, from curve a to curve b = first_pt, — ref pt;

Jjumpy, from curve a to curve b = first_pt, — ref pt,

return jump from curve a to curve b

11.4.2 Determining Fingerprint Data Properties

** See section 11.1.2

This stage of processing determines the various values needed for encoding the data.

Word sizes are calculated for five types of fingerprint information: the number of deltas per
curve, jump values (x and y), and delta offsets (x and y) (see the description of each of these
word size calculations in section 11.2.4). In addition, the monotonicity codes are generated

based upon the sign fluctuation patterns in the fingerprint ridges (see section 11.2.2), and the
minimum number of deltas per curve is found.

162

DETERMINE_FINGERPRINT_DATA_PROPERTIES][]

** Generate the word sizes for encoding the number of delta offsets in each curve
1 deltaminimum per curve = minimum number of deltas per curve for all curves in curve_list
not exceeding that which can be written in

BITSMINIMUM_NUMBER_OF_DELTA

2 histogram = GENERATE_HISTOGRAM[number of deltas of each curve

= deltaminimum_per_curvel
3 word_sizespum_deltas = DETERMINE_WORD_SIZES[histogram, SIZESnum_pELTAI

*# Generate the word sizes for encoding the jump,
histogram = GENERATE_HISTOGRAM(all the jump,]
word_sizeSjumpx = DETERMINE_WORD_SIZES[histogram, SIZES yypmp]

[V [-

** Generate the word sizes for encoding the jumpy
histogram = GENERATE_HISTOGRAM[all the jump,]
word_sizeSjumpy = DETERMINE_WORD_SIZES[histogram, SIZES yymp]

~N N

** Generate the word sizes for encoding the delta,
8 histogram = GENERATE_HISTOGRAM[all the delta,]
9 word_sizes o i1qx = DETERMINE_WORD_SIZES[histogram, SIZESpg 1Al

** Generate the word sizes for encoding the delta,
10 histogram = GENERATE_HISTOGRAM([all the delray]
11 word_sizesgeniay = DETERMINE_WORD_SIZES[histogram, SIZESpg 1Al

** Assign Huffman symbol to curve_sign_monotonicity (See section 11.2.2)
12 for each curve in curve_list
13 sign monotonicity of curve = DETERMINE_CURVE_SIGN MONOTONICITY[curve]
14 count the number of curves of each sign monotonicity type
15 assign the Huffman symbol 0 to the most common curve_sign_monotonicity
16 assign the Huffman symbol 10 to the next most common curve_sign_monotonicity
17 assign the Huffman symbol 110 and 111 to the remaining two curve_sign_monotonicity
18 return

163

GENERATE_HISTOGRAM[list of magnitudes)

** Use logy(0) = -1 to separate zero-valued elements from elements with magnitude 1
initialize all histogram bins to 0
for each magnitude in the list

increment by one the bin of the histogram representing floor[logs(magnitude) + 1]
return histogram

BN

DETERMINE_WORD_SIZES[histogram, maximum_number_of word_sizes]

** See section 11.2.4

1 lengthyw = the largest number of bits needed to represent any element of histogram
2 total = total number of elements in histogram
3 Dbitspin = lengthyw X total
4 number_of word_sizes = 1
S if (maximum_number_of word_sizes 2 2)
6 totalsw =0
7 for SW from O to lengthyw —1
8 totalsw = totalsy + number of elements in histogram bin SW
9 bits = totalsy x SW + (total — totalsw) % lengthyw + total
10 if (bits < bitspmin)
11 lengthsw = SW
12 number_of word_sizes =2
13 bitsyin = bits

14 if (maximum_number_of word_sizes = 3)

15 total,,, = number of elements in histogram equal to 0
16 totalsw =0

17 for SW from 1 to lengthyw —1

18 totalsw = totalsw + number of elements in histogram bin SW -

19 bits = totalsy x (SW+2) + (total — totalsw — totalye,,) % (lengthyw +2) + totaler,
20 if (bits < bitspin)

21 lengthyer, =0

22 lengthsw = SW

23 number_of word_sizes =3

24 bitsyin = bits

25 return word sizes

164

DETERMINE_CURVE_SIGN_MONOTONICITY[curve) ** See section 11.1.3

1 if (the number of deltas in curve > 0)
2 curve_sign, = SIGN(first delta, in curve]
3 monotonic, = TRUE
4 for each delta, from the second delia, to the last delta, in curve
5 if (curve_sign, = ZERO) .
6 curve_sign, = SIGN[delta,] ** SIGN[] is defined below
7 if ((SIGN[deltay] # curve_sign,) and (SIGN[delta,] # ZERO))
8 monotonicy = FALSE
9 break from loop
10
11 curve_sign, = SIGN(first deltay in curve)
12 monotonicy = TRUE;

13 for each delta, from the second deltay to the last deltay in curve
14 if (curve_signy = ZERO)

15 curve_sign, = SIGN[deltay)
16 if ((SIGN[deltay] # curve_signy) and (SIGN[delta,] # ZERO))
17 monotonicy = FALSE
18 break from loop
** If a curve_sign is ZERO, force it to POSITIVE for encoding purposes
19 if (curve_sign, = ZERO)
20 curve_sign, = POSITIVE
21 if (curve_sign, = ZERO)
22 curve_signy = POSITIVE
23 if (monotonic, and monotonicy)
24 curve_sign_monotonicity = MONOTONIC_BOTH
25 else if (monotonicy)
26 curve_sign_monotonicity = MONOTONIC_DX
27 else if (monotonicy)
28 curve_sign_monotonicity = MONOTONIC_DY
29 else
30 curve_sign_monotonicity = NON_MONOTONIC
31 return curve_sign_monotonicity
32 end

165

SIGN[value]

if (value > 0)
2 return POSITIVE
3 elseif (value < 0)
4 return NEGATIVE
5

6

7

(S

else
return ZERO
end

11.4.3 Encoding

Once all the auxiliary information has been calculated, the actual encoding of the bit
stream can begin. First, the header is encoded with the information shown in table 4. Then,
the first curve is encoded with absolute coordinates being given for the first point of this
curve. The rest of the first curve (the ridge header and delta offset information) is the same
as shown in table 5. Finally, all other curves are encoded as shown in table 5.

ENCODE_CURVE_LIST[curve_list] ** See section 11.3
1 ENCODE_HEADER[]

2 OutpuT_STREAM[number of curves in curve_list, BITSNuMBER_OF_CURVES]

** Encode first curve of curve_list

OutPUT_STREAM(X-coordinate of first point in first curve, BITSx_cooRDINATE]
OUTPUT_STREAM[y-coordinate of first point in first curve, BITSy cooRDINATE]
ENcODE_CURVE_DELTAS[first curve of curve_list]

K AW

** Encode the rest of the curves in curve_list

for each curve from second curve to last curve in curve_list
ENCODE_JUMP[curve previous to curve in curve_list, curve]
ENCODE_CURVE_DELTAS[curve]

return

O 00N

166

ENCODE_HEADER]] ' ** See section 11.3.1

N =

O oo &aWw

10
11
12
13

** Write image size to stream
OUTPUT_STREAM[411, BITS)MAGE_siZE]
OUTPUT_STREAM[/p,ighs, BITSiMAGE_siZE]

** Write code strategies to stream (header)
ENCODE_WORD_SI1ZES[word_sizesgeiiay]

ENCODE_WORD_SIZES[word_sizesgeltay)

ENCODE_WORD_SIZES[word_size.s:,'umpx]

ENCODE_WORD_SIZES[word_sizesjumpy]
ENCODE_WORD_SIZES[word__sizes,mm_deua_g]

OUTPUT_STREAM[deltaminimum per curves BITSMINIMUM_NUMBER_OF_DELTA]
OuTtPuUT_STREAM[sign monotonicity type for symbol 0, BITSHurrmaN INDEX]
OuTPUT_STREAM([sign monotonicity type for symbol 10, BlTSHUFFMAﬁ_INDEX]
OuTPUT_STREAM[sign monotonicity type for symbol 110, BITSHyrrmaN_INDEX]
OuTtpuT_STREAM([sign monotonicity type for symbol 111, BITSHUFFMAN_INDEX]
return

ENCODE_WORD SIZES[word _sizes]

W N -

** word_sizes is a list of word sizes used in encoding partlcular types of data
(e.g., word |_SizeSnum_deltas indicates the sizes of words in bits used in encoding thc
number of deltas in a curve)
OutpUT_STREAM[number of word sizes in word_sizes, BITSNUMBER_OF_WORD_SIZES]
for each word_size in word_sizes
OutPuT_STREAM[word_size, BITSwoRp_size]
return

OurpuT_STREAM([value, n) - ** See section 11.2.5

1
2

** Note: If n is missing on invocation of QUTPUT_STREAM(], the number of bits
required to append value will be obvious from the definition of value
(e.g., a Huffman symbol)

append value in n bits onto end of the encoded data stream

return

167

ENCODE_USING_WORD_SIZES[magnitude, word_sizes)

1 for word_size from smallest to largest

2 if (ceil[loga(magnitude)] < word_size)

3 Outpur_STREAM[Huffman symbol for word_size]
4 if (word_size # 0)

5 OuUTPUT_STREAM[magnitude, word_size]

6 break from loop

7 return

ENCODE_JuMP[curve a, curve b]

ENCODE_JUMP_REFERENCE_END|curve a]
ENCODE_USING_WORD_SIZES[jump, from curve a to curve b, word_sizeSjumpx]
ENCODE_SIGN[SIGN[jump, from curve a to curve b]]
ENCODE_USING_WORD_SIZES[jump, from curve a to curve b, word_sizeSjumpy]
ENCODE_SIGN[SIGN[jump,, from curve a to curve b]]

return

AWV A WN =

ENcobE_JUMP_REFERENCE_END[curve]

1 if (reference end of curve = FIRST_ENDPOINT)

2 OuTtpPUT_STREAM[O, 1]

3 else if (reference end of curve = LAST_ENDPOINT)
4 OuTPUT_STREAM[1, 1]

5 return

ENCODE_SIGN[sign]

** Note: If sign is ZERO, nothing is appended to the output_stream
1 if (sign = NEGATIVE)

2 OutpPUT_STREAM[1, 1]

3 else if (sign = POSITIVE)

4 OutpuUT_STREAM([O, 1]

S5 return

168

ENcoDE_CURVE_DELTAS[curve]

1
2

VOO~V bW

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

delta_count = number of deltas in curve — deltaminimum _per_curve
ENcoDE_USING_WORD_S1ZES[delta_count, word_sizeSpum_deltas)

if (sign monotonicity of curve = MONOTONIC_BOTH)
Output_STREAM[Huffman symbol for MONOTONIC_BOTH]
ENCODE_SIGN[signx of curve]
ENCODE_SIGN[signy of curve]
for each delta in curve
ENCODE_USING_WORD_S1ZES[delta,, word_sizesgeisax]
ENCODE_USING_WORD_SIZES|delta,, word_sizesgeiiay}
else if (sign monotonicity of curve = MONOTONIC_DX)
OutpuT_STREAM[Huffman symbol for MONOTONIC_DX]
ENCODE_SIGN([signx of curve]
for each delta in curve
ENCODE_USING_WORD_SIZES[delta,, word_sizeSgelsax]
ENCODE_USING_WORD_SIZES(deltay, word_sizesgeisay)
ENCODE_SIGN[SIGN[deltay]]
else if (sign monotonicity of curve = MONOTONIC_DY)
Outputr_STREAM[Huffman symbol for MONOTONIC_DY]
ENCODE_SIGN[signy of curve]
for each delta in curve
ENCODE_USING_WORD_SIZES[deltay, word_sizesgelrax)
ENCODE_SIGN[SIGN[delta,]]
ENCODE_USING_WORD_S1ZES[deltay, word_sizeSgeitay)
else if (sign monotonicity of curve = NON_MONOTONIC)
Ourpur_STREAM[Huffman symbol for NON_MONOTONIC]
for each delta in curve
ENCODE_USING_WORD_S1zES[delta,, word_sizesSqeltax]
ENCODE_SIGN[SIGN[delta,]]
ENCODE_USING_WORD_SIZES[delta,, word_sizeSgetay)
ENCODE_SIGN[SIGN[deltay]]
return

169

11.5 FINGERPRINT EXAMPLE

This section contains a very simple example to illustrate the encoding process. The
example contains only six fingerprint ridges (see figure 71). It has been constructed to
illustrate delta offsets, jump values, reference ends, word sizes, monotonicity types, and
encoding to create the bit stream. Word size calculations are not explicitly shown, but can be
easily derived. Table 6 shows the fingerprint header information for this example, and
table 7 shows the encoded ridge information. Both tables show the information first in
decimal and then in binary bit-stream form.

(10,14)

Number of Deltas:

Curve A =4; Curves B.C.DEF=2;
Minimum Number of Deltas/Curve =2
Number of Deltas Word Sizes = 1 and 2 bits
Delta x Offsets: '

Delta x Short Word Size = 3 bits

Delta x Long Word Size = 4 bits
Delta y Offsets:

Delta y Short Word Size = 2 bit

Delta y Long Word Size = 3 bits

Jump x Values:
Jump x Short Word Size = 1 bit
Jump x Long Word Size = 2 bits
Jump y Values:
Jump y Short Word Size = 1 bits
Jump y Long Word Size = 2 bits
Monotonicity: _
Monotonic Both = 4 curves
Monotonic Delta x = 2 curves

Figure 71. Encoding Example Ridges

170

Table 6. Encoded Fingerprint Header

Decimal Values
Image Width 450
Image Height 600
Delta Offsets Jump Values Deltas/Curve Huffman Codes

xwdxwd # ywdywd # xwdxwdxwd # ywdywdywd # wd wd min codecodecodecode
rdgswd sz sz wd sz sz wd sz sz sz sz wd sz sz wd sz sz del 0 10 110 111

6 2 3 2 2 4 3 2 1 1 2 2 2 2 1 2 2 0 1 2 3
Binary Values
0000000111000010 0000001001011000

00000000110 10 0011 0100 10 0010 0011 10 0001 0010 10 0001 0010 10 0001 0010 10 00 01 10 11

171

Table 7. Encoded Ridge Information

Decimal Values
Jump Values Ridge Header Delta Offsets
wd val sign wd val sign wd #of ref sign sign sign wd val sign wd val sign
s/l sl sfi del end type s/l
10 14 1 2 1 100 0 5 1 5 0
@ 0 5 0 2 o
1 8 0 2 1
1 8 1 7 1
01112100101006 1 6
0 7 0 3
00 0 o 0 0 0 0 1 1 0 5 0 2
o 7 1 5
00 0 o 0 0 1 0 0 1 O 6 1 5
0 5 1 5
R
&) 1 2 1 0 1100 1 01 0 0 4 1 4
0 4 0 2
13101000 0 1.1 0 5 0 2
0 5§ 1 5

Binary Values

000001010 0000001100110110001011101001010100110000101110001 1111

0111101001010011011100111011
0000000011010101001111101
00000010010110110101011101
1101011001010011011100110010
111101000011010101001011101

172

SECTION 12
DECODING

Decoding the bit stream after transmission is a strictly mechanical process. Since only
transmission of the data occurs between encoding and decoding, the form of the data to be
decoded is the same as shown in figure 61, and tables 4 and 5, of section 11. The fingerprint
header information is parsed and interpreted first, providing the information needed to
decode the subsequent ridge information. After the decoding process interprets and expands
all of the fingerprint header and ridge information, it is passed to the final processing stage,
the ridge reconstruction algorithm.

The decoding algorithm is position-based and flag-based. That is, each category of
information is interpreted either by its position in the bit stream, or by a flag preceding it,
which tells the decoder how to interpret the subsequent information. It is basically the
reverse of encoding, but much simpler, since no analyses of the data are performed. The
types of flags used are short/long word flags, reference end flags, monotonicity flags, and
sign flags. '

12.1 ALGORITHM DESCRIPTION

The decoding process consists of three steps (see figure 72). First, the fingerprint header
information is parsed and decoded. Information extracted from the fingerprint header is then
used to assist in the second step, parsing and decoding the ridge information. Finally, after
all of the binary bit stream has been parsed and interpreted, relative values, such as delta
offsets and jump values, are converted to absolute coordinates.

Parsing and interpreting the fingerprint header is very straightforward. The values are
interpreted one by one, as shown in table 4 of section 11. Notice that the size of the header
varies with the number of word sizes calculated for delta offsets, jump values, and number of
deltas per curve. This, in turn, depends upon the distribution of these numbers in each
- fingerprint. Table'3 of section 11 shows the monotonicity type codes used for the two-bit
allocation in assigning Huffman codes.

As with the encoder, the decoder expects the first point of the first curve of the ridge
information to be represented with absolute coordinates and all following points to be
represented in relative coordinates. This first absolute coordinate provides the context for
converting all subsequent points to absolute coordinates. For flat live-scan fingerprints used
in generating and testing these algorithms, the image width is 450 pixels and the image
height is 600 pixels, requiring nine and 10 bits, respectively, for the absolute coordinate.
Note that in this instance no short/long word flag is needed.

173

(Encoded Data)

Decode Header
Information

¥

Decode Ridge Data

¥

Convert Relative
Values to Absolute
Coordinates

C Decoded Data)

Figure 72. Decoding Processing Steps

Following the first curve, all remaining curves are expected to be in the form shown in
table S of section 11. These values are also parsed and interpreted one by one. The
interpretation of one value may preclude the need for another value. For instance, a jump
value of zero eliminates the need for a sign flag, and a monotonicity sign type of monotonic
delta x (or y), or monotonic both, eliminates the need for some or all coordinate sign flags.
Note that one bit is used to represent the word size for delta offsets and number of deltas per
curve, where zero indicates a short word size and one indicates a long word size. Zero or
two bits are required for Huffman encoded jump value word sizes, since three word sizes are
~allowed: “0” indicates the zero word size, “10” the short word size, and “11” the long word
size.

174

122 SUMMARY

This section provides parameters, input variables, output variables, and pseudocode for

the decoding algorithm.

Parameters
BITSiMAGE_sizE = 16

BITSNUMBER_OF_WORD_SIZES = 2
BITSwoRrp_size =4

BITSHUFFMAN_INDEX = 2

BITSNUMBER_OF _CURVES = 11

BITSx_cooRDINATE =9
BITSy_cooRrpiNaTE = 10

BITSMINIMUM_NUMBER_OF DELTA = 2

Iriput

The number of bits used to represent the image
size in pixels horizontally and vertically

The number of bits used to represent the number
of word sizes in a word_size coding scheme
The number of bits used to represent a word

size in a word_size coding scheme

The number of bits used to represent the sign
monotonicity type index which is assigned to a
particular Huffman symbol

The number of bits used to represent the number
of curves in the fingerprint curve list

The number of bits used to represent an absolute
x coordinate in the live-scan fingerprint image
(based on the width of the image)

The number of bits used to represent an absolute
y coordinate in the live-scan fingerprint image
(based on the height of the image)

The number of bits used to represent the
minimum number of deltas of any curve of the
curve list

An encoded data stream representing a live-scan fingerprint

Output

curve_list The reconstructed list of curves from the live-scan fingerprint
which had been encoded into a data stream

Calculated Values

delt@minimum_per curve Minimum number of deltas of any curve of the curve list (not
to exceed that which can be represented by

BITSMiNIMUM_NUMBER_OF _DELTA)

175

DEcoDE_CURVE_Li1st[encoded fingerprint data stream]
1 DECODE_HEADER]]

2 INpuT_STREAM[number of curves in curve_list, BITSNuMBER OF_CURVES]

** Decode first curve of curve_list

INPUT_STREAM([x-coordinate of first point in first curve, BITSx COORDINATE]
INPUT_STREAM([y-coordinate of first point in first curve, BITSY_COORDINATE]
DECODE_CURVE_DELTAS{first curve of curve_list]

wn AW

** Decode the rest of the curves in curve_list

for each curve from second curve to last curve in curve_list
DECODE_JUMP[curve previous to curve in curve_list, curve]
DECODE_CURVE_DELTAS[curve]

00 3 O

** Reconstruct the absolute coordinates for the points in each curve of curve_list
9 APPLY_CURVE_DELTA_OFFSETS[first curve of curve_list]
10 for each curve b from second curve to last curve in curve_list

11 curve a = the previous curve in curve_list before curve b
12 APPLY_JuMP_OFFSETS[curve a, curve b)
13 ApPPLY_CURVE_DELTA_OFFSETS[curve b]

14 return curve_list

DECODE_HEADER[]

** Read image dimensions from stream
INPUT_STREAM[Lyidth, BITSiMAGE_siZE]
INPUT_STREAM[Jpeighs, BITS\MAGE_sIZE]

DN

** Read coding strategies from stream (header)
DECODE_WORD_SIZES[word_sizesgejiax]
DECODE_WORD_SIZES[word_sizeSqeitay)
DECODE_WORD_SIZES[word_sizeSjumpx)
DECODE_WORD_SIZES[word_sizeSjumpy]
DECODE_WORD_SIZES[word_sizespum_deltas]
INPUT_STREAM([deltaminimum_per_curve> BITSMINIMUM_NUMBER_OF_DELTAI
INPUT_STREAM([sign monotonicity type for symbol 0, BlTSHUFFMAN_INDEX]
INPUT_STREAM(sign monotonicity type for symbol 10, BITSHyrrmaN_INDEX]
INPUT_STREAM([sign monotonicity type for symbol 110, BITSHyrrman_INDEX]
INPUT_STREAM([sign monotonicity type for symbol 111, BITSHurFmaN_INDEX]

ke
N = OV AW

13 return

176

DECODE_WORD_SIZES[word_sizes]

** word_sizes is a list of word sizes used in encoding particular types of data
(e.8., word_sizeSpum delias indicates the sizes of words in bits used in encoding the
number of deltas in a curve) '
INPUT_STREAM[number of word sizes in word_sizes, BITSNuMBER OF WORD sizes]
for each word_size in word_sizes o -
INPUT_STREAM[word_size, BITSworp sizE]
return -

W N -

INPUT_STREAM[value, n]

** Note: If nis missing on invocation of INPUT_STREAM][], the number of bits required
to read value will be obvious from the definition of value (e.g., a Huffman symbol)
1 read value in n bits from the encoded data stream
2 return

DECODE_JUMP[curve a, curve b]

DECODE_JUMP_REFERENCE_END[curve a]
DECODE_USING_WORD_SIZES[jump;, from curve a to curve b, word_sizeSjumpx]
DECODE_SIGN_FOR_VALUE[jump, from curve a to curve b]
DECODE_USING_WORD_SIZES[jump,, from curve a to curve b, word_sizesjumpy]
DECODE_SIGN_FOR_VALUE[jumpy from curve a to curve b]

return

NN b WN -

DECODE_JUMP_REFERENCE_END([curve]

1 INpUT_STREAM[flag, 1]

2 if(flag=0)

3 reference end of curve = FIRST_ENDPOINT
4 else

5 reference end of curve = LAST_ENDPOINT
6 return

177

DEcODE_USING_WORD_SI1ZES[magnitude, word_sizes]

1 INPUT_STREAM[Huffman symbol for word_size]
2 if (word_size #0)

3 INPUT_STREAM[magnitude, word_size]

4 return

DECODE_SIGN_FOR_VALUE[value]

** Note: If sign was ZERO, nothing was appended to the stream
if (value # 0) '

1 INPUT_STREAM(flag, 1]

2 if (flag = 1)

