
MTR 94B0000021V4

MITRE TECHNICAL REPORT

NCIC 2000 Image Compression Algorithms
Volume IV: Flat Live-Scan Searchprint
Compression

April 1994

David J. Braunegg

Eric J. Donaldson

Richard D. Forkert

Margaret A. Lepley

Sherry L. Olson

Bedford, Massachusetts

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 10-4459

MTR 94B0000021V4

MITRE TECHNICAL REPORT

NCIC 2000 Image Compression Algorithms
Volume IV: Flat Live-Scan Searchprint
Compression

April 1994

David J. Braunegg

Eric J. Donaldson

Richard D. Forkert

Margaret A. Lepley

Sherry L. Olson

Sponsor: FBI Contract No.: J-FBI-93-039
Dept. No.: G034 Project No.: 3469M

 Approved for Public Release: 10-4459.

Distribution Unlimited.

1994 The MITRE Corporation

Bedford, Massachusetts

ABSTRACT

Under the National Crime Information Center (NCIC) 2000 program, there is a need to
compress, transmit, and decompress flat live-scan, single finger searchprints. Due to the
limited bandwidth of police radios and the need for responsive transmission times, the
compressed fIle size goal on average for flat live-scan searchprints is 20,000 bits. In addition
to meeting the high rate of compression needed, the final decompressed fingerprint
representation must maintain a high degree of ridge positional accuracy, such as minutiae
points and relative ridge locations, for matching. This report presents an algorithmic process
for compressing and decompressing flat live-scan searchprints. The compression algorithms
were developed to remove all extraneous information from the fingerprint, thin the ridges to
a single pixel width, and mathematically encode the ridge information. The decompression
algorithm reverses this process to reconstruct the thinned ridge representation of the
fingerprint.

iii

iv

TABLE OF CONTENTS

SECTION

1 Introduction ..

P~GE

1

1.1 Background Infonnation 1
1.1.1 Flat Live-Scan Searchprints . 1
1.1.2 Original Image Characteristics 2
1.1.3 Compressed Data Goals . 2
1.1.4 Reconstructed Image Characteristics . 2

1.2 Overview of Compression/Decompression Algorithms 3
1.2.1 Compression Algorithms . 3
1.2.2 Decompression Algorithms 6
1.2.3 Algorithm Tuning 6

1.3 Notation and Assumptions . 7
1.3.1 Special Notation and Assumptions 8

2 Dynamic Thresholding ... 9

2.1 Algorithm Description . 9
2.2 Summary. 10

3 Thresholded Image Cleaning . 13-

3.1 Crease Trimming. 13
3.1.1 Algorithm Description '. 13
3.1.2 Summary.. 22

3.2 Spur Removal. 23
3.2.1 Algorithm Description 23
3.2.2 Summary... 27

4 Pore Filling .. 29

4.1 Algorithm Description . 29
4.1.1 Small Pore Filling 30
4.1.2 Large Pore Filling 32
4.1.3 Neighborhood Average Ridge Width. 41

4.2 Summary. 44

v

SECTION PAGE

5 Ridge Thinning ... 45

5.1 Algorithm Description , '.~
5.1.1 Chamfering
5.1.2 Local Maxima Detection
5.1.3 Recursive Ridge Following
5.1.4 Summary

45
46
51
53
58

6 Curve Extraction .. 59

6.1 Algorithm Description. 61
6.1.1 Conversion to Single-Pixel Wide Ridges. 61
6.1.2 Curve Extraction 65

6.2 Summary................. 80

7 Ridge Cleaning . 81

7.1 Algorithm DesCription . 82
7.1.1 Definitions ' ~ . 86
7.1.2 Average Ridge Width. 87
7.1.3 Small Offshoot Curve Removal . 88
7.1.4 Small Ridge Break: Connection 90
7.1.5 Small Ridge Connection Removal . 97
7.1.6 Small Ridge Segment Removal. 102

7.2 Summary .. : 103

8 Ridge Smoothing 105

8.1 Algorithm Description . 106
8.2 Summary. 108

9 Chord Splitting ... ~ ~ . 111

9.1 Algorithm Description . 111
9.2 Summary '. 115

vi

SECTION PAGE

10 Curve Sorting ... ~ 119

10.1 Algorithm Description. 120
10.1.1 First Stage: Selective Processing :............... 120
10.1.2 Second Stage: Cyclic Processing 132

10.2 Summary. 144

11 Encoding .. 145

11.1 Explanation of Tenns . 146
11.1.1 Delta Offsets ... 146

.11.1.2 Jump Values and Reference End " 146
11.1.3 Monotonicity Type. 147

. 11.2 Description of Encoding Techniques . 148
11.2.1 Relative Values. 148
11.2.2 Huffman Codes 149
11.2.3 Duplication Elimination. 151
11.2.4 Short Word/Long Word " 151
11.2.5 Bit Packing . 154

11.3 Bit Stream Components. 154
11.3.1 The Fingerprint Header. 154
11.3.2 The Ridge Infonnation . 155

11.4 Algorithm Description and Summary 159
11.4.1 Calculating Relative Distances 161
11.4.2 Determining Fingerprint Data Properties 162
11.4.3 Encoding .. 166

11.5 Fingerprint Example ... 170

12 Decoding .. 173

12.1 Algorithm Description . 173
12.2 Summary. 175
12.3 Example '" 181

13 Ridge Reconstruction. 185

13.1 Algorithm Description. 185

13.2 Summary. 187

vii

/

SECTION PAGE

List of References 189

Appendix A Modified BHO Binarization 191
. A.1 Source Code Alterations 191

A. 1.1 FORTRAN-to-C Conversion. 191
A.1.2 Variable Image Size Accommodation 192
A.1.3 Change to BHO Algorithmic Behavior.... 192
A.1.4 Integration with Fingerprint Compression 193
A.l.5 Code Speed Up 193

A.2 Ridge Direction MAP .. 193
A.2.1 Ridge Direction Data Structure 194
A.2.2 Writing the Block File. 194

A.3 Summary. 195

Appendix B Curved Ridge Ending Removal . 197
B.1 Algorithm Description . 197

B.l.l Summary .. 201

Appendix C Bad Block Blanking . 203
C.1 Algorithm Description . 203

C.l.1 Removing Curve Segments....... 203
C.l.2 Joining Curves at Lost Bifurcations. 205

C.2 Summary.. 206

Appendix D Partitioning for Neighborhood Average Ridge Widths 209
D.1 Algorithm Description . 209
D.2 Summary. 210

Appendix E Pseudocode Function Call Tree 213

AppendixF Lists of Constants, Parameters, and Variables 225

viii

LIST OF FIGURES

FIGURE PAGE

1 Compression/Decompression Algorithm Diagram. 3
2 Compression Algorithm Flowchart 5
3 Decompression Algorithm Flowchart. 6
4 . Comparison Between Straight Thresholding and Dynamic Thresholding 10
5 Windows for Calculating a Pixel's Neighborhood Mean Value, J.lwindow • • • • • • • • 11
6 Determination of the Largest Vertical Runs and the Edges

of the Fingerprint Impression. 15
7 The Determination of the Largest Horizontal Runs 16
8 Combining horizontaCrun and verticaCrun to Produce the Row Scores 17
9 Calculation of the Peak: Scores 18
10 Trimming the Fingerprint Below the Crease 19
11 Examples of Small Single-Pixel Ridge Spurs 23
12 Flowchart for the Spur Removal Algorithm . 25
13 Canonical Small Pore. 30
14 Large Pore Model. 33
15 A Valley that is Similar to a Large Pore. 33
16 Po, Pe, and the Search for Ppl in a Large Pore Candidate 35
17 Search Failure . 35
18 Comparison of Pore Candidate to Model 36
19 Partitioning of Fingerprint Image for Neighborhood Average Ridge

Width Calculation . 42
20 Intermediate Products of the Ridge Thinning Algorithm Steps· 46
21 The First of Two Passes of the Chamfering Algorithm 48
22 The Second of Two Passes of the Chamfering Algorithm 49
23 An Example Portion of a Chamfered Image. 50
24 Filter for Detecting the Local Maxima Locations in a Chamfered Image 52
25 An Example of Recursive Ridge Following . 54
26 The Eight Conditions for Recursion Termination by Ridge Intersection 55
27 Diagonal Candidate Ridge Pixels . 56
28 Rectilinear Candidate Ridge Pixels 56
29 Conversion to Single-Pixel Wide Ridges. 59
30 Curve Extraction at a Bifurcation. 60

ix

FIGURE PAGE

31 Masks Used to Remove Nubs from Ridges 63
32 Masks Used to Remove Non-Topology-Changing Pixels from Ridges... 63
33 Curve F?~owing for a .Non-Thinned Ridge and a Thinned Ridge Based on

ConnectIvIty AssumptIons ... 66
34 Flowchart of Overall Control of Curve Extraction . 67
35 Seed Curves at a BIFURCATION Point 68
36 An Example of an Extraction of a Curve in Two Halves 70
37 I...ooped Curve 71
38 Branches from Point X ... 75
39 Possible Branch Counting Example. 76
40 Examples of the Artifacts and Details Removed in Ridge Cleaning 81
41 Flowchart of the Ridge Cleaning Process . 85
42 Examples of the Curve Connectivity Types 87
43 Calculation of Average Ridge Width, ridge _widthave 88
44 Examples of Small Ridge Breaks to be Connected 90
45 Example of a Search Radius Calculation for the Small Ridge Break

Connection Algorithm .. 91
46 Example of a Connection Scoring Function Calculation 94
47 Example of a Small Ridge Connection . 97
48 Definition of the Four Neighboring End Sections of a Doubly Connected Curve . 98
49 Criteria for Removing a Small Ridge Connection 100
50 Illustration of the Difference in the Number of the Spline Points on a Curve

and Its Smoothed Counterpart .. 105
51 Illustration of the Curve Smoothing Algorithm 108
52 Effects of Allowable Error or Residue 111
53 Flowchart of Operations . 113
54 Sequence of Iterations 114
55 Results of the Sorting Process ... 119
56 Flowchart of Selective Processing 121
57 The Four Possible Jumping Scenarios 124
58 Example of Comparing the Four Jumping Scenarios Between the Last Curve

in the Sorted List and the Current Candidate Curve. 128
59 Flowchart of Cyclic Processing 133
60 Insertion of an Unsorted Curve into the·List of Sorted Curves 135
61 Encoded Fingerprint Components 145

x

.'.

FIGURE PAGE

62 Absolute Coordinates arid Delta Offsets Within a Curve . 146
63 Absolute Coordinates and Jump Values Between Curves 147
64 Reference End Values. 147
65 Sign Monotonicity Type , 148
66 Number of Deltas per Curve Example 150
67 Short/Long Word Sizes for Number of Deltas per Curve. 153
68 Short/Long Word Sizes for Delta Offsets. 153
69Short/Long Word Sizes for Jump Values 155
70 Encoding Flowchart.. 159
71 Encoding Example Ridges ... 170
72 Decoding Processing Steps. 174
73 Fingerprint Header Parsing : 182
74 Ridge Information Decoding: First Curve . 183
75 Ridge Information Decoding: Second Curve 184
76 B-spline Curve Representation. 185
77 Flow Chart of Operations .. 186
A-I Blocks Used in Ridge Direction Map. 194
B-1 Proximity of Ridge Endpoints to Bad Block 198
B-2 Criteria for Removing Curved Ridge Ends 199
C-l Curve List Before and After the First Stage of Bad Block Blanking 204
C-2 Endpoint Map Before and After the First Stage of Bad Block Blanking 204
C-3 Curve List After Last Stage of Bad Block Blanking ,........ 205
D-l Partitioning of Fingerprint Image for Neighborhood Average Ridge

Width Calculation . 209

Xl

LIST OF TABLES

TABLE PAGE

1 Monotonicity Types and Huffman Codes . 150
2 Example of Monotonicity Type Assignments to Huffman Codewords 156
3 Monotonicity Type Codes. 156
4 Fingerprint Header. 157
5 Ridge Information. 158
6 Encoded Fingerprint Header . 171
7 Encoded Ridge Information .. 172
D-l Partitions for Typical Image Sizes 210
F-l Constant Groupings 225
F-2 List of Constants . 226
F-3 List of Parameters 231
F-4 List of Variables ... 248

xii

SECTION 1

INTRODUCTION·

The National Crime Infonnation Center (NCIC) maintains a national database that
includes information about wanted persons, missing persons, and identifiable stolen property.
As part of the NCIC 2000 program, law enforcement officers in police cars will be able to
acce~s this database through their patrol car radio network. This will assist officers in
verifying if a detainee is a wanted or missing person, or to identify a stolen item. To assist in
this process, images maintained in the NCIC database can be transmitted to the patrol car. In
addition, the officer in the car can transmit a detainee's fingerprint to the NCIC headquarters·
in Washington, D.C. for processing and positive identification. The large amount of data
contained in these images and the limited data transmission capacity of police radio networks
necessitates a substantial level of image compression to make this new capability responsive
to law enforcement needs without adversely impacting critical radio communication.

This report describes compression and decompression algorithms developed for flat
live-scan searchprints to meet the requirements of the NCIC 2000 program.

1.1 BACKGROUND INFORMATION

A substantial level of image compression is required to prepare flat live-scan searchprints
for transmission under the NCIC 2000 program. The requirements for a high rate of
compression and for an accurate representation of certain fingerprint information led to the
development of compression and decompression algorithms designed specifically for this
type of fingerprint. This section provides background information on flat live-scan
searchprints, as well as size and accuracy requirements for the compression/decompression
algorithms.

1.1.1 Flat Live-Scan Search prints

Searchprints are the fingerprints of unidentified or suspect individuals, which are used for
identification purposes. Minutiae points (ridge endpoints and bifurcations), and possibly
other information, are extracted from the searchprint and automatically compared to the same
types of information extracted from fileprints contained in a central database. If a significant
amount of infonnation from the searchprint matches the fileprint, a match is declared. In any
case,.the requestor is informed of the comparison results.

Two types of searchprints are utilized in the NCIC 2000 system: flat live-scan
searchprints and non-live-scan (rolled, inked) searchprints. Non-live-scan searchprints are

1

generated using standard methods with ink and paper. ' By contrast, flat live-scan searchprints
will be obtained from a scanning device either in a patrol car or at a user workstation. The
individual to be printed will place his or her right index finger on the scanning surface of the
device, and a beam of light will be passed over the pressed finger to provide detailed friction
ridge and valley information. The digital gray-scale image generated by this live-scan device
is the searchprint that will be discussed in this document. Another document ,describes
processing of non-live-scan searchprints.

1.1.2 Original Image Characteristics

The flat live-scan searchprints used to develop and test the compression algorithms
described in this document were simulated from hardcopy examples provided by the FBI.
The searchprints of the right index finger of 50 individuals were provided on 10-print cards,
each card containing one high-quality 'imprint of a laser-scanned image. The searchprint was
digitized from the card using either an Eikonix camera or a Truvel scanner at 500 dpi. The
area scanned was 0.88 inches by 1.2 inches, simulating the area that might be obtained from
a flat live-scan device. Gray-scale images were obtained with 256 shades of gray (eight
bits). Each searchprint file contained 270,000 bytes, or 2,160,000 bits, of image data.

1.1.3 Compressed Data Goals

Due to the limited bandwidth of police radios and the need for responsive transmission
times, the NCIC 2000 goal for the compressed bit stream of searchprint data was determined
to be 20,000 bits on average [1]. Not only must a high rate of compression be achieved to
reach this goal, but the final fingerprint representation must also maintain a high degree of
accuracy for matching. That is, the compressed, decompressed, and reconstructed fingerprint
must correctly maintain ridge positional data, such as minutiae points and relative ridge
locations.

1.1.4 Reconstructed Image Characteristics

In order to achieve the levels of compression needed to reduce 270,000 bytes of data to
20,000 bits, a series of steps is performed to remove any extraneous information from the
searchprint and reduce the data to only essential elements. The resulting reconstructed image
is actually a two-valued representation of the searchprint with all important positional
information preserved. The ridges are represented by single pixel-width curves that retain
the general shape of the ridges and preserve minutiae locations.

2

1.2 OVERVIEW OF COMPRESSION/DECOMPRESSION ALGORITHMS

The process developed to compress and decompress flat live-scan searchprints, described
in this report, actually consists of a suite of algorithms encompassing several stages of
processing. Each step in the suite of algorithms is essential in preparing the data for the next
processing step. Figure 1 illustrates pictorially the suite of algorithms, and figures 2 and 3
show flowcharts of the processes involved. Detailed descriptions of each of these
algorithms, as well as pseudocode, are provided in the remaining sections of this document.