3 negate value

4 return

178

DECODE_CURVE_DELTAS[curve)

N =

DECODE_USING_WORD_S1zES[delta_count, word_sizeSpum deltas]
number of deltas in curve = delta_count + deltap;nimum _per_curve

INPUT_STREAM[Huffman symbol for sign monotonicity of curve]

if (sign monotonicity of curve = MONOTONIC_BOTH)
DECODE_SIGN([sign, of curve]
DECODE_SIGN([sign, of curve]
for each delta in curve
DECODE_USING_WORD_S1ZES[delta,, word_sizes,11ax]
APPLY_SIGN_TO_VALUE[sign, of curve, delta,]
DEecopk_USING_WORD_S1zEs[deltay, word_sizesgeliay)
APPLY_SIGN_TO_VALUE([signy of curve, deltay]
else if (sign monotonicity of curve = MONOTONIC_DX)
DECODE_SIGN[sign, of curve)
for each delta in curve
DECODE_USING_WORD_S1ZES[delta,, word_sizeseiax]
APPLY_SIGN_TO_VALUE[sign, of curve, delta,]
DECODE_USING_WORD_SIZES(delta,, word_sizesgeiay]
DECODE_SIGN_FOR_VALUE[deltay]
else if (sign monotonicity of curve = MONOTONIC_DY)
DECODE_SIGN([signy of curve]
for each delta in curve ,
DECODE_USING_WORD_S1ZES[deltay, word_sizeszeitax)
DECODE_SIGN_FOR_VALUE[delta,]
DEcobE_UsING_WORD_S1zEs[delta,, word_sizesgeiiay)
APPLY_SIGN_TO_VALUE[signy of curve, deltay)
else if (sign monotonicity of curve = NON_MONOTONIC)
for each delta in curve
DECODE_USING_WORD_S1zES[delta,, word_sizeszeiax]
DECODE_SIGN_FOR_VALUE[delta,]
DECODE_USING_WORD_SI2ES[deltay, word_sizesgeisay]
DECODE_SIGN_FOR_VALUE[deltay)
return

179

DECODE_SIGN[sign]

** Note: If sign was ZERO, nothing was appended to the stream
INPUT_STREAM(flag, 1]
if (flag=1)
sign = NEGATIVE
else
sign = POSITIVE
return

AWV B WN =

APPLY_SIGN_To_VALUE[sign, value]

1 if (sign = NEGATIVE)
2 negate value
3 return

APPLY_JuMP_OFFSET[curve a, curve b]

1 if (reference end of curve a = FIRST_ENDPOINT)

2 ref pt = first point in curve a

3 else if (reference end of curve @ = LAST_ENDPOINT)
4 ref pt = last point in curve a

5 first_pt = first point in curve b

6 first_pt, = ref pt, + jump, from curve a to curve b
7 first_pt, = ref_pt, + jumpy from curve a to curve b
8 return

APPLY_CURVE_DELTA_OFFSETS[curve]

1 for each point b from second point to last point in curve
2 point a = the previous point in curve before point b

3 b, = a, + delta, from point a to point b

4 by = ay + delta, from point a to point b

5 return

180

123 EXAMPLE

In order to illustrate the decoding process, the same example from the encoding section
will be used. Figures 6 and 7 of section 11 show the fingerprint header and the ridge
information bit streams. Figure 73 illustrates parsing and interpreting just the fingerprint
header information in the bit stream. Figure 74 illustrates parsing and decoding the ridge
information data for the first curve. Note that absolute coordinate positions are given instead
of jump values for this ridge. Figure 75 shows parsing and decoding of the second ridge.
Although it is not shown, the process would proceed similarly for the remaining four ridges
in this example. (Note: The binary bit stream values in these figures are shown grouped to
show the parsed structure.)

181

Bit Stream:

000000000111000010 0000001001011000
000000110 10 0011 0100 10 0010 0011 10 0001 0010 10 0001 0010 10 0001 0010 11 00 01 10 11

Parsing:
Bit # Parse Value Interpretation
Stream Bits
0000000111000010 16 450 Image is 450 pixels wide
0000001001011000 16 600 Image is 600 pixels high
00000000110 11 6 6 ridges
10 2 2 delta offset: 2 word sizes
0011 4 3 delta offset short x word size
0100 4 4 delta offset long x word size
10 2 2 delta offset: 2 word sizes
0010 4 2 delta offset short y word size
0011 4 3 delta offset long y word size
10 2 2 jump value: 2 word sizes
0001 4 1 jump value short x word size
0010 4 2 jump value long x word size
10 2 2 jump value: 2 word sizes
0001 4 1 jump value short y word size
0010 4 2 jump value long y word size
10 1 2 num. deltas per curve: 2 word sizes
0001 4 1 num. deltas per curve short word size
0010 4 2 num. deltas per curve long word size
11 2 3 minimum number of deltas per curve
00 2 0 monotonic both
01 2 1 monotonic delta X
10 2 2 monotonic delta’y
11 2 3 non-monotonic

Figure 73. Fingerprint Header Parsing

182

Bit Stream: .
000001010 00000011001 10110001011101001010100110000101110001 1111

Parsing:
Bit # Parse Value Interpretation
Stream Bits
- 000001010 9 10 X coordinate of first point
0000001100 10 14 y coordinate of first point
1 1 1 num. deltas per curve long word
10 2 2 4 deltas (2 + min. num, deltas per curve)
1 1 i reference end: LAST_ENDPOINT
10 2 2 monotonic delta x
0 1 0 positive monotonic sign for delta x
0 1 0 delta offset short X word
101 3 5 delta offset x value
1 1 1 delta offset long y word
101 3 5 delta offset y value
0 1 0 positive delta offset y sign
0 1 0 delta offset short x word
101 3 5 delta offset x value
0 1 0 delta offset short y word
10 2 2 delta offset y value
0 1 0 positive delta offset y sign
1 .1 1 delta offset long x word
1000 4 8 delta offset x value
0 1 0 delta offset short y word
10 2 2 delta offset y value
1 1 1 negative delta offset y sign
1 1 1 delta offset long x word
1000 4 8 delta offset X value
1 1 1 delta offset long y word
111 3 7 delta offset y value
1 1 1 negative delta offset y sign
Reconstruction:
Decoded Relative Coordinates: (10,14), (+5,+5), (+5,+2), (+8,~2), (+8,-7)
Decoded Absolute Coordinates: (10,14), (15,19), (20,21), (28,19), (36,12)

Figure 74. Ridge Information Decoding: First Curve

183

BitSheam:
0111101001010011011100111011

Parsing:

Bit #Parse Value Interpretation

Stream Bits

0 1 0 jump value short X word

1 1 1 jump value x value

1 1 1 negative sign

1 1 1 jump value long y word

10 2 2 jump value y value

1 1 1 negative sign

0 1 0 num. deltas per curve short word

0 1 0 2 deltas (0 + min. num. deltas per curve)

1 1 1 reference end: LAST_ENDPOINT

0 1 0 monotonic both

1 1 1 negative sign for all delta x

0 1 0 positive sign for all delta y

0 1 0 delta offset short x word

110 3 6 delta offset x value

1 i 1 delta offset long y word

110 3 6 delta offset y value

0 1 0 delta offset short X word

111 3 7 delta offset x value

0 1 0 delta offset short y word

11 2 3 delta offset y value

Reconstruction: :

Decoded Relative Coordinates: (=1,~2), (—6,+6), (—7,+3)
Decoded Absolute Coordinates: (35,10), (29,16), (22,19)

Figure 75. Ridge Information Decoding: Second Curve

184

SECTION 13
RIDGE RECONSTRUCTION

After decoding, ridge reconstruction regenerates the single pixel width representation of
the fingerprint ridges using a B-spline algorithm. The input to the B-spline algorithm is a set
of ordered control points previously determined by the chord splitting stage of processing. |
For each set of ordered points, the output of the B-spline algorithm is a reconstructed
fingerprint ridge. Multiple sets of ordered points describe all of the ridges within one
fingerprint image. Figure 76 illustrates the curve that would be generated by the B-spline
process given an input set of five points. B-splines differ from other spline curves in that the
resulting curve does not necessarily pass directly through the set of input points, which
results in a more uniform and smooth curve [9].

spline segment

Figure 76. B-spline Curve Representation

13.1 ALGORITHM DESCRIPTION

Figure 77 describes the processing steps of the B-spline algorithm. The algorithm that
computes the B-splines uses a set of four consecutive control points to calculate each spline
segment [10]. Due to the nature of the process, it is also necessary to duplicate the original
coordinate segment endpoints four times to ensure that the spline curve is drawn to the
endpoints.

A B-spline is determined using two input arrays, x and y. The B-spline algorithm creates
curve segments between successive points P; and P;4 for each curve to be constructed. Itis
not necessary to calculate a B-spline for ridges containing one or two points. A ridge
containing one point will be represented as a single pixel, and a ridge containing two points
will be represented by a line. The curve segment between points P; and P, is constructed
by calculating x(¢) and y(¢) as ¢ increases from zero to one:

185

< Input Coordinate
Information

Coordinate Array
Allocation

v

Spline Coefficient
Calculation

A

Spline
Reconstruction

Figure 77. Flow Chart of Operations

x(0) = Alx, i] + 1(B[x, i] + «(C[x, i] + D[x, i]))
y(© = Aly, i] + t(Bly, i] + (Cl[y, il + D[y, il))

where A, B, C, and D are functions defined as:

Alx, i] = (x(i-1) + 4x() + x(i+1)) + 6

Blx, i] = (—x(i-1) + x(i+1)) + 2

Clx, i] = (x(i—1) — 2x(i) + x(i+1)) + 2

D[x, i] = (—x(i—-1) + 3x()) = 3x(i+1) + x(i+2)) + 6

186

The functions are similarly defined for Aly, i], B[y, i], C[y, i, D[y, i].

The coefficients are computed for each point in the x and y input arrays. After the
coefficients are computed for an individual point, a loop increasing from zero to N is
executed. Within this loop, x(¢) and y(¢) are calculated. Starting with the second input point,
a line segment is drawn for each successive x(¢) and y(#). The process ends when the input
arrays are exhausted.

13.2° SUMMARY

This section provides parameters, input variables, output variables, and pseudocode for
the B-spline algorithm.

Parameters _
N=30 Number of iterations
Input Variables
curve_list List containing the coordinate control points for a group of
curves with the endpoints added four times to each curve
Output Variables

spline_x, spline_y Arrays that hold spline coordinates

187

** Algorithm used to construct a smooth curve using a given set of ordered coordinates
B-SPLINE[curve_list]

1 while curve in curve_list

2 |
** x and y are arrays that hold coordinate information

3 x = ordered set of x coordinates

4 y = ordered set of y coordinates
** Spline coefficient calculations

5 for i from 1 to number_of points_in_curve

6 for jfromOto N

7 t=j+N

8 x_coordinate = Aly, i] + ((B[y, i] + t(C[y, i] + D[y, i]))

9 y_coordinate = Aly, i] + t(B[y, i] + t(Cly, i] + tD[y, i))

10 spline_x = x_coordinate

11 spline_y =y coordinate

** At each iteration, the calculated x and y coordinate positions may be used to
reconstruct an image array, using the spline_y array for row values and the
spline_x array for column values.

12 } ‘
13 return

** The following functions are also used to calculate Aly, i], B[y, i], Cly, i, DLy, i]
Alx, i]
1 return (—x(i-1) + 3x(@i) — 3x(i+1) + x(i+2)) + 6

B[x, i]
1 return (x(i-1) — 2x(i) + x(i+1)) + 2

Clx, i
1 return (=x(i-1) + x(i+1)) + 2

D[x, i]
1 return (x(i-1) + 4x(i) + x(@+1)) + 6

188

10.

11.

LIST OF REFERENCES

National Crime Information Center (NCIC) 2000 Request for Proposal (RFP).
RFP 5060. Attachment 1. National Crime Information Center (NCIC) 2000 System
Requirements, Federal Bureau of Investigation, Washington, D.C.

An Analysis of Standards in Fingerprint Identification, June 1972, FBI Law
Enforcement Bulletin, Federal Bureau of Investigation, U.S. Department of Justice,
Washington, D.C.

Lepley, M. A., April 1994, NCIC 2000 Image Compression Algorithms, Volume II:
Mugshot Compression, MTR-94B0000021V2, The MITRE Corporation, Bedford, MA.

Horn, B. K. P, 1986, Robot Vision, Cambridge, MA: MIT Press, pp. 49-53.

Barrow, H. G., J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, August 1977,
“Parametric Correspondence and Chamfer Matching: Two New Techniques for Image

Matching,” Proceedings of International Joint Conference on Artificial Intelligence,
Vol. 2, pp. 659-663, Cambridge, MA.

Pavlidis, Theo, 1982, Algorithms for Graphics and Image Processing, Rockville, MD:
Computer Science Press, pp. 283-287.

Hamming, R. W., 1986, Coding and Information Theory, Second Edition. New Jersey: |
Prentice-Hall. .

Gonzalez, R. C. and P. Wintz, 1977, Digital Image Processing, Reading, MA:
Addison-Wesley Publishing Co. ‘

Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Hughes, 1990,
Computer Graphics: Principles and Practice, Second Edition, Reading, MA:
Addison-Wesley Publishing Co., p. 491.

Ammeraal, Leendert, 1986, Programming Principles in Computer Graphics,
New York: John Wiley and Sons, pp. 28-33.

Home Office Algorithm Package, Volumes 1 and 2, Issue 1, April 1992, Department of
the Government of the United Kingdom, London, England.

189

190

APPENDIX A
MODIFIED BHO BINARIZATION

The algorithm used for thresholding the fingerprint image is based upon the Home Office
Automatic Fingerprint Recognition System (HOAFRS) Encoder. This algorithm generates a
smoothed ridge direction map, thresholds each 24x24 block based upon the primary
indicated direction, and then extracts minutiae points. We used the portion of the Encoder
that generates the thresholded image, hereafter referred to as British Home Office (BHO)
binarization, with a few minor modifications to accommodate variable image sizes. The
BHO algorithm is described in detail in the Home Office Algorithm Package Volume 1:
Description of Encoders and Matchers [11]. This section describes how the source code
provided by the Home Office was modified for use with the Flat Live-Scan Searchprint
Compression algorithm.

A.1 SOURCE CODE ALTERATIONS

The modifications described in this section fall into two categories: those that are
implementation dependent and those that are required modifications to the HOAFR
algorithm. Implementation dependent details, such as the FORTRAN-to-C conversion and
methods used for faster execution, are mentioned here only as a guide. Required changes are
necessary to process variable image sizes, to obtain acceptable encoded fingerprints, and to
produce the required output files. The required changes must be implemented and will be
prefixed by a “*” in the following subsections.

A.1.1 FORTRAN-to-C Conversion

The five source files of the Encoder that are used in BHO binarization are “encoder.f”,
“initrg.f”, “insspr.f”, “main12.f”, and “main3.f”. Since the original source code was in
FORTRAN, “f2c”, a public domain FORTRAN-to-C conversion program, was used to create
a C version of the code. This conversion program, written by David Gay, Stu Feldman, Mark
Maimone, and Norm Schryer, is available via electronic transfer from research.att.com. This
C version was then modified to make it possible to compile without the include file (“f2c.h”™)
- and the FORTRAN libraries required by “f2¢”. The changes needed were:

— References to 1ogical were changed to int.

— References to integer were changed to int.

— References to real were changed to float.

— Unnecessary static declarations were removed.

— Global data structures were moved to an include file.

— All the I/O was changed since the output of f2¢ for I/O code is indecipherable.

191

— Replaced the functions min, max, and dmax by macros.
— Added the rmod function source to the code.
— Removed #include “f2c.h” from each file.

A.1.2 Variable Image Size Accommodation

The stand-alone C version was modified to generate only the thresholded image and was
then modified to handle rectangular images of any size. This change required careful
attention to detail to determine the meaning of many of the hardwired constants in the code.
(Although the capability is not being used at this time, changes were also made to allow
smaller block sizes, if desired.) In summary, the changes at this stage were:

*— Output a thresholded image with ridges being black and valleys being white.

*— Variables were created to contain the following information about the image: height,
width, block size, the number of blocks contained in the horizontal and vertical
direction, and the positions of blocks. The variables are initialized as the image is read.

*_ Constants within the code were replaced by the appropriate variables or combinations of
variables. For example, mx11520 + 1920 became mx(blocksizexiwidth) + (4xiwidth).

*_ Arrays whose sizes vary according to the input image size were allocated dynamically
and freed when they were no longer needed.

*_ The ridge direction consistency checking function consis was modified to allow the
spiraling portion of the algorithm to reach all parts of a rectangular image.

Please note that changes made up to this point have no effect on the behavior of the
algorithm on a 512x512 or a 480x480 image.

A.1.3 Change to BHO Algorithmic Behavior

As a result of testing, we determined that some undesirable effects were produced by the
original algorithm. Therefore, the following changes were made to the BHO binarization
algorithm.

*_ Removal of cnnect call and function.

*_ An absolute upper threshold, zz_top, is generated on a per image basis, for use in
non-blanked blocks. This allows pixels with a gray level above this threshold to be
automatically marked as BACKGROUND pixels. This change was required in the functions
ifilt7 and binblk which do the directional and non-directional thresholding.

Before calculating the threshold zz_top, a determination is made whether the image gray
values have saturated, i.e., whether there are an inordinate number of white pixels
because of the particular brightness or contrast level settings in effect during image
capture. Assuming that 255 corresponds to the maximum gray value, i.e., white, the
image is deemed to be saturated if the number of pixels with gray value 255 is greater
than ZgATURATION_RATIO times the number of pixels with gray value 254.

192

If the image is saturated, thresholding is not effective and zz_top is set to 255.
Otherwise, zz_top is set to a value ZTHRESHOLD_FRACTION Of the distance between the
mean pixel value Zjy and the maximum pixel Zmaxy value in the image:

zz_top = (1 ~ ZTHRESHOLD_FRACTION) * ZIy + ZTHRESHOLD_FRACTION * Zmaxy.

A.1.4 Integration with Fingerprint Compression

A few modifications were made to integrate the code into the rest of the fingerprint
compression process.

— The main routine was converted to a subroutine which was passed an image data
structure and the desired block size and returned a thresholded image data structure.

— The function to read an image file was changed to read data from the image data
structure. .

— The ability to write the thresholded image to a Lucid image file was removed.

*— Code was added to write out the ridge direction map and to store it in a data structure
passed back to the calling routine. The file containing this information is called the
block file and is transmitted along with the encoded fingerprint for use during minutiae
extraction. Section A.2 below describes the contents of the ridge direction data structure
and specifies how that information is written to a file.

A.1.5 Code Speed Up

Finally, a large set of changes was made to improve the processing speed of this
algorithm. These changes again involved careful attention to detail to avoid making errors,
and frequent checks were made against a validated older version.

— Many explicit casts to float in equations were removed.

— Some parameters passed by reference due to the FORTRAN to C conversion were
changed to be passed by value to avoid being accessed via pointers.

— Zero-based indexing was used for loops and for accessing arrays. This frequently
removed many references to “i—1”.

~ Variables were added to store intermediate values that are used frequently.

—~ Where beneficial, pointers were used to access arrays.

A.2 RIDGE DIRECTION MAP

The ridge direction map contains the smoothed edge directions for each 24x24 block in
the image. Due to processing constraints, this map must contain an even number of blocks in
both the horizontal and vertical directions. When the image size is not a multiple of 48
(2x24), the area that is covered by this map is the largest multiple of 48 that fits inside the
image, centered in the entire image area (see figure A-1). Information about this map is
stored in a ridge direction data structure and written out to a block file.

193

Horizontal Offset

Vertical Offset _'f '

{<1— Ridge Direction Map Blocks

Image Border —

—— Image Center

Block Size

Figure A-1. Blocks Used in Ridge Direction Map

A.2.1 Ridge Direction Data Structure

The ridge direction data structure, z_blockmap, contains the following information:

— The horizontal offset (in pixels) of the upper-leftmost block

— The vertical offset (in pixels) of the upper-leftmost block

— Number of blocks horizontally (always a multiple of 2)

— Number of blocks vertically (always a multiple of 2)

— Block size used (blocks are square)

— A 2-dimensional array of the block ridge directions when a valid ridge direction existed,
or the type of block when there is no valid ridge direction. There are 16 valid ridge
directions, and the types of blocks that can occur when there is no valid ridge direction
are: blank block, core/delta block, and “bad” (other) block.

A.2.2 Writing the Block File

At the end of the BHO binarization, the information in the ridge direction data structure
is written to a file called the block file. The information in the encoded fingerprint file and
the block file together can be used to recreate the fingerprint image and extract valid
minutiae points.

194

The following pseudocode describes an efficient method for encoding this data. In order
to make the most efficient use of space, the bit-packing function OUTPUT_STREAM described
in section 11.4.3 is used to write bits to the block file.

WRITE_BLOCK_FILE[z_blockmap, block_file]

** Write information about the ridge direction map to blockjle ,
open block_file for writing

Ourpur_STREAM[horizontal offset of z_blockmap, 16}
Output_STREAM([Vvertical offset of z_blockmap, 16]
OutPuUT_STREAM[number of blocks horizontally in z_blockmap, 16}
Output_STREAM[number of blocks vertically in z_blockmap, 16]
OurpuTr_STREAM[block size used in z_blockmap, 5]
for each block (bi, bj) in z_blockmap
if (block (bi, bj) is blanked out)
Outpur_STREAM[O, 5]
10 else if (block (i, bj) is bad)
11 OuTtpuUT_STREAM(1, 5]
12 else if (block (bi, b)) is a core/delta block)
13 OUTPUT_STREAM[2, 5]
14 else if (block (bi, b)) has a valid direction)
15 Output_STREAM[direction of block (bi, b)) + 3, 5]

16 close block_file
17 return

Voo~ WNbEBWN =

A.3 SUMMARY

Parameters
ZN =24 Height and width (in pixels) of the blocking factor used for the ridge
direction map
ZSATURATION_RATIO = 2.0 Maximum ratio between pixels at 254 and pxxels at 255 for
an unsaturated image

Z1HRESHOLD_FRACTION = 0.8 Fraction of the dlstance between the mean pixel value
and the maximum pixel value in an image used to determine zz_top

Input
1 Gray-scale fingerprint image

195

Output

T Thresholded fingerprint image

2_blockmap Ridge direction data structure

block_ file File containing information about ridge directions as well as blocks that
should not be used when extracting minutiae

BHO_BINARIZATION[]]

** The image I is thresholded using the modified BHO algorithm to produce image T
1 Run the modified BHO binarization on I with block size ZN, writing out block_file.
2 return (T, z_blockmap)

196

APPENDIX B
CURVED RIDGE ENDING REMOVAL

Curved ridge ending removal is a part of ridge cleaning (see section 7). The purpose of
this algorithm is to remove curved endings that may lead to a less accurate ridge ending
direction estimation. This process is used by ridge cleaning after small offshoot curve
removal and before small ridge break connection (see figure 41 in section 7). Only ridge
endings that are not connected to other ridges (i.e., not bifurcations) and are not near a bad
block as defined by the thresholding process (see Appendix A) are processed by curved ridge
ending removal. If a ridge ending is determined to be curved, points are removed until the
curved part is removed or an upper limit is reached on the number of points allowed to be
removed.