Compression

•
~-,

Original Image Thresholding Image Oeaning Pore Filling Thinning

••• . . '.' • • • .11111. 1101001110 •..

Curve
Extraction

Ridge
Cleaning

Decompression

1101001110 •••

Encoded Data

Ridge
Smoothing

Chord
Splitting

Sorting

• ••
Decoding Reconstruction

Figure 1. Compression/Decompression Algorithm Diagram

1.2.1 Compression Algorithms

Encoding

The following paragraphs briefly describe each stage in the compression process. It is
important to note that a gray-scale searchprint image is the input to the first stage of

3

processing, and a bit stream is the final output. In the operational system, the final bit stream
produced by compression will be transmitted and then decompressed upon receipt.

BHO Binarization: The original gray-scale image is reduced to a two-valued image
using a modified version of the Home Office Automatic Fingerprint Recognition System
(HOAFRS) Encoder (see Appendix A).

Image Cleaning: Only enough of the ridge area below the flexion crease is retained for
context, the rest of this area is removed. Then, one pixel-wide ridge spurs, which are
artifacts of the thresholding, are removed.

Pore Filling: Sweat pores are eliminated from the processed fingerprint image in two
steps. First, small pores are eliminated based on their sizes. Then, certain large pores are
detected by comparing them to the surrounding ridge and eliminated.

Ridge Thinning: The thresholded and cleaned ridges in. the searchprints are thinned
using a chamfering technique. This technique calculates the distance of every pixel in the
ridge to the nearest edge of the ridge, and only retains pixels whose distances indicate that
they are along the center of a ridge. This produces a thinned, single pixel-width
representation of each ridge.

Curve Extraction: Ridges are detected by scanning a thinned fingerprint image. Each
detected ridge is followed in both directions until it terminates or bifurcates. The halves are
then combined into a single ridge curve and the bifurcations (if any) are also followed to
create additional ridge curves.

Ridge Cleaning: Ridge disconnects that are less than a specified size are reconnected,
and the majority of small, thin connections between ridges are removed.

Ridge Smoothing: The ridge curves are smoothed to remove unnecessary noise.

Chord Splitting: This process selects the fingerprint ridge points that will be used as
control points by the B-spline algorithm to reconstruct the ridge. A residue, or error, input
parameter determines the largest error from the original curve that the user is willing to allow
upon reconstruction.

Sorting: Spline point curves are sorted to reduce the intercurve distances and to arrange
the curves efficiently for encoding.

Data Encoding: Sorted curve points are encoded using differential encoding and several
other encoding strategies to produce the compressed data.

4

Searchprint

BHO Binarization
(see Appendix A)

Image Cleaning

Pore Filling

Ridge Thinning

Curve Extraction

Ridge Cleaning

Ridge Smoothing

Chord Splitting

Ridge Sorting

Encoding

Compressed File

Figure 2. Compression Algorithm Flowchart

5

1.2.2 Decompression Algorithms

The transmitted bit stream is received and processed by the decompression algorithms.
The bit stream representing the searchpri~t data is the input to the decompression algorithms
and a reconstructed two-valued image is the final output.

Data Decoding: After transmission, decoding interprets and regenerates the spline points
from the compressed data.

Ridge Reconstruction: B-splines are used to reconstruct the thinned ridges from the
decoded control points. This process consists of a standard technique that constructs a
smooth curve through a sequence of points.

C Compressed File)

t
Decoding I

t
Ridge Reconstruction

Reconstructed Searchprint

Figure 3. Decompression Algorithm Flowchart

1.2.3 Algorithm 1\ming

Due to the high rate of compression, information in the original gray-scale flat live-scan
images is lost in the compression/decompression process. However, at each stage of
processing, the developers evaluated the information lost and modified the algorithms, if
necessary, to prevent the removal of any critical information. In addition, since details of the
matching algorithm were not known at the time of development, a very conservative

6

approach was taken in each stage of processing to ensure compatibility with the final
matching algorithm. Although the values of various input parameters to the routines were set
during testing to reflect this conservative approach, these parameters may be changed to
reflect a more liberal or an even more conservative approach when additional information
about the matching algorithms and system operational characteristics becomes available.
Descriptions and pseudocode in the following sections clearly indicate these input
parameters.

1.3 . NOTATION AND ASSUMPTIONS

Below are examples and descriptions of the standard notation used in the documents that
describe the NCIC 2000 Image Compression Algorithms .

Example . Orthography Description

p Times, bold italic, uppercase array

P(i,j) Times, italic, uppercase array element

p Times, bold italic, lowercase vector

p(i) Times, italic, lowercase vector element

JIb Times, bold italic, lowercase, binary (bit) vector
subscript b

Pb(i) Times, italic, lowercase, binary (bit) vector element
subscript b

BLACK· Times, small caps constant

MAX-DIST Helvetica, uppercase parameter

x Times, italic, lowercase variable

if Times, bold, lowercase reserved words (keywords)

** Times, bold begin comment

FUNC[<argS>] Times, bold, capitalized small caps defined routine
FUNC[<argS>] or Times, bold, normal small caps

x=4 "=" denotes assignment (except in
conditionals, where "=" denotes an
equality test)

(a, b, c) Parenthesized list of variables Multiple values returned from a
function

7

1.3.1 Special Notation and Assumptions

The following special notation and assumptions are used throughout this document in
addition to those shown above:

(1) All division is floating-point division, unless otherwise noted.
(2) All arrays are assumed to be one-based, i.e., the fIrst row/column is indexed as l.
(3) The fIrst index into an image array is th.e row, and the second is the column. Th~

upper left comer of the image array is indexed by (1, 1); row indices increase
downward, and column indices increase to the right.

(4) Curve points are described by ordered pairs of the fonn (x, y). The x-coordinate
corresponds to an image column index and the y-coordinate corresponds to an image
row index.

(5) Parameters that may be changed to tune the algorithm are denoted in uppercase
Helvetica throughout the'text and pseudocode. For example, J, Uv, and R are
selectable parameters, while j, u", and r are variables. The values these parameters
were assigned during development are given at the ends of each section.

(6) Mathematical set notation and logical symbols are used throughout the pseudocode.
The symbols used follow these conventions:

e
{i : q(i)}
rrl
LrJ
,~I
[a, b] x [c, dJ

is not an element of
set of all i such that q(i) is true
the ceiling function (the closest integer ~ r)
the floor function (the closest integer S; r)
the absolute value of x
rectangle created by the intersection of two intervals

(7) Common functions, e.g., maximum or cosine, are used in the text and pseudocode
without defInition. They appear in roman typeface with their common function
names, e.g., max(x, y, z) or cos(9).

8

SECTION 2

DYNAMIC THRESHOLDING

The dynamic thresholding algorithm described in this section is no longer used to
threshold the fmgerprint image. Instead, a modified version of the HOAFRS Encoder (BHO
binarization) is used. Details of the changes to the HOAFRS Encoder and references are
given in Appendix A. The remainder of this section should be ignored.

Dynamic thresholding is a process that creates a two-valued fingerprint image from a
gray-scale fingerprint image. In general, a thresholding process achieves this by assigning
all the pixels above the threshold value to one value and all the pixels below the threshold to
the other value. The image characteristics of the output from such a process are totally
controlled by the selection of the threshold value. Because gray-scale fingerprint images
vary in 'intensity levels between images and even within the same image, many thresholding
strategies had to be considered. Straight thresholding uses the mean value of the entire -
image as its threshold. This responds to the difference in brightness between different
images, but does not respond to the brightness variation across a single image. Dynamic
thresholding responds to both of these brightness variations by using the mean value of the
pixels in the neighborhood of each pixel as its threshold. Figure 4 compares straight
thresholding and dynamic thresholding. On the left is shown a cross section of gray-scale
fingerprint ridges that vary from high intensity to low intensity. The thresholds used by the
thresholding techniques are shown as lines through these cross sections. The resulting
two-valued cross section is shown on the right. Clearly the straight thresholding does not
represent the fingerprint ridges as well as the dynamic thresholding which maintains the
ridge size and spacing more accurately.

2.1 ALGORITHM DESCRIPTION

For each pixel/(iJ) in the original gray-scale image, I, dynamic thresholding sets the
corresponding pixel T(iJ) in the thresholded image T to either BLACK or WHITE. This
thresholding process bases the thresholding decision for each pixel on the mean value of the
pixels in its neighborhood window (J.1window), an absolute upper limit (tupper), and a lower
limit (tlower). The value of J.1window for each pixel/(iJ) is calculated by finding the mean
value of the pixels within the N x N neighborhood window centered on /(iJ). For pixels
within (N - 1)12 pixels of an edge of the image I, the pixel values along the edge are repeated
out into the border for the purposes of this calculation. The calculation of J.1window is
illustrated in figure 5. The absolute upper and lower limits are calculated based on the
overall image minimum value miT![, mean value J.II, and maximum value TnO.X[; The upper

9

Gray-scale

Straight
Thresholding

Dynamic
Thresholding

IIIIII I I I

I1111I11111I

Figure 4. Comparison Between Straight Thresholding and Dynamic Thresholding

limit, tupper, is set equal to (J.lI + maxI)/2. The lower limit, tlowen is set equal to
(J.Il + 3 min,)/4. These absolute limits prohibit the small variations in the brightness of the
white background from being enhanced and also reduces computation for those pixels that
are unquestionably black or white.

In processing the pixel (i, }), if [(i,}) is greater than tupper, the corresponding pixel in the
thresholded image, T(i,}), is set to WHITE and if [(i,}) is less than tlower, T(i,}) is set to BLACK.

Otherwise, T(i,}) is set to WHITE if [(i,}) is greater or equal to Ilwindow and to BLACK if [(i,}) is
less than Ilwindow.

2.2 SUMMARY

Parameters

N=9

Input

I

Output

T

Height and width (in pixels) of the pixel neighborhood window

Gray-scale fingerprint image (A pixel in I is referred to as /(iJ)')

Thresholded fingerprint image (A pixel in T is referred to as T(iJ).)

10

N x N window
• • • • • b cd e

• • • • • b cd e

1
Jlwindow for /(i, j) = N2 L L J(x, y)

a a aia ia b c Id e

• • • • :. blc d e

• a • • II,! b c d e
If f f f If
la a a a la
Ih h h hlh
I I I I I

N X N window
• b c d e f 19 h

iL/ • b c d e f la h

• b c d e f 19 h
La Lit Lc 'd Ie LL La Lh
a b c d II,J f la h

N X N window

N

N
Image

Figure 5. Windows for Calculating a Pixel's Neighborhood Mean Value, Jlwindow

11

Calculated values

tupper Absolute upper limit
t'ower Absolute lower limit
J.1window Mean pixel value of a pixel's neighborhood window
11IaXi Image overall maximum pixel value
mil1[Image overall minimum pixel value
J.1I Image overall mean pixel value·

DYNAMIc_THRESHOLDING[I]

•• The image I is thresholded to produce image T
1 miTl[= minimum pixel value of I
2 11IaXi = maximum pixel value of I
3 J.1I = mean pixel value of I
4 tupper = (11IaXi + Ill) I 2
5 t'ower = (3 mil1[+ Ill) I 4
6 for each pixel (iJ) in I
7 if (I(iJ) > tupper)
8 T(iJ) = WHITE

9 else if (l(iJ) < t,ower)

10 T(iJ) = BLACK

11 else
(12

13
14
15
16
17

calculate J.1window for the N x N neighborhOod window centered on I(iJ)
if (l(iJ) < J.1window)

T(iJ) = BLACK

else
T(iJ) = WHITE

18 }
19 return T

12

SECTION 3

THRESHOLDED IMAGE CLEANING

Thresholded image cleaning is composed of a spur removal algorithm that detects and
removes single-pixel-thin ridge spurs from the thresholded image. To remove a ridge spur,
the spur removal algorithm finds the spur's end and removes the ridge spur until it intersects
the ridge. Although crease trimming used to be part of thresholded image cleaning, it is no
longer used with BHO binarization, as indicated in the pseudocode below.

IMAGE_CLEANING[I]

** This algorithm modifies I
** Crease trimming is not used with BHO binarization

1 SpUR_REMOVAL[I]
2 return

3.1 CREASE TRIMMING

** Modifies I

The crease trimming process should not be used after BHO binarization. The remainder
of section 3.1 is retained for historical reference, but it should not be implemented. Proceed
to section 3.2 for a description of the spur removal algorithm.

Crease trimming removes ridges from the thresholded fingerprint image that are a fixed
distance, which is a modifiable system parameter, below the flexion crease. The flexion
crease in a fingerprint image is a large white area within the impression corresponding to the
crease in the skin near the end joint of a finger. The crease trimming algorithm automatically
detects this crease and erases all ridges a selectable distance below this crease. This allows
the retention of the flexion crease for alignment purposes, while reducing the number of
ridges to be encoded. The process first detects the crease as a large white area within the
impression of the thresholded fingerprint image. Then the fingerprint is trimmed a fixed
distance below the detected crease. This algorithm requires that the fingerprint impression
be reasonably centered and large enough to cover the central portion of the fingerprint image.

3.1.1 Algorithm Description

The first step in crease trimming is to detect the fingerprint flexion crease, so that a
portion of the fingerprint impression below the crease can be removed. In order to detect the
crease in the thresholded fingerprint image, the algorithm must look for a large horizontal
white area within the fingerprint impression. Care must be taken not to include the white
border surrounding the fingerprint impression, as this would influence the definition of the
large white areas within the fmgerprint.

13

The algorithm considers only the bottom half of the thresholded fingerprint image since a
crease is not likely to appear in the upper half of the image. As part of detecting the large
horizontal white area defining the crease, the algorithm determines the largest vertical run of
consecutive white pixels contained within this region for each column in the thresholded
fingerprint image. A vertical run is defined to be a set of connected white pixels within a
column. Note that a column may contain more than one vertical run. Given a column j,
venicaC run(j) is defined to be the largest vertical run in the lower half of column j not
touching the top or bottom of the lower half of the image. These restrictions prevent the
white borders at the top and bottom of the fingerprint impression from being considered.
The entire collection of largest vertical runs for all columns in the image is referred to as
vertical_run.

Next, the algorithm processes verticaCrun to find the left and right edges of the
fingerprint impression. First, it calculates some statistics on the central SYERTICAL RUN

columns in verlicaCrun. During development the value of SYERTICAL_RUN was set to select
the central half of the fingerprint image. The statistics are calculated on the lengths of the
runs in this central section of vertical_run for each image: the mean (J!verticaI.Jun),
maximum (max vertical run), and standard deviation (CJvertical run). These values are used to
determine the usable columns of the runs data. Starting at the center column of the image
and iterating towards the left edge of the image, the algorithm searches for the first
verticaCrun element whose length exceeds the threshold tmax , calculated as the maximum
plus one standard deviation (maxvertical run + C5vertical run). If such a column is found, the
algorithm iterates from this column toward the right edge of the image, searching for the first
column whose verticaCrun length is less than the threshold t, calculated as the mean plus
one standard deviation (J.1vertical run + C5vertica/ run). This c,!lumn is the left edge of the
fingerprint impression, edgeleft.-Otherwise, if a column outside the central SYERTICAL_RUN

columns is found whose vertical_run length is zero, then the following column is edge/eft.
This removes the border around the left side of fingerprint from consideration.

The algorithm then performs a similar process on the right side of the thresholded
fingerprint image to find the right border. Starting at the center column of the image and
iterating towards the right edge of the image, the algorithm searches for the first vertical Jun
whose length exceeds tmax. If such a column is found, the algorithm iterates from this
column toward the left edge of the image, searching for the first column whose vertical_run
length is less than t. This column is the right edge of the fingerprint impression, edgeright.
Otherwise, if a column outside the central SYERTICAL RUN columns is found whose
vertical_run length is zero, then the preceding columnis edgeright. Figure 6 illustrates the
determination of verticaCrun, edge/eft> and edgeright.

Now that the left and right edges of the actual fingerprint impression have been
determined, the algorithm finds the largest horizontal run of white pixels for each row in the

14

.,. ~ , '

. I 1 vertica Jun 1
1

--~--~--------~-----tmu
--~~+':-:-_----I"""~"""'.ff-- t

1 1
I~ .1
1 usable columns 1

edge/eft edgerighl

Figure 6. Detennination of the Largest Vertical Runs
and the Edges of the Fingerprint Impression

region under consideration. A horizontal run is defined to be a set of connected white pixels
within a row. Note that a row may contain more than one horizontal run. Given a row i,.
horizontal_run(i) is defined to be the largest horizontal run in row i between edgelefl and
edgeright. Note that horizontal_run(i) may contain a pixel from either column edgelefl or
edgerighl; the horizontal run simply can not extend past these limits. The entire collection of
largest horizontal runs for all rows in the image is referred to as horizontaLrun. The
determination of horizontal_run is illustrated in figure 7. At this point, the largest horizontal
and vertical runs of consecutive white pixels within the fingerprint impression for each
column and row have been determined.

15

· edgfleft

I~
1
1
1
1
1
1

·1
1

T:
bottom half

edgfright
usable columns ~I

1

~~~ 
horizontaCrun 

Figure 7. The Detennination of the Largest Horizontal Runs 

Once these largest runs are found. a score is associated with each row that approximates 
the area of the largest. thickest white portion touching that row. Given a row i. row _score(i) 
i~ determined by frrst finding the vertical runs of verticaCrun that intersect 
horizontatrun(i). then multiplying the length of horizontal_run(i) by the sum of the lengths 
of the intersecting vertical runs. The entire collection of scores for all the rows is referred to 
as row_score. Figure 8 illustrates this process of calculating row_score. 

16 



T 
bottom half 

~ 

where: 

Ri = length of horizontal Jun(i) . 

Cj = length of vertical Jun(j) 

S<ij) = {I if vertical Jun(i) 
. intersects horizontal Jun(j) 

o otherwise 

row_score 

Figure 8. Combining horizontaCrun and verticaCrun to Produce the Row Scores 

17 



To detect the crease of the fingerprint, row _score is searched for the best broad high peak 
indicating the crease row, creasecenter. The best broad high peak is selected by calculating a 
peak score for each row whose row score is a local maximum. Given such a row i, 
peak_score(;) is calculated as the sum of all the row _score(k) that are greater than half the 
peak value, row _score(l), where k is such that no row' score less than half of this peak value 
exists between rows i and k. This calculation of peak score is illustrated in figure 9, which 
represents row _score as a bar graph. The best broad high peak is chosen as the peak with the 
largest peak score. In the unlikely event of a tie, the best broad high peak is selected to be 
the peak closest to the bottom of the thresholded fingerprint image. The row having the best 
peak score corresponds to the crease row, crease center, of the fingerprint. The first row below 
the crease row whose peak score is less than half of peak_score(creasecenter) corresponds to 
the crease bottom creasebottom. The trimming row is calculated as T OFFSET rows below 
Tbotto~. All the pixels in the rows of the thresholded fingerprint image below this trimming 
row are set to WIDTE. Figure 10 illustrates calculation of the trimming row and trimming 
below the crease in the fingerprint image. 

peak scores are sums of the row scores 
within the half-height width of the peak 

row 
score 

--- peak height 

half-height 

row 
width 

peak _ score(l) = 1: ( row _score(k) : row k is within the peaki's half-height width } 

Figure 9. Calculation of the Peak Scores 

18 



row 
score 

creasecenter 

row L crease"ottom 

creasecenter : row with largest peak score 

P = row _score(creasecenter) 

creasebottom = first row below creasecenter 
with row score < P{2. 

Trimming row = creasebottom + T OFFSET 

Set area below trimming row to white to remove the ridges below the crease 

~~~~!!S!r-- Trimming row 

Figure 10. Trimming the Fingerprint Below the Crease

CREASE TRlMMING[1]

•• The fmgerprint in 1 is modified by trimming T OFFSET rows below the fingerprint
crease

•• Find the largest vertical runs of consecutive white pixels (verticaCrun)
1 for each column j in 1
2 vertical_run(/) = longest vertical run of white pixels in the lower half of column j

not touching the top or bottom edge of the lower half of 1

•• Calculate statistics on the sampled verticaCrun lengths
3 J,lvertical run = mean (length of vertical_run(i) :

- (lwidth-SVERTICAL_RUN)/2 < i < (lwidlh+SVERTICAL_RUN)/2))
4 CIvertical run = standard deviation (length of verticatrun(i) :

- (lwidlh-SVERTICAL_RUN)/2 < i < (lwidlh+SVERTICAL_RUN)/2))
5 mD.Xvertical run = max{length ofverticatrun(i) :

- (lwidlh-SYERTICAL_RUN)/2 < i < (lwidlh+SYERTICAL_RUN)/2))

19

** Set the threshold to be used in cleaning vertical_run of extrema

6 t = J.LverticalJ'UI + CJverticalJ"n
7 tmax = maxvertical run + CJvertical run . - -

** Find left edge of fingerprint impression (edgeleft) and remove extreme vertical runs
from left side of image

8 edgeleft = 1 ** Initialize edgeleft to left side of image
9 for each column j from [width / 2 down to 1

10 if(length of verticaCrun(j) > tmax)

11 {
12 for each column edgeleft from column j to [width / 2
13 if (length of vertical_run(edgeleft) < t)
14 exit from loop
15 exit from loop
16 }
17 else if(length of vertical_run(j) = 0 and i $; (Iwidth-SVERTICAL_RUN)/2)
18 {
19 edgeleft = j + 1
20 exit from loop
21 }

** Find right edge of fingerprint impression (edgeright) and remove extreme
vertical runs from right side of image

22 edgeright = [Width ** Initialize edgeright to right side of image
23 for each j from [Width / 2 to [width
24 if (length of verticatrun(j) > tmax)

25 {
26 for each column edgeright from column j to [width / 2
27 if (length of vertical_run(edgeright) < t)
28 . exit from loop
29 exit from loop
30 }
31 else if(length of vertical run(j) = 0 and i ~ (Iwidth+SVERTICAL RUN)/2» - .-
32 {
33 edgeright = j - 1
34 exit from loop
35 }

20

•• Find the largest horizontal runs of consecutive white pixels (horizontaLrun)
36 for each row i in 1
37 horizontaCrun(i) = longest run of consecutive white pixels in row i

between edgeleft and edgeright

•• Calculate the row scores for each row
38 for each row i from [heightl2 to [height
39 {
40
41
42
43
44
45 }

swn=O
for each column j from edgeleft to edgeright

if (vertical_run(j) intersects with horizontal_run(i»
swn = swn + length of vertical_run(j)

row _score(i) = swn x length of horizontal_run(i)

•• Find the largest, broadest peak in row_score
46 best score = 0
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Cbottom = [height
for each row i from [height down to Iheightl2 + 1

if (row _score(i) ~ row _score(i-l»
(

swn = row _score(i)
k=i-l
while «row _score(k) > row _score(i)/2) and (k ~ [height!2»

if (row _score(k) s: row _score(i»
swn = swn + row _score(k)
k=k-l

else
swn=O
exit from loop

if (swn =0)
continue loop for next row

k=i+l
while «row _score(k) > row _score(i)/2) and (k ~ [height»

if (row _score(k) ~ row _score(i» .
sUm = swn + row _score(k)
k=k+l

else
swn=O
exit from loop

21

~--------------- ------------------------------------

70 if (sum> best_score)
71 best score = sum
72 Ccenter = i
73 Cbonom =k
74 }

•• Trim the fingerprint below Cbottom + T OFFSET

75 for each row i from Cbottom + T OFFSET to [height
76 for each columnj in I
77 I(i, J) = WHITE

78 return

3.1.2 Summary

Parameters
T OFFSET = 40 Number of rows below the crease where trimming begins
SVERTICAL_RUN = 0.5 [width Width of image central region used in collecting statistics

on verticaLrun

Input
I Dynamically thresholded fingerprint image (see section 2)

Output
I Crease trimmed fingerprint image

Calculated Values
vertical_run The longest run of consecutive white pixels for every column
J.1verticalJun Mean of the sampled verticaLrun lengths
maxverticalJun Maximum of the sampled verticaLrun lengths
Overtical run Standard deviation of the sampled verticaLrun lengths
tmax Maximum threshold of verticaLrun lengths
t Threshold of verticaLrun lengths
edgeleft The left edge of the fingerprint impression
edgeright The right edge of the fingerprint impression
horizontal_run The longest run of consecutive white pixels for every row
row _score The score proportional to the area of the white region around each

horizontal_run(i)
peak_score The score proportional to the area of each peak in the row_score
creasecenter Row with the largest peak score closest to the bottom of the thresholded

fingerprint image
creasi!bottom First row below the Crease_row whose peak score is half the Ccenler peak

score

22

3.2 SPURREMOVAL

Spur removal removes the small, single-pixel ridge spurs and isolated BLACK pixels
which may occasionally occur in the thresholded image due to either the fingerprint scanning
or the dynamic thresholding process. These thin ridge spurs must be removed for correct
ridge processing. An example of several ridge spurs is illustrated in figure 11. The ridge
spurs are removed by detecting single black pixel spur ends, then removing these single pixel
spurs down to the fingerprint ridge. The algorithm removes BLACK pixels starting from the
end of a thin ridge spur in order not to remove the single-pixel borders between some
fingerprint pores and their neighboring fingerprint Valley. If a single-pixel border is
removed, the associated pore will open onto the neighboring fingerprint valley.

small single-pixel ridge spurs

eee
single-pixel pore border

Figure 11. Examples of Small Single-Pixel Ridge Spurs

3.2.1 Algorithm Description

Spur removal operates on a thresholded fingerprint image that has been processed by
crease trimming. The algorithm scans the entire image, checking each pixel for the
possibility of being the end of a single-pixel ridge spur. If such a spur is found, it is
immediately removed down to the actual ridge. Once the spur is removed, the algorithm
returns to the point at which the removal of the spur began and continues the image scan in a
manner such that all remaining pixels in the image are considered.

As the algorithm scans through the image, it checks if the current pixel is a ridge pixel
(BLACK). If so, the algorithm considers its eight neighboring pixels and determines the
number of these neighboring pixels that are ridge pixels. If, in the process of counting, the
number of neighboring ridge pixels exceeds three, the count terminates and the algorithm
continues by examining the next pixel of the image scan. This early termination decreases
the processing needed for ridge pixels that are definitely not part of a thin ridge spur. The
spur removal process considers several alternatives:

23

• IT the current pixel has three neighboring ridge pixels that are all touching and
are in a straight four-connected line, the current pixel is erased and the
algorithm continues by examining the next pixel of the image scan.

~ ~ ~ ·133
• IT three or more neighboring pixels are ridge pix;els and they are not in a

straight four-connected line, the current pixel is not part of a thin ridge spur,
. hence the algorithm continues by examining the next pixel of the image scan.

for example: ~ .

• IT the current pixel has no ridge neighbors (Le., is an isolated pixel), the
current pixel is erased and the algorithm continues by examining the next
pixel of the image scan. . .

00
.• If the current pixel has only one ridge neighbor, the current pixel is erased and

the algorithm continues by examining the current pixel's neighboring ridge
pixel.

~~~~~Ei3~~ 
• IT the current pixel has only two neighboring ridge pixels that are 

four-connected to each other, the current pixel is erased and the algorithm 
continues by examining the neighboring ridge pixel that is four-connected to 
this erased pixel. 

~~~EEi~~i33~ 
The spur removal process is illustrated by a flowchart in figure 12.

24

Definitions:
1. D VaHey pixel

• Ridge pixel

• Current ridge pixel

2. Four-connected pixels
touch each other 8
either c:c or

3. Four-connected neighbor pixels
match one of :

,~ ••
,~i.

.. indicates
current pixel's
four -connected

neighboring
ridge pixel

Figure 12. Flowchart for the Spur Removal Algorithm

25

SpUR_REMOVAL[I]

** This algorithm modifies I
** Every BLACK pixel in image I is checked for being the end of a ridge spur by a call to
PROCESS_CANDIDATE_SPUR_PIXEL[]. If a pixel satisfies the conditions of being part of a
spur, PROCEss_CANDIDATE_SPUR_PIx£L[] is recursively called until the spur is
completely removed. At that point, the image scan proceeds from the pixel that began
the ridge spur.

1 for each pixel (i,]) in I
2 if (I(i,]) = BLACK)

3 PRocESS_CANDIDATE_SPUR_PIxEL[i,j] ** Modifies I
4 return

** To keep the data stack for this recursive process from growing larger than necessary,
image I is not explicitly passed to this routine, instead, image I is considered to be a
localized global value accessible and modifiable from within this procedure.

1 n = number of pixels neighboring the current pixel (i,]) whose value equals BLACK

2 if(n = 0)
3 I(i,]) = WHITE ** Erase the current pixel
4 else if (n = 1)
5 I(i, J) = WHITE .* Erase the current pixel
6 set (i, j) to the coordinates of the neighboring ridge pixel
7 PROCESS_CANDIDATE_SPUR_PIXEL[i,j]
8 else if (n = 2)
9 if the neighboring ridge pixels are four-connected to each other

10 l(i,]) = WHITE *. Erase the current pixel
11 set (i,]) to the coordinates of the neighboring ridge pixel that is four-connected

to the current pixel (See figure 12)
12 PROCESS_CANDIDATE_SPUR_PIXEL[i,j]
.13 else if (n = 3)
14
15

if all three neighboring pixels are touching and in a straight line
l(i,]) = WHITE *. Erase the current pixel

16 return

26

3.2.2 Summary

Input
1

Output
1

Dynamically thresholded, crease-trimmed fingerprint image

Clean thresholded fIngerprint image

27

28

SECTION 4

PORE FILLING

Sweat pores in fingerprints are naturally occurring features that result from sweat glands
breaking through the skin surface. However, pores are not reliably present in fingerprints
and they can be obliterated or altered by pressure or other factors [2].

After the fingerprint images are thresholded into binary images, the pores that are
internal to the ridges become apparent. These pores do not need to be retained for the
automated matching task. Therefore, the algorithm attempts to remove as many as possible
without changing the important fingerprint characteristics, i.e., without changing the
fingerprint topology as represented by the ridges and ridge minutiae (tenninations and
bifurcations). Because the algorithm must be conservative when removing the pores in order
not to change the fingerprint characteristics, a small number of pores may remain in a
fingerprint after pore removal. However, the criteria for pore retention can be varied by
adjusting certain input parameters.

4.1 ALGORITHM DESCRIPTION

Pore removal proceeds in two phases: small pore removal and large pore removal. Small
pores are first identified in a binary fingerprint image based on consideration of the widths of
the ridges in neighborhoods around the pore candidates. After the small pores are removed,
the large pores are identified based on a comparison of the widths of the ridges across the
pores with the widths of the ridges on the sides of the pores. Finally, identified large pores
are also removed.

For purposes of the following discussion, the distinction between ridge pixels and pore
and valley pixels must be defined. Following the standard for inked fingerprints, black
pixels are taken to be ridge pixels and white pixels are taken to be pore or valley pixels.
Ridge pixels are considered to be connected if they are adjacent horizontally, vertically, or
diagonally, i.e., if they are eight-connected. Pore and valley pixels are considered to be
connected if they are adjacent horizontally or vertically, i.e., if they are four-connected. This
distinction is important since the algorithm may deal with ridges that are one pixel wide.

Parameters associated with the pore filling algorithm are described in section 4.2. In the
algorithm descriptions, "distance" refers to the Euclidean distance between two pixels in the
image, using the pixel coordinates as the point locations. In the text and pseudocode, image
pixels are referred to as Psub, where sub is an identifying subscript.

29

PORE_F'ILLING[IMAGE]

•• This function has the side effect of modifying IMAGE .

1 if (REMOVE_SMALL_PORES[IMAGE] = ~UE)
2
3
4

return
REMOVE_LARGE_PORES[IMAGE]
return

4.1.1 Small Pore Filling

•• Section 4.1.1

** Section 4.1.2

The goal of small pore filling is to fill in the white spaces in a fingerprint image that can
be reliably and quickly identified as pores. The smaller a white space is, the more likely it is
to be a pore. Based on this fact, the algorithm developers have created a canonical definition
of a "small pore" that will be reliable for most fingerprints to be processed. The magnitude
of "small" is determined relative to the width of the ridges in the region surrounding the pore
candidate. The canonical small pore is defined to be a circular white space inside a ridge,
where the diameter of the pore is one pixel less than the average ridge width in the
surrounding neighborhood (see figure 13). Use of the average neighborhood ridge width
(see section 4.1.3) ensures that small pore filling is sensitive to the ridge width variations
across the fingerprint without being overly sensitive to individual ridge width be~avior. If
the area of a small pore candidate is less than the area of the canonical small pore in its
neighborhood, that candidate is declared to be a small pore and is filled. Note that the
candidate need not be a circular region; the circular canonical pore was only defined in order
to provide a reliable maximum area for a small pore.

0.5 pixel

-.-
neighborhood average
ridge width Wa

i.