B.1 ALGORITHM DESCRIPTION

It is assumed that endpoint_map and the thinned image T generated in ridge cleaning and
the chamfered image C used by ridge cleaning is globally available to this algorithm. The
parameter Zgnp_gize specifies that maximum number of points that may be removed from
any ridge ending as part of the curved ridge ending removal process. .This parameter is also
used as part of the curvature and taper calculation for each ridge ending.

Both ends of each ridge that is represented by a curve in the curve_list having more than
3 X ZeNnDp size points are considered. If an endpoint is unconnected and this endpoint is not
near a bad block as defined by z_blockmap, then that end is considered further. Care is taken
to retain ridge endings on the borders of bad blocks in order to prevent the generation of false
minutiae during minutiae extraction.

To check the bad block proximity of a ridge endpoint, the endpoint is checked against all
the bad blocks defined in z_blockmap. If the endpoint is within one pixel of any bad block, it
is declared to be near a bad block. Several examples of ridge endpoints near a bad block are
shown in figure B-1. In this figure, endpoints of ridges A, B, and C are near the bad block
because their endpoints lie within one pixel of the bad block. The endpoint of ridge D is not
near the bad block.

Each ridge ending meeting the size and bad block proximity conditions is then checked
for amount of curvature and taper. The curvature criterion is measured by selecting three
points along the ridge, somewhat equally spaced according to specific criteria, where the first
point is the current endpoint of the ridge. This process is illustrated in figure B-2. In this
figure, point A is the endpoint of the ridge. Point B is selected as the point that is
ZeNp_size+2 points down from point A. Point C is selected as the first point whose:

197

One pixel border

B Ridge pixel

around bad block Ridges A, B, and C
are in proximity of
Ridge A the bad block
Ridge D is not
® Ridge endpoint
g Ridge B " 0

Figure B-1. Proximity of Ridge Endpoints to Bad Block

Euclidean distance from point B is greater than or equal to the Euclidean distance between
point A and point B. Point C is defined to be at least ZENyp_s1zg+2 + 1 points down the
curve from point B. Once the three points have been selected, the absolute value of the
cosine of the angle between the two segments defined by point B to point A and point B to
point C is calculated. If this cosine is less than or equal to the cosine of ZTHRESH_ANGLE:
then the ridge ending is considered to be curved.

A second criterion is checked to estimate the taper of the ridge ending. Occasionally, a
ridge ending will not be curved enough to meet the curvature criterion, but will still have a
small flip to it caused by an angled ridge edge at the end. The taper criterion is designed to
catch these instances. By comparing the ridge width of the endpoint to the average ridge
width of a reference section further down the curve, the taper can be estimated. This
reference section is defined to be the set of points between point B and point C, not including
point B, but including point C. Because chamfer values are directly proportional to ridge
widths, they are used in the ridge width comparisons. If the chamfer value of point A is less
than or equal to ZTapeR_RATIO times the average chamfer value of the refcrence section, the
ridge ending is considered to have enough curvature to take action.

If either the curvature criterion or the taper criterion is met, point A is moved down the
curve by one point, thus marking that previous point for removal. If fewer than Zgnp size
points have been marked for removal and the curvature or the taper criterion has been met,
the process is repeated with the new point A. Otherwise, the process is finished for this ridge
ending by removing all points in curve from the original endpoint up to point A, and
updating the thinned image T and endpoint_map.

198

ZTHRESH_ANGLE = 30

ZeND SIZE=6
137.73 degrees ZTAPER_RATIO =0.75

© curve pixel
@ curve endpoint

chamfer value = 1000

Point A |@

average chamfer value = (2000+2000+2414+1414)+4 = 1957

if
lcos(8)! < cos(ZTHRESH_ANGLE)
: or '
chamfer value at point A < ZTAPER_RATIO X average_chamfer value of reference section
" then
remove point A from ridge

Figure B-2. Criteria for Removing Curved Ridge Ends

CurvED_RIDGE_ENDING_REMOVAL[curve_list, z_blockmap]

1 for each curve in curve list
2 if (number of points in curve > 3 X Zenp_s1ZE)
3 {
4 if ((curve is unconnected at the first endpoint) ,

and (the first endpoint is not near a “bad” block in z_blockmap))
5 PROCESS_RIDGE_ENDING| curve, first endpoint of curve]
6 if ((curve is unconnected at the last endpoint)

and (the last endpoint is not near a “bad” block in z_blockmap))
7 PRrOCESS_RIDGE_ENDING] curve, last endpoint of curve) \
8 }
9 end

199

PROCESS_RIDGE_ENDING[z_curve, z_endpoint |

1

w

13
14
15
16
17

18
19
20
21
22
23
24
25

** Assume chamfer image C, thinned image T, and endpoint_map are globally available
set point z_points to z_endpoint

2 z_number_points_removed =0

z_not_done = TRUE

** Process the ridge ending until Zgnp_size points have been removed from the

curved ridge ending, or the curvature and taper criteria indicate that no further action
should be taken.

while (z_number_points_removed < Zgnp _size and z_not_done = TRUE)

{

}

set point z_pointp to be ZENp_sizE + 2 points down z_curve from z_pointy
set point z_poinic to be ZEnp_size + 2 points down z_curve from z_pointg
z_distanceAB = Euclidean distance between z_pointy and z_pointp
z_distanceBC =0
** Adjust position of z_poinic so that z_distanceAB is similar to z_distanceBC
while (z_distanceBC < z_distanceAB)
move point z_poinic down the curve by one point
z_distanceBC = Euclidean distance between z_point4 and z_pointg
**+ Calculate the average chamfer value for section between z_pointg and z_poinic
z sum=0
for each (z_i, z_j) between z_pointg and z_poinic, z_poinitc mclusxvc,along z_curve
z_ sum=z_sum+ C(z_i, z_))
z_average_chamfer value = z_sum /[(number of pomts in the summation)
if (DOT_PRODUCT(z_pointc, z_pointg, z_points) < COS(ZTHRESH_ANGLE))
or (C(x coordinate of z_points, y coordinate of z_points)
<ZTAPER R ATIO X z_average_chamfer value)

{
move point z_pointy down the z_curve by one point
z_number_points_removed = z_number_points_removed + 1
}
else

z_not_done = FALSE

if number_points_removed >0

26 delete z_endpoint of z_curve from z_endpoint_map

27 remove the points from T starting at z_endpoint and up to point z_pointa of z_curve
28 remove the points starting at z_endpoint and up to point z_points from z_curve

29 add new endpoint (z_pointy) of z_curve to z_endpoint_map

30 end

200

B.1.1 Summary

Parameters
Zenp size=6

ZTHRESH_ANGLE = 30 degrees
Z1aPER_RATIO = 0.75

Input

curve_list
C

T

z_blockmap
endpoint_map
Output

modified curve_list
modified endpoint_map
modified T

Maximum number of points that can be removed
from a curved ridge end

‘Curvature limit for curved ridge end

Tapering ridge width ratio limit for ridge end

The list of curves for the live-scan fingerprint
Chamfered image calculated as part of ridge
thinning (section 5) A

Thinned image regenerated from curve_list and
update as the curve_list is modified

Ridge direction data structure

See definition in section 7.1.1

201

202

APPENDIX C
BAD BLOCK BLANKING

During the thresholding stage certain blocks are found to contain smudges or other
inconsistent fingerprint information. These blocks are labeled as bad blocks but are
thresholded, nevertheless, so that artificial ridge endings will not appear at the edge of bad
blocks. During the bad block blanking stage, the ridge sections that cross bad blocks are
removed so that the encoded file is as small as possible. This process takes place at the end
of ridge cleaning, because ridge fragments internal to the bad blocks may contain
information useful for cleaning.

C.1 ALGORITHM DESCRIPTION

The bad block blanking process works as a two stage process. The first stage follows
each ridge in the fingerprint structure and removes segments that cross bad blocks. The
segments that need to be removed may be at the beginning, end, or middle of a curve; each of
these cases requires slightly different handling, including potentially modifying, removing, and
adding curves. The second stage is needed for cleaning, since during the process of
removing segments that cross bad blocks, a curve that enters a bifurcation may be removed.
(This removal changes the bifurcation where three curves intersect into a location where only two
curves intersect.) The second stage of bad block blanking, therefore, identifies this
condition and joins the two curves in question.

C.1.1 Removing Curve Segments

In the first stage, each curve in curve_list is processed in turn. During processing, the
endpoint_map is modified when an endpoint from the incoming curve list is removed. The
modified endpoint_map will be used in the second stage to identify the locations where
exactly two curves intersect.

Each curve is traversed from beginning to end while searching for the first two
contiguous curve points that fall outside of a bad block. If there is no such location on the
curve, then the entire curve is deleted from curve_list and the curve endpoints are removed
from the endpoint_map. (See curve d in figures C-1 and C-2 for an example of such a
curve.) If, on the other hand, the curve does contain two contiguous points outside a bad
block, then the location of these first two good points determines whether the beginning of the
curve must be removed.

If the first two good points are not the first two points in the curve, then the first endpoint
(which is in or next to a bad block) is removed from the endpoint_map and the curve points

203

Figure C-1. Curve List Before and After the First Stage of Bad Block Blanking.

prior to the first two good points are removed from the curve. (For example, see curve e in
figure C-1 when traversed from left to right.) After any initial bad block points are removed,
the modified curve is treated the same as any curve that begins in a good block.

When the first two points in a curve are in a good block, the curve must be searched for
any later sections that might enter a bad block. First, the curve is searched for the first point
in a bad block. If there is no such point (the most common occurrence), then there are no
further changes to this curve and processing of the next curve begins. (Curves @, f, and g in
figure C-1 fall in this category, as well as curve e after the removal of its initial bad block
section.) If a bad block point is found, the last endpoint of this curve is removed from the
endpoint_map and the current curve is modified to end just prior to the first bad block point.
(This happens to curves b and c in the example.)

I
g b : g o0
I
|
o , L
s b Ca :] ie
s de ad | =
f . “ | f ‘
L] 8 []
efe 8 { 18 8

|

Figure C-2. Endpoint Map Before and After the First Stage of Bad Block Blanking.

204

The bad block segment is then followed until it ends (two contiguous points are found in
a good block). If the bad block continues until the end of the original curve, no further
processing is needed (see curve b in the example). Otherwise, a new curve must be created
to contain the next good curve segment. (From curve c, first curve h and then curve i are
created in the example.) This new curve is added to z_new_curve_list, which temporarily
stores all new curves. If the end of this new curve is the same as the end of the original
curve, then the second endpoint must be added back to the endpoint_map (for example, at the
far end of curve i). Otherwise, if more of the original curve points remain, the process
described in this paragraph is repeated until the entire curve has been traversed.

Once all the curves in curve_list have been checked for bad block sections, the new
curves that were generated and stored in z_new_curve_list are moved into curve_list.

C.1.2 Joining Curves at Lost Bifurcations

The last stage of bad block blanking is to check each of the curve endpoints to ensure that
no two-curve intersections exist. Recall that two-curve intersections occur when one curve
of a bifurcation has been removed by the process described above. For each curve, an
examination of the endpoint_map at each of the endpoints shows how many curves touch the
endpoint. If the value is two at either endpoint, then the two curves that meet at this point are
combined. For example, figure C-2 shows that curves e, f, and g share and endpoint prior to
bad block blanking. After the first stage, the portion of curve e that intersects curves fand g
has been removed, so the endpoint_map shows only f and g sharing that endpoint. Therefore,
curves f and g create a two-curve intersection and must be joined to form the curve j shown
in Figure C-3. :

a b
-7 = -
_h—
j €

Figure C-3. Curve List After Last Stage of Bad Block Blanking

205

C.2 SUMMARY

Input
curve_list The list of curves for the live-scan fingerprint
2_blockmap Ridge direction data structure
endpoint_map See definition in section 7.1.1

Output

modified curve list
BAD_BLOCK_BLANKING] curve_list, z_blockmap]

** Note that endpoint_map is globally accessible
1 z_new_curve_list = EMPTY
2 for each z_curve in curve_list

3 {
4 z=0
S z_num_points = number of points in z_curve
6 Z_POINT = points in z_curve (in order)
7 do ** Search for two contiguous points in good blocks
8 {
9 z=z+1
10 while ((z < z_num_points) and (Z POINT(z+1) € bad block))
11 z=z+1

12 } while ((z < z_num_points) and (Z_POINT(z) € bad block))

13 if (z 2 z_num_points) ** Did not find two contiguous points in good blocks
14 delete endpoints of z_curve from endpoint_map

15 delete z_curve from curve_list

16 else ** Found two contiguous points in good blocks

17 {

18 if(z>1)

19 {

** The first good segment is not at the beginning of z_curve, so
remove the initial endpoint from the endpoint_map and the
initial bad points from z_curve

20 delete first endpoint of z_curve from endpoint_map
21 delete Z POINT(1) through Z_POINT(z-1) from z_curve
22 }

206

** The initial segment must now be good, so find the end of it

23 while ((z < z_nwm_points) and (Z_POINI(z) € good block))
24 z=z+1
** 2 is now the index of the point after the last good point found
25 - if (z < z_num_points)
26 { :
** Only part of the curve is good. Keep the first good segment on the list
27 delete the last endpoint of z_curve from endpoint_map
28 delete Z POINT(z) through Z_POINT(z_num_points) from z_curve
** Now search for any other good sections that might exist

29 while (z < z_num_points)
30 {

** Scan to beginning of next good section
31 while ((z < z_num_points) and (Z_POINT(z) € bad block))
32 ‘ z=z+1
33 z_first_point =z

Find end of this good segment
34 while ((z< z_num _pomts) and (Z_POINT(z) € good block))
35 z=z+1

Check the length of the good segment
36 if ((z - z_first_point) > 1)
37 {

** A valid segment with at least two pixels,
so create a new curve for it

38 create z_new_curve with points Z_POINT(z_first_point)
through Z_POINT(z-1)

39 put z_new_curve on z_new_curve_list

40 if (z > z_num_points)

41 add last endpoint of z_new_curve to endpoint_map

42 }

43 }

44 }

45 }

6)

**+ Add newly created curves to original curve list
47 for each z_curve in z_new_curve_list
48 add z_curve to curve_list

207

49

50
51
52
53

54

** Curves that entered a bifurcation may have been removed. Wherever this happened,
connect the remaining curves
for each z_curve in curve_list
Consider each curve in order of appearance on the list of curves, so that any
curve that is added to the end of the list will also be considered
if (first endpoint of z_curve is shared by exactly one other curve)

JoIN_CURVES[z_curve, other curve] ** Section 7.1.3.1
else if (second endpoint of z_curve is shared by exactly one other curve)
JOIN_CURVES[z_curve, other curve] ** Section 7.1.3.1

*# Return the updated curve list
return curve_list

208

APPENDIX D
PARTITIONING FOR NEIGHBORHOOD AVERAGE RIDGE WIDTHS

The algorithms for Pore Filling (section 4) use the average ridge width in the
neighborhood of each pore candidate. Rather than calculate the average ridge width in
neighborhoods centered on each candidate, which would be computationally expensive, the
average ridge width is found for fixed regions across the fingerprint image. The average
ridge width in the neighborhood of a pore candidate is then approximated by the average
ridge width in the fixed region in which it lies.

D.1 ALGORITHM DESCRIPTION

The R x C (rows x columns) fingerprint image is partitioned into Rp sections vertically
and Cp sections horizontally (figure D-1). Each resulting R/R¢ x C/Cp rectangle is used as
a neighborhood for the average ridge width calculation. The parameter values used during
development and testing of the Pore Filling algorithms are given in section 4.2. The values
of Rp and Cp were chosen to evenly partition the image so that the resulting neighborhoods
were roughly 60 x 60, thus covering large enough portions of the fingerprint to yield
meaningful average ridge widths. To allow for a range of fingerprint image sizes, an
algorithm was developed to choose the number of horizontal and vertical sections in an
image that would most closely partition the image into 60 x 60 pixel regions.

Rp sections

ke o v e b e nde e -

Y

Figure D-1. Partitioning of Fingerprint Imagé for Neighborhood Average Ridge Width
Calculation

The procedure to choose Rp, the number of sections vertically in the image, is the same
as the procedure to find Cp, the number of sections horizontally. Therefore, in the following

209

discussion, the image height or width is referred to as ZZimage_size- FIISt, ZZimgge size iS
divided by the desired section size ZpesiRED_SECTION_size- If the result of this division is
an integer, then that integer is the number of sections (Rp or Cp) in the given image
dimension. Otherwise, ZpgsIRED_SECTION_SIZE is alternately incremented and
decremented (up to a maximum of Zpg TA SECTION Size from its original value) to find a
section size that divides zzjmgge size evenly.— If such a section size is not found, then the
section size that results in the smallest remainder from the division is chosen. Finally,
ZZimage size 1S divided by the resulting section size to obtain the number of sections (Rp or
Cp). Typical values of the section size and number of sections obtained for various image
dimensions are given in table D-1.

Table D-1. Partitions for Typical Image Sizes
height (width) number of sections Rp (Cp) pixels per section
440 8 55
450 9 50
480 8 60
512 8 64
600 10 60
640 10 64
750 15 50
800 16 50

D.2 SUMMARY

The parameter values used during development and testing of the algorithms described in
this section, as well as the input and output variables, are listed below.

Parameters

> ZpELTA_SECTION_SIZE = 20
Maximum variation in the height or width of a

fingerprint section
ZpESIRED_SECTION_SIZE =60 Desired height and width of a fingerprint section

Input
ZZimage size ~ 1mage height or width
Output
Number of sections into which the input dimension should be partitioned

210

FIND_BEST_PARTITION[2Zimage size]

W N

AN\ W

00

11
12

13
14

15
16
17
18
19
20

21

22
23

24

** ZZimage size is either the image width or height

** Returns the number of sections into which this dimension should be partitioned

if ((2Zimage_size mod ZDESIRED_SECTION_SIzE) =0) ** mod is the modulus operator
** Can form an integer number of sections of ZpesIRED_SECTION_SIZE

return (Zzimage_size / ZDESIRED_SECTION_SIZE)

** Try zzsection_size Within ZpDESIRED_SECTION_SIZE * ZDELTA_SECTION_SIZE
Z2best_remainder = ZDESIRED_SECTION_SIZE
for zz from 1 to Zpg 7a_SECTION_SIZE

** Try zzsection_size > ZDESIRED_SECTION_SIZE
2Zsection_size = ZDESIRED_SECTION_SIZE + 22
ZZremainder = (Zzimage_size mod Zzsection_size)
if (2zremainder = 0)
return (zzimage_size / Zzsection_size)
else
if (2zremainder < 2Zpest_remainder)
** This partitioning is the best so far, so save it
2Zpest_remainder = ZZremainder
Z2Zbest_section_size = ZZsection_size

** Try 2zsection_size < ZDESIRED_SECTION_SIZE
ZZsection_size = ZDESIRED_SECTION_SIZE — 22
ZZremainder = (zzimage_size mod zzsection_size)
if (2zremainder = 0)
return (zzimage_size / zzsection_size)
else
if (2Zremainder < Z2Zbest_remainder)
** This partitioning is the best so far, so save it
2Zbest_remainder = ZZremainder
2Zpest_section_size = ZZsection_size

** NO zzecrion size Was found to yield an integral partition, so return the best one found
return (2Zimage_size / 22best_section_size)

211

212

APPENDIX E
PSEUDOCODE FUNCTION CALL TREE

This appendix contains the pseudocode function call tree for the Flat Live-Scan
Searchprint Compression and Decompression algorithms. The main functions,
SEARCHPRINT_COMPRESSION and SEARCHPRINT_DECOMPRESSION, are given as flowcharts
instead of as pseudocode routines. The functions are listed in the order that they appear in
the document.

SEARCHPRINT_COMPRESSION Figure 2

Calls: BHO_BINARIZATION
IMAGE_CLEANING
PORE_FILLING
RIDGE_THINNING
CURVE_EXTRACTION
RIDGE_CLEANING
RIDGE_SMOOTHING
CALCULATE_CHORD_POINTS
CURVE_SORTING
ENCODE_FINGERPRINT

SEARCHPRINT_DECOMPRESSION Figure 3
Calls: DECODE_CURVE_LIST ' '
B-SPLINE
IMAGE_CLEANING Section 3

Called by: SEARCHPRINT_COMPRESSION
Calls: SPUR_REMOVAL
SPUR_REMOVAL Section 3.2.1
Called by: IMAGE_CLEANING
Calls: PROCESS_CANDIDATE_SPUR_PIXEL
PROCESS_CANDIDATE_SPUR_PIXEL Section 3.2.1

Called by: SPUR_REMOVAL
PROCESS_CANDIDATE_SPUR_PIXEL

Calls: PROCESS_CANDIDATE_SPUR_PIXEL

213

PoRE_FILLING

Called by: SEARCHPRINT_COMPRESSION

Calls: REMOVE_SMALL_PORES
REMOVE_LARGE_PORES

REMOVE_SMALL_PORES

Called by: PORE_FILLING
Calls: FOUR-CONNECTED_COMPONENTS

REMOVE_LARGE_PORES
Called by: PORE_FILLING

LARGE_PORE_TEST
LARGE_PORE_TEST
Called by: REMOVE_LARGE_PORES

SEARCH_EDGE_FOR_MINIMIZING_PIXEL
Called by: LARGE_PORE_TEST
PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS

Called by: REMOVE_SMALL_PORES
REMOVE_LARGE_PORES

Calls: RIDGE_THINNING
AVERAGE_SECTION_RIDGE_WIDTH

AVERAGE_SECTION_RIDGE_WIDTH

AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH

Called by: REMOVE_SMALL_PORES
REMOVE_LARGE_PORES

214

PREPARE_AVERAGE_NEIGHBORHOOD RIDGE_WIDTHS
AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH

Calls: PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS

AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH

Calls: SEARCH_EDGE_FOR_MINIMIZING_PIXEL

Called by: PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS

Section 4.1

Section 4.1.1

Reference [3]

Section 4.1.2.2

Section 4.1.2.3

Section 4.1.2.4

Section 4.1.3

Section 4.1.3

Section 4.1.3

RIDGE_THINNING

Called by: PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS

SEARCHPRINT_COMPRESSION

Calls: CHAMFER
DETECT_LOCAL_MAXIMA
FoLLow_RIDGE

CHAMFER

Called by: RIDGE_THINNING
DETECT_LOCAL_MAXIMA

Called by: RIDGE_ THINNING
FoLLow_RIDGE

Called by: RIDGE_THINNING
FoLLow_RIDGE

Calls: FoLLow_RIDGE

CURVE_EXTRACTION
Called by: SEARCHPRINT_COMPRESSION

Calls: CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES
EXTRACT_CURVES

CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES
Called by: CURVE_EXTRACTION
Calls: APPLY_MASKS