Figure 13. Canonical Small Pore

Given the above definition of a canonical small pore, the algorithm for identifying and
filling small pores is straightforward. First, a connected-components analysis is performed

30

on the fingerprint image and the connected white regions are identified and labeled. Using
the labels, the area (number of pixels) of each region can be found in a lookup table (see
Appendix A of [3]). Second, the fingerprint is broken into fixed-sized regions and the
average ridge width is determined for each region (see section 4.1.3). Each of these regions
serves as the neighborhood for every small pore candidate that is contained in them. If
analysis of these regions shows that there are no pores or no ridges, pore filling is complete.
Otherwise, the image is scanned (left-to-nght, top-to-bottom) and the labeled white regions
are selected in turn as candidate small pores. Given Po, the first pixel of the candidate small
pore encountered by the scan, the average ridge width Wa in the neighborhood containing the
candidate is found through the methods of section 4.1.3 by using Po as the location of the
candidate. If the area of a candidate pore, i.e., the number of pixels it contains, is less than
7t «wa - 1) / 2)2, then the candidate is identified as a small pore and is filled in.

REMOVE SMALL PORES[IMAGE] - -
•• This function has the side effect of modifying IMAGE

•• Label white regions (connected components), as discussed in Appendix A of [3]
1 (nwn_regions, LABEL_IMAGE, area_vector)

= FOUR-CONNECTED_COMPONENTS[/MAGE, BLACK, LABEL_IMAGE]
2 if (nwn _regions = 0)
3 exit ** Error: IMAGE is all black
4 else if (nwn_regions = 1)
5 if (area_vector[lJ = width * height)
6 exit ** Error: IMAGE is all white
7 else
8 return TRUE ** A single white area not covering the whole image, so no pores

9 PREPARE_AvERAGE_NEIGHBORHOOD_RIDGE_WIDTHS[IMAGE] ** Section 4.1.3
10 if (all average neighborhood ridge widths are 0)
11 return TRUE ** There are no ridges with width betweenWMIN and WMAX

12 for i from 1 to height.
13 for j from 1 to width
14 if (IMAGE(i, j) is WHITE and IMAGE(i, j - 1) is BLACK)

15 Wa = AVERAGE_NEIGHBORHOOD_RIDGE_WIDTH[i,Jl

16 if (area_vector(LABELJMAGE(i, j» < r 7t «Wa - 1) / 2)21)
17 fill white region containing IMAGE(i, j) ** Fill the pore
18 return FALSE ** Proceed with large pore filling

31

4.1.2 Large Pore Filling

The goal of large pore filling is to fill in as many of the pores as possible that were not
filled in by the small pore filling algorithm, without filling in white spaces that are not pores.
This process is more difficult than small pore filling because some large pores are similar to
valleys and vice versa. To identify large pores, the algorithm compares candidates to the
model of a large pore that was developed for this task (see below). If the candidate pore
matches the pore model, it is further checked to verify that it is not a small valley. If the
verification succeeds, the pore has been identified and is filled in.

4.1.2.1 Large Pore Model

To identify large pores, the algorithm first needs a model of a large pore. A large pore is
identified based on its width and the width of the ridge containing it. If the width of the
ridge across the pore candidate is sufficiently small with respect to the minimum ridge width
to either side of the candidate (figure 14), then the candidate matches the large pore model.
If the candidate matches the model, it is further checked to ensure that it is a pore and not a
valley.'

Because the ridge width calculation can inadvertently span more than one ridge
(figure 15), the ridge widths measured to the sides of the candidate are compared to the
average ridge width in the neighborhood around the candidate. If the minimum side ridge
width is sufficiently greater than the neighborhood average ridge width, the algorithm
assumes that the measurement of the side ridge width spanned more than one ridge and is
thus.invalid. In this case, the candidate is declared to be a Valley. Otherwise, the candidate is
declared to be a pore and is filled in. This process is designed to be conservative to avoid
filling in valleys at the expense of not filling in questionable pores.

4.1.2.2 Candidate Selection

The algorithm for identifying and filling large pores once again uses the average ridge
width Wa for regions of the image (section 4.1.3), but these widths must first be recalculated
because the small pores have now been filled in. After this recalculation, the large pore
candidates are selected by considering each white region that still remains in the fingerprint
image after small pore elimination. Given the parameter LMAX (see section 4.2), if the area
of a white region (the number of pixels it contains) is greater than WaLMAX' that candidate is
assumed to be a valley; otherwise, it identified as a large pore candidate. (This size
consideration implies that a white space larger than one average ridge width wide and LMAX
average ridge widths long is taken to be a valley.) To fill large pores, the image is scanned
(left-to-right, top-to-bottom) until a black-to-white pixel transition is encountered. If the
region that contains the white pixel of this transition meets the criterion for a large pore
candidate, the pixel is labeled Po and identifies the pore candidate; Po and the pixels in the

32

pore

left side ridge width pore width right side ridge width

valley

Figure 14. Large Pore Model

left side ridge width measured pore width right side ridge width

Figure 15. A Valley that is Similar to a.Large Pore

white region containing it are then labeled LARGE_PORE_CANDIDATE. (The labels could be
implemented, for example, by maintaining a separate label array of the same size as the
image.) Each pore candidate found is checked against the large pore model and filled in if it
matches. After the check, the scan resumes until all the pore candidates have been tested.

33

REMOVE_LARGE_PORES[IMAGE]

•• This function has the side effect of modifying IMAGE
•• The array IMAGE should be available globally to the subroutines

under REMOVE_LARGE_PORES

1 PREPARE_AvERAGE_NEIGHBORHOOD _RmGE_ WIDTHS[IMAGE]
2 for i from 1 to height
3 for j from 1 to width
4 if (IMAGE(i, j) is WlllTE and IMAGE(i, j - 1) is BLACK)

5 Wa = AVERAGE_NEIGHBORHOOD _RIDGE_ WIDTH[i, Jl

6 if (area of white region containing IMAGE(i, j) < WaLMAX)
7 {
8
9

for pixel in white region containing IMAGE(i, j)
label pixel as LARGE_PORE_CANDIDATE

•• Section 4.1.3

10 LARGE_PoRE_TEsT[i,Jl ** Removes large pores, section 4.1.2.3
11
12

}
return

4.1.2.3 Large Pore Model Test

To compare a candidate pore against the large pore model, the width of the ridge must be
calculated both across the white space and at the sides of the white space (figure 14).
(Because a ridge edge actually is a black-pixel-to-white-pixel transition, one side of this
transition must be selected to represent the ridge edge. For this algorithm, the white pixels of
the transition are chosen to define the ridge edge.) First, the edges of the enclosing ridges are
located. Because the candidate was found using a raster scan of the image (left-to-right,
top-to-bottom), it is guaranteed that black (ridge) pixels are to the left of and above the initial
candidate pixel, Po (figure 16). To find the edges of the enclosing ridges, the image pixels
are searched to the left of, and searched up from, Po until the first black-to-white
(ridge-to-valley) transition found in each direction. If the white pixel of either transition has
been labeled LARGE_PORE_CANDIDATE, (Le., it is contained in a large pore or large pore
candidate, see figure 17), or if the distance from Po to the white pixel exceeds LUMAX, the
transition is invalid and is discarded. (Note that, because of the order of the raster scan of the
image, all large pore candidates to the left of Po and all large pore candidates above Po have
already been labeled.) If both transitions are valid, the white pixel of the transition closest to
Po is selected as Pe, the edge of the ridge surrounding the pore candidate. If only one
transition is valid, it is used to select P e. If neither transition is valid, no decision can be
made about this large pore candidate, so it is not filled in and the scan continues for the next
candidate.

34

Figure 16. Po, Pe, and the Search for Ppl in a Large Pore Candidate

(a)

(b)

Figure 17. Search Failure. This figure shows an example of a failure in the search for the
black-to-white transition of the enclosing ridge edge of a large pore candidate. (a) A ridge
containing a large pore on the left and a large pore candidate on the right. (b). The search
to the left from the candidate finds a black-to-white transition, but the transition is invalid

because the white pixel is contained in a large pore.

After finding the enclosing ridge, the point on the ridge closest to the center of the pore
candidate must be found. First, the center of area of the candidate's (white) pixels, Pc, is
found. Then, given Pe and Pc, the algorithm finds the pixel Ppl on the ridge edge that is
closest to the candidate's center of area. The search used to find the minimizing pixel Ppl is
described in section 4.1.2.4. This search is conducted in both the clockwise and
counterclockwise directions along the ridge edge from Pe (see figure 16). If no point Ppl can
be found, no decision can be made about this large pore candidate, so it is not filled in and
the scan continues for the next candidate.

The local tangent is calculated at Ppl using Ppl and two edge pixels to either side of it.
(By fitting a line in rho-theta form to these points using the least squares technique described
by Hom [4] instead of using the more common slope-intercept formulation, lines that are

35

vertical or near vertical pose no special problem.) The perpendicular to this tangent is then
searched across the ridge to find the other side of the ridge. The first black-to-white crossing
should be at the pore candidate. If it is not, the ridge width across the candidate cannot be
measured and the candidate is declared (by default) to be a valley. Otherwise, the search
along the perpendicular is continued until the next black-to-white transition is found,
ignoring any white regions encountered that are also part of the pore candidate. (The shape
of the pore candidate may cause its white region to be encountered more than once.) The
white pixel of this black-to-white edge transition across the pore from Ppl is labeled Pp2 (see
figure 18). The distance from Ppl to Pp2 is the width across the pore candidate, wp.

Pcewl

Figure 18. Comparison of Pore Candidate to Model

After the width across the pore candidate is determined, the width of the ridge to either
side of the candidate must be found. First, the minimum and maximum row and column
(imin, imax,jmin, andjmax) are found for the white candidate region. Then, given the average
ridge width Wa in the neighborhood of the candidate pixel Po, the ridge is traced from Ppl in
both directions (clockwise and counterclockwise) until the row and column are outside the
rectangle [imin - Wa, imax + wa] x Umin - wa,jmax + wa]. These (white) ridge points are
labeled Pewl and Pcewl (see figure 18). If tracing the ridge in the clockwise
(counterclockwise) direction does not yield a ridge point outside the bounds stated above
within EMAX pixels of Ppl, the search is abandoned and P ewl (Pcewl) is not defined. Given
P ewl (P ccwl), the point P ew2 (Pcew2) directly across the ridge is found by starting at Pp2 and
tracing along the ridge edge in the counterclockwise (clockwise) direction until the distance
between the white ridge pixel and P cwl (P ccwl) is minimized. (See section 4.1.2.4 for the
minimizing procedure.) The pixel that minimizes this distance is labeled P cw2 (Pcew2). If
P ew2 (Pccw2) is found to be the same as P cwl (Pcewl), then the search has wrapped around the
ridge and Pcw2 (Pcew2) is not valid. The ridge width Wcw (wccw) is calculated as the distance

36

between the points Pew1 and Pew2 (Pcew1 and Pcew2). The minimum of Wew and Wcew is taken
to be the ridge width Wr of the ridge containing the pore candidate. If any of P ewl, Pcewl,

P ew2, or P cew2 cannot be found, the corresponding ridge width is not used and Wr is set to the
other ridge width. If neither ridge width Wew nor Wcew can be found, the candidate is
declared to be a valley.

Now that wp and Wr have been calculated, the pore candidate can be compared to the pore
model. If wp is less than WrPMIN, then the candidate matches the pore model. Otherwise, it
is declared to be a valley. If the candidate matches the pore model, the next step is to verify
that the candidate is a pore and not a small valley (figure 15). If Wr is greater than WaPMAX,
then Wr is assumed to have inadvenently spanned more than one ridge and the candidate is
declared to be a valley. If wp is greater than WaPMAX, then the pore candidate is too wide and
wp is assumed to have been measured across the valley between two ridges; the candidate is
declared to be a valley~ Otherwise, the match of the candidate to the large pore model is
accepted and the pore is ftlled in.

LARGE_PORE_TEST[i,j]

1 Po = (i,})
2 candidate = white region containing Po

** Find enclosing ridge edge Pe
3 Pe,left = NOT_VALID

4 Pe,up = NOT_VALID

5 search left from Po for black-to-white transition
6 P temp = white pixel of transition
7 if (distance(Ptemp , Po) ~ LUMAX and P'emp is not labeled LARGE_PORE_CANDIDATE)

8 Pe,left = P'emp
9 search up from Po for black-to-white transition

10 Ptemp = white pixel of transition
11 if (distance(P,emp , Po) ~ LUMAX and P'emp is not labeled LARGE_PORE_CANDIDATE)

12 Pe,up = Ptemp
13 if (Pe,lefl :#- NOT_VALID and Pe,up :#- NOT_ VAUD)

14 Pe = closer of (Pe,left> Pe,up) to Po

15 else if (Pe,left:#- NOT_VAUD and Pe,up = NOT_VALID)

16 Pe = Pe,left
17 else if (Pe,left = NOT_VAUD and Pe,up:#- NOT_VALID)

18 Pe = Pe,up

19 else if (Pe,left = NOT_VAUD and Pe,up = NOT_VALID)

*. Not a pore, so return without filling the candidate
20 return

37

** Find point Ppl on enclosing ridge closest to candidate center Pc

21 Pc = pixel at center of candidate
22 Ppl,cw = SEARCH_EDGE_FOR_MINIMIZING_PIxEL[Pc , Pe , clockwise]
23 Ppl,cew = SEARCH_EDGE_FOR_MlNIMIzINGJ>IXEL[Pc , Pe , counterclockwise]
24 if (Ppl,cw:F. NOT_VALID and Ppl,cew :F. NOT_VAllO)

25 Ppl = closer of (Ppl,ew, Ppl,cew) to Pc

26 else if (Ppl,cw:F. NOT_VAllO and Ppl,cew = NOT_VAllO)

27 Ppl = Ppl,ew

28 else if (Ppl,cw = NOT_VAllO and Ppl,cew:F. NOT_VAllO)

29 Ppl = Ppl,cew

30 else if (Ppl,ew = NOT_VAllO and Ppl,cew = NOT_VALID)

** Not a pore, so return without fIlling the candidate
31 return

** Find point Pp2 on enclosing ridge edge opposite from Ppl and pore width wp

32 find local tangent to Ppl .

33 search from Ppl across ridge perpendicular to tangent until first black-to-white transition
34 if (white pixel of transition ~ candidate)

** Not a pore, so return without filling the candidate
35 return
36 else
37 continue search until first black-to-white transition where white pixel ~ candidate
38 Pp2 = white pixel of transition
39 wp = distance(Ppl, Pp2)

** Find ridge edge pixels to either side of candidate
40 Pewl = NOT_VAllO

41 Pew2 = NOT_VAllO

42 imin, imax, jmin, jmax = minimum and maximum rows and columns of candidate
43 trace at most EMAX pixels clockwise along ridge edge from Ppl until outside the

rectangle [imin - Wa, imax + wa] x Umin - Wa, jmax + wa]
44 if (trace succeeded)
45 P ewl = final white pixel of trace ,
46 trace at most EMAX pixels counterclockwise along ridge edge from Ppl until outside the

rectangle [imin - Wa, imax + wa] x Umin - wa,jmax + wa]
47 if (trace succeeded)
48 P ew2 = final white pixel of trace

38

•• Find opposite ridge edge pixels to either side of candidate
49 P cwl = NOT_ VAUD

50 P cw2 = NOT_ VAUD

51 Ptemp = SEARCH_EDGE_FOR_MlNIMIzINGJ>DffiL[Pcwl, Pp2, counterclockwise]
52 if (Ptemp :# P cwl) .

53 Pcw2 = Ptemp
54 Ptemp = SEARCH_EDGE10R_MlNIMIzING_PIXEL[Pccwl, Pp2, clockwise]
55 if (Ptemp :# Pccwl)

56 P ccw2 = Ptemp

•• Find ridge widths to sides of candidate
57 Wcw = NOT_ VAUD

58
59
60
61
62

Wccw = NOT_VALID

if (P cwl :# NOT_VALID and P cw2 :# NOT_VALID)

Wcw = distance(P cwl , P cw2)·
if (Pccwl :# NOT_VAUD and Pccw2 ¢ NOT_VAllO)

Wccw = distance(Pccwl, Pccw2)

•• Find ridge width to side of candidate
63 if (wcw :# NOT_VAUD and Wccw ¢ NOT_VALID)

64 w, = min (wcw, wccw)

65 else if (wcw ¢ NOT_VALID and Wccw = NOT_VALID)

66
67
68
69

70

W, =Wcw
else if (wcw = NOT_VALID and Wccw ¢ NOT_VAllO)

W, =Wccw
else if (wcw = NOT_VALID and Wccw = NOT_VALID) _

•• Not a pore, so return without filling the candidate
return

39

** Compare candidate to pore model
71 if (wp < WrPMIN)

72 if (wr > WaPMAX or wp > WaPMAX)

** Not a pore, so return without filling the candidate
73 return
74 else

75
76
77 else

** A pore
fill in candidate
return

** Not a pore, so return without fllling the candidate
78 r.etum
79 end

4.1.2.4 Searching a Ridge Edge to Minimize the Distance between the Edge and
Another Point

Given a point P and a white pixel Q on a ridge edge, various steps of the algorithm need
to find the pixel Clmin on the ridge edge that minimizes the distance between the edge and P.
Depending on the step in the algorithm, Qmin must be found in the clockwise or
counterclockwise direction along the ridge edge from Q. To find Clmin, first let the current
minimum m be the distance PQ and the minimizing pixel Clmin be Q. Then, choose the next
neighboring white pixel Q' of Clmin in the clockwise (counterclockwise) direction and
compare the distance PQ' to m. If PQ' is less than m, it becomes the new minimum distance
m and Q' becomes the new minimizing pixel Q;mn' Otherwise, the search continues in the
same direction to the next neighboring white pixel of Q' and the process is repeated. If a new
minimizing pixel is not found within H pixels along the edge from the current minimizing
pixel Clmin, then the search ends and Clmin is the minimizing pixel. (This hysteresis Hallows
for small variations in the smoothness of the ridge edge.) To limit the search, if EMAX edge
pixels have been examined and the last pixel examined is less than H pixels from the current
Clmin, the search has failed and no minimizing pixel is found.

40

SEARCH_EDGE_FOR_MTh'IMIZING_PIxEL[P, Q, direction]

, ** P is the fixed pixel to which this routine minimizes the distance along a ridge edge
** Q is a white pixel on a ridge edge and serves as a starting point for the search
** direction is the search direction: either clockwise or counterclockwise

1 m = distance(P, Q)

2 Qmin=Q
3 n=O
4 nyast_min = 0
5 while (nyast_min < Hand n < EMAX)
6 Q' = neighboring white pixel of Qmin in direction
7 increment n
8 if (distance(P, Q') < m)
9 m = distance(P, Q')

10 Q' = (kin
11 nyast_min = 0
12 else
13 increment n yast _min
14 if (n ~ EMAX)
15 return NOT_VALID

16 else
17 return Qm;n
18 end

4.1.3 Neighborhood Average Ridge Width

The algorithms for identifying large and small pores use the average ridge width in the
neighborhood of each pore candidate. Rather than calculate the average ridge width in
neighborhoods centered on each candidate, which would be computationally expensive, the
average ridge width is found for fixed regions across the fmgerprint image. The average
ridge width in the neighborhood of a pore candidate is then approximated by the average
ridge width in the fixed region in which it lies.

The R x C (rows x columns) fingerprint image is partitioned into Rp sections vertically
and Cp sections horizontally (figure 19). Each resulting R/Rp x C/Cp rectangle is used as a
neighborhood for the average ridge width calculation. (The parameter values used during
development and testing of the Pore Filling algorithms are given in section 4.2. The values
of Rp and Cp were chosen to evenly partition the image so that the resulting neighborhoods
were roughly 60 x 60, thus covering large enough portions of the fingerprint to yield
meaningful average ridge widths. See Appendix D.) The widths for all ridges within each
rectangle are calculated and the average ridge width is stored for each rectangle. To calculate

41

~----~--~----------~--------------~-

the average ridge widths, a raw thinned image and a chamfered image are created from the
binary fingerprint image (see section 5). Then, for each rectangle, the pixels in the raw
thinned image are scanned. When a black (ridge) pixel is encountered, the corresponding
value Vc from the chamfered image is found. The ridge width at this pixel is then calculated
as W = 2vc / 1000. (The algorithm for calculating the ridge width at a pixel is described fully
in section 7.1.2. Note that although section 7.1.2 addresses the calculation of the average
ridge width along a fingerprint curve, the part of the calculation that determines the ridge
width at a pixel is used here in determining the average ridge width in a rectangle.) The sum
of all the ridge widths w in a rectangle, divided by the number of raw thinned image ridge
pixels in that rectangle, yields the average ridge width Wa for that rectangle. If the ridge
width at any pixel falls outside of the inclusive bounds [WMIN, WMAX], however, the width is
assumed to be in error and is not used. For development and testing of the algorithm, WMIN

was chosen to prevent the inclusion of one- and two-pixel wide ridges, which typically
correspond to pore edges. WMAX was chosen so that large "smudge" regions, which do not
correspond to valid ridges, are not included in the average ridge width calculation.

~ Cp sections ---.j
, , ,

---,.--- ... ----~---, , , , , , ,
••• J •••• ' •••• ' •••• , , ,

Rp sections
, , , , , , , , , . -., , ,

---1---~----~---,

Figure 19. Partitioning of Fingerprint Image for Neighborhood Average Ridge Width
Calculation

Given a point in the fingerprint image, the average neighborhood ridge width algorithm
returns the average ridge width Wa for the rectangle containing that point. One possible
implementation of the average ridge width routines is to store the average ridge widths for
the rectangles of the partitioned image in an array and to access the array based on the given
point's coordinates, the size R x C of the fingerprint image, and the number of sections Rp
and Cp of the image partition.

42

PREPARE_AVERAGE_NEIGHBORHOOD _RmGE_ WIDTHS[IMAGE]

** This function has the side effect of modifying IMAGE

** rows yer _section and columns yer _section should be available globally to the
subroutines dealing with average ridge widths

** See Appendix D for information on setting the parameters Rp and Cp
1 rows yer _section = r R / Rp 1
2 columns yer _section = r C / Cp 1
3 create RIDGE_WIDTH_ARRAY with Rp rows and Cp columns
4 initialize RIDGE_WIDTH_ARRAY with zeros
5 (CHAMFER, RAW_THIN) = RmGE_TIllNNING[IMAGE] •• Section 5

.* . Store the average ridge widths of the sections of the fingerprint image
6 for row from 1 to Rp
7 for column from 1 to Cp

** Determine the upper-left comer and extent of the current section
8 i/ow = «row - 1) * rows yer _section) + 1
9 j/ow = «column -1) * columnsyer_section) + 1

10 isize = min (rows yer _section, height - i/ow + 1)
11 jsize = min(columnsyer _section, width - jlow + 1)
12 RIDQE _WIDTH _ ARRAY(row, column)

= AVERAGE_SECTION_RIDGE_WIDTH[ilow,jlow, isize,jsize]
13 return

AVERAGE_SECTION_RmGE_WIDTH[ilow,jlow, isize,jsize]

1 count = 0
2 sum=O

** Sum the ridge widths in this section of the fingerprint image
3 for i from ilow to ilow + isize - 1
4 for j from jlow to jlow + jsize - 1
5 if (RAW THIN(i,J) is BLACK)

6 w = 2 * CHAMFER(i,J) /1000
7 if (w ~ WMIN and w S WMAX)
8
9

sum=sum+w
increment count

10 if (count = 0)
11 return 0
12
13
14

else
return sum / count

end

43

AVERAGE_NEIGHBORHOOD _RmGE_ WIDTH[i, j]

1 row = L(i - 1) / rowsyer _sectionJ + 1
2 column = Lu - 1) / columnsyer _sectionJ + 1

•• Return the average ridge width for the section containing (i, J)
3 return RIDGE_WIDTH _ ARRAY(row, column)

4.2 SUMMARY

The parameter values used during development and testing of the algorithms described in
this section, as well as the input and output variables, are listed below.

Parameters
C=450
Cp=9

EMAX = 50
H=5

LUMAX = 15

PMAX=2.5

PMIN = 3.0

R=600
Rp= 10

WMAX=8.0

Input
IMAGE

Output
IMAGE

Number of columns in the fingerprint image
Number of horizontal sections in the partitio~ of the fingerprint image
used to calculate average ridge widths (see Appendix D)
The maximum distance for a search along a ridge edge, in pixels
When choosing a ridge edge pixel to minimize the distance to a point, a
pixel is considered to minimize this distance if no ridge edge pixel within
H pixels yields a smaller distance.
Maximum ratio between the white area of a large pore candidate and the
average ridge width in its neighborhood
Maximum distance to the left of, or up from, an.initial pore pixel to its
enclosing ridge edge, in pixels
Maximum ratio between the pore and ridge widths of a candidate and the
average neighborhood ridge width in the large pore model.
Minimum ratio between the width of a pore candidate and the ridges to
either side of it in the large pore model
Number of rows in the fmgerprint image
Number of vertical sections in the partition of the fingerprint image used
to calculate average ridge widths (see Appendix D)
Maximum width of a ridge for the average ridge width calculation, in
pixels
Minimum width of a ridge for the average ridge width calculation, in
pixels

Binary fingerprint image

Pore-filled binary fingerprint image

44

SECTIONS

RIDGE THINNING

Ridge thinning processes the thick fmgerprint ridges of the trimmed, thresholded image
to produce a raw thinned image containing mostly single-pixel lines that represent the
fingerprint ridges. This ridge thinning algorithm is used twice in the flat live-scan
searchprint compression process. It was used previously by the pore fIlling process to
generate the chamfered and thinned images required for calculating average ridge widths (see
section 4.1.3). The ridge thinning algorithm is now applied to the pore-filled image to
produce a raw thinned image. A further processing step described in curve extraction (see
section 6) will process this raw thinned image before extracting the curves. This processed
image will be referred to as the thinned image and will be free of the artifacts that remain in
the raw thinned image after the thinning process described in this section.

5.1 ALGORITHM DESCRIPTION

Three major steps characterize the ridge thinning process: chamfering, local maxima
detection, and recursive ridge following. The products of these steps are represented in
figure 20. Chamfering generates an image whose pixel values represent approximate
distances to fingerprint ridge edges. The chamfered image is used extensively, not only in
the other two steps of this process, but also for calculation of average ridge widths in the pore
filling (section 4) and ridge cleaning (section 7) processes, and must be retained until no
further needed. Local maxima detection finds local maxima points within the chamfered
image that serve as seed points for the recursive ridge following step. These local maxima
points are placed in the final raw thinned image as part of the raw thinned ridges. The
recursive ridge following step fills in the gaps between local maxima points. The recursive
nature of the ridge following algorithm allows the trimming of unwanted spurs that may be
generated by other methods of thinning.

RIDGE_THlNNING[I]

1 C= CHAMFER[I]
2 T = DETECT_LoCAL_MAXIMA[C]
3 for each pixel (i, j) in T marked as a LOCAL_MAXIMUM pixel
4 FOLLOW_RIDGE[i,j, UNDEFINED_DIRECTION] ** Refers to C & T and modifies T
5 return (C, T)

45

© 1992, 1993 The MITRE Corporation

Thresholded
Image

Olamfering ~

Chamfered
Image

Local
Maxima

Detection

Raw
Thinned
Image

t Recursive
Ridge

Following

I':,"", ", ,. ,'" .,.. .. " " ..
II.'" : .. :", ""
'i " . .. ~ ,," .. " ,.. " " " " "I \' \., •• I, ,:" \ " "" "",,".
I • ,,', "" ~, ,"

11·'-"'\'" ,.,. -, '.;:-- "' . .. -~ ' ... -_
,..-....,.,. --

~-.--

Local
Maxima

Figure 20. Intennediate Products of the Ridge Thinning Algorithm Steps

Inputs

1

Outputs

C
T

Thresholded, cleaned, fingerprint image

Chamfered image
Thinned image

5.1.1 Chamfering

The chamfering algorithm processes a binary image to produce an image in which each
non-zero pixel value represents the shortest path distance to the closest edge pixel (Le., the
shortest patjt distance from each BLACK pixel to its nearest black pixel of a BLACK to WHITE

transition). This shortest path distance was defined as the sum of diagonal pixel jumps and
the rectilinear pixel jumps between two pixels. The chamfering algorithm is originally

46

~. '. " -' '~

described in a paper by Barrow et al. [5]. In the chamfering algorithm used here, the shortest
path distances are calculated for the pixels within the ridges, providing the basis for a fast
algorithm to thin the fingerprint ridges to single-pixel widths. The resulting chamfered
image also provides the capability to calculate the average ridge widths which is used in pore
filling (section 4) and ridge cleaning (section 7).

The chamfering algorithm consists of an initialization pass and two chamfering passes.
First, a new integer-typed image, the chamfered image, is created and initialized to zero.
Then, initialization is completed by setting every chamfered image pixel corresponding to a
thresholded image ridge pixel to a very large integer (see below). The very large integer
used in the initialization must be larger than the largest possible chamfer value, Cma,x, of the
final chamfered image, which can be calculated from the size of the image and the scaling
factor as follows:

Cmax = floor « min .,-size x (..J2 - 1.0) + max_size) x scalingJactor + 0.5)

Where:
min_size = the minimum of heightJ and widtly
max_size = the maximum of heightJ and width[
scalingJactor is an integer larger than min_size.

The scaling factor specifies the precision retained in the integer arithmetic. Because the
integer values of the square root of two and of one are both one, all numbers must be scaled
by the scaling factor in order to preserve enough precision to differentiate between these two
values. In the case of the 450x600 pixel live-scan fingerprint images, the scaling factor is set .
to 1000. Hence, all rectilinear jumps between pixels have a distance of 1000, and all
diagonal jumps between pixels had a distance of 1414. The value of Cmax computes to
782,254, requiring the chamfer image to have at least 20 bits per pixel.

Once the chamfered image is initialized, two passes of a similar operation are iterated
over the image. The first chamfering operation is applied to the image from the top-left
corner to the bottom-right corner of the image; scanning from left to right and from top to
bottom. As this operation-is applied to each pixel, the chamfered image values of the pixel
and its neighboring pixels to the top-left, top, top-right, and left are considered. The chamfer
value of the pixel is replaced with the minimum of the following values: its original chamfer
value, the top-left value plus the diagonal jump distance, the top value plus the rectilinear
jump distance, the top-right value plus the diagonal jump distance, and the left value plus the
rectilinear jump distance. When a pixel under consideration is at the border of the image,
only those neighboring pixels that are contained within the image are considered. This first
pass, illustrated in figure 21, finds the shortest path distances from each ridge pixel to its
nearest top-left ridge-edge pixel. The efficiency of this operation can be dramatically
improved by first checking if the pixel being operated on has a value of zero before

47

.'
Chamfer Image

~i,j)

Window

rectilinear distance = integer of (1 x 10(0) = 1000
diagonal distance = integer of (.,J2 x 10(0) = 1414

chamfer image value C(i,)) = minimum of:
a+1414,
b+l000,
c+1414,
d+l000,
C(i,j)

Figure 21. The First of Two Passes of the Chamfering Algorithm

calculating the above minimum. Approximately half of the pixels in the chamfered image
have been initialized to zero (fingerprint valley pixels) and will continue to be zero.

The second chamfering operation on the image is identical to the first chamfering
operation, except it is applied to the image as if it were rotated by 180 degrees. This second
operation is applied from the bottom-right corner to the top-left corner of the image;
scanning the image from right to left and from bottom to top. As this operation is applied to
each pixel, the chamfer image values of the pixel and its neighboring pixelS to the
bottom-left, bottom, bottom-right, and right are considered. The chamfer value of the pixel
is replaced with the minimum of the following values: its original chamfer value, the
bottom-left value plus the diagonal jump distance, the bottom value plus the rectilinear jump
distance, the bottom-right value plus the diagonal jump distance, and the right value plus the
rectilinear jump distance. Again, when a pixel under consideration is at the border of the
image, only those neighboring pixels that are contained within the image are considered.
This second pass, illustrated in figure 22, finds the shortest path distances from each ridge
pi~el to its nearest ridge-edge pixel by completing the consideration of the bottom-right
ridge-edge pixels. An example of the steps in generating the final chamfered image is shown

in figure 23.