APPLY_MASKS
Called by: CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES

EXTRACT_CURVES
Called by: CURVE_EXTRACTION

Calls: INITIALIZE_AND_FOLLOW_CURVE
FoLLow_To_Do_LisT

INITIALIZE_AND_FOLLOW_CURVE
Called by: EXTRACT_CURVES
Calls: FoLLow

215

Section 5.1

Section 5.1.1

Section 5.1.2

Section 5.1.3

Section 6.1

Section 6.1.1.1

Section 6.1.1.2

Section 6.1.2

Section 6.1.2.1

FoLLow Section 6.1.2.2

Called by: INITIALIZE_AND_FOLLOW_CURVE
FoLLow_To_Do_LisT
FoLLow

Calls: CoUNT_NEIGHBORS_FOR_FOLLOWING
FoLLow
FIND_POSSIBLE_BRANCHES
INITIALIZE_BRANCHES

CoUNT_NEIGHBORS_FOR_FOLLOWING Section 6.1.2.3
Called by: FoLLow

FIND_POSSIBLE_BRANCHES Section 6.1.2.3
Called by: FoLLow

INITIALIZE_BRANCHES Section 6.1.2.5
Called by: FoLLow

FoLLow_To_Do_List Section 6.1.2.6
Called by: EXTRACT_CURVES
Calls: FoLLow

RIDGE_CLEANING Section 7.1
Called by: SEARCHPRINT_COMPRESSION ,
Calls: PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS_CURVE

SMALL_OFFSHOOT_CURVE_REMOVAL
CURrRVED_RIDGE_ENDING_REMOVAL
SMALL_RIDGE_BREAK_CONNECTION
SMALL_RIDGE_CONNECTION_REMOVAL
SMALL_RIDGE_SEGMENT_REMOVAL
BAD_BLOCK_BLANKING

PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS_CURVE Section 7.1
Called by: RIDGE_CLEANING '
RIDGE_SECTION_AVERAGE_RIDGE_WIDTH Section 7.1.2

Called by: CONNECTION_SCORING_FUNCTION
SMALL_RIDGE_CONNECTION_REMOVAL

SMALL_OFFSHOOT_CURVE_REMOVAL Section 7.1.3

Called by: RIDGE_CLEANING
Calls: JOIN_CURVES

216

JOIN_CURVES

Called by: SMALL_OFFSHOOT_CURVE_REMOVAL
BAD_BLOCK_BLANKING

SMALL_RIDGE_BREAK_CONNECTION

Called by: RIDGE_CLEANING

Calls: CONNECTION_SCORING_FUNCTION
CoNNECT_CURVES

CONNECTION_SCORING_FUNCTION

Called by: SMALL_RIDGE_BREAK_CONNECTION

Calls: RIDGE_SECTION_AVERAGE_RIDGE WIDTH
CONNECT_CURVES

Called by: SMALL_RIDGE_BREAK_CONNECTION
SMALL_RIDGE_CONNECTION_REMOVAL

Called by: RIDGE_CLEANING

Calls: RIDGE_SECTION_AVERAGE_RIDGE_WIDTH
Dot_PRrobucTt

Dot_ProbpucT

Called by: SMALL_RIDGE_CONNECTION_REMOVAL
SMALL_RIDGE_SEGMENT_REMOVAL

Called by: RIDGE_CLEANING
RIDGE_SMOOTHING

Called by: SEARCHPRINT_COMPRESSION
CALCULATE_CHORD_POINTS

Called by: SEARCHPRINT_COMPRESSION

Calls: LINE_FITTING
LINE FITTING

Called by: CALCULATE_CHORD_POINTS
LINE_FITTING

Calls: LINE_FITTING

217

Section 7.1.3.1

Section 7.1.4

Section 7.1.4.1

Section 7.1.4.2

Section 7.1.5

Section 7.1.5

Section 7.1.6

Section 8.2

Section 9.2

Section 9.2

CURVE_SORTING
Called by: SEARCHPRINT_COMPRESSION

Calls: SELECTIVE_PROCESSING
CYCLIC_PROCESSING

SELECTIVE_PROCESSING

Called by: CURVE_SORTING

Calls: SEARCH_FOR_THE_BEST-FIT CURVE
RESULTS_CHECKING

SEARCH_FOR_THE_BEST-FIT_CURVE
Called by: SELECTIVE_PROCESSING
Calls: DISTANCE_COMPARISON

DISTANCE_COMPARISON

Called by: SEARCH_FOR_THE_BEST-FIT_CURVE
SEARCH_FOR_THE_BEST_INSERTION_LOCATION

Calls: Max_BrTs
Sum_BrTs
SuM_DISTANCE

Max_BrTs
Called by: DISTANCE_COMPARISON
Calls: NuM_BITS
Sum_BITSs
Called by: DISTANCE_COMPARISON
Calls: NUM_BITS
SuM_DISTANCE
Called by: DISTANCE_COMPARISON
NuM_BITS

Called by: Max_Brrs
SumM_BITS
LINKAGE_COMPARISON

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE

RESULTS_CHECKING
Called by: SELECTIVE_PROCESSING

218

Section 10.1

Section 10.1.1

Section 10.1.1.1

Section 10.1.1.2

Section 10.1.1.2

Section 10.1.1.2

Section 10.1.1.2

Section 10.1.1.2

Section 10.1.1.3

CycCLIC_PROCESSING Section 10.1.2

Called by: CURVE_SORTING

Calls: SEARCH_FOR_THE_BEST_INSERTION_LOCATION
RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE

SEARCH_FOR_THE_BEST_INSERTION_L OCATION , Section 10.1.2.1

Called by: CycLIC_PROCESSING

Calls: DISTANCE_COMPARISON
LINKAGE_COMPARISON

LINKAGE_COMPARISON Section 10.1.2.2

Called by: SEARCH_FOR_THE_BEST_INSERTION_LOCATION

Calls: NUM_BITS
Is_SMALL

Is_SMALL Section 10.1.2.2
Called by: LINKAGE_COMPARISON

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE ~ Section 10.1.2.3
Called by: CycLIC_PROCESSING
Calls: NUM_BITS

ENCODE_FINGERPRINT Section 11.4

Called by: SEARCHPRINT_COMPRESSION

Calls: CALCULATE_RELATIVE_DISTANCES
DETERMINE_FINGERPRINT_DATA_PROPERTIES
ENCODE_CURVE_LIST

CALCULATE_RELATIVE_DISTANCES Section 11.4.1

Called by: ENCODE_FINGERPRINT

Calls: DETERMINE_CURVE_DELTA_OFFSETS
DETERMINE_CURVE_JUMP_OFFSETS

DETERMINE_CURVE_DELTA_OFFSETS Section 11.4.1

Called by: CALCULATE_RELATIVE_DISTANCES

DETERMINE_CURVE_JUMP_OFFSETS Section 11.4.1
Called by: CALCULATE_RELATIVE_DISTANCES

219

DETERMINE_FINGERPRINT_DATA_PROPERTIES
Called by: ENCODE_FINGERPRINT

Calls: DETERMINE_CURVE_SIGN_MONOTONICITY
GENERATE_HISTOGRAM
- DETERMINE_WORD_SIZES

GENERATE_HISTOGRAM
Called by: DETERMINE_FINGERPRINT_DATA_PROPERTIES
DETERMINE_WORD_SIZES
Called by: DETERMINE_FINGERPRINT_DATA_PROPERTIES
DETERMINE_CURVE_SIGN_MONOTONICITY
Called by: DETERMINE_FINGERPRINT_DATA_PROPERTIES
Calls: SIGN
SIGN

Called by: DETERMINE_CURVE_SIGN_MONOTONICITY
ENCODE_Jump

ENCODE_CURVE_LIST
Called by: ENCODE_FINGERPRINT

Calls: ENCODE_HEADER
OUTPUT_STREAM
ENCODE_CURVE_DELTAS
ENCODE_JumpP

ENCODE_HEADER

. Called by: ENCODE_CURVE_LIST

Calls: ENCODE_WORD_SIZES
- OUTPUT_STREAM

ENCODE_WORD_SIZES
Called by: ENCODE_HEADER
Calls: OUTPUT_STREAM

220

Section 11.4.2

Section 11.4.2

Section 11.4.2

Section 11.4.2

Section 11.4.2

Section 11.4.3

Section 11.4.3

Section 11.4.3

OUTPUT_STREAM

Called by: ENCODE_CURVE_LIST
ENCODE_HEADER
ENCODE_WORD_SIZES
ENCODE_USING_WORD_SIZES
ENCODE_JUuMP_REFERENCE_END
ENCODE_SIGN
ENCODE_CURVE_DELTAS

ENCODE_USING_WORD_SIZES

Called by: ENCODE_JUMP
- ENCODE_CURVE_DELTAS

Calls: OUTPUT_STREAM
ENCODE_JumP

Called by: ENCODE_CURVE_LIST

Calls: ENCODE_JUMP_REFERENCE_END
ENCODE_USING_WORD_SIZES
ENCODE_SIGN
SIGN

ENCODE_JUMP_REFERENCE_END
Called by: ENCODE_JumP
Calls: OUTPUT_STREAM

ENCODE_SIGN

Called by: ENCODE_JUuMP
ENCODE_CURVE_DELTAS

Calls: OuTPUT_STREAM

ENCODE_CURVE_DELTAS

Called by: ENCODE_CURVE_LIST

Calls: ENCODE_USING_WORD_SIZES
OUTPUT_STREAM
ENCODE_SIGN

221

Section 11.4.3

Section 11.4.3

Section 11.4.3

Section 11.4.3

Section 11.4.3

Section 11.4.3

DECODE_CURVE_LIST

Called by: SEARCHPRINT_DECOMPRESSION

Calls: DECODE_HEADER
INPUT_STREAM
DECODE_CURVE_DELTAS
DECODE_JumpP
APPLY_CURVE_DELTA_OFFSETS
APPLY_JUMP_OFFSETS

DECODE_HEADER

Called by: DECODE_CURVE_LIST

Calls: DECODE_WORD_SIZES
INPUT_STREAM

DECODE_WORD_SIZES
Called by: DECODE_HEADER
Calls: INPUT_STREAM

INPUT_STREAM

Called by: DECODE_CURVE_LIST
DECODE_HEADER
DECODE_WORD_SIZES
DECODE_JUMP_REFERENCE_END
DECODE_USING_WORD_SIZES
DECODE_SIGN_FOR_VALUE
DECODE_CURVE_DELTAS
DECODE_SIGN

DECODE_Jump

Called by: DECODE_CURVE_LIST

Calls: DECODE_JUMP_REFERENCE_END
DECODE_USING_WORD_SIZES
DECODE_SIGN_FOR_VALUE

DECODE_JUuMP_REFERENCE_END

Called by: DECODE_JuMP
Calls: INPUT_STREAM

222

Section 12.1

Section 12.1

Section 12.1

Section 12.1

Section 12.1

Section 12.1

DECODE_USING_WORD_SIZES

Called by: DECODE_JUuMP
DECODE_CURVE_DELTAS

Calls: INPUT_STREAM
DECODE_SIGN_FOR_VALUE

Called by: DECODE_JumpP

Calls: INPUT_STREAM]
DECODE_CURVE_DELTAS

Called by: DECODE_CURVE_LIST

Calls: DECODE_USING_ WORD_SIZES
INPUT_STREAM
DECODE_SIGN
APPLY_SIGN_TO_VALUE

DECODE_SIGN

Called by: DECODE_CURVE_DELTAS
Calls: INPUT_STREAM

APPLY_SIGN_TO_VALUE

Called by: DECODE_CURVE_DELTAS
APPLY_JUMP_OFFSET

Called by: DECODE_CURVE_LIST
APPLY_CURVE_DELTA_OFFSETS

Called by: DECODE_CURVE_LIST
B-SPLINE

Called by: SEARCHPRINT_DECOMPRESSION
Calls: A

~Nol--

A
Called by: B-SPLINE
B
Called by: B-SPLINE

223

Section 12.1

Section 12.1

Section 12.1

Section 12.1

Section 12.1

. Section 12.1

Section 12.1

Section 13.1

Section 13.1

Section 13.1

C

Called by: B-SPLINE
D

Called by: B-SPLINE
BHO_BINARIZATION

Called by: SEARCHPRINT_COMPRESSION

Calls: WRITE_BLOCK_FILE
WRITE _BLOCK_FILE

Called by: BHO_BINARIZATION
CurvED_RIDGE_ENDING_REMOVAL

Called by: RIDGE_CLEANING

Calls: PROCESS_RIDGE_ENDING

PROCESS_RIDGE_ENDING

Called by: CURVED_RIDGE_ENDING_REMOVAL

BAD_BLOCK_BLANKING

Called by: RIDGE_CLEANING
Calls: JOIN_CURVES

FIND_BEST_PARTITION

Section 13.1

Section 13.1

Appendix A

Appendix A

Appendix B

Appendix B

Appendix C

Appendix D

Used to set parameters in PREPARE_AVERAGE_NEIGHBORHOOD RIDGE_WIDTHS

224

APPENDIX F
LISTS OF CONSTANTS, PARAMETERS, AND VARIABLES

This appendix contains separate tables for constants, parameters, and variables that are
used in the pseudocode in this document. Each table contains the name of the item, the
pseudocode function that refers to it, and the section where the pseudocode resides. The
parameter and variable lists also contain a brief description of the item, while the constant list
is preceded by a table showing the constant groupings within which the values must be
distinct.

Table F-1. Constant Groupings
WHITE, BLACK
FALSE, TRUE
TOP_LEFT, TOP_RIGHT, BOTTOM_LEFT, BOTTOM_RIGHT, LEFT, TOP, RIGHT, BOTTOM
MONOTONIC_BOTH, MONOTONIC_DX, MONOTONIC_DY, NON_MONOTONIC
FIRST_ENDPOINT, LAST_ENDPOINT
POSITIVE, NEGATIVE

BACKGROUND, RIDGE, LOCAL_MAXIMUM

225

9TC

Constant
BACKGROUND
BACKGROUND
BIFURCATION
BIFURCATION
BIFURCATION
BIFURCATION
BIFURCATION
BLACK

BLACK

BLACK

BLACK

BLACK

BLACK

BLACK

BLACK

BLACK

BLACK

BLACK
BOTTOM
BOTTOM_LEFT
BOTTOM_RIGHT
CONTINUE_FIRST_STAGE
CONTINUE_FIRST_STAGE
EMPTY

EMPTY

EMPTY

Table F-2. List of Constants

Function
DETECT_LOCAL_MAXIMA
FoLLow_RIDGE -
EXTRACT_CURVES

FoLLow

FoLLow_To_Do _List
INITIALIZE_AND_FoLLOW_CURVE
INITIALIZE_BRANCHES
AVERAGE_SECTION_RIDGE_WIDTH
CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES
DYNAMIC_THRESHOLDING
EXTRACT_CURVES
FIND_POSSIBLE_ BRANCHES
FoLLow

FoLLow_To_Do_List
PROCESS_CANDIDATE_SPUR_PIXEL
REMOVE_LARGE_PORES
REMOVE_SMALL_PORES
SPUR_REMOVAL

FoLLOW_RIDGE

FoLLOW_RIDGE

FoLLOW_RIDGE
RESULTS_CHECKING
SELECTIVE_PROCESSING
EXTRACT_CURVES
FIND_POSSIBLE_BRANCHES
FoLrLow_To_Do_LisT

5.1.2
5.1.3
6.1.2
6.1.2.2
6.1.2.6
6.1.2.1
6.1.2.5
4.13
6.1.1.1
2.2
6.1.2
6.1.2.3
6.1.2.2
6.1.2.6
3.2.1
4122
4.1.1
3.2.1
5.1.3
5.13
5.13
10.1.1.3
10.1.1

6.1.2

6.1.2.3
6.1.2.6

LT

Constant

EMPTY

EMPTY

EMPTY

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE
FIRST_ENDPOINT
FIRST_ENDPOINT
FIRST_ENDPOINT
FIRST_ENDPOINT
FIRST_ENDPOINT
FIRST_ENDPOINT
FIRST_STAGE_FINISHED
ILLEGAL_CONNECTION
LARGE_PORE_CANDIDATE
LARGE_PORE_CANDIDATE
LAST_ENDPOINT
LAST_ENDPOINT

Table F-2. List of Constants (continued)

Function

INITIALIZE_AND FoLLOW_CURVE
INITIALIZE_BRANCHES
BAD_BLOCK_BLANKING

APPLY_MASKS

CoONNECT_CURVES
CONVERT_TO_SINGLE_P1XEL_WIDE_RIDGES
DETERMINE_CURVE_SIGN_MONOTONICITY
DISTANCE_COMPARISON

FoLLow_RIDGE

LINKAGE_COMPARISON
REMOVE_SMALL_PORES
SEARCH_FOR_THE_BEST-FIT_CURVE
SEARCH_FOR_THE_BEST_INSERTION_LOCATION
SMALL_RIDGE_BREAK_CONNECTION
APPLY_JUMP_OFFSET
DECODE_JuMP_REFERENCE_END
DETERMINE_JUMP_OFFSET
ENCODE_JuMP_REFERENCE_END
SEARCH_FOR_THE_BEST-FIT_ CURVE
SEARCH_FOR_THE_BEST_INSERTION_LOCATION
RESULTS_CHECKING
CONNECTION_SCORING_FUNCTION
LARGE_PORE_TEST
REMOVE_LARGE_PORES
APPLY_JUMP_OFFSET
DECODE_JUMP_REFERENCE_END

Section
6.1.2.1
6.1.2.5
Appendix C
6.1.1.2
7.14.2
6.1.1.1
11.4.2
10.1.1.2
513
10.1.2.2
4.1.1
10.1.1.1
10.1.2.1
7.14
12.2
12.2
114.1
1143
10.1.1.1
10.1.2.1
10.1.1.3
7.14.1
4123
4122
12.2
12.2

8¢CC

Constant

LAST_ENDPOINT
LAST_ENDPOINT
LAST_ENDPOINT
LAST_ENDPOINT
LAST_ENDPOINT
LEFT
LOCAL_MAXIMUM
LOCAL_MAXIMUM
LOCAL_MAXIMUM
LOCAL_MAXIMUM

MAX_OFFSET_POSSIBLE

MAX_OFFSET_POSSIBLE
MONOTONIC_BOTH
MONOTONIC_BOTH
MONOTONIC_BOTH
MONOTONIC_DX
MONOTONIC_DX
MONOTONIC_DX
MONOTONIC_DY
MONOTONIC_DY
MONOTONIC_DY
NEGATIVE
NEGATIVE
NEGATIVE
NEGATIVE
NON_MONOTONIC

Table F-2. List of Constants (continued)

Function
DETERMINE_JUMP_OFFSET
ENCODE_JUMP_REFERENCE_END
RESULTS_CHECKING
SEARCH_FoOR_THE_BEST-FIT_CURVE

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

FoLLow_RIDGE
DETECT_LOCAL_MAXIMA
FoLLow_RIDGE

FoLLow_RIDGE

RIDGE_THINNING

RESULTS_CHECKING
SEARCH_FOR_THE_BEST-FIT_CURVE
DECODE_CURVE_DELTAS
DETERMINE_CURVE_SIGN_MONOTONICITY
ENCODE_CURVE_DELTAS
DECODE_CURVE_DELTAS
DETERMINE_CURVE_SIGN_MONOTONICITY
ENCODE_CURVE_DELTAS
DECODE_CURVE_DELTAS
DETERMINE_CURVE_SIGN_MONOTONICITY
ENCODE_CURVE_DELTAS
APPLY_SIGN_To_VALUE

DECODE_SIGN

ENCODE_SIGN

SIGN

DECODE_CURVE_DELTAS

114.1
1143
10.1.1.3
10.1.1.1
10.1.2.1
5.13
512
5.13
5.13
3.1
10.1.1.3
10.1.1.1
12.2
114.2
114.3
12.2
11.4.2
11.4.3
12.2
11.4.2
11.4.3
12.2
12.2
1143
114.2
12.2

6¢C

Table F-2. List of Constants (continued)

Constant Function Section
NON_MONOTONIC DETERMINE_CURVE_SIGN_MONOTONICITY 114.2
NON_MONOTONIC ENCODE_CURVE_DELTAS 114.3
NOT_VALID LARGE_PORE_TEST | 4123
NOT_VALID SEARCH_EDGE_FOR_MINIMIZING_PIXEL 4124
NULL ‘ CycLiC_PROCESSING 10.1.2
NULL RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE 10.1.2.3
NULL | SEARCH_FOR_THE_BEST_INSERTION_LOCATION 10.1.2.1
NULL SELECTIVE_PROCESSING 10.1.1
POSITIVE DECODE_SIGN 12.2
POSITIVE DETERMINE_CURVE_SIGN_MONOTONICITY 1142
POSITIVE ENCODE_SIGN 114.3
POSITIVE SIGN 11.4.2
POSSIBLE FIND_POSSIBLE_BRANCHES 6.1.2.3
REPEAT_FIRST_STAGE RESULTS_CHECKING , 10.1.1.3
REPEAT_FIRST_STAGE_SEARCH SELECTIVE_PROCESSING 10.1.1
RIDGE CHAMFER 5.1.1
RIDGE FoLLow_RIDGE 5.1.3
RIGHT FoLLoOwW_RIDGE 5.13
SEED FIND_POSSIBLE_BRANCHES 6.1.2.3
SEED FoLLow 6.12.2
SEED INITIALIZE_BRANCHES 6.1.2.5
TRUE APPLY_MASKS ' 6.1.1.2
TRUE CoNNECT_CURVES 7.14.2
TRUE CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES 6.1.1.1
TRUE DETERMINE_CURVE_SIGN_MONOTONICITY 114.2

TRUE DISTANCE_COMPARISON 10.1.1.2

a

0eT

TRUE
UNDEFINED_DIRECTION

ZERO
ZERO
ZERO

'ZERO

Table F-2. List of Constants (continued)
Function
FoLLow_RIDGE
LINKAGE_COMPARISON
PORE_FILLING
REMOVE_SMALL_PORES
RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE
SEARCH_FOR_THE_BEST-FIT_CURVE
SEARCH_FOR_THE_BEST_INSERTION_LOCATION
RIDGE_THINNING
CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES
CREASE_TRIMMING
DYNAMIC_THRESHOLDING
FoLLow)
FoLLow_To_Do_List
INITIALIZE_AND_FoLLOW_CURVE
PROCESS_CANDIDATE_SPUR_PIXEL
REMOVE_LARGE_PORES
REMOVE_SMALL_PORES
DECODE_SIGN
DECODE_SIGN_FOR_VALUE
DETERMINE_CURVE_SIGN_MONOTONICITY
SIGN

5.13
10.1.2.2
4.1
4.1.1
10.1.2.3
10.1.1.1
10.1.2.1
5.1
6.1.1.1
3.1.1
2.2
6.1.2.2
6.1.2.6
6.1.2.1
3.2.1
4122
4.1.1
12.2
12.2

1142

11.4.2

1€T

Parameter
ACOLINEAR = 45 degrees
APARALLEL = 45 degrees

AseGMENT = 60 degrees

AsTRAIGHT = 90 degrees

ALLOWABLE_RESIDUE

BITSHUFFMAN_INDEX = 2

Table F-3. List of Parameters
Eunction
CONNECTION_SCORING_FUNCTION

SMALL_RIDGE_CONNECTION_REMOVAL

CONNECTION_SCORING_FUNCTION

SMALL_RIDGE_CONNECTION_REMOVAL

LINE_FITTING

ENCODE_HEADER

Section Descrinti

7.14.1

7.1.5

7.14.1

7.1.5

9.2

1143

Angular limit
for colinearity
Angular limit
for parallelism
of neighboring
ridges
Angular limit
for colinearity
with a small
segment
Angular limit
for straightness
Smallest
acceptable
perpendicular
distance
between the
curve segment
and the chord
segment

The number of
bits used to
represent the
sign
monotonicity
type index that
is assigned to a
particular
Huffman
symbol

(474

Table F-3. List of Parameters (continued)

Parameter Function
BITS\mAGE_size =16 ENCODE_HEADER
BITSiMAGE_sizE = 16 DECODE_HEADER

BITSminMUM_NUMBER_OF DELTA =2 DECODE_HEADER

BITSMiNIMUM_NUMBER_OF_DELTA = 2 DETERMINE_FINGERPRINT_DATA_PROPERTIES

X

Section Descripti

1143

12.2

12.2

114.2

The number of
bits used to
represent the

~dimensions of

the image

The number of
bits used to
represent the
dimensions of
the image

The number of
bits used to
represent the
minimum
number of
deltas of any
curve of the
curve list

The number of
bits used to
represent the
minimum
number of
deltas of any
curve of the
curve list

1274

Table F-3. List of Parameters (continued)

Parameter Function

BITSminiMUM_NUMBER_OF DELTA =2 ENCODE_HEADER

B'TSNUMBER_OF__WORD__SIZES =2 DECODE_WORD_SIZES

BITSNUMBER_OF WORD_sizes =2 ENCODE_WORD_SIZES

BITSNUMBER_OF_CURVES =11 DECODE_CURVE_LIST

Section D .
11.4.3 The number of

12.2

1143

12.2

bits used to
represent the
minimum
number of
deltas of any
curve of the
curve list

The number of
bits used to
represent the
number of word
sizes in a
word_size
coding scheme:

The number of
bits used to
represent the
number of word
sizes in a
word_size
coding scheme

The number of
bits used to
represent the
number of
curves in the
fingerprint
curve list

1274

Parameter

BITSnumBER_OF_cuURVEs = 11

BITSworp_size =4

BITSworp_size =4

BITSx coorpiNATE=9

Table F-3. List of Parameters (continued)
Function

ENCODE_CURVE_LIST

DECODE_WORD_SIZES

ENCODE_WORD_SIZES

DECODE_CURVE_LIST

Section Descrioti

1143

12.2

11.4.3

12.2

The number of
bits used to
represent the
number of

. curves in the

fingerprint
curve list

* The number of

bits used to
represent a
word size in a
word_size
coding scheme

The number of
bits used to
represent a
word size in a
word_size
coding scheme

The number of
bits used to
represent an
absolute
x-coordinate in
the live-scan
fingerprint
image (based on
the width of the

.image)

gec

Parameter
BITSx_coorpiNaTE =9

BITSy_coorbpinaTE = 10

BITSy_coorbinaTe = 10

Table F-3. List of Parameters (continued)

Functi Section D .