48

Chamfer Image

t;.,j)
rrlm1
Window

rectilinear distance = integer of (1 x 10(0) = 1000
diagonal distance = integer of (..J2 x 10(0) = 1414

chamfer image value C(i, J) = minimum of :
C(i,]),
e+l000,
/+1414,
g+I000,
h+1414

Figure 22. The Second of Two Passes of the Chamfering Algorithm

49

00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00 00

Initialized
00 is the largest possible chamfer value, Cmax

2000

1414

1414 2000 2000 2000 2000 2000

2414 3000 3000 3000 3000 3000

1000 1414 2414 2828 3828 4000 4000

2000 2414 2828 3828

First Pass

o RIDGE pixels

• VALLEY pixels

Second Pass

Figure 23. An Example Portion of a Chamfered Image

50

CHAMFER[I]

•• Initialization of the chamfered image C
1 for each pixel (i,)) in image I
2 if (1(i,)) = RIOOE)

3 C(i,)) = Cmax

4 else
5 C(i,)) = 0

•• First pass of the Chamfering algorithm
6 for each row i in C from 1 to heightJ
7 for each column j in C from 1 to width[
8 a = C(i-l,j-l) + 1414
9 b = C(i-l,)) + 1000

10 C = C(i-l,j+l) + 1414
11 d = C(i ,j-l) + 1000
12 C(i,)) = minimum of a, b, c, d, C(i,})

•• Second pass of the Chamfering algorithm
13 for each row i in C from heightJ to 1 step-l
14 for each columnj in C from width[to 1 step-l
15 e = C(i,j+l) + 1000
16 /= C(i+l,j-l) + 1414
17 g = C(i+l,)) + 1000
18 h = C(i+l,j+l) + 1414
19 C(i,)) = minimum of e,/, g, h, C(i,j)
20 return C

5.1.2 Local Maxima Detection

The local maxima detection algorithm generates a local maxima image in which the
pixels are marked as either BACKGROUND pixels or WCAL_MAXIMUM pixels. The
WCAL_MAXIMUM pixels are part of the thinned ridge and serve as seed pixels to the recursive
ridge following algorithm. To generate the local maxima image, the algorithm scans the
chamfer image from left to right and from top to bottom, applying the local maximum test to
each pixel. If a pixel passes the local maximum test, its corresponding location in the output
image is marked as a LOCAL_MAXIMUM pixel. Otherwise the pixel is marked as a
BACKGROUND pixel.

51

A pixel must pass at least one of two following tests to be declared a LOCAL_MAXIMUM

pixel. The fIrst test has two conditions: (1) the pixel's chamfer value must be strictly greater
than the chamfer values of the two pixels above that pixel and the pixel two rows below that
pixel, and (2) the pixel's chamfer value must be greater than or equal to the chamfer values
of the neighboring pixels to the left, right, and bottom. The second test has three conditions:
(1) the pixel's chamfer value must be strictly greater than the chamfer values of the two
pixels toward the left and the pixel two columns toward the right, (2) the pixel's chamfer
value must be greater than or equal to the chamfer values of the neighboring pixels above,
below, and to the right, and (3) the neighboring pixel above the pixel has not already been
declared to be a LOCAL_MAXIMUM pixel in the output image. This local maximum detection

. algorithm is illustr~ted in fIgure 24. Notice that second condition is the reason that the rows
of the chamfered image must be scanned from top to bottom. A pixel's neighbor toward the
top must have already been considered as possibly being a LOCAL_MAXIMUM pixel before the
second condition can be applied to the pixel.

Chamfered Image

Filter Window

Pixel P is a local maximum if

<P

s;p

<P

AND this pixel
is not

a local maximwn

Figure 24. Filter for Detecting the Local Maxima Locations in a Chamfered Image

52

DETECT_LOCAL_MAXIMA[C]

1 for each row i in C from 3 to heighrc - 3
2 for each column j in C from 3 to widthc - 3
3 if «C(i-l,}) < C(i,}) and (C(i+l,}) ~ C(i,J)

(

and (C(i,j-l) ~ C(i,}) and (C(i,j+l) ~ C(i,})
and (C(i-2,}) < C(i,}) and (C(i+2,}) < C(i,}))

4 mark T(i,}) as a WCAL_MAXIMUM

}
5 else if «C(i-l,}) ~ C(i,}) and (C(i+l,J) ~ C(i,})

(
6

}

and (C(i,j-l) < C(i,}) and (C(i,j+l) ~ C(i,})
and (C(i,j-2) < C(i,}) and (C(i,j+2) < C(i,J)
and T(i-l,}).is not marked as a WCAL_MAXIMUM)

mark T(i,}) as a WCAL_MAXIMUM

7 else
8 mark T(i, J) as BACKGROUND

9 return T

5.1.3 Recursive Ridge Following

Recursive ridge following fills in the missing thin ridge pixels between the local maxima,
using the local maxima pixels as starting pixels for the recursive algorithm. To find these
starting pixels, the output image generated from local maxima detection is scanned to find
pixels that are marked as WCAL_MAXIMUM. As each local maximum pixel is found, it is
processed by the recursive ridge following algorithm. Given a local maximum pixel, the
recursive ridge following algorithm considers each neighboring pixel to check if that
neighbor meets the conditions of being a candidate ridge pixel. If these conditions are met, a
recursive call to the ridge following algorithm is made using that candidate pixel. A pixel
that produces a candidate ridge pixel is referred to as the spawning pixel of that candidate
(e.g., the local maximum pixel is the spawning pixel for any candidate ridge pixel found in
searching its neighboring pixels). This recursion allows the exploration of candidate
segments before committing to their inclusion as thin ridge segments. A thin ridge segment
ends either with a local maximum pixel or with an intersection with another thin ridge. An
example of recursive ridge following is illustrated in figure 25.

A call to the recursive ridge following algorithm must pass the position of the candidate
ridge pixel being considered and the direction toward its spawning pixel. The candidate's

53

starts at
local

maximum
pixel

ends at
. local maximum pixel

or r - - ..

intersection with another ridge --.--,
I
I

;i;i,;i;i;i;j;~=4--;.f

I
I I

.. --+-- ..
I
I

~--,

--+ recursive ridge following
c:::::O pixel removal upon return

spawning r=r1 candidate
ridge pixel L.::I:..I ridge pixel

Figure 25. An Example of Recursive Ridge Following

position must include the image coordinate to allow for image boundary checking, and may
include pixel pointers into the raw thinned image and the chamfered image to improve
implementation efficiency. The pixel direction of the spawning pixel refers to the direction
from which the current candidate pixel was discovered and is necessary to check for
termination caused by intersecting another ridge. When this algorithm is first called, the
candidate pixel is a local maximum and does not have a spawning direction. In this case, a
null direction is passed in.

Upon entering the algorithm, the value of the corresponding pixel in the chamfer image is
examined. If it is zero or greater than 14140, the algorithm returns a value of FALSE to
indicate that the ridge has terminated and did not end on a local maximum or an intersection
of ridges or to indicate that the ridge is too wide. These types of terminations will cause this
pixel and the candidate pixels that are on this branch of recursion to be removed (in reverse
order from that in which they were found) until a local maximum pixel is encountered.

Termination also occurs if the candidate pixel intersects another existing thin ridge. This
terminating condition is tested by considering all eight neighboring pixels. If a neighboring
pixel is marked as a RIDGE_PIXEL in the raw thinned image, further conditions are checked.
These conditions ensure that the neighboring ridge pixel found is not part of a local section
of ridge currently being followed. This is verified by considering the direction to the
spawning pixel of this candidate pixel. If the direction to the neighboring ridge pixel is not
closer than 90 degrees to the direction of the spawning pixel, the neighboring ridge pixel is
considered to be from another ridge; hence the terminating condition of intersection with
another ridge has been satisfied. These conditions are illustrated in figure 26. By ending in

54

an intersection to another ridge, this branch of the recursion ended as an actual raw thinned
ridge causing, the algorithm to return the Boolean value of TRUE to indicate: that the spawning
pixels of this ridge should be kept.

At this point in the algorithm, the Boolean value that keeps track of the validity of the
candidate ridge is initialized. If this candidate thin ridge pixel is a local maximum the
validity value is set to TRUE, otherwise it is set to FALSE. If the candidate piKel is not a local
maximum, it is marked in the raw thinned image as a RIDGE pixel. This marking will be
removed in the recursion if this branch of the recursion is determined not to be an actual thin
ridge.

Next, the four diagonal neighbor pixels are considered as candidate ridge pixels. In order
to be a candidate ridge pixel, a pixel's chamfer value must be larger than the chamfer values
of neighboring pixels on either side of the direction of travel from the spawning pixel. The
actual conditions for being a diagonal candidate ridge pixel are illustrated in figure 27. If the
condition is TRUE, a recursive call to the ridge following algorithm is made, passing in the
position of this candidate ridge pixel and the direction to its spawning piKel.. When the
recursive call returns to this poirit in the algorithm, the current ridge validity value is updated
by a "logical or" with the returned Boolean value. This is done so that the algorithm knows
if any of the recursive branches from this candidate piKel ended as an actual thin ridge.

After the four diagonal neighboring piKels are considered, the rectilinear neighbor piKels
are considered as candidate ridge pixels. As with the diagonal neighbor pixels, a rectilinear
neighbor pixel is a candidate ridge pixel if the chamfer value of that pixel is larger than the
chamfer values of the neighboring pixels on either side of the direction from the spawning
pixel. The actual conditions for being a rectilinear candidate ridge pixel are illustrated in

If there exists a neighboring pixel marked as a RIDGE or a LOCAL MAXIMUM

and the direction toward the pixel which spawned this candidate pixel
is anyone of the directions indicated by the arrows

then the candidate pixel has intersected with another ridge. (return TRUE)
otherwise the candidate pixel has nm intersected with another ridge (return FALSE)

Candidate ridge pixel

Marked as a RIDGE pixel
or a LOCAL_MAXIMUM pix
el

Direction toward
spawning pixel

Figure .26. The Eight Conditions for Recursion Termination by Ridge Intersection

55

~ ~ ~~Ibl lel~m
~ ~ e b

chamfered image values

if
pixels C, a, & dare marked as BACKGROUND pixels

and
2 C ~ (a + b) and 2 C ~ (d + e)

then
Pixel C is a candidate ridge pixel spawned by pixel S

Figure 27. Diagonal Candidate Ridge Pixels

figure 28. Again, as with the diagonal neighboring pixels, if the condition is to TRUE, a
recursive call to the ridge following algorithm is made, passing in the position of this
candidate ridge pixel and the direction to its spawning pixel. When the recursive call returns
to this point in the algorithm, the current ridge validity value is updated by a "logical or"
with the returned Boolean value. This is done so that the algorithm knows if any of the
recursive branches from this candidate pixel ended as an actual thin ridge.

Inill]
llIlli] I e

S C
a b

lillN1
[ill]£]

chamfered image values
~

a
CS
e d

if
pixels C, b & e are marked as BACKGROUND pixels

and
(C + S) ~ (a+ b) and (C + S) ~ (d + e)

then
Pixel C is a candidate ridge pixel spawned by pixel S

Figure 28. Rectilinear Candidate Ridge Pixels

At this point in the recursive ridge following algorithm, appropriate clean-up is done. If
the above processing for the candidate pixel has resulted in the ridge validity value being set
to TRUE, this candidate pixel is part of an actual ridge and will be kept in the raw thinned
image. Otherwise, it will be removed by resetting the pixel in the raw thinned image to
BACKGROUND. If the candidate pixel is an actual ridge pixel and was marked as a
LOCAL_MAXIMUM, it is now downgraded to be simply a ridge pixel by marking it as RIDGE in
the raw thinned image.

56

FOLLOW _RmGE[i, j, direction]

** This process returns a Boolean value indicating the status of the followed ridge
** The chamfered image C and the thinned image T must be globally addressable from

. within this process

1 if «C(i,J) = 0) ** No longer on a ridge or
2 or (C(i,J) >14140» ** ridge is too wide, remove the candidate ridge pixel
3 return FALSE

4 if (T(i,J) intersects with another ridge) ** Keep this ridge (see figure 26)
5 mark T(i, J) as a RIOOE pixel
6 return TRUE

** If the candidate pixel is a local maximum, keep it labeled as such, for now
7 if (T(i,J) is marked as a LOCAL_MAXIMUM pixel)
8
9

10
11

status = TRUE

else
mark T(i, J) as a RIOOE pixel
status = FALSE

** Otherwise label it as a potential ridge pixel

** Consider whether the diagonal neighbors are ridge pixels
12 if (pixel (i-l,j+l) is a candidate ridge pixel) ** Top right (see figure 27)
13 if (FoLLow_RIDGE[i-l,j+l, BOTTOM_LEFr] = TRUE)

14 status = TRUE

15 if (pixel (i+ I,j-I) is a candidate ridge pixel) ** Bottom right (see figure 27)
16 if (FoLLow_RmGE[i+l,j-l, TOP_LEFr] = TRUE)

status = TRUE

if (pixel (i+ I, j-I) is a candidate ridge pixel) ** Bottom left (see figure 27)
if (FOLLow_RIDGE[i+l,j-l, TOP_RIGHT] = TRUE)

status = TRUE

17
18
19
20
21
22
23

if (pixel (i-I, j-I) is a candidate ridge pixel) ** Top left (see figure 27)
if (FoLLow_RIDGE[i-l,j-l, BOTTOM_RIGHT] = TRUE)

status = TRUE

57

•• Consider if the rectilinear neighbors are ridge pixels
24 if (pixel (i-I,]) is a candidate ridge pixel) •• Top (see figure 28)
25 if (FOLLOWJbDGE[i-I,j,BOTIUM] = TRUE)

26 status = TRUE

27 if (pixel (i, j+ 1) is a candidate ridge pixel) •• Right (see figure 28)
28 if (FOLLOW _RIDGE[i, j+ 1, LEFr] = TRUE)

29 status = TRUE

30 if (pixel (i+ 1,]) is a candidate ridge pixel) •• Bottom (see figure 28)
31 if (FOLLow_RIDGE[i+I,j, TOP] = TRUE)

32 status = TRUE

33 if (pixel (i,j-I) is a candidate ridge pixel) •• Left (see figure 28)
34 if (FOLLOW_RIDGE[i,j-I, RIGHT] = TRUE)

35 status = TRUE

36 if (T(i,]) is marked as a LOCAL_MAXIMUM pixel)
37 mark T(i,]) as a RIDGE pixel
38 else if (status = FALSE) ** Otherwise if a ridge wasn't found above, remove it
39 mark T(i,]) as a BACKGROUND pixel

40 return status

5.1.4 Summary

Input

1

Output

C
T

Cleaned thresholded fingerprint image

Chamfered image
Thinned image

58

SECTION 6

CURVE EXTRACTION

After the fingerprint ridges have been thinned by the previous procedure, they must be
represented by abstract data structures. These data structures, called "curves," are used to
encode the ridges efficiently for transmission. Curve extraction derives curves from the
ridges in a thinned fingerprint image.

The thinning process may leave behind certain artifacts that are extraneous to the thinned
ridges. For example, the ridges may have areas that are more than one pixel wide (figure 29)
or there may be single-pixel "nubs" that do not represent true ridge structures. These
artifacts are removed to convert the thinned ridges to single-pixel wide ridges prior to curve
extraction.

I I I I I I I I I I I
Figure 29. Conversion to Single-Pixel Wide Ridges

After all artifacts have been removed and the ridges are guaranteed to be one pixel wide,
the individual curves are extracted from the ridges. A curve is an ordered list (or other
structure) of points that correspond to the pixels along a thinned ridge. An individual curve
must be a simple curve that extends between an endpoint or bifurcation at each end, with no
intervening bifurcation. The curves must preserve the minutiae, i.e., the terminations and
bifurcations, of the thinned ridges from which they are extracted. When a ridge terminates,
the curve extracted from it must contain the termination point as an endpoint. On the other

59

hand, when multiple ridges meet at a bifurcation, the extracted curves must all contain the
bifurcation point as an endpoint (figure 30). This shared endpoint ensures that the
reconstructed fingerprint ridges based on these curves will intersect at the same point.

(a)

endpoint ~

(b)

4- endpoint

4- endpoint shared
by
all three curves

4- endpoint

Figure 30. Curve Extraction at a Bifurcation. (a) A ridge bifurcation. (b) The three
curves extracted from the ridge bifurcation, showing the endpoints and shared endpoint.

Throughout this section, the term neighbors refers to the eight-neighbors of a pixel, i.e.,
the eight adjacent pixels above, below, to the left of, to the right of, and to the diagonals of
the pixel. A neighbor of a ridge (black) pixel is another ridge pixel that is one of its
neighbors.

In the pseudocode contained in this section, the construct "switch on n" is used. Such a
construct is followed by several blocks of c~e, each headed by a statement of the form
"case m;." If one of the m; matches n, then the block of code headed by that matching case
statement is executed. In the event that none of the mi match n, none of the case blocks is
executed.

60

6.1 ALGORITHM DESCRIPTION

Curve extraction proceeds in two phases: a pre-processing conversion of the raw thinned
fingerprint image to a thinned fingerprint image guaranteed to contain only single-pixel wide
ridges, followed by curve extraction. In the pre-processing stage, the locations on the ridges
in the raw thinned fingerprint image that are not one pixel wide or that are inconsequential
protrusions, or nubs, are first detected using masks and removed. The individual curves are
then extracted from the resulting thinned fmgerprint image.