ENCODE_CURVE_LIST 11.4.3 The number of
bits used to
represent an
absolute
x-coordinate in
the live-scan
fingerprint
image (based on
the width of the
image)

DECODE_CURVE_LIST 122 The number of
bits used to
represent an
absolute
y-coordinate in
the live-scan
fingerprint
image (based on
the height of the
image)

ENCODE_CURVE_LIST 1143 The number of

~ bits used to
represent an
absolute
y-coordinate in
the live-scan
fingerprint
image (based on
the height of the
image)

v

Co, =25%

Dcycric = 64

Table F-3. List of Parameters (continued)
PREPARE_AVERAGE_NEIGHBORHOOD RIDGE_WIDTHS 4.1.3 Number of
columns in the
fingerprint
image
PREPARE_AVERAGE_NEIGHBORHOOD RIDGE WIDTHS 4.1.3 Number of
horizontal
sections in the
partition of the
fingerprint
image used to
calculate
average ridge
widths
RESULTS_ CHECKING 10.1.1.3 Maximum
percentage of
curves that can
exist in the
unsorted_list
before the
cyclic
processing stage
will begin if
SEARCH_FOR_
THE_BEST-
FIT_CURVE fails
CycLIC_PROCESSING ' 10.1.2 Initial filter
value assigned
to each curve
upon entering
the cyclic
processing stage

. LET

Parameter

DseLect = 128

Emax =50

Emax =50

FoouBLy_CONNECTED = 2.25

Table F-3. List of Parameters (continued)

Function
SELECTIVE_PROCESSING

LARGE_PORE_TEST

SEARCH_EDGE_FOR_MINIMIZING_PIXEL

SMALL_RIDGE_CONNECTION_REMOVAL

Section Description

10.1.1

4123

4124

7.15

Initial value
assigned to the
filter variable
upon entering
the selective
processing stage
The maximum
distance for a
search along a
ridge edge, in
pixels

The maximum
distance for a
search along a
ridge edge, in
pixels
Maximum
length of a
doubly
connected curve
in terms of the
average of its
neighboring end
sections’
average ridge
widths

8¢C

Parameter
ForrsHooT curve =2.0

FRrIiDGE_BREAK = 1.0

FUNCONNECTED_CURVE = 5.0

| Table F-3. List of Parameters (continued)

Function
SMALL_OFFSHOOT CURVE_REMOVAL

- CONNECTION_SCORING_FUNCTION

SMALL_RIDGE_SEGMENT REMOVAL

Section Descrinti

7.13

7.14.1

7.1.6

Length of the
smallest
allowable singly
connected curve
in terms of
ridge_widthfinge
rprint

Maximum

‘length of a

possibly
connectable
ridge break in
terms of
ridge_widthgng,
rprint

Length of the

‘smallest

allowable
unconnected
curve in terms
of
ridge_widthgne,

rprint

6¢C

Parameter
H=5

LpousLy_conNecTED = 20

Lmax =10

Table F-3. List of Parameters (continued)

Function
SEARCH_EDGE_FOR_MINIMIZING_PIXEL

SMALL_RIDGE_CONNECTION_REMOVAL

REMOVE_LARGE_PORES

Section Description

4.12.4

7.1.5

4122

When choosing
aridge edge
pixel to
minimize the
distance to a
point, a pixel is
considered to
minimize this
distance if no
ridge edge pixel
within H pixels

. yields a smaller

distance

Maximum
length of a
doubly
connected curve
to be considered
for removal

Maximum ratio
between the
white area of a
large pore
candidate and
the average
ridge width in
its
neighborhood

ove

LUpax =15

MAXoFrseT = 601

MAXoFrseT = 601

PiniT =6

Table F-3. List of Parameters (continued)

Function
LARGE_PORE_TEST

RESULTS_CHECKING

SEARCH_FOR_THE_BEST-FiT_CURVE

B-SPLINE

DYNAMIC_THRESHOLDING

SELECTIVE PROCESSING

Section Descripti
4,123 Maximum
distance to the
left of, or up
from, an initial
pore pixel to its
enclosing ridge
edge, in pixels
10.1.1.3 The larger of
the width and
height of the
image, plus one
10.1.1.1 The larger of
the width and
height of the
image, plus one
13.2 - Heightand
width (in
pixels) of the
pixel
neighborhood -
window

22 Height and
width (in
pixels) of the
pixel
neighborhood
window

10.1.1 Initial value for

the penalty
variable

| 444

Pmax =2.5

Pmin=3.0

Rp=10

Table F-3. List of Parameters (continued)

Functi Section Descripti

LARGE_PORE_TEST 4123

LARGE_PORE_TEST 4123

PREPARE_AVERAGE_NEIGHBORHOOD RIDGE WIDTHS 4.1.3

PREPARE_AVERAGE_NEIGHBORHOOD _RIDGE WIDTHS 4.1.3

Maximum ratio

between the
pore and ridge
widths of a

* candidate and _

the average
neighborhood
ridge width in
the large pore
model
Minimum ratio
between the
width of a pore
candidate and
the ridges to
either side of it
in the large pore
model

Number of rows
in the
fingerprint
image

Number of
vertical sections
in the partition
of the
fingerprint
image used to
calculate
average ridge
widths

(444

Parameter
RADIUSpgrauLT = 81

RIDGE_SIZEyn =5

RIDGE_SIZEyn =5

15

Table F-3. List of Parameters (continued)
Function

SMALL_RIDGE BREAK_CONNECTION

CONNECTION_SCORING_FUNCTION

SMALL_RIDGE_BREAK_CONNECTION

Is_SMALL

Section Descripti

7.14

7.14.1

7.14

Default search
radius for the
small ridge
break
connection
algorithm
Minimum
length of a
curve allowed
to be used in
calculating
colinearity
Minimum
length of a
curve allowed
to be used in
calculating
colinearity

10.1.2.2 Limit used to

test whether one
insertion
linkage has
more small
offsets than
another
insertion
linkage

1374

Table F-3. List of Parameters (continued)

S=15 LINKAGE_COMPARISON 10.1.2.2 Limit used to
test whether one
insertion
linkage has
more small
offsets than
another
insertion
linkage

SverTicAL RUN = 12 lwiDTH CREASE_TRIMMING ' 3.1.1 Widthof

- sampled
vertical_run

SIZESpgL1As =2 DETERMINE_FINGERPRINT_DATA_PROPERTIES 1142 Maximum
number of word
sizes allowed
for encoding the
deltas of curves

SIZES jumps =3 DETERMINE_FINGERPRINT_DATA_PROPERTIES 1142 Maximum
number of word
sizes allowed
for encoding the
jumps between
curves

SIZESNUM DELTAS = 2 DETERMINE_FINGERPRINT_DATA_PROPERTIES 11.4.2 Maximum
- number of word
sizes allowed
for encoding the
number of
deltas in curves

e

Parameter
Torrser =40

WDOUBLY_CONNECTED =0.95

Wnmax = 8.0

Table F-3. List of Parameters (continued)
Function

CREASE_TRIMMING

RIDGE_SMOOTHING

SMALL_RIDGE_CONNECTION_REMOVAL

AVERAGE_SECTION_RIDGE_WIDTH

Section Descrioti

3.1.1

8.2

1.1.5

413

Number of rows
below the
crease where
trimming begins
The window
size constant for
the smoothing
window

Maximum
average ridge
width of the
doubly
connected curve
in terms of the
average of its
neighboring end
sections average
ridge widths
Maximum
width of a ridge
for the average
ridge width
calculation, in
pixels

19 74

Parameter
Wun=14"

ZDELTA_SECTION_SIzE = 20

ZpESIRED_SECTION_SIZE = 60

Zenp size=6

Zenp size=6

Table F-3. List of Parameters (continued)

Function

AVERAGE_SECTION_RIDGE WIDTH

FIND_BEST PARTITION

FIND_BEST_PARTITION

CuURVED_RIDGE_ENDING_REMOVAL

PROCESS_RIDGE_ENDING

4.13

D.2

- D.2

B.1

B.1

Minimum width
of a ridge for
the average
ridge width
calculation, in
pixels
Maximum
variation in the
width or height
of a fingerprint
section
Desired width
and height of a
fingerprint

_section

Maximum
number of
points that can
be removed
from a curved
ridge ending
Maximum
number of
points that can
be removed
from a curved
ridge ending

e

Parameter
Z| ENGTH_OFFSHOOT = 5.0

Z| ENGTH_UNCONNECTED = 10.0

ZsATURATION_RATIO = 2.0

Z1aPeR_RATIO = 0.75

ZTHRESH_ANGLE = 30 degrees

Table F-3. List of Parameters (continued)

Function
SMALL_OFFSHOOT_CURVE_REMOVAL

SMALL_RIDGE_SEGMENT_REMOVAL

BHO_BINARIZATION

PROCESS_RIDGE_ENDING

PROCESS_RIDGE_ENDING

Section Descripti

7.13

7.1.6

A.13

B.1

B.1

Length of the
smallest
allowable singly
connected curve
in terms of the
local average

" ridge width

Length of the
smallest
allowable
unconnected
curve in terms
of the local
average ridge
width
Maximum ratio
between pixels
at 254 and -
pixels at 255 for
an unsaturated
image

Tapering ridge
width ratio limit
for curved ridge
ending
Curvature limit
for curved
ridge ending

e

Parameter

ZTHRESHOLD_FRACTION = 0.8

ZwipTH_oFFsHooT = 0.65

ZwIDTH_UNCONNECTED = 0.65

ZN=24

Table F-3. List of Parameters (continued)

BHO_BINARIZATION A.1.3 Fraction of the
distance
between the
mean pixel
value and the
maximum pixel
value in an
image used to
determine
2z_top

SMALL_OFFSHOOT_CURVE_REMOVAL 7.1.3 Width of the
smallest
allowable singly
connected curve
in terms of the
local average
ridge width

SMALL_RIDGE_SEGMENT_REMOVAL 7.1.6 Width of the
smallest
allowable
unconnected
curve in terms
of the local
average ridge
width

BHQO_BINARIZATION App A Height and
width (in
pixels) of
blocks

8v¢C

Keolumn

Hrow

Hvertical_run

Mwindow

Overtical_run

Table F-4. List of Variables

Function
RIDGE_SMOOTHING

DYNAMIC_THRESHOLDING

RIDGE_SMOOTHING

CREASE_TRIMMING

DYNAMIC_THRESHOLDING

CREASE_TRIMMING

APPLY_CURVE_DELTA_OFFSETS

S T e D - -

8.2 Average column
coordinate of the
points currently
within the

smoothing window

22 Image overall
mean pixel value

8.2 Average row
coordinate of the
points currently
within the
smoothing window

3.1.1 Mean of the
sampled
vertical_run
lengths

2.2 Mean pixel value
of a pixel’s
neighborhood
window

3.1.1 Standard deviation
of the sampled
vertical_run
lengths

12.2 Index in curve of
point prior to one
currently being
considered

62 ' ,

Table F-4. List of Variables (continued)

Function
APPLY_JUMP_OFFSET

CALCULATE_RELATIVE_DISTANCES

CHAMFER

CoNNECT_CURVES

CONNECTION_SCORING_FUNCTION

DECODE_CURVE_LIST

DECODE_Jump

DETERMINE_CURVE_DELTA_OFFSETS

S i D L. .

12.2

11.4.1

3.1.1

7.14.2

7.14.1

12.2

12.2

11.4.1

Index in curve_list
of curve prior to
one currently being
considered

Index in curve_list
of curve prior to
one currently being
considered

Candidate chamfer
value

One of two curves
to be connected
into one curve

An endpoint that is
on one side of a
potential small
ridge break

Index in curve_list
of curve prior to
one currently being
considered

Index in curve_list
of curve prior to
one currently being
considered

Index in curve of
point prior to one
currently being
considered

0S¢

Table F-4. List of Variables (continued)
Variabl : ; Section Descripti
a ' DETERMINE_JUMP_OFFSET 11.4.1 Index in curve_list
: of curve prior to

one currently being
considered

a Dot_PrRODUCT _ 7.1.5 A point

a ENCODE_JumpP 11.4.3 Index in curve_list
of curve prior to
one currently being
considered

a JOIN_CURVES 7.1.3.1 One of two curves
to be concatenated
into one curve

a : RIDGE_SMOOTHING 8.2 Point on the front
of the smoothing
window

a SMALL_OFFSHOOT_CURVE_REMOVAL 7.1.3 One of two curves
' that shares an
endpoint with the
curve being
considered

a SMALL_RIDGE_BREAK_CONNECTION 7.14 Endpoint initiating
search for small
ridge break

a SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 Acurve
overlapping the
curve being
considered for
being a small ridge .
connection

16T

Table F-4. List of Variables (continued)
Variabl Functi Section Descripti
after_curve RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
Curve in
sorted_list before
which the first
curve in

unsorted_list best
fits in sorted_list

after_curvereference end flag RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
The reference end
flag of after _curve

angle_score, CONNECTION_SCORING_FUNCTION 7.14.1 Value related tg the
angle of change
traversed from
refathrough
endpoint g to

~ endpoint b

angle_scorep CONNECTION_SCORING_FUNCTION 7.1.4.1 Value related to the
angle of change
traversed from
refythrough
endpoint b to
endpoint a

area_vector REMOVE_SMALL_PORES 4.1.1 Vector of areas
corresponding to
labels in

. LABEL_IMAGE

ax \ APPLY_CURVE_DELTA_OFFSETS 12.2 The x coordinate
of pointa

ay DETERMINE_CURVE_DELTA_OFFSETS 11.4.1 The y coordinate
of pointa

[AY4

s & &

o

Table F-4. List of Variables (continued)
Function
APPLY_CURVE_DELTA_OFFSETS

DETERMINE_CURVE_DELTA_OFFSETS

APPLY_CURVE_DELTA_OFFSETS

APPLY_JUMP_OFFSET

CALCULATE_RELATIVE_DISTANCES

CHAMFER

CoNNECT_CURVES

CONNECTION_SCORING_FUNCTION

DECODE_CURVE_LIST

DECODE_Jump

. S . D) .

122 The y coordinate
of point a

11.4.1 The y coordinate
of pointa

12.2 Index in curve of
point currently
being considered

12.2 Index in curve_list
of curve currently
being considered

11.4.1 Index in curve_list
of curve currently
being considered

5.1.1 Candidate chamfer
value

7.1.4.2 One of two curves
to be connected
into one curve

7.1.4.1 An endpoint that is
on one side of a
potential small
ridge break

12.2 Index in curve_list
of curve currently
being considered

12.2 Index in curve_list
of current curve
being considered

1354

Variable

o

Table F-4. List of Variables (continued)
Function
DETERMINE_CURVE_DELTA_OFFSETS

DETERMINE_JUMP_OFFSET

Dot_Probucr
ENCODE_JumpP

JOIN_CURVES
RIDGE_SMOOTHING

SMALL_OFFSHOOT_CURVE_REMOVAL

SMALL_RIDGE_BREAK_CONNECTION

Section Description

11.4.1

114.1

7.1.5
11.4.3

7.1.3.1

8.2

7.13

7.14

Index in curve of
point currently
being considered

Index in curve_list
of curve currently
being considered

A point
Index in curve_list

of curve currently
being considered

One of two curves
to be concatenated
into one curve

Point on the back
of the smoothing
window

One of two curves
that shares an
endpoint with the
curve being
considered

Candidate
endpoint for being
part of small ridge
break

124

Table F-4. List of Variables (continued)
Variable Function

b SMALL_RIDGE_CONNECTION_REMOVAL

by, ApPLY_CURVE_DELTA_OFFSETS
b, DETERMINE_CURVE_DELTA_OFFSETS
by APPLY_CURVE_DELTA_OFFSETS

b, DETERMINE_CURVE_DELTA_OFFSETS

Section Descripti

1.1.5

12.2

11.4.1

12.2

11.4.1

A curve
overlapping the
curve being
considered for

being a small ridge

connection

The x coordinate
of point b
The x coordinate
of point b
The y coordinate
of point b

The x coordinate
of point b

before curve RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3

before_c UI'V€reference_end_flag

Curve in
sorted_list after
which the first
curve in
unsorted_list best
fits in sorted _list

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED CURVE10.1.2.3
The reference end

flag of
before_curve

S Y4

Variable

best_insertion_linkage

Table F-4. List of Variables (continued)

Function 4 Section Description

SEARCH_FOR_THE_BEST_INSERTION_LOCATION 10.1.2.1 The best insertion
linkage found for
placing the first
curve of
unsorted_list into
sorted_list

best_insertion_linkagefrom_endpoint_offset RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3

best_insertion_linkage:, endpoint offset

best_insertion_linkagex offset from

best_insertion_linkagex ofset from

best_insertion_linkagex ofset to

The offset of the
“from” side of the
: best insert linkage

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
The offset of the
“to” side of the
best insert linkage

CyCLIC_PROCESSING 10.1.2 The x offset of the
“from” side of the
best insert linkage

LINKAGE_COMPARISON 10.1.2.2 The x offset of the
jump of
best_insertion_link
age from first
curve of
unsorted_list to
curve of sorted_list

CycLIC_PROCESSING 10.1.2 The x offset of the

“to” side of the
best insert linkage

96T

Variable

best_insertion_linkagey offset to

best_insertion_linkagey ofset from

best_insertion_linkagey ofset from

best_insertion_linkagey ofset to

best_insertion_linkagey ofset to

Table F-4. List of Variables (continued)

Function

LINKAGE_COMPARISON

CyCLIC_PROCESSING

LINKAGE_COMPARISON

CycLIC_PROCESSING

LINKAGE_COMPARISON

Section D .
10.1.2.2 The x offset of the

10.1.2

jump of
best_insertion_
linkage from curve

- of sorted_list to

first curve of
unsorted_list

The y offset of the
“from” side of the
best insert linkage

10.1.2.2 The y offset of the

10.1.2

jump of
best_insertion_
linkage from first
curve of
unsorted_list to
curve of sorted_list
The y offset of the
“to” side of the
best insert linkage

10.1.2.2 The y offset of the

jump of
best_insertion_
linkage from curve
of sorted_list to
first curve of
unsorted_list

LST

Table F-4. List of Variables (continued)

Variabl Functi Section Descripti

best_insertion_location CycCLIC_PROCESSING 10.1.2 Curvein
sorted_list having
after which

first_curve of
unsorted_list
should be placed

best _insertion_location RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3

Curve in
sorted_list after
which the first
curve in
unsorted_list best
fits in sorted_list

best_insertion_location SEARCH_FOR_THE_BEST_INSERTION_LoOCATION 10.1.2.1 Location in
sorted_list that the
first curve in
unsorted_list is to
be placed

best_jump DI1STANCE_COMPARISON 10.1.1.2 Best jump found
so far in the sorting
process '

best_jump SEARCH_FOR_THE_BEST-FIT_CURVE 10.1.1.1 The best jump to
and point in
unsorted_list from
b : _ the last point in
sorted_list
best jump, RESULTS_CHECKING 10.1.1.2 The x offset of the

best jump found by
the sorting process

~

86¢

Variable
best_jump_from_unsorted_curve,

best_jump to_unsorted _curve,

best_jump ,

best_jump

best_jump,,

best_numbits

best_quantity smalls

Table F-4. List of Variables (continued)
Function

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST-FIT_CURVE

RESULTS_CHECKING

SEARCH_FOR_THE_BEST-FIT_CURVE

LINKAGE_COMPARISON

LINKAGE_COMPARISON

Section Descripti

10.1.2.1 The x offset of the
best jump from
first curve of
unsorted_list to
curve_plus one of
sorted_list

10.1.2.1 The x offset of the
best jump from
curve of sorted_list
to first curve of
unsorted_list

10.1.1.1 The x value of
best_jump

10.1.1.2 The y offset of the
best jump found by
the sorting process

10.1.1.1 The y value of
best_jump

10.1.2.2 Number of bits
required to
represent the
largest offset
magnitude in
best insertion_
linkage

10.1.2.2 Number of offsets
in best_insertion_
linkage that are

less than or equal
toS

65T

Table F-4. List of Variables (continued)

Variable Function Section Description
best_score _ CREASE_TRIMMING 3.1.1 The largest score

encountered while
searching for the

crease
best score, SMALL_RIDGE BREAK_CONNECTION 7.1.4 The largest score
of the endpoints in
| the candidate list
bi RIDGE_CLEANING 7.1 Block row index
bi WRITE_BLOCK_FILE A.2.2 Block row index
bits DETERMINE_WORD_SIZES 11.42 The number of bits
calculated for

some combination
of word sizes

bitspmin DETERMINE_WORD_SIZES 11.4.2 The minimum
' number of bits

bj RIDGE_CLEANING 7.1 Block colmn index

bj WRITE_BLOCK_FILE A.2.2 Block colmn index

block_file BHO_BINARIZATION A3 File containing the
ridge direction data
structure

block_file WRITE_BLOCK_FILE A.2.2 File containing the
ridge direction data
structure

branch * INITIALIZE_BRANCHES 6.1.2.5 Alegofa
bifurcation

c CHAMFER 5.1.1 Candidate chamfer

value

09¢

Yariable

[>T >

s aaa

C

Cbottom

Ccenler

Table F-4. List of Variables (continued)
Function
CoNNECT_CURVES

DETECT_LOCAL_MAXIMA
Dot_ProDUCT
JoIN_CuRVES

RIDGE_CLEANING
RIDGE_SECTION_AVERAGE_RIDGE_WIDTH
RIDGE_THINNING
SMALL_RIDGE_CONNECTION_REMOVAL

CURVED_RIDGE_ENDING_REMOVAL
CREASE_TRIMMING

CREASE_TRIMMING

Section Descripti
7.14.2 Curve being

5.12
7.1.5
7.13.1

7.1
7.1.2
5.1
1.1.5

B.1
3.1.1

generated by
connecting two
curves across a
small ridge break
Chamfered image
A point

Curve being
generated by
joining two curves
Chamfer image
Chamfered image
Chamfered image
A curve
overlapping the
curve being
considered for

“being a small ridge

connection
Chamfered image
The row index
corresponding to
the estimated
bottom of the
flexion crease
The row index
corresponding to
the estimated
center of the
flexion crease

19T

Cmax

candidate

candidate_list

CHAMFER

CHAMFER

check_list

chord

closest_curve

Table F-4. List of Variables (continued)
Function
CHAMFER

LARGE_PORE_TEST

SMALL_RIDGE_BREAK_CONNECTION

AVERAGE_SECTION_RIDGE_WIDTH

Section Descripti

5.1.1

4.1.2.3

7.14

4.13

PREPARE_AVERAGE_NEIGHBORHOOD RIDGE_WIDTHS

SMALL_RIDGE_BREAK_CONNECTION

LmE_F[mNG

RESULTS_CHECKING

7.14

9.2

A very large
integer value to
indicated that a
pixel has not been
yet processed
White region
containing P,, i.e.,
the pore candidate
List of candidate
endpoints that may
be part of a small
ridge break
Chamfered
fingerprint image
413

Chamfered
fingerprint image
A list of candidate
endpoints that are
to be checked for
being the mutually
best small ridge
break

The line passing
through
first_endpoint and
second_endpoint

10.1.1.2 Curve found to be

closest to last point
in sorted_list

9C

Variable
closest_curve

column

column

columns_per_section

columns_per_section

component_max

Table F-4. List of Variables (continued)
Functi Section [..