CURVE_ExTRACTION[IMAGE 1
•• This function has the side effect of modifying IMAGE

1 CONVERT_TO_SINGLE_PIXEL_ WIDE_RIDGES[IMAGE]
•• IMAGE now contains a thinned fingerprint

2 curve_set = EXTRACT_CuRvES[IMAGE]

3 return curve set

6.1.1 Conversion to Single· Pixel Wide Ridges

** Section 6.1.1

** Section 6.1.2

Conversion of the thinned ridges to single-pixel wide ridges ensures that the curve
extraction algorithm can make certain assumptions about the connectivity of ridge pixels.
Thus, these assumptions simplify the curve extraction algorithm. Once the conversion
algorithm has ensured that only single-pixel wide curves exist in an image, the assumptions
for any given ridge pixel can be enumerated based on the number of neighbors of that pixel.

1. The pixel has no neighbor. Assume that the ridge consists of only one pixel.
2. The pixel has one neighbor. Assume that the pixel is a ridge endpoint.
3. The pixel has two neighbors. Assume that the ridge passes from one neighbor,

through the pixel, and then through the other neighbor.
4. The pixel has more than two neighbors. Assume that the pixel is an intersection

(bifurcation) point and that there is a ridge intersecting this pixel through each
neighbor.

The above assumptions dictate which pixels must be removed from the raw thinned
fingerprint image before curve extraction can take place (figure 29). First, any single pixel
that protrudes from a natural line of pixels (a nub) must be removed so that it does not form a
false bifurcation. Second, any ridge pixel that can be removed from the raw thinned
fingerprint image without changing the topology (connectivity) of the fingerprint ridges must
be removed. (Note that this implies that a pixel that has neighbors directly above, below, to
the left, and to the right cannot be removed; the removed pixel would constitute a one-pixel
valley.) The pixels to be removed are identified through the use of a set of masks.

61

Before the mask sets can be used, one other artifact of thinning must be removed. The
thinning process will occasionally create a white pixel whose four-connected neighbors (top,
bottom, left, and right) are all black. The image is scanned (left-to-right, top-to-bottom) and
all such isolated white pixels are changed to black. The mask sets are then applied to the
image.

6.1.1.1 Application of the Mask Sets

A set of masks (figure 31) has been defined that identify pixels that are nubs and that
therefore should be removed from a thinned fingerprint image. The thinned fingerprint
image is scanned (left-ta-right, top-ta-bottom) and at each ridge pixel, every nub mask is
applied. If a mask matches the black and white configuration of a pixel and its surrounding
pixels, then that pixel is removed from the thinned fingerprint image and the scan moves to
the next pixel. A set of masks has also been defined (figure 32) that identify pixels that are
not nubs but that can be removed from a ridge without changing its topology. The thinned
fingerprint image is again scanned (left-to-right, top-to-bottom) and this time at each ridge
pixel every topology mask is applied. Again, if a mask matches a pixel and its surrounding
pixels, then that pixel is removed from the thinned fingerprint image and the scan moves on.
(As an optimization, a mask set need not be applied at a ridge pixel if the number of
neighbors of that pixel is not consistent with any mask in the set.)

The nub masks and the topology masks are applied in tum to the entire image and this
process is repeated until no further pixels are removed in a complete application of all the
nub and topology masks. At this point, the remaining ridges are one pixel wide, with no
extraneous pixels, and the assumptions in section 6.1.1 about them are valid.

Although, conceptually, the mask sets are applied across the entire image, other
implementations can be used to improve the algorithm's efficiency. One possible
improvement is to partition the image into blocks and then to apply the masks to the image
pixels on a per-block basis. Note that the blocks are used only to select the pixels to be
tested and do not restrict the pixels to which the masks are applied. If, during any pass, no
pixels ina particular block are removed by the application of either mask set, then that block
need not be considered again. The overall algorithm for conversion to single-pixel wide
ridges would then terminate when no blocks are left to consider.

62

D = white ~ = at least one black

- = black fZI = at least one black

II = black pixel to be tested

Figure 31. Masks Used to Remove Nubs from Ridges

D =white _ = black

II = black pixel to be tested

Figure 32. Masks U sed to Remove Non-Topology-Changing Pixels from Ridges

63

** This function has the side effect of modifying IMAGE

. ** Remove isolated white pixels
1 for each pixel (i,J) in IMAGE
2 if (IMAGE(i,j) = WHITE

and IMAGE(i+l,j) = BLACK and IMAGE(i-l,j) = BLACK

and IMAGE(i,j+l) = BLACK and IMAGE(i,j-l) = BLACK)

3 IMAGE(i, j) = BLACK

** Initialize the flag that indicates whether any pixels were removed in the current pass
4 pixetset _to_white = TRUE

** Loop until no pixels are removed in a pass over the image
5 while (pixetset _to_white = TRUE) do
6 {

** Reset flag to show that no pixels have yet been removed in this pass
7 pixeCset _to_white = FALSE

** Apply the nub masks (figure 31)
8 for each pixel (i,J) in IMAGE
9 if (IMAGE(i, j) = BLACK)

10 if (ApPLY _MASKS[i, j, nub_mask _set, IMAGE] = TRUE)

11 (

12
13
14 }

** The current mask matched, so remove this pixel
IMAGE(i, j) = WHITE

pixel_set _to_white = TRUE ** Flag that a pixel was removed

** Apply the non-topology-changing masks (figure 32)
15 for each pixel (i, J) in IMAGE
16 if (IMAGE(i, j) = BLACK)

17 if (ApPLY_MASKS[i,j, topology_mask_set, IMAGE] = TRUE)

18 {

19
20
21
22 }
23 return

}

** The current mask matched, so remove this pixel
IMAGE(i,j) = WHITE

pixel_set _to_white = TRUE ** Flag that a pixel was removed

64

© 1992, 1993 The MITRE Corporation

6.1.1.2 Mask Application

To apply a mask to a ridge pixel, the mask position labeled "X" is aligned with the ridge
(black) pixel being tested (figures 31 and 32). The surrounding pixels are then compared to
the mask pixels. For the surrounding pixels to match the mask, a black mask position must
correspond to a ridge pixel and a white mask position must correspond to a background or
valley pixel. Any pixel corresponding to a position not existing in the mask may be black or
white. (H a portion of the mask falls outside of the image, those mask positions must be
white for a valid match.) Finally, if left-to-right crosshatch mask positions occur, at least one
of them must correspond to a black pixel. Also, at least one right-to-Ieft crosshatch mask
position must match a black pixel, if such mask elements occur. For each ridge pixel that
will be tested, every mask must be applied in each of its four possible orientations (90 degree
rotations). If any mask in any orientation matches the pixel and its surrounding pixels, that
pixel is removed (set to white). The scan then proceeds to the next pixel.

ApPLY_MASKS[i,j, mask_set, IMAGE]

** This function has the side effect of modifying IMAGE

1 for mask in mask set
2 for rotation in (0, 90, 180, 270) degrees
3 if (mask at rotation matches IMAGE(i, j) and its surrounding pixels)
4 return TRUE

5 return FALSE

Although, conceptually, each mask in the mask set is applied to a given ridge pixel, this
need not be done in practice. The application of the set of masks to a ridge pixel can be
made more efficient by first checking the number of neighbors of that pixel and only
applying those masks that have the same number of neighbors for the pixel to be tested
(figures 31 and 32). For example, when applying the nub mask set to a pixel that has exactly
three neighbors, only the top left mask of figure 31 need be applied.

6.1.2 Curve Extraction

Conversion of the thinned ridges to single-pixel wide ridges ensures that the curve
extraction algorithm can make certain assumptions about the connectivity of ridge pixels.
The most important of these assumptions is that, given a ridge pixel, a curve exists that
connects that ridge pixel to each of its eight-neighbors that is also a ridge pixel, if such
neighbors exist (figure 33). A consequence of this connectivity is that a ridge can be
followed from any of its pixels. If a ridge pixel has no neighbors, then it forms its own
(one-pixel) ridge. If a ridge pixel has only one neighbor, then the pixel is a ridge endpoint;
the ridge can be followed from this endpoint. If a ridge pixel has two neighbors, then the

65

two halves of the ridge can be followed, one through each neighbor pixel, and the halves then
connected to fonn the full ridge. If a ridge pixel has more than two neighbors, then it is a
bifurcation point. In this case, although the algorithm could follow all the intersecting ridges

, from this bifurcation point, the algorithm scan instead skips this point. Because the
algorithm scans the image searching for ridge points, it is guaranteed that it will find another
point on every ridge that intersects the bifurcation point. Using these other points, the
intersecting ridges can be followed using either singly connected endpoint processing or
doubly connected midpoint processing, as described above. Therefore, bifurcation points can
be skipped safely when encountered by the scan (figure 34).

(a) II~
i'isl

(b) ~
f I I I I I I I I I I I

Figure 33. Curve Following for a Non-Thinned Ridge and a Thinned Ridge Based on
Connectivity Assumptions. (a) The non-thinned ridge has many extraneoils curves.

(b) The thinned ridge has a single curve.

As a ridge is followed to extract it from the thinned fmgerprint image, a bifurcation point
may be reached. A bifurcation point is assigned the label BIFURCATION, and the curves
meeting (branching) there are initialized as two-pixel "seed" curves (see figure 35). Each
seed curve consists of the BIFURCATION point where the curves meet and the next point on the
curve, which is assigned the label SEED. As the seed curves are created, they are stored on a
"to-do" list. After the original curve is completely extracted from the image, these seed
curves are taken from the to-do list and are also· extracted before the scan continues across
the image for the next initial curve pixel. Each of these processing steps is explained in more
detail in the following sections.

To extract the individual ridge curves from the thinned fingerprint image (consisting of
single-pixel wide ridges) the algorithm scans the image left-to-Ijght, top-to-bottom until it
encounters a ridge pixel that has not been labeled BIFURCATION. (If the pixel were labeled
BIFURCATION, this would imply that the pixel had been processed previously, but had been left
in the image because multiple curves branch from it. See section 6.1.2.5.) If the ridge pixel

66

Thinned Fingerprint Image

Initialize Pixel
at Position

(0,0)

No

Yes

Yes

Single-Pixel
Curve

. Move to
Next Pixel

>-___... Follow Curve J-~
from Endpoint

Yes Follow Curve
>---.. Halves, then 1--...,.

Join

>---~ Curve Set

Figure 34. Flowchart of Overall Control of Curve Extraction

67

-
-
-
_ follow ridge

t--
t--u

t--

seed curve~ ~ ~seed curve

r s~r-sl
r"""""+....II,-+-I.....,

L -.J
em BIFURCATION point

[]] SEED point

Figure 35. Seed Curves at a BIFURCATION .Point

has zero, one, or two neighbors, a curve is initialized at that pixel and followed, thereby
extracting it from the image. If the pixel has more than two neighbors, it is a· bifurcation
pixel and is skipped by the scan.

In the algorithms for curve extraction, various labels are used on the ridge pixels. These
labels are associated with the image pixels themselves and not with the representations of the
pixels that are stored in the curve structures.

68

EXTRACT_ CURVES[IMAGE]

•• This function has the side effect of modifying IMAGE

•• IMAGE, seed_index, curve_set, and to_do are available globally to the subroutines
under EXTRACT_CURVES

1 seed index = 0
2
3
4
5

curve set = EMPTY

to do = EMPTY

for i from 1 to height
for j from 1 to width

•• INITIALIZE_BRANCHES (described in section 6.1.2.5) may have labeled this
pixel BIFURCATION

6 if (IMAGE(i, j) = BLACK and IMAGE(i, j) is not labeled BIFURCATION)

7 if (number of neighbors of IMAGE(i,)) < 3) ** See page 60
8 curve = INITIALIZE_AND_FoLLOW_CURVE[i,Jl ** Section 6.1.2.1
9 put curve into curve_set

10 FOLLOW_To_Do_LIST[] ** Section 6.1.2.6
11 if (curve_set = EMPTY)

12 exit ** Error: No curves found
13 return curve set

6.1.2.1 Curve Initialization

For each curve to be extracted, a list (or other structure) is created to hold the curve
points. Given a ridge pixel found in the scan with zero, one, or two neighbors, the curve
extraction is initialized by putting that pixel on the point list and removing it from the
fingerprint image. If the pixel has no neighbors, the extraction of the curve is complete. If
the initial pixel has one neighbor, the extraction continues by following the curVe as
described in section 6.1.2.2. Otherwise, the curve is initialized (and extracted) in two pieces,
which are then joined (see figure 36). .

. Given a curve initialized with a ridge pixel that has two neighbors, one neighbor is
arbitrarily chosen and the initialization for the first half of the curve continues by adding that
neighbor to the point list. If the chosen neighbor pixel has been labeled BIFURCATION, the
extraction of the first half of the curve is finished. Otherwise, the chosen neighbor pixel is
removed from the image and extraction of the first half of the curve continues by following
the curve as described in section 6.1.2.2. After the first half of the curve has been extracted,
the second half is initialized and extracted.

Because the first half of the curve may have looped back to the initial pixel (see
figure 37), before initializing and extracting the second half of the curve the algorithm first

69

initial pixel

~

Figure 36. An Example of an Extraction of a Curve in Two Halves

checks that there still is one remaining neighbor of the initial pixel (that was not the fIrst
neighbor selected). If there is no remaining neighbor, the frrst half of the curve must have
looped back to the initial pixel. In this case, the initial pixel is added once again to the curve
(this time it appears at the end of the curve) to complete the loop, and the extraction of the
full curve is complete. Otherwise, the extraction for the second half of the curve is initialized
by putting the neighbor pixel on a new point list. If the neighbor pixel has ~n labeled
BIFURCATION, the extraction of the second half of the curve is fInished. Otherwise, the
neighbor pixel is removed from the image and the extraction continues by following the
curve as described in section 6.1.2.2. If the second half of the curve exists, the curve is
completed by joining the halves together to form a single curve through the initial pixel. To
join them, care must be taken so that the order of the points in the joined curve is the same as
the order of the pixels along the curve in the image. Typically, the points in one half of the
curve must be reversed and the halves then joined at the ends that were adjacent in the image.

~NITIAUZE_AND_FOLLOW_CURVE[i,j]

** This function has the side effect of modifying IMAGE

1 curve = EMPTY

2 curve 2 = EMPTY

3 put IMAGE(i, j) onto curve
4 IMAGE(i, j) = WHITE ** Remove this pixel from IMAGE
5 switch on number of neighbors of IMAGE(i, j)
6 case 0

•• No neighbors, so curve ends here
7 return curve

70

f

initial pixel
~ ~tract first half of curve

Figure 37. Looped Curve. The figure shows an example of an extraction of the first
half of a curve that loops back to the initial pixel so that the second half extraction

need not be done.

71

8 ease 1
** One neighbor, so add it to curve and continue following curve

9 curve = FOLLow[curve] .* Section 6.1.2.2
10 return curve
11 ease 2

** Two neighbors, so curve has two halves. Follow fIrst half of curve
12 neighbor_1 = a neighbor of IMAGE(i,j)
13 put neighbor_1 onto curve
14 if (neighbor _I is not labeled BIFURCATION)

15 neighbor _I = WHITE •• Remove this pixel from IMAGE
16 curve = FOLLow[curve] ** Section 6.1.2.2

•• Check for second half of curve
17 if (no neighbors of IMAGE(i,j) exist

or only neighbor of IMAGE(i, j) is neighbor_I)
*. curve looped back on itself

18 put IMAGE(i, j) onto curve
19 return curve
20 else

21
22
23
24
25
26
27'
28
29 end

*. Follow second half of curve
neighbor _2 = neighbor of IMAGE(i, j) that is not neighbor_l
put neighbor _ 2 onto curve _ 2
if (neighbor _2 is not labeled BIFURCATION)

neighbor _2 = WIDTE •• Remove this pixel from IMAGE
curve_2 = FOLLow[curve_2] •• Section 6.1.2.2

reverse curve 2
curve = append(curve, curve_2)
return curve

72

6.1.2.2 Curve Following

Given a curve that has been initialized with one or more points, the ridge that the curve
describes must be followed in the image to a termination or bifurcation and the pixels of the
ridge added to the curve. Each time a point is added to the curve, the curve following routine
is called again on the updated curve until the end of the curve is reached. Note that although
this process is conceptually recursive, non-recursive implementations are also possible. The
action taken at each invocation of the curve following routine depends on the number of
neighbors of the last point on the curve (the point ~ost recently added to the curve). First,
the neighbors of the last curve point are counted in the thinned fingerprint image. This count
of the neighbors should: (a) include all neighbors that are ridge pixels, whether or not
labeled BIFURCATION, (b) not include (if it exists) the point before the last point in the curve,
and (c) not include any neighbor labeled SEED if the last curve point is also labeled SEED and
if the seed index of the neighbor matches that of the last curve point. (If the pixel were
labeled SEED, this would imply that the pixel had been processed previously, but had been left
in the image. because it is part of an initialized, or "seeded," curve. See section 6.1.2.5.) (For
Condition b, note that the point before the last point may still be in the image if it was
previously labeled BIFURCATION.) If there are no neighbor points that match these conditions,
the curve is complete. If there is one such neighbor point, it is added to the curve. If this
neighbor point has been previously labeled BIFURCATION, the curve is complete. Otherwise,
the neighbor point is removed from the image and the curve following routine is invoked on
the updated curve. If there are two or more neighbor points that match these conditions, the
action of the curve following routine depends on the number of possible branches from the
current point.