SEARCH_FOR_THE_BEST-FIT_CURVE

AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH 413

PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS

AVERAGE_NEIGHBORHOOD RIDGE_WIDTH 413

PREPARE_AVERAGE_NEIGHBORHOOD RIDGE WIDTHS

10.1.1.1 Curve found to be

closest to last point
in sorted list

Column index of
the

RIDGE_WIDTH _
ARRAY

4.1.3 ,
Column index of
the
RIDGE_WIDTH _
ARRAY

Number of
columns in a
fingerprint image
section

413

Number of
columns in a
fingerprint image
section

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3

Number of bits
necessary to
represent largest
offest

€9¢

Variable

connection_score

count

current_insertion_linkage

current_insertion_linkagefrom_jump

current_insertion_linkagey, jump

Table F-4. List of Variables (continued)

Function
CONNECTION_SCORING_FUNCTION

AVERAGE_SECTION_RIDGE_WIDTH

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

Section Description
7.1.4.1 Value indicating
the relative
possibility that a
pair of endpoints is
part of a small
ridge break
Number of ridge
points in the
current fingerprint
image section

10.1.2.1 Linkage between
curves in
sorted_list and the
first curve of
unsorted_list that
is currently being
considered

10.1.2.1 The jump of the
current insertion
linkage from the
first curve of
unsorted_list to
curve_plus_one in
curve_list ‘

10.1.2.1 The jump of the
current insertion
linkage from curve
in curve_list to
first curve of
unsorted_list

4.13

¥9C

Varjable

current_insertion_linkagey offser - from

current_insertion_linkagey offser to

current_insertion_linkagey offset from

current_insertion_linkagey ofser 1o

current_jump

Table F-4. List of Variables (continued)
Function
LINKAGE_COMPARISON

LINKAGE_COMPARISON

LINKAGE_COMPARISON

LINKAGE_COMPARISON

DISTANCE_COMPARISON

Section
10.1.2.2

10.1.2.2

10.1.2.2

10.1.2.2

10.1.1.2

Description

The x offset of the
jump of '
current_insertion_
linkage from the
first curve of
unsorted_list to
curve of sorted_list

The x offset of the
jump of
current_insertion_
linkage from curve
of sorted_list to
first curve of
unsorted_list

The x offset of the
jump of
current_insertion_
linkage from first
curve of
unsorted_list to
curve of sorted_list
The y offset of the
jump of
current_insertion_
linkage from curve
of sorted_list to
first curve of
unsorted_list
Jump currently
being compared
against best_jump

69¢

Table F-4. List of Variables (continued)

Variabl Function

current_jump - SEARCH_FOR_THE_BEST-FIT_CURVE
current_jump SEARCH_FOR_THE_BEST_INSERTION_LOCATION
current_jumpy SEARCH_FOR_THE_BEST-FIT_CURVE
current_jumpy SEARCH_FOR_THE_BEST_INSERTION_LOCATION
current_jump,, SEARCH_FOR_THE_BEST-FIT_CURVE
current_jump, SEARCH_FOR_THE_BEST_INSERTION_LOCATION

10.1.1.1 Jump between
endpoints in
last_curve and
curve

10.1.2.1 The jump between
the first curve in
unsorted_list to a
curve from
sorted_list

10.1.1.1 Absolute
difference between
the x coordinates
of endpoints in
last curve and
curve

10.1.2.1 The x offset of
current_jump

10.1.1.1 Absolute
difference between
the y coordinates
of endpoints in
last_curve and
curve

10.1.2.1 The y offset of
current_jump

99¢

Table F-4. List of Variables (continued)

Variable Function Section Description

current_numbits LINKAGE_COMPARISON 10.1.2.2 Number of bits
required to
represent the
largest offset

magnitude in
current_insertion_
linkage

current_quantity smalls LINKAGE_COMPARISON 10.1.2.2 Number of offsets
in
current_insertion_
linkage that are
less than or equal

A toS

curve APPLY_CURVE_DELTA_OFFSETS 12.2 One curve in the

curve_list
curve B-SPLINE 13.2 Current curve

' being processed

curve CALCULATE_CHORD_POINTS 9.2 The fingerprint
curve currently
being processed

curve CALCULATE_RELATIVE_DISTANCES 11.4.1 Onecurve in the
curve_list

curve CycLIC_PROCESSING 10.1.2 Curve from
unsorted_list
currently being
considered

curve DECODE_CURVE_DELTAS 122 Onecurve in the
curve_list

curve DECODE_CURVE_LIST 122 Onecurve in the
curve_list

L9T

ariabl

curve

curve

curve

curve

curve

curve

curve

curve

curve

curve

curve

Table F-4. List of Variables (continued)

Function
DECODE_JUMP_REFERENCE_END

DETERMINE_CURVE_DELTA_OFFSETS
DETERMINE_CURVE_SIGN_MONOTONICITY
DETERMINE_FINGERPRINT_DATA_PROPERTIES

CURVED_RIDGE_ENDING_REMOVAL

ENCODE_CURVE_DELTAS
ENCODE_CURVE_L1ST
ENCODE_JUMP_REFERENCE_END

EXTRACT_CURVES

FoLLow_To_Do_LisT

INITIALIZE_AND_FOLLOW_CURVE

12.2 One curve in the
curve_list

11.4.1 One curve in the
curve_list

11.4.2 Onecurve in the
curve_list

11.4.2 One curve in the
curve_list

B.1 A curve under
consideration for
having a curved
ridge ending

11.43 One curve in the
curve_list

11.4.3 One curve in the
curve_list

11.4.3 One curve in the
curve_list

6.1.2 A curve being :
extracted from a
fingerprint image

6.1.2.6 A curve being
extracted from a
fingerprint image

6.1.2.1 A curve being

extracted from a
fingerprint image

89T

curve
curve
curve

curve

curve

curve

curve

curve

Table F-4. List of Variables (continued)
Function
INITIALIZE_BRANCHES

RIDGE_SECTION_AVERAGE_RIDGE_WIDTH

RIDGE_SMOOTHING

SEARCH_FOR_THE_BEST-FIT_CURVE

SEARCH_FOR_THE_BEST_INSERTION_L.OCATION

SELECTIVE_PROCESSING

SMALL_OFFSHOOT_CURVE_REMOVAL

SMALL_RIDGE_BREAK_CONNECTION

Section Descripti
6.1.2.5 A curve being

7.1.2

8.2

extracted from a
fingerprint image
The curve along
which the ridge
section resides
The curve that is in
the process of
being smoothed

10.1.1.1 Curve currently

being considered

10.1.2.1 Curve in sort_list

10.1.1

7.13

7.14

being considered
for being an
insertion point
Curve that is
closest to the
center of the
fingerprint image
The curve being
considered for
being a small
offshoot curve
Curve being
considered for
being part of a
small ridge break

69¢

Variable

curve

curve

CUrveéfirst_endpoint_x

CUIVéfirst_endpoint_x

CUr'V€first_endpoint_y

CUrveéfirst_endpoint_y

CUrV€iast_endpoint_x

Table F-4. List of Variables (continued)

Function
SMALL_RIDGE_CONNECTION_REMOVAL

SMALL_RIDGE_SEGMENT_REMOVAL

SEARCH_FOR_THE_BEST-FIT_CURVE

SEARCH_FOR_ THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST-FIT_CURVE

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST-FIT_CURVE

Section Description

7.1.5

7.1.6

A curve under
consideration for
being a small ridge
connection

A curve under
consideration for
being a small ridge
segment

10.1.1.1 The x coordinate

of first endpoint in
curve

10.1.2.1 The x coordinate

of the first
endpoint of the
curve from
sorted_list

10.1.1.1 The y coordinate

of first endpoint in
curve

10.1.2.1 The y coordinate

of the first
endpoint of the
curve from
sorted_list

10.1.1.1 The x coordinate

of last endpoint in
curve

0LT

Table F-4. List of Variables (continued)

Yariable Function

CUI'Veiast_endpoint_x _ SEARCH_FOR_THE_BEST_INSERTION_LOCATION
CUT'Velast_endpoint_y SEARCH_FOR_THE_BEST-FIT_CURVE
CUI'V€last_endpoint_y SEARCH_FOR_THE_BEST_INSERTION_LOCATION
curve, CONNECTION_SCORING_FUNCTION

curvey, CONNECTION_SCORING_FUNCTION

CUrVefilter value CycCLIC_PROCESSING

curve 2 INITIALIZE_AND_FOLLOW_CURVE

curve_list BAD_BLOCK_BLANKING

Section [. .
10.1.2.1 The x coordinate

of the last endpoint
of curve from
sorted_list

10.1.1.1 The y coordinate

of last endpoint in
curve

10.1.2.1 The y coordinate

7.14.1

7.14.1

10.1.2

6.1.2.1

C2

of the last endpoint
of curve from
sorted _list

One of two curves
that are potentially
part of a small
ridge break

One of two curves
that are potentially
part of a small
ridge break

Filter value for
curve

The second half of
a curve being
extracted from a
fingerprint image
List of curves that
represent the
fingerprint

ILC

Yariable

curve_list

curve_list

curve_list

curve_list

curve_list

curve_list

curve_list

curve_list

curve_list

curve_list

Table F-4. List of Variables (continued)
Function
B-SPLINE
CALCULATE_CHORD_POINTS
CALCULATE_RELATIVE_DISTANCES
CONNECT_CURVES
DECODE_CURVE_LIST
‘ DETERMINE_FINGERPRINT_DATA_PROPERTIES
CURVED_RIDGE_ENDING_REMOVAL
ENCODE_CURVE_LIST

ENCODE_FINGERPRINT

JoIN_CURVES

S T e E . .

13.2 List of curves that
represent the
fingerprint

9.2 List of curves that

represent the
 fingerprint

11.4.1 List of curves
representing the .
fingerprint

7.14.2 List of curves
representing the
fingerprint

12.2 List of curves
representing the
fingerprint

11.42 List of curves
representing the
fingerprint

B.1 List of curves
representing the
fingerprint

11.43 List of curves
representing the
fingerprint

11.4 List of curves
representing the
fingerprint

7.1.3.1 List of curves
representing the
fingerprint

LT

Yariable

curve_list

curve_list

curve_list

curve_list

curve_list

curve_list

curve_plus _one

curve _plus_on%nt_endpoim_x

Table F-4. List of Variables (continued)
Function
RIDGE_CLEANING
RIDGE_SMOOTHING
SMALL_OFFSHOOT_CURVE_REMOVAL
SMALL_RIDGE_BREAK_CONNECTION
SMALL_RIDGE_CONNECTION_REMOVAL
SMALL_RIDGE_SEGMENT_REMOVAL

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

Section Descripti
7.1 List of curves
representing the
fingerprint
8.2 List of curves
representing the
fingerprint
7.1.3 List of curves
representing the
fingerprint
7.14 List of curves
representing the
fingerprint
7.1.5 List of curves
representing the
fingerprint
7.1.6 List of curves
representing the
fingerprint
10.1.2.1 The curves
following curve in
sorted_list

10.1.2.1 The x coordinate
of the first
endpoint of
curve_plus_one
from sorted_list

€LT

Variable

curve_plus_onegirst endpoint_y

curve_plus_oneyast endpoint_x

curve _Plus_onelast_endpoint 'y

curve_set

curve_set

curve_set

curve_sign,

curve_signy

Table F-4. List of Variables (continued)
Function
SEARCH_FOR_THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST_INSERTION_LOCATION
SEARCH_FOR_THE_BEST_INSERTION_LOCATION

CURVE_EXTRACTION
EXTRACT_CURVES
FoLLow_To_Do_List

DETERMINE_CURVE_SIGN_MONOTONICITY

DETERMINE_CURVE_SIGN_MONOTONICITY

Section Description

10.1.2.1 The y coordinate
of the first
endpoint of
curve_plus_one
from sorted_list

10.1.2.1 The x coordinate
of the last endpoint
of curve plus one
from sorted_list

10.1.2.1 The y coordinate
of the last endpoint
of curve_plus one
from sorted_list

6.1 Set of curves
extracted from
fingerprint image

6.1.2 Set of curves
extracted from

, fingerprint image

6.1.2.6 Set of curves
extracted from
fingerprint image

11.4.2 The sign of the
first delta, in curve

11.4.2 The sign of the
first delta, in curve

vLT

- Variable

curve_sign_monotonicity

curve_sign_monotonicity

delta

delta

Table F-4. List of Variables (continued)
Function

DETERMINE_CURVE_SIGN_MONOTONICITY

DETERMINE_FINGERPRINT DATA_PROPERTIES

CHAMFER

SMALL_RIDGE_CONNECTION_REMOVAL

DECODE_CURVE_DELTAS

ENCODE_CURVE_DELTAS

Section Descripti

11.42 The monotonicity
type, or sign
fluctuations,
determined for the
delta offsets of a
particular curve

11.4.2 The monotonicity
type, or sign
fluctuations,
determined for the
delta offsets of a
particular curve

5.1.1 Candidate chamfer
value

7.1.5 A curve
overlapping the
curve being
considered for
being a small ridge
connection

12.2 The relative
distance between
two adjacent points
within a curve

11.4.3 The relative
distance between
two adjacent points
within a curve

SLT

Variable

deltaminimum_per curve

deltaminimum _per_curve

deltaminimum _per_curve

delta,

delta,

rTable F-4. List of Variables (continued)

Function
DECODE_CURVE_DELTAS

DECODE_HEADER

DETERMINE_FINGERPRINT_DATA_PROPERTIES

APPLY_CURVE_DELTA_OFFSETS

DECODE_CURVE_DELTAS

Section Description

12.2

12.2

11.4.2

12.2

12.2

The minimum
number of deltas
per curve for all
curves in
curve_list

The minimum
number of deltas
per curve for all
curves in
curve_list

The minimum
number of deltas
per curve for all
curves in
curve_list

The relative
distance in the x
direction of two
adjacent points
within a curve

The relative
distance in the x
direction of two
adjacent points
within a curve

9LT

delta,

delta,

delta,

delta,

delta,

delta,

Table F-4. List of Variables (continued)
Function
DECODE_HEADER

DETERMINE_CURVE_DELTA_OFFSETS

DETERMINE_CURVE_SIGN_MONOTONICITY

DETERMINE_FINGERPRINT_DATA_PROPERTIES

ENCODE_CURVE_DELTAS

ENCODE_HEADER

S) . D 0 .

12.2

11.4.1

11.4.2

1142

11.4.3

11.4.3

The relative
distance in the x
direction of two
adjacent points
within a curve
The relative
distance in the x
direction of two
adjacent points
within a curve

The relative
distance in the x
direction of two
adjacent points
within a curve
The relative
distance in the x
direction of two
adjacent points
within a curve

The relative
distance in the x
direction of two
adjacent points
within a curve

The relative
distance in the x
direction of two
adjacent points
within a curve

LLT

delta,

delta,

deltay

deltay

deltay

deh‘ay

Table F-4. List of Variables (continued)
Function
APPLY_CURVE_DELTA_OFFSETS

DECODE_CURVE_DELTAS

DECODE_HEADER

DETERMINE_CURVE_DELTA_OFFSETS

DETERMINE_CURVE_SIGN_MONOTONICITY

DETERMINE_FINGERPRINT_DATA_PROPERTIES

Section Descrinti

12.2

12.2

12.2

11.4.1

11.4.2

1142

The relative
distance in the y
direction of two
adjacent points
within a curve

The relative
distance in the y
direction of two
adjacent points
within a curve

The relative
distance in the y
direction of two
adjacent points
within a curve
The relative
distance in the y
direction of two
adjacent points
within a curve

The relative
distance in the y
direction of two
adjacent points
within a curve

The relative
distance in the y
direction of two
adjacent points
within a curve

8LC

deltay

deltay .

delta_count

~delta_count

direction

direction

Table F-4. List of Variables (continued)
Function
ENCODE_CURVE_DELTAS

ENCODE_HEADER

DECODE_CURVE_DELTAS

ENCODE_CURVE_DELTAS

FoLLow_RIDGE

SEARCH_EDGE_FOR_MINIMIZING_PIXEL

Section Descripti

11.4.3 The relative
distance in the y
direction of two
adjacent points

within a curve

11.4.3 The relative
distance in the y
direction of two
adjacent points
within a curve

12.2 The number of
deltas in curve less
deltaminimum_per_
curve

11.4.3 The number of
deltas in curve less
deltaminimum per
curve

5.1.3 Pixel direction to
previous pixel of
ridge following

4.1.2.4 The search
direction: either
clockwise or
counterclockwise

6LT

Yariable

distance

e

edgelef

edgeyight

endpointy

endpoint;

endpoint,

Table F-4. List of Variables (continued)
Function

CONNECTION_SCORING_FUNCTION

CHAMFER

CREASE_TRIMMING
CREASE_TRIMMING

SMALL_RIDGE_CONNECTION_REMOVAL

SMALL_RIDGE_CONNECTION_REMOVAL

SMALL_RIDGE_CONNECTION_REMOVAL

Section D .

7.1.4.1 Euclidean distance
between two
endpoint that are
on either side of a
potential small
ridge break

5.1.1 Candidate chamfer
value

3.1.1 The left edge of
the fingerprint
impression

3.1.1 The right edge of
the fingerprint
impression

7.1.5 Anendpoint of the
curve being
considered for
being a small ridge
connection

7.1.5 Anendpoint of the
curve being
considered for
being a small ridge
connection

7.1.5 The endpoint of a
curve overlapping
the curve being
considered for
being a small ridge
connection

W

08¢

Yariable
endpointy

endpoint,

endpointy

endpoint_flag

endpoint flag

Table F-4, List of Variables (continued)
Function

SMALL_RIDGE_CONNECTION_REMOVAL

SMALL_RIDGE_CONNECTION_REMOVAL

SMALL_RIDGE_CONNECTION_REMOVAL

RESULTS_CHECKING

SEARCH_FOR_THE_BEST-FIT_CURVE

7.1.5

7.1.5

7.1.5

' Section Descripti

The endpoint of a
curve overlapping
the curve being
considered for
being a small ridge
connection

The endpoint of a
curve overlapping
the curve being
considered for
being a small ridge
connection

The endpoint of a
curve overlapping
the curve being
considered for
being a small ridge
connection

10.1.1.2 Flag indicating

whether a jump
originated from the
first or last
endpoint in a curve

10.1.1.1 Flag indicating

whether a jump

originated from the
- first or last

endpoint in a curve

18C

Table F-4. List of Variables (continued)

Variable Function Section Description

endpoint_flag SELECTIVE_PROCESSING 10.1.1 Flag indicating
' whether a jump
originated from the
first or last
endpoint in a curve

endpoint _flag one SEARCH_FOR_THE_BEST_INSERTION_LOCATION 10.1.2.1 Temporary
endpoint flag for
curve from
sorted_list

endpoint_flag_two SEARCH_FOR_THE_BEST_INSERTION_LOCATION 10.1.2.1 Temporary
endpoint flag for
the first curve on
, unsorted_list

endpoint_map BAD_BLOCK_BLANKING C.2 A representation of
curve endpoints
allowing efficient
search for
endpoints near a
specified
coordinate

endpoint_map CoNNECT_CURVES 7.1.4.2 A representation of
curve endpoints
allowing efficient
search for
endpoints near a
specified
coordinate

8T

Yariable

endpoint_map

endpoint_map

endpoint_map

endpoint_map

Table F-4. List of Variables (continued)
Function
CUrRVED_RIDGE_ENDING_REMOVAL

JOIN_CURVES

RIDGE_CLEANING

SMALL_OFFSHOOT_CURVE_REMOVAL

Section Descripti

B.1 A representation
of curve endpoints
allowing efficient
search for
endpoints near a
specified
coordinate

7.1.3.1 A representation of
curve endpoints
allowing efficient
search for
endpoints near a
specified
coordinate

7.1 A representation of
curve endpoints
allowing efficient
search for
endpoints near a
specified
coordinate

7.1.3 A representation of
curve endpoints
allowing efficient
search for
endpoints near a
specified
coordinate

£8¢C

Yariable
endpoint_map

endpoint_map

f

first_curve

first_curve

Sirst_curvesier value

Jirst_curvegier value

Jirst_curvegier value

Table F-4. List of Variables (continued)

Functi Section Descrinti
SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 A representation of
curve endpoints
allowing efficient
search for
endpoints near a
specified
coordinate
SMALL_RIDGE_SEGMENT_REMOVAL 7.1.6 A representation of
' curve endpoints
allowing efficient
search for
endpoints near a
specified
coordinate
CHAMFER 5.1.1 Candidate chamfer
value
CyCLIC_PROCESSING 10.1.2 First curve in
unsorted_list
RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
The first curve of
unsorted_list
10.1.2 Filter value for
first_curve
RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
The filter value of
the first curve in
unsorted_list
SEARCH_FOR_THE_BEST_INSERTION LoCATION 10.1.2.1 Filter value for
first curve in
unsorted_list

CyYCLIC_PROCESSING

¥8¢

Variable

Jirst_curvegirss_endpoint_x

first_curv €first_endpoint_y

Sirst_curv €last_endpoint_x

first_curv Clast_endpoint_y

Jirst_curvereference_end flag

first_endpoint
first pt

first_pt

Table F-4. List of Variables (continued)
Function

SEARCH_FOR_THE_BEST_INSERTION_L.OCATION

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

Section Descripti

10.1.2.1 The x coordinate
of the first
endpoint of the
first curve in
unsorted_list

10.1.2.1 The y coordinate
of the first
endpoint of the
first curve in
unsorted_list

10.1.2.1 The x coordinate
of the first
endpoint of the
first curve in
unsorted_list

10.1.2.1 The y coordinate
of the first
endpoint of the
first curve in
unsorted_list

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3

LINE_FITTING
APPLY_JUMP_OFFSET

DETERMINE_JUMP_QFFSET

The reference end
flag of first_curve

9.2 An endpoint of the
current chord

12.2 First point in curve
b

11.4.1 First point in curve
b

¢8¢C

Variable
first_pt,

first_pt,
first_pt,
first_py,

flag
flag
flag

Sfrom_endpoint_offset

Jrom_endpoint_offset,

Table F-4. List of Variables (continued)
Function
AppLY_JUMP_OFFSET
DETERMINE_JUMP_OFFSET
APPLY_JUMP_OFFSET

DETERMINE_JUMP_OFFSET

DECODE_JuMP_REFERENCE_END
DECODE_SIGN

DECODE_SIGN_FOR_VALUE

Section Description

12.2

114.1

12.2

11.4.1

12.2
12.2

12.2

The x coordinate
of first point in
curve b

The x coordinate
of the first point in
curve b

The y coordinate
of first point in
curve b

The y coordinate
of the first point in
curve b

Flag value to
decode

Flag value to
decode

Flag value to
decode

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3

The jump from

first_curve to

after_curve

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3

The x offset of the

jump from
first_curve to

after_curve

98¢

Variable

Jrom_endpoint_offset,

8
h

height

height

height

height

“heightc

heighty
histogram

histogram

Table F-4. List of Variables (continued)
Function

CHAMFER
CHAMFER

EXTRACT_CURVES

Section Descripti

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3

5.1.1

3.1.1

6.1.2

PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS

REMOVE_LARGE_PORES
REMOVE_SMALL_PORES
DETECT_LocAL_MAXmMA

CHAMFER -
DETERMINE_FINGERPRINT_DATA_PROPERTIES

DETERMINE_WORD_SIZES

4122

4.1.1

5.12

5.1.1
11.4.2

11.4.2

The y offset of the
jump from
first_curve to
after_curve
Candidate chamfer
value

Candidate chamfer
value

Height of
fingerprint image
413

Height of
fingerprint image
Height of
fingerprint image
Height of
fingerprint image
Height of chamfer
image C

Height of image I
A histogram of
differences of
number of deltas
of each curve less
deltaminimum per
curve

Frequency
distribution of
values

L8T

Variable

histogram

horizontal_run

-, e, e, ",

Table F-4. List of Variables (continued)

Function
GENERATE_HISTOGRAM

CREASE_TRIMMING

A

APPLY_MASKS
AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH
AVERAGE_SECTION_RIDGE_WIDTH

B

BHO_BINARIZATION

RIDGE_CLEANING
B-SPLINE

C

CHAMFER

- CHAMFER

CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES
CREASE_TRIMMING
CREASE_TRIMMING

Section Descripi

114.2

3.1.1

13.1

6.1.1.2
4.13
4.13
13.2

A3

7.1
13.2

13.2

5.1.1
5.1.1

6.1.1.1
3.1.1
3.1.1

Frequency
distribution of
values

The longest run of
consecutive white
pixels for every
row

Array index for x
coordinates

Row index
Row index
Row index

Array index for x
coordinates
Gray-scale
fingerprint image
Row index

Array index of
current curve

Array index for x
coordinates

Row index
Gray-scale
fingerprint image
Row index
Row index

Gray-scale
fingerprint image

88T

Variable

Py e T,

Py T e, e

",

IMAGE

Table F-4. List of Variables (continued)

Function
D

DETECT_LocAL_MAXmMA
DYNAMIC_THRESHOLDING
DYNAMIC_THRESHOLDING

EXTRACT_CURVES
FoLLOW_RIDGE
IMAGE_CLEANING

INITIALIZE_AND_FoLLOW_CURVE
LARGE_PORE_TEST

LINE_FITTING
PROCESS_CANDIDATE_SPUR_PIXEL
PROCESS_CANDIDATE_SPUR_PIXEL

REMOVE_LARGE_PORES
REMOVE_SMALL_PORES
RIDGE_THINNING
RIDGE_THINNING

SPUR_REMOVAL
SPUR_REMOVAL

APPLY_MASKS

Section Description

13.2 Armray index for x
coordinates

5.1.2 Row index

2.2 Row index

22 Gray-scale
fingerprint image

6.1.2 Rowindex

5.1.3 Row index

3 Gray-scale
fingerprint image

6.1.2.1 Row index

4.1.2.3 Row index

9.2 Loop index

3.2.1 Rowindex

3.2.1 Gray-scale
fingerprint image

4.1.2.2 Row index

4.1.1 Rowindex

5.1 Row index

5.1 Gray-scale

fingerprint image
3.21 Rowindex
3.2.1 Gray-scale
fingerprint image
6.1.1.2 Fingerprint image
to which masks are
being applied

Variable
IMAGE

IMAGE

IMAGE

IMAGE

68T

IMAGE

IMAGE

IMAGE

IMAGE

Table F-4. List of Variables (continued)

FoLLow 6.1.2.2
FOLLow_To_Do_Llsr 6.1.2.6
INITIALIZE_AND_FOLLOW_CURVE 6.1.2.1

PORE_FILLING 4.1

PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS

Function Section Description
CoNVERT_TO_SINGLE_PIXEL_WIDE_RIDGES 6.1.1.1 Fingerprint image
in which ridges is
being converted to
) single-pixel width
CURVE_EXTRACTION 6.1 Fingerprint image
from which curves
are being extracted
EXTRACT_CURVES 6.1.2 Fingerprint image

from which curves
are being extracted
Fingerprint image
from which curves
are being extracted
Fingerprint image
from which curves
are being extracted
Fingerprint image
from which curves
are being extracted
Fingerprint image
for which pores are
being filled

413

Fingerprint image
from which
neighborhood
ridge widths are
being extracted

062

Variable
IMAGE

IMAGE

S S S S S

Table F-4. List of Variables (continued)

Function
REMOVE_LARGE_PORES

REMOVE_SMALL_PORES

APPLY_MASKS
AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH
AVERAGE_SECTION_RIDGE_WIDTH
RIDGE_CLEANING

B.SPLINE

CALCULATE_CHORD_POINTS
CHAMFER
CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES
CREASE_TRIMMING
DETECT_LOCAL_MAXIMA
DYNAMIC_THRESHOLDING
EXTRACT_CURVES
FoLLOowW_RIDGE
INITIALIZE_AND_FoLLOW_CURVE
LARGE_PORE_TEST

LINE_FITTING
PROCESS_CANDIDATE_SPUR_PIXEL
REMOVE_LARGE_PORES

Section Description

4.1.2.2 Fingerprint image
from which large
pores are being
removed

4.1.1 Fingerprint image
from which small
pores are being
removed

6.1.1.2 Column index
4.1.3 Column index
4.1.3 Column index

7.1 Column index

13.1 Array index of
current point in
current curve

9.2 First index

"5.1.1 Column index

6.1.1.1 Column index
3.1.1 Column index
5.1.2 Column index
2.2 Column index
6.1.2 Column index
5.1.3 Column index
6.1.2.1 Column index
4.1.2.3 Column index
9.2 First index

3.2.1 Column index
4.1.2.2 Column index

16T

' Vagiabl

Jump

Jjump

Jump

Jump

Jumpy

Table F-4. List of Variables (continued)
Function
REMOVE_SMALL_PORES
RIDGE_THINNING

SPUR_REMOVAL
DETERMINE_JUMP_OFFSET

Max_BITS

Sum_BITs

SuUM_DISTANCE

ApPpPLY_JUMP_OFFSET

Section D . .
4.1.1 Column index
5.1 Column index

3.2.1 Column index

11.4.1 The relative
distances from the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

10.1.1.2 Jump for which the
largest number of
bits is being
calculated

10.1.1.2 Jump for which the
sum of the bits is X
being calculated »E

10.1.1.2 Jump for which the
sum of the
distances is being
calculated

12.2 The relative
distance in the x
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

Table F-4. List of Variables (continued)

Yariable Function Section Description

jumpy DECODE_HEADER 12.2 The relative:
distance in the x
direction of the
endpoint of one
curve and the first
endpoint of the

next consecutive
curve

Jjumpy DECODE_Jump 122 The relative
distance in the x
direction of the
endpoint of one
curve and the first
endpoint of the

‘ ~ next consecutive
curve

Jjump, DETERMINE_FINGERPRINT_DATA_PROPERTIES 11.4.2 The relative
distance in the x
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

6T

£6¢

jumpy

Jumpy

Jumpy

Jumpy
jumpy,

Jumpy

Table F-4. List of Variables (continued)
Function
DETERMINE_JUMP_OFFSET

ENCODE_HEADER

ENCODE_Jump

Max_BITS
Sum_BITS

SUM_DISTANCE

Section Descrioti

11.4.1

11.4.3

1143

The relative
distance in the x
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

The relative
distance in the x
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

The relative
distance in the x
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

10.1.1.2 The x offset of

Jump

10.1.1.2 The x offset of

Jump

10.1.1.2 The x offset of

jump

y6¢

Table F-4. List of Variables (continued) .

Variable Function Section Description

Jump, A APPLY_JUMP_OFFSET 12.2 The relative
distance in the y
direction of the
endpoint of one
curve and the first
endpoint of the

next consecutive
curve

Jump, DECODE_HEADER 122 The relative
distance in the y
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

Jump, DECODE_Jump 122 The relative
distance in the y
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

$6¢

Variable
Jumpy

Jumpy

Jumpy

Table F-4. List of Variables (continued)

Function
DETERMINE_FINGERPRINT_DATA_PROPERTIES

DETERMINE_JUMP_OFFSET

ENCODE_HEADER

Section D i tion
11.4.2 The relative

114.1

11.43

distance in the y
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

The relative
distance in the y
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

The relative
distance in the y
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

96¢

Jumpy

Jjumpy
Jjump,
Jjump,

k
k

k
LABEL_IMAGE

last_curve

last_curv €first_endpoint_x

last_curvefirst_endpoint_y

Table F-4. List of Variables (continued)

Function
ENCODE_Jump

Max_BITS
SuM_BITS
SuM_DISTANCE

CALCULATE_CHORD_POINTS
CREASE_TRIMMING

LINE_FITTING
REMOVE_SMALL_PORES

SELECTIVE_PROCESSING

SEARCH_FOR_THE BEST-FIT_CURVE

SEARCH_FOR_THE_BEST-FIT_CURVE

Section Descrinti

11.4.3 The relative
distance in the y
direction of the
endpoint of one
curve and the first
endpoint of the
next consecutive
curve

10.1.1.2 The y offset of
Jump

10.1.1.2 The y offset of
Jump

10.1.1.2 The y offset of
Jump

9.2 Last index

3.1.1 Temporary row
index

9.2 Last index

4.1.1 Fingerprint image
with labeled white
regions

10.1.1 Curve at the end of
sorted_list

10.1.1.1 The x coordinate
of first endpoint in
last _curve

10.1.1.1 The y coordinate
of first endpoint in
last_curve

L6T

Variable

last_curvegst_endpoint_x
last_curveiast_endpoint_y

last_curv €reference_end_flag

last_point
last_point
last_point
last_point
last point

lengthiw

lengthsw

Table F-4. List of Variables (continued)
Function
SEARCH_FOR_THE_BEST-FIT_CURVE

SEARCH_FOR_THE_BEST-FIT_CURVE

RESULTS_CHECKING

CoOUNT_NEIGHBORS_FOR_FOLLOWING
FIND_POSSIBLE_BRANCHES

FoLLow

FoLLow_To Do _LisT
INITIALIZE_BRANCHES

DETERMINE_WORD_SIZES

DETERMINE_WORD_SIZES

Section [.
10.1.1.1 The x coordinate

of last endpoint in
last_curve

10.1.1.1 The y coordinate

of last endpoint in
last_curve

10.1.1.2 reference end flag

6.1.2.2

6.1.2.3

6.12.2

6.1.2.6

6.1.2.5

11.4.2

11.4.2

for the last curve in
sorted_list

Last point on a
curve

Last point on a
curve

Last point on a
curve

Last point on a
curve

Last point on a
curve

The largest number
of bits needed to
represent any
element of the
histogram

The largest number
of bits needed to
represent any
element of the
histogram

86¢

lengthzero

magnitude
magnitude
magnitude
mask

mask_set

maxy

MAaXyertical_run

Table F-4. List of Variables (continued)
Function
DETERMINE_WORD_SIZES

LINE_FITTING

SEARCH_EDGE_FOR_MINIMIZING_PIXEL

DECODE_USING_WORD_SIZES
ENcoDE_USING_WORD_SIZES
GENERATE_HISTOGRAM
APPLY_MASKS

APPLY_MASKS

DYNAMIC_THRESHOLDING

CREASE_TRIMMING

Section Descripti

11.4.2

9.2
4124
12.2
11.4.3

11.4.2
6.1.1.2

6.1.1.2

2.2

3.1.1

For three word size
case, number of
bits needed to
represent the value
Zero

Boundary of points
with same residue
The distance
betwpen Pand Q0
orQ

Absolute value
Absolute value
Absolute value

A mask froma
mask set

One of
nub_mask_set or
topology mask_set
Maximum pixel
value over entire
image

Maximum of the
sampled
vertical_run
lengths

66¢

Variable

max_best_bits

max_best_bits

max_current_bits

max_offset
max_offset

max_offset

maximum_number_of word_sizes

miny

Table F-4. List of Variables (continued)
Function
DISTANCE_COMPARISON

RESULTS_CHECKING

DISTANCE_COMPARISON

SEARCH_FOR_THE_BEST-FIT_CURVE
SEARCH_FOR_THE_BEST_INSERTION_LOCATION
SELECTIVE_PROCESSING

DETERMINE_WORD _SIZES

DYNAMIC_THRESHOLDING

Section Descripti

10.1.1.2 Largest number of
bits necessary to
represent the
magnitude of the x
or y offset of
best_jump

10.1.1.2 Largest number of
bits necessary to
represent the
magnitude of the x
or y offset of
best_jump

10.1.1.2 Largest number of
bits necessary to
represent the
magnitude of the x
or y offset of
current_jump

10.1.1.1 Limit for largest
offset

10.1.2.1 Limit for largest
offset

10.1.1 Limit for largest
offset

11.4.2 The maximum
number of word
sizes allowable

2.2 Minimum pixel
value over entire
image

00¢

Yariable

monotonicy

monotonicy

n
n_neighbors

Table F-4. List of Variables (continued)
Function

DETERMINE_CURVE_SIGN_MONOTONICITY

DETERMINE_CURVE_SIGN_MONOTONICITY

INPUT_STREAM
NumM_BIts

OUTPUT_STREAM
PROCESS_CANDIDATE_SPUR_PIXEL

RIDGE_SMOOTHING

SEARCH_EDGE_FOR_MINIMIZING_PIXEL
COUNT_NEIGHBORS_FOR_FOLLOWING

Section Descriti

11.4.2

11.4.2

12.2

Constant positive
or negative sign
values in the x
coordinate

Constant positive
or negative sign
values in the y
coordinate

Number of bits

10.1.1.2 Value for which

11.4.3
3.2.1

8.2

4124
6.1.2.2

the number of bits
necessary to
represent it is
being calculated

Number of bits

Number of pixels
neighboring the
current pixel I(i, j)
whose value equals
BLACK

Current size of the
smoothing window
Pixel counter
Number of
neighbors to be
followed from a
curve point

10€

Variable

n_neighbors

n_past_min

neighbor
neighbor
neighbor

neighbor 1

neighbor_2

nub_mask_set

num_regions

Table F-4. List of Variables (continued)

Function
FoLLow

SEARCH_EDGE_FOR_MINIMIZING_PIXEL

CoUNT_NEIGHBORS_FOR_FOLLOWING
FIND_POSSIBLE_BRANCHES
FoLLow

INITIALIZE_AND FOLLOW_CURVE
INITIALIZE_AND FOLLOW_CURVE

CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES

REMOVE_SMALL_PORES

Section Description

6.1.2.2

4124

6.12.2
6.12.3
6.12.2

6.1.2.1

6.1.2.1

6.1.1.1

4.1.1

Number of
neighbors to be
followed from a
curve point

Number of pixels
past the current
Omin that the
search has
proceeded

A neighbor of a
curve point

A neighbor of a
curve point

A neighbor of a
curve point

The first neighbor
of an initial curve
point

The second
neighbor of an
initial curve point
Set of masks for
nub removal

Number of white
regions in
fingerprint image

0e

Yariable
number of pixels

number_of points_in_curve

number_of word_sizes

P, ccwl

Table F-4. List of Variables (continued)
Function
RIDGE_SECTION_AVERAGE_RIDGE_WIDTH

B-SPLINE

DETERMINE_WORD_SIZES

CONNECT_CURVES
JoIN_CURVES

SEARCH_EDGE_FOR_MINIMIZING_PIXEL

LARGE_PORE_TEST

LARGE_PORE_TEST

Section Descripti

7.1.2

13.2

11.4.2

7.14.2

7.13.1

4124

4123

4123

The number of
pixels in ridge
section on curve
between Py, and
P, end

Number of points
in current curve

The calculated
number of word
sizes allowable

Point in curve
being appended
Point in curve
being appended.
The fixed pixel to
which this routine
minimizes the
distance along a
ridge edge

Center of area of
large pore
candidate

Ridge pixel on
side 1 of large pore
candidate in
counterclockwise
direction

£0¢

Variabl

P eleft

P eup

P, end

Table F-4. List of Variables (continued)

Function
LARGE_PORE_TEST

LARGE_PORE _TEST

LARGE_PORE_TEST

LARGE_PORE_TEST

LARGE_PORE_TEST

LARGE_PORE_TEST

RIDGE_SECTION_AVERAGE_RIDGE_WIDTH

LARGE_PORE _TEST

Section Description

4.1.2.3 Ridge pixel on
side 2 of large pore
candidate across
ridge from Py

4.1.2.3 Ridge pixel on
side 1 of large pore
candidate in
clockwise
direction

4.1.2.3 Ridge pixel on
side 2 of large pore
candidate across
ridge from Py

4.1.2.3 Initial edge pixel
of ridge
surrounding large
pore candidate

4.1.2.3 Left ridge edge
pixel of large pore
candidate

4.1.2.3 Top ridge edge
pixel of large pore
candidate

7.1.2 The ending point
of a ridge section

4.1.2.3 Initial pixel of
large pore
candidate

13013

P Start

P temp

Table F-4. List of Variables (continued)
Functi Section Descripti

LARGE_PORE_TEST 4123

LARGE_PORE_TEST 4.12.3

LARGE_PORE_TEST 4.12.3

LARGE_PORE_TEST 4123

RIDGE_SECTION_AVERAGE_RIDGE_WIDTH 7.1.2

LARGE_PORE_TEST ' 4123

Ridge edge pixel
on side 1 of large
pore candidate
closest to P,
Ridge edge pixel
on side 1 of large
pore candidate
closest to P, in
counterclockwise
direction from P,
Ridge edge pixel
on side 1 of large
pore candidate
closestto P, in
clockwise
direction from P,
Ridge edge pixel
on side 2 of large
pore candidate
closest to P,

The starting point
of a ridge section
Temporary pixel
for large pore
candidate
calculations

Soe

Variable

p_distance

peak_score

penalty size
penalty size
penalty size
penalty size
pixel

pixel_set_to_white
point

possible_branches

possible_branches

rTable F-4. List of Variables (continued)
Functi Section Descrinti
LINE_FITTING ' 9.2 Perpendicular
distance from the
point to the chord
connecting the
~endpoints
CREASE_TRIMMING 3.1.1 The score
proportional to the
area of each peak
in the row_score
DISTANCE_COMPARISON 10.1.1.2 Limit for the
penalty test
RESULTS_CHECKING 10.1.1.2 Limit for the
penalty test
RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
Limit for the
penalty test
SELECTIVE_PROCESSING 10.1.1 Limit for the
penalty test
REMOVE_LARGE_PORES 4.1.2.2 Animage pixel
CONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES 6.1.1.1 Flag

LINE_FITTING 9.2 Point on curve
currently being
considered

FIND_POSSIBLE_BRANCHES 6.1.2.3 Set of possible
branches from a
curve point

FoLLow 6.1.2.2 Set of possible
branches from a
curve point

90¢

Yariable

possible_branches

previous_point
previous_point
previous_point
previous_residue

Q

Omin

Ql

r adius_gearcha

RAW_THIN

Table F-4. List of Variables (continued)
Function
INITIALIZE_BRANCHES

CoUNT_NEIGHBORS_FOR_FOLLOWING
FIND_POSSIBLE_BRANCHES

FoLLow

LINE_FITTING

SEARCH_EDGE_FOR_MINIMIZING_PIXEL
SEARCH_EDGE_FOR_MINIMIZING_PIXEL

SEARCH_EDGE_FOR_MINIMIZING_PIXEL

SMALL_RIDGE_ BREAK_CONNECTION

AVERAGE_SECTION_RIDGE_WIDTH

Section Descripti |

6.1.2.5 Set of possible
branches from a
curve point

6.1.2.2 Next to last point
on a curve

6.1.2.3 Next to last point
on a curve

6.1.2.2 Next to last point .
on a curve

9.2 Previous largest
residue value

4.1.2.4 A white pixelona
ridge edge that

serves as a starting
point for the search

4124 The minimizing
white pixel on a
ridge edge from
the search

4.1.2.4 The current white
pixel on a ridge
edge in the search

7.14 Search limit for
finding candidate
endpoints for small
ridge breaks

4.1.3 Raw (not final)
thinned fingerprint
image

LOE

rTable F-4. List of Variables (continued)

Variabl Functi Section Descriti
RAW_THIN PREPARE_AVERAGE_NEIGHBORHOOD RIDGE_WIDTHS 413
. Raw (not final)
thinned fingerprint
image
ref, CONNECTION_SCORING_FUNCTION 7.14.1 The point that is

section_size,
points down curve,
from endpoint a

refa SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 The point that is
reference_lengthy,
points down curve
a from its
overlapping
endpoint

refy CONNECTION_SCORING_FUNCTION 7.1.4.1 The point that is
section_size,
points down curve,
from endpoint a

refy SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 The point that is
reference_lengthy,
points down curve
b from its
overlapping
endpoint

ref; SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 The point that is
reference lengthy,
points down curve
¢ fromits
overlapping
endpoint

80¢

Yariable

ref _pt
ref pt

ref_pt,

ref pi

ref_pty

ref_pty

reference_length

residue

Table F-4. List of Variables (continued)

Function
SMALL_RIDGE_CONNECTION REMOVAL

APPLY_JUMP_OFFSET
DETERMINE_JUMP_OFFSET

APPLY_JUMP_OFFSET

DETERMINE_J UMP_OFFSET
APPLY_JUMP_OFFSET
DETERMINE_JuMP_OFFSET
SMALL_RIDGE_CONNECTION REMOVAL

LINE_FITTING

S . D 0 i ’

7.1.5

12.2

11.4.1

12.2

11.4.1

12.2

11.4.1

7.1.5

9.2

The point that is
reference_lengthy,
points down curve
d from its
overlapping
endpoint
Reference end
point of curve a

First point in curve
a

The x coordinate
of reference end
point of curve a

The x coordinate
of the first point in
curve a

The y coordinate
of reference end
point of curve a

The y coordinate
of the first point in
curve a

Size of the desired
curve reference
section

Distance from
point to chord

60¢

Yariable

reverse_flag

reverse_flag

reverse_flag

reverse_flag one

reverse _flag two

ridge_width,

Table F-4. List of Variables (continued)
Function
RESULTS_CHECKING

SEARCH_FOR_THE_BEST-FIT_CURVE

SELECTIVE_PROCESSING

SEARCH_FOR_THE_BEST_INSERTION_LOCATION

SEARCH_FOR_THE_BEST_INSERTION_L.OCATION

CONNECTION_SCORING_FUNCTION

Section Descripti

10.1.1.2 Boolean indicating
whether the current
curve being added
to sorted_list needs
its point order
reversed

10.1.1.1 Boolean indicating
whether the current
curve being added
to sorted_list needs
its point order
reversed

10.1.1 Boolean indicating
whether the current
curve being added
to sorted_list needs
its point order
reversed

10.1.2.1 Temporary
reversal flag for
curve from
sorted_list

10.1.2.1 Temporary
reversal flag for
the first curve on
unsorted_list

7.1.4.1 Average ridge
width of the curve
section on curve,

o1e

Variable
ridge_widthgy,

ridge_widthy

ridge_widthgngerprint

ridge_Widt'yingerpn'n[

ridge_widthgingerprint

RIDGE_WIDTH_ARRAY

RIDGE_WIDTH_ARRAY

rotation

row

rTable F-4. List of Variables (continued)

Function
RIDGE_SECTION_AVERAGE_RIDGE_WIDTH

CONNECTION_SCORING_FUNCTION

RIDGE_CLEANING

SMALL_OFFSHOOT_CURVE_REMOVAL

SMALL_RIDGE_ SEGMENT_REMOVAL

AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH

Section Description

7.1.2 The resulting
average ridge
width value for the
ridge section on
curve between
Pstart and Pepg

7.14.1 Average ridge
width of the curve
section on curvey,

7.1 Average width of
all ridges in
fingerprint

7.1.3 Average width of
all ridges in
fingerprint

7.1.6 Average width of
all ridges in
fingerprint

4.1.3 Array of average
section ridge
widths

PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS 4.1.3

APPLY_MASKS

AVERAGE_NE[GHBORHOOD_RIDGE_WIDTH

Array of average
section ridge
widths

6.1.1.2 A rotation for a
nub mask

4.1.3 Row index of the
RIDGE _WIDTH _
ARRAY

I1e

Variable
row -

row_score

rows_per_section

rows_per_section

Scolumn

Srow

same_residue

Table F-4. List of Variables (continued)

Function Section Description

'PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS

CREASE_TRIMMING 30

AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH 4.13

PREPARE_AVERAGE_NEIGHBORHOOD RIDGE_WIDTHS

RIDGE_SMOOTHING 8.2
RIDGE_SMOOTHING 8.2
LINE_FITTING 9.2

4.13

Row index of the
RIDGE_WIDTH _
ARRAY

The row score

. proportional to the

white region
around each
horizontal_runi

Number of rows in
a fingerprint image
section

4.1.3

Number of rows in
a fingerprint image
section

A running sum of
column
coordinates along a
section of a curve
being smoothed

A running sum of
row coordinates
along a section of a
curve being
smoothed

Boundary of points
with same residue

(483

Yariable
saved_endpoint_flag one

saved_endpoint_flag_one

saved_endpoint_flag one

saved_endpoint_flag two

saved_endpoint_flag two

saved_endpoint_flag two

Table F-4. List of Variables (continued)
Functi Section Descripti
CycLIC_PROCESSING 10.1.2 Endpoint flag for
the curve on the
“from” side of the
candidate insertion
. point
RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
: The endpoint flag
for curve of the
best_insertion_
linkage
SEARCH_FOR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The endpoint flag
for curve of the
best_insertion_link
age
CycLIC_PROCESSING 10.1.2 Endpoint flag for
the curve on the
“to” side of the
candidate insertion
point
RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
~ The endpoint flag
for first_curve of
the best_insertion_
linkage
SEARCH_FOR_THE_BEST_INSERTION_LOCATION 10.1.2.1 The endpoint flag
for first_curve of
the best_insertion_
linkage

ele

Variable

saved_reverse_flag one

saved_reverse_flag one

saved_reverse_flag one

saved_reverse_flag two

saved_reverse_flag two

saved_reverse_flag two

Table F-4. List of Variables (continued)

Function Section Description
CycCLIC_PROCESSING 10.1.2 Reversal flag for

the curve on the
“from” side of the
candidate insertion
point
RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
The reversal flag
for curve of the
best_insertion_
linkage
SEARCH_FOR_THE_BEST_INSERTION_LOCATION 10.1.2.1 The reversal flag
for curve of the
best_insertion_
linkage
CycLIC_PROCESSING 10.1.2 Reversal flag for
the curve on the
“to” side of the
candidate insertion
point
RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
The reversal flag
for first_curve of
the best_insertion_
linkage
SEARCH_FOR_THE_BEST_INSERTION_LOCATION 10.1.2.1 The reversal flag
for first_curve of
the best_insertion_
linkage

1452

score

second_endpoint
section_size
section_size,
section_sizey
seed_index
seed_index

sign

sign

signy

signy

smooth_curve

Table F-4. List of Variables (continued)

Function

SMALL_RIDGE_BREAK_CONNECTION

LINE_FITTING
CONNECTION_SCORING_FUNCTION
CONNECTION_SCORING_FUNCTION
CONNECTION_SCORING_FUNCTION
EXTRACT_CURVES
INITIALIZE_BRANCHES

APPLY_SIGN_ToO_VALUE
ENCODE_SIGN
DECODE_CURVE_DELTAS

DECODE_CURVE_DELTAS

RIDGE_SMOOTHING

Section D .

7.1.4 Value indicating
the relative
possibility that a
pair of endpoints is
part of a small
ridge break

9.2 An endpoint of the
current chord

7.1.4.1 Size of the desired
curve end section

7.1.4.1 Size of end section
for curve a

7.1.4.1 Size of end section
for curve b

6.1.2 Index for labeling
branch seed curves

6.1.2.5 Index for labeling
branch seed curves

12.2 Sign of value

11.4.3 Sign of value

12.2 The x coordinate
sign

122 The y coordinate
sign

8.2 The resulting curve
that is in the

process of being
smoothed

Sie

Variable

smooth_curve_list

sorted_list

sorted_list

sorted_list

sorted_list

sorted_list

spline_x

spline_y

Table F-4. List of Variables (continued)

Function
RIDGE_SMOOTHING

CURVE_SORTING

CyCLIC_PROCESSING
RESULTS_CHECKING
SEARCH_FOR_THE_B ES'T_INSERTION_LOCAHON
SELECTIVE_PROCESSING
- B-SPLINE

" B-SPLINE

Section Description

8.2

10.1

10.1.2

List of curves
representing the
fingerprint that
have been
smoothed

List of curves after
having been
processed by
sorting

List of curves after
having been placed
by sorting

10.1.1.2 List of curves after

10.1.1

13.2

13.2

having been placed
by sorting

'10.1.2.1 List of curves after

having been placed
by sorting .
List of curves after
having been placed
by sorting
Calculated x
coordinate for
current iteration
Calculated
y-coordinate for
current iteration

91¢

Variable

status

status

status

sum

sum

sum

sum_best_bits

Table F-4. List of Variables (continued)

Function

FoLLow_RIDGE
SELECTIVE_PROCESSING
SMALL_RIDGE_BREAK_CONNECTION

AVERAGE_SECTION_RIDGE WIDTH

CREASE_TRIMMING

RIDGE_SECTION_AVERAGE_RIDGE_WIDTH

DISTANCE_COMPARISON

Section Descripti

5.1.3 Boolean value
indicating end
condition of ridge
following

10.1.1 Boolean indicating
the completion of
this stage of curve
sorting

7.1.4 Boolean value
indicating status of

the search for
small ridge breaks

413 Sumof ridge
widths in section

3.1.1 The estimation of
white area in the
fingerprint image
surrounding a
particular row

7.1.2 Sum of chamfer
values along a
ridge section

10.1.1.2 Sum of the bits
necessary to
represent the
magnitudes of the
x and y offsets of
best_jump

LIE

Variable

sum_best_distance

sum_current_bits

sum_current_distance

SW

Table F-4. List of Variables (continued)

Function
DISTANCE_COMPARISON

DISTANCE_COMPARISON

DiSTANCE_COMPARISON

DETERMINE_WORD_SIZES
BHO_BINARIZATION

B.SPLINE

CREASE_TRIMMING

CurVED_RIDGE_ENDING_REMOVAL

DYNAMIC_THRESHOLDING

Section Descripti
10.1.1.2 Sum of the

magnitudes of the
x and y offsets of

best_jump

10.1.1.2 Sum of the bits

necessary to
represent the
magnitudes of the
x and y offsets of
current_jump

10.1.1.2 Sum of the

11.4.2

A3

13.2

3.1.1

B.1

2.2

magnitudes of the
x and y offsets of
current_jump

Short word size in
number of bits

Thresholded
fingerprint image
B-Spline
correction
coefficient

Threshold of
vertical_run
lengths

Thinned
fingerprint image

Thresholded
fingerprint image

81¢

lupper

temp_chord_points
temp_chord_points

to_do

Table F-4. List of Variables (continued)-
Function

FoLLow_RIDGE

- JoIN_CURVES

RIDGE_THINNING
SMALL_OFFSHOOT_CURVE_REMOVAL
SMALL_RIDGE_CONNECTION_REMOVAL
SMALL_RIDGE_SEGMENT_REMOVAL

DYNAMIC_THRESHOLDING

CREASE_TRIMMING

DYNAMIC_THRESHOLDING

CALcULATE_CHORD_POINTS
LINE_FITTING

FoLLow_To_Do_LisT

Section Descrio

5.13

7.1.3.1

5.1

7.13

71.1.5

7.1.6

2.2

3.1.1

2.2

9.2

9.2

6.1.2.6

Thinned
fingerprint image
Thinned
fingerprint image
Thinned
fingerprint image
Thinned
fingerprint image
Thinned
fingerprint image
Thinned
fingerprint image
Absolute lower
limit for
thresholding
Maximum
threshold of
vertical_run
lengths

Absolute upper
limit for
thresholding
Temporary ordered
list of chord points

Temporary ordered
list of chord points

List of branch seed
curves yet to be
followed

61¢

Variable

to_endpoint_offset

to_endpoint_offset,

to_endpoint_offset,

topology _mask_set

total

totalsw

totalzero

Table F-4. List of Variables (continued)

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
The jump from
before _curve to
first_curve

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE10.1.2.3
The x offset of the
jump from
before _curve to
first_curve

RESULTS_ CHECKING_AND_INSERTION_OF_UNSORTED_CURVE1(.1.2.3
The y offset of the
jump from
before_curve to
first_curve

CoONVERT_TO_SINGLE_PIXEL_WIDE_RIDGES 6.1.1.1 Set of masks for
non-topology-
changing pixel

removal
DETERMINE_WORD_SIZES 11.42 The total number

of elements in the

histogram
DETERMINE_WORD_SIZES 11.42 The total number

of elements to be
represented with a
short word

DETERMINE_WORD_SIZES 11.42 The number of
elements in the
histogram equal to
Zero

1743

Yariable

unsorted_list

unsorted_list

unsorted_list

unsorted_list

unsorted_list

Table F-4. List of Variables (continued)
Function

CURVE_SORTING

CycLIC_PROCESSING

RESULTS_CHECKING

Section Descrioti

10.1

10.1.2

List of curves
representing the
fingerprint that has
not been processed
by sorting

List of curves
representing the
fingerprint that has
not been placed by
sorting

10.1.1.2 List of curves

representing the
fingerprint that has
not been placed by
sorting

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED CURVE10.1.2.3

SEARCH_FOR_THE_BEST-FIT_CURVE

List of curves
representing the
fingerprint that has
not been placed by
sorting '

10.1.1.1 List of curves

representing the
fingerprint that has
not been placed by
sorting

12¢

Table F-4. List of Variables (continued)

Variable Function

unsorted_list SELECTIVE_PROCESSING

value APPLY_SIGN_To0_VALUE

value DECODE_SIGN_FOR_VALUE

value INPUT_STREAM

value Is_SMALL

value OuTPUT_STREAM

value SIGN

vertical_run CRrEASE_TRIMMING

w AVERAGE_SECTION_RIDGE_WIDTH
w SMALL_RIDGE_CONNECTION_REMOVAL
Wa LARGE_PORE_TEST

Section Descripti

10.1.1 List of curves
representing the
fingerprint that has
not been placed by
sorting

12.2 Value being tested

12.2 Value being tested

12.2 Value being read

from input stream

10.1.2.2 An offset value

1143

11.4.2
3.1.1

413

7.1.5

4123

that is being
compared to S
Value being
written to output
stream

Value being tested

The longest run of
consecutive white
pixels for every
column

Ridge width at
current pixel
Average ridge
width of the
neighboring
reference sections
Average ridge
width in a
neighborhood of a
pixel

&

(443

Table F-4. List of Variables (continued)

Variable Function Section Description

Wy REMOVE_LARGE_PORES 4.12.2 Average ridge
width in a
neighborhood of a

) pixel _

Wa REMOVE_SMALL_PORES 4.1.1 Average ridge
width in a
neighborhood of a
pixel

Weew LARGE_PORE_TEST 4.1.2.3 Width of ridge in
counterclockwise
direction from
large pore
candidate

Weurrent RIDGE SMOOTHING 8.2 Current size of the
smoothing window

Wew LARGE_PORE_TEST 4.1.2.3 Width of ridge in
clockwise
direction from
large pore
candidate

Wp LARGE_PORE_TEST 4.1.2.3 Width of large
pore candidate

Wy LARGE_PORE_TEST 4.1.2.3 Width of ridge to
side of large pore
candidate

width EXTRACT CURVES 6.1.2 Width of
fingerprint image

width PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS 4.13
Width of
fingerprint image

1 X4

Yariable
width

width
widthc

widthy
word_size

word_size
word_size -

word_sizes
word_sizes
word_sizes

word_sizes

word_sizeSgeltax

Table F-4. List of Variables (continued)
Function
REMOVE_LARGE_PORES

REMOVE_SMALL_PORES
DETECT_LOCAL_MAXIMA

CHAMFER
DECODE_USING_WORD_SIZES

DECODE_WORD_SIZES
ENCODE_USING_WORD_SIZES

DECODE_USING_WORD_SIZES
DECODE_WORD _SIZES
ENCODE_USING_WORD_SIZES
ENCODE_WORD_SIZES

DECODE_CURVE_DELTAS

Section Descripti
4.1.2.2 Width of

4.1.1

5.12

5.1.1
12.2

12.2

11.4.

12.2

12.2

11.4.3

11.4.3

12.2

fingerprint image
Width of
fingerprint image
Width of chamfer
image C

Width of image I
One word size in
word_sizes

One word size in
word_sizes

One word size in
word_sizes

The calculated

number of word
sizes allowable
The calculated
number of word
sizes allowablc‘
The calculated
number of word
sizes allowable
The calculated
number of word
sizes allowable
The calculated
word sizes for the
delta,

yie

Variable

word_sizesgeitax

word_sizes eltax

word_sizeSzeitax

word_sizes pitax

word_sizesgeliay

word_sizeszeltay

word_sizesgeltay

word_sizeSjumpx

Table F-4. List of Variables (continued)
Function
DECODE_HEADERS
DETERMINE_FINGERPRINT_DATA_PROPERTIES
ENCODE_CURVE_DELTAS
ENCODE_HEADERS
DECODE_CURVE_DELTAS
DECODE_HEADER
DETERMINE_FINGERPRINT_DATA_PROPERTIES
ENCODE_CURVE_DELTAS

ENCODE_HEADER

DECODE_HEADER

Section Descrinti

12.2

11.4.2

11.4.3

11.4.3

12.2

12.2

11.4.2

1143

11.43

12.2

The calculated
word sizes for the
delta,

The calculated
word sizes for the
delta,

The calculated
word sizes for the
delta,

The calculated
word sizes for the
delta,

The calculated
word sizes for the
delta,

The calculated
word sizes for the
deliay

The calculated
word sizes for the
delta,

The calculated
word sizes for the
delta,

The calculated
word sizes for the
delta,

The calculated
word sizes for the

Jjumpy

Y43

Variable

word_sizeSjumpx

word_sizeSjumpx

word_sizeSjumpx

word_sizeSjumpx

word_sizeSjumpy

word_sizeSjympy

word_sizeSjumpy

word_sizeSjumpy

word_sizeSjumpy

Table F-4. List of Variables (continued)

Function
DECODE_JumpP

DETERMINE_FINGliRPRINT_DATA__PROPERT[ES
ENCODE_HEADER
ENCODE_Jump
DECODE_HEADER

. DECODE_Jump
DETERMINE_FINGERPRINT_DATA_PROPERTIES
ENCODE_HEADER

ENCODE_JumP

Section Description

12.2

11.4.2

1143

1143

12.2

12.2

11.4.2

11.43

1143

The calculated
word sizes for the
Jump;

The calculated
word sizes for the
Jumpy

The calculated
word sizes for the
Jjumpy

The calculated
word sizes for the
Jumpy

The calculated
word sizes for the -
Jjump,

The calculated
word sizes for the
Jjumpy

The calculated
word sizes for the
Jjumpy,

The calculated
word sizes for the
jumpy

The calculated
word sizes for the

Jump;,

9T¢

Yariable

word_sizeSpum deltas

word_sizeSnum deltas

word_SizeSpum deltas

word_SizeSpum deltas

word_SizeSpum deltas

Table F-4. List of Variables (continued)

Function
DECODE_CURVE_DELTAS

DECODE_HEADER

DETERMINE_FINGERPRINT_DATA_PROPERTIES

ENCODE_CURVE_DELTAS

ENCODE_HEADER

B-SPLINE

12.2

12.2

11.4.2

11.4.3

11.4.3

13.2
13.2

13.2

The calculated
word sizes for the
number of deltas
per curve

The calculated
word sizes for the
number of deltas
per curve

The calculated
word sizes for the
number of deltas
per curve

The calculated
word sizes for the
number of deltas
per curve

The calculated
word sizes for the
number of deltas
per curve

Array of x
coordinates in
current curve

Array of x
coordinates in
current curve

Array of x
coordinates in
current curve

LTe

Table F-4. List of Variables (continued)

Variable Function

x C

x CALCULATE_CHORD_POINTS
x D

x LINE_FITTING

Xx_coordinate B.SPLINE

y B-SPLINE

y CALCULATE_CHORD_POINTS
y LINE_FITTING

Section Description

13.2 Armayofx
coordinates in
current curve

9.2 An array which
holds x coordinate

13.2

9.2

13.2

13.2

9.2

9.2

information for
curve

Array of x
coordinates in
current curve

An array which
holds x coordinate
information for
curve

Calculated
B-Spline x
coordinate
Array of y
coordinates in
current curve

An array which
holds y coordinate
information for
curve

An array which
holds y coordinate
information for
curve

8¢

Table F-4. List of Variables (continued)

Variabl Functi Section Deseripti
y_coordinate B-SPLINE 13.2 Calculated
B-Spline y
coordinate
z BAD_BLOCK_BLANKING C.2 Index
2y BHO_BINARIZATION A.1.3 Image overall
_ : mean pixel value
Zmaxy BHO_BINARIZATION A.1.3 Maximum pixel
value over entire
image
z_average_chamfer value PROCESS_RIDGE_ENDING B.1 Average chamfer
: value for last half
of reference
. section
z_blockmap BAD_BLOCK_BLANKING C2 Ridge direction
map
z_blockmap BHO_BINARIZATION : A3 Ridge direction
map
z_blockmap RIDGE_CLEANING 7.1 Ridge direction
map
z_blockmap CuUrvED_RIDGE_ENDING_REMOVAL B.1 Ridge direction
map '
z_blockmap PROCESS_RIDGE_ENDING B.1 Ridge direction
map
z_blockmap RIDGE_THINNING 5.1 Ridge direction
map
z_blockmap WRITE_BLOCK_FILE A.22 Ridge direction
map
z_curve ' BAD_BLOCK_BLANKING C2 One curve in the

curve_list

6¢¢

Yariable
z_curve
z_distanceAB
z_distanceBC

z_endpoint

z_first_point

z_local_ridge_width

z_local_ridge width

z_new_curve

z_new_curve_list

z_not_done

Table F-4. List of Variables (continued)
Eunction
PROCESS_RIDGE_ENDING

PROCESS_RIDGE_ENDING
PROCESS_RIDGE_ENDING

PROCESS_RIDGE_ENDING

BAD_BLOCK_BLANKING

SMALL_OFFSHOOT_CURVE_REMOVAL

SMALL_RIDGE_SEGMENT REMOVAL

BAD_BLOCK_BLANKING
BAD_BLOCK_BLANKING

PROCESS_RIDGE_ENDING

Section Descrint

B.1

B.1

B.1

B.1

C.2

7.13

7.1.6

C2

C2

B.1

One curve in the
curve_list

Euclidean distance
between z_pointy
and z_pointg

Euclidean distance
between z_pointg
and z_pointc

One endpoint of
the curve being
processed

Index of curve
point

Average of the
local average ridge
widths at the
unconnected
endpoint and at the
midpoint of curve
Average of the
local average ridge
widths at the
endpoints of curve

New curve
structure
Temporary list of
new curves

Flag indicating
loop status

0ce

Variable

z_number_points_removed

Z_num_points
Z_POINT
z_pointy
z_pointg
z_pointc

z_sum

r 44

2Zpest_remainder
ZZpest_section_size
2Zimage_size

ZZremainder

2Zsection_size

Table F-4. List of Variables (continued)
Function
PROCESS_RIDGE_ENDING

BAD_BLOCK_BLANkING
BAD_BI_,OCK_BLANKING
PROCESS_RIDGE_ENDING
PROCESS_RIDGE_ENDING
PROCESS_RIDGE_ENPING

PROCESS_RIDGE_ENDING

FIND_BEST_PARTITION
FIND_BEST_PARTITION
FIND_BEST_PARTITION
FIND_BEST_PARTITION
FIND_BEST_PARTITION

FIND_BEST_PARTITION

Section D . .

B.1 Counter of current
number of points
marked for
removal

C2 Number of points
in a curve

C2 Temporary array of
points in a curve

B.1 First point of
reference section

B.1 Midpoint of

‘ reference section

B.1 = Last point of
reference section

B.1 Sum of the
chamfer values for
last half of
reference section

D.2 Index

D.2 Size of best-case
remainder section,
in pixels

D.2 Size of best-case
section, in pixels

D.2 Image width or
height

D.2 Size of remainder
section, in pixels

D.2 Size of section, in
pixels

I€e

Variable

2z_top

Table F-4. List of Variables (Concluded)

Function
BHO_BINARIZATION

Section Description
A.1.3 Absolute upper
threshold