FOLLOW[curve]

** This function has the side effect of modifying IMAGE

1 last yoint = last point on curve
2 previous "'point = point before last point on curve
3 n_neighbors = COUNT_NEIGHBORS_FOR_FoLLOWING[curve]
4 switch on n_neighbors
5 case 0

** No neighbors, so curve ends here .
6 return curve
7 case 1
8 {

** One neighbor, so add it to curve and continue following curve
9 neighbor = neighbor of last yoint that is not previous yoint

73

© 1992, 1993 The MITRE Corporation

10
11
12
13
14
15
16
17

}

put neighbor onto curve
if (neighbor is not labeled BIFURCATION)

neighbor = WHITE
curve = FOLLow[curve]

return curve

case >1
{

** Remove this pixel from IMAGE

*. More than one neighbor, so continue the extraction of curve based on the
number of possible branches from last yoint of curve

18 possible_branches = F'IND_PossmLE_BRANCHEs[curve] ** Section 6.1.2.3
19 switch on number of possible branches *. Section 6.1.2.4
20 {
21 case 0

•• No possible branches, so curve ends here
22 return curve
23 case 1

*. One possible branch, so continue following curve down that branch
24 neighbor = first element of possible_branches
25 put neighbor onto curve
26 if (neighbor is not labeled BIFURCATION)

27 neighbor = WHITE ** Remove this pixel from IMAGE .
28 curve = FOLLow[curve]

29 return curve
30 case >1

31
32
33 }
34 }
35 end

*. Multiple possible branches, so initialize them and end curve here
(see section 6.1.2.5)

INITlALIZE_BRANcHEs[lastyoint,possible_branches]
return curve

74

© 1992, 1993 The MITRE Corporation

COUNT_NEIGHBORS_FOR_FOLLOWING[curve]

1 last yoint = last point on curve
2 previous yoint = point before last point on curve
3 n_neighbors = 0
4 for neighbor in the eight-neighbors of lastyoint
5 if (neighbor = BLACK

and neighbor is not the same point as previous yoint
and (lastyoint is not labeled SEED or neighbor is not labeled SEED

or seed_index of lastyoint '* seed_index of neighbor»
6 increment n_neighbors
7 return n_neighbors

6.1.2.3 Finding Possible Branches

The possible branches from a point with two or more neighbors are not always all of the
neighbors of that point for three reasons. First, the algorithm does not branch to the previous
point on the curve, which may still exist in the thinned fingerprint image. Second, the
algorithm does not branch to any pixel that is labeled SEED. Third, the algorithm does not
branch diagonally to a neighbor if it can be reached by first branching through a horizontal or
vertical neighboring ridge pixel. Thus, the neighbors to which the algorithm can branch are:
(a) the horizontal or vertical neighbors of the point that are not labeled SEED, and (b) the
diagonal neighbors of the point that are not labeled SEED and that are not neighbors of a point
identified in (a). (See figure 38.) The effect of these rules is to prevent unnecessary or
unnatural branching (figure 39). The outline of FIND_POSSIBLE_BRANCHES shown below is
one possible implementation of the branch finding and counting.

(a) (b)

Figure 38. Branches from point X. (a) The algorithm can branch to point A and to
point B if neither is labeled SEED. (b) The algorithm can branch to point B only if it is

not labeled SEED and if point A is labeled SEED (and is therefore not branched to).

75

(a) (b) (c)

Figure 39. Possible Branch Counting Example. The rules for counting the possible
branches from point X in the ridge shown in (a) generate the curves shown in (b) instead

of those shown in (c). .

1 last yoint = last point on curve
2 previous yoint = point before last point on curve
3 possible_branches = EMPI'Y

4 for neighbor in the eight-neighbors of lastyoint
5 if (neighbor = BLACK

and neighbor is not the same point as previous yoint
and neighbor is not labeled SEED)

6 add label POssmLE to neighbor
7 for neighbor in the eight-neighbors of lastyoint
8 if (neighbor is labeled POssmLE

and (neighbor is horizontal from last yoint
or neighbor is vertical from lastyoint
or (neighbor is diagonal from lastyoint

and neither eight-neighbor of lastyoint touching neighbor
is labeled POssmLE»)

9 put neighbor onto possible_branches
10 for neighbor in the eight-neighbors of lastyoint
11 if (neighbor is labeled POssmLE)
12 remove label POssmLE from neighbor
13 return possible_branches

76

6.1.2.4 Continued Curve Following Based on Number of Possible Branches

Given a point with two or more neighbors as described in section 6.1.2.2, the process
used in following the curve depends on the count of possible branches from that point. If no
branches are possible, the curve is complete. If only one branch is possible, the neighbor
point corresponding to that branch is added to the curve. If that neighbor point has been
labeled BIFURCATION, the curve is complete. Otherwise, the neighbor point is removed from
the image and the curve following routine is invoked on the updated curve. Finally, if two or
more branches are possible, the current point is a true bifurcation point; it will be labeled
BIFURCATION and branches will be initialized from it.

6.1.2.5 Initializing Branches at a True Bifurcation Point

Given a curve with two or more branches possible from its last point (a true bifurcation
point), the algorithm initializes or "seeds" new curves from that point and then ends the
current curve. All seeds from this point are also labeled with the same seed index, which is
unique for each set of seeds. To initialize the new curve seeds, the seed index is first
incremented. (The seed index is initialized to 0 before processing a fingerprint.) The
following process is then repeated for each possible branch found that is not already labeled
BIFURCATION. First, a new curve is initialized with the last point of the original curve.
Second, a neighbor point that is a possible branch is added to the curve (but not removed
from the image). Third, this neighbor point is labeled SEED and is also labeled with the
current seed index. Finally, this initialized seed curve is put onto a list of curves to be
processed: the "to-do" list. This process is repeated until all of the possible branches from
the last point of the original curve have been processed and the resulting seed curves have
been added to the to-do list. The last point on the original curve is labeled BIFURCATION, but
is not removed from the fingerprint image. The original curve is then complete.

Note that one possible implementation of seed labeling and indexing is through the use of
an auxiliary (seed) array of the same size as the fingerprint array. The locations of the seed
array can be initialized to 0 before the fingerprint is processed. If a point is to be labeled
SEED, its index can be entered into the corresponding location in the seed array. To check if a
point is labeled SEED, then, the algorithm simply accesses the location in the seed array that
corresponds to the point. If that location is non-zero, then the point is a seed and the value of
its location in the seed array gives its seed index.

77

INITIALIZE _ BRANCHES[. last yoint, possible_branches]

1 increment seed index
2 for branch in possible_branches

3
4
5
6
7
8

•• branch is a neighbor point of last yoint
if (branch is not labeled BIFURCATION)

curve = EMPTY

put last yoint onto curve
put branch onto curve
label branch as SEED

label branch with seed index
9 put curve onto to_do

10 label last yoint as BIFURCATION

11 return

6.1.2.6 The To-Do List

When a black (ridge) pixel that has two or fewer neighbors is found by the scan across
the image, the curve associated with that pixel is extracted from the image by the curve
initialization and curve following routines described above. After each such extraction based
on a pixel found in the scan, the initialized seed curves in the to-do list must also be followed
before the scan continues. Of course, if the to-do list is empty, the scan can continue
immediately.,

Branches are placed on the to-do list instead of being followed immediately so that if the
image scan finds a pixel in the middle of a curve, it is guaranteed that the two halves of the
curve are extracted before any branches from that curve are extracted. If this were not the
case, one half of the curve might branch into other curves that in turn branch and that might
eventually contain the second half of the original curve. By completing the original curve
before considering any branches, the original curve will never be broken.

The second reason for using the to-do list can be demonstrated by considering three
curves that meet at a bifurcation point. Assume that one curve that enters the bifurcation has
been extracted from the fingerpnnt image. If the branches from the bifurcation were not
placed on the to-do list, the remaining two curves that terminate at the bifurcation point
would instead appear to be a single curve going through that point. By placing the branches
on the to-do list, the algorithm guarantees that each ridge entering the bifurcation will be
represented as a separate curve terminating at the bifurcation point. Because the curves that
form the bifurcation share a common endpoint, it is guaranteed that the reconstructed curves
(after the encoding/decoding process) will also share this endpoint, thus preserving the

78

bifurcation. IT the bifurcation had instead been represented as one curve intersecting the
middle of a second curve, the curves might not intersect in the reconstruction since the
B-spline process does not guarantee that a reconstructed curve will pass through any of the
curve's points other than its endpoints (see section 9).

Given a non-empty to-do list, the initialized seed curves on the list are removed and
processed in turn. After removing a seed curve from the list, the last point on the curve is
examined. If it is currently labeled BIFURCATION, the curve is complete.· IT the last point no
longer appears in the fingerprint image, the curve is discarded. Otherwise, the point is still in
the fingerprint image and the curve should be followed. First, the point is removed from the
fingerprint image. Then, the curve is followed as described in section 6.1.2.2. Note that the
curve following process may result in new seed curves being put onto the list. After a curve
on the list is processed, the next curve on the list is removed and processed as just described.
When the to-do list is empty, the scan of the image for black (ridge) pixels continues.

FOLLOW_To_Do_LIST[]

** This function has the side effect of modifying IMAGE

1 while to do is not EMPI'Y

2
3
4
5
6
7
8
9

10

curve = next seed curve in to do list
last "'point = last point on curve
if (last "'point is labeled BIFURCATION)

put curve onto curve_set
else

if (last "'point = BLACK)

last"'point = WHITE .

curve = FOLLow[curve]
put curve onto curve_set

11 return

79

** Removes the seed curve from to_do

** Remove this pixel from IMAGE
** Section 6.1.2.2

6.2 SUMMARY

After curve extraction, all ridges will have been extracted from the thinned fingerprint
image and represented as curves. Each curve is represented as an ordered list of points,
where each point contains the location of a ridge pixel in the image. Ridges that form a
bifurcation will be represented by curves that share a common endpoint (the bifurcation
point).

Input
IMAGE

Output
curve set

Raw thinned fingerprint image

List of fingerprint curves

80

SECTION 7

RIDGE CLEANING

The ridge cleaning algorithm processes the list of curves generated by the CUIve
extraction algorithm in order to connect curves across small ridge breaks and to remove
small offshoot curves, small ridge connections, small ridge segments, and curved ridge
endings (see Appendix B for this last process). This has the effect of removing details and
artifacts that would require extra data to encode for transmission, and that would contribute
little or no relevant information about the fingerprint. Examples of these artifacts and details
are illustrated in figure 40. As a fmal step, any curve sections that cross a region of the
fingerprint denoted as a bad block during BHO binarization (see Appendix B) are removed.

small offshoot curve

small ridge segments

small ridge breaks

small ridge connection

rI
f

curved ridge ending
(See Appendix B)

Figure 40. Examples of the Artifacts and Details Modified in Ridge Cleaning

81

The cleaning process does not modify or remove minutiae from the fingerprint. The
small offshoot curves are artifacts that often occur in the ridge thinning process from a pore
that is at the edge of a fingerprint ridge, resulting in a small concavity or a small bump in the
ridge edge. These are removed because small variations in the contours of the ridge edges
are not relevant infonnation in this context. The removal of small offshoot curves is
controlled by a selectable parameter indicating the length of the removed curves as a factor
of fingerprint average ridge widt~s. Small offshoot curves are also removed if they are short
and their ridges are thin relative to the neighboring ridges.

Curved ridge endings are often caused by a fold or scar in a fmger that crosses ridges at a
slant. The fold or scar can create a curved appearance at the ridge ending that is retained by
thresholding. When these ridges are thinned to a single-pixel width, there, maya a small flip
or curve at the end of the ridge. This curvature is removed so that the ridge direction at the
endpoint more accurately represents the true ridge ending orientation.

Connecting across small ridge breaks saves the overhead of encoding the separate curves
while still representing the fingerprint according to the established practices. This process of
connecting across small ridge breaks must take place after the small offshoot curves are
removed, otherwise two opposing small offshoot curves may be connected, creating a false
minutia. The connection across small ridge breaks is controlled by a selectable parameter
indicating the size of removed ridge break in terms of the number of overall fingerprint
average ridge widths.

Small connections between parallel ridges may come from foreign substances on the
,finger at the time of printing or other unreliable sources, so these connections are detected
and removed. By removing these small ridge connections, the data required to encode the
small curve and the overhead associated with the additional curves is saved from having to
be transmitted. When these small connections are removed, the ridges on either side, which
are represented by two curves each, are joined with their appropriate mates to make single
curves.

The small ridge segments are removed last. These small ridge segments primarily reside
below the flexion crease qf a fingerprint and are not considered to be important, hence they
are removed. They are also occasionally found between ridges above the flexion crease.
This removal of small ridge segments must take place after the small ridge break connection
step because, in some cases, small ridge segments may actually be connected into larger
curves.

7.1 ALGORITHM DESCRIPTION

The ridge cleaning process requires three input data items from the previous processes of
live-scan fingerprint compression: the curve list representing the fingerprint curve_list

82

generated in curve extraction, the chamfered image C generated in ridge thinning, and the
ridge direction map z_blockmap generated during BHO binarization. The algorithm
modifies curve _list by removing and joining curves. This reduces the amount of data needed
to encode the representation of the fingerprint. The algorithm uses the chamfered image C
generated in ridge thinning (section 5) for calculating average ridge widths. Since areas of
the chamfered image that correspond to bad blocks identified by z _ blockmap do not contain
accurate ridge width information, all the values of C in bad block areas are set to zero.

,

Before the actual process of cleaning the curves in curve _list, several data items must be
initialized. The average ridge width of all ridges in the fingerprint and of neighborhoods in
the image must be calculated. These values will be ,calculated by applying the algorithm
described in section 7.1.2 on the ridges in curve _list to obtain the average values. The
resulting overall average will be 'referred to as ridge _ widtlyingerprint. The calculation of
average ridge width differs from the description of detennining the neighborhood average
ridge width (section 4.1.3) used by pore filling in that the average ridge width used here is
based on the extracted curves in curVe _list. The value of ridge ~ widtlyingerpri~t will be used in
the cleaning steps to determine important curve size delimiters based on the selectable
system parameters FOFFSHOOT CURVE, FRIDGE_BREAK, and FUNCONNECTED_CURVE which
control the curve connection and removal processes.

A thinned image T is generated by drawing all the points in every curve of curve _list into
a blank image of the same size as the original fingerprint image. T is used for some
condition checking and is updated to match the changes made to curve_list.

Initialization continues with the generation of a data item called the endpoint_map. The
endpoint_map serves as a tool to quickly find which curves have an endpoint at any specified
location in the fingerprint. The actual implementation of the endpoint_map may vary, but the
algorithm, by accessing endpoint_map, must be able to count the number of endpoints at a
location and determine the current locations of the these curves in curve list. This
endpoint_map must be updated throughout the processing to stay current with any changes
made to curve list.

Once the initialization is completed, the algorithm applies each ridge cleaning subprocess
in turn, modifying curve _list and updating the endpoint_map and T as required by the
cleaning subprocesses. The first cleaning subprocess to be applied is small offshoot curve
removal described in section 7.1.3. After the small offshoot curves have been removed,
curved ridge endings are removed by a subprocess described in Appendix B. The next
subprocess to be applied to curve _list is small ridge break connection described in .
section 7.1.4. After small ridge break connection is completed, the subprocess small ridge
connection removal is applied as described in section 7.1.5. The last two cleaning
subprocesses to be applied are small ridge segment removal described in section 7.1.6 and
bad block blanking described in Appendix C.

83

In all the ridge cleaning subprocesses, care must be taken when adding and deleting
curves from curve _list so that the algorithm's iteration over curve _list can continue in a
proper fashion. If a curve under consideration is removed, the algorithm must be able to
continue onto the next curve on the list in the next step of the iteration. Also, if a new curve
is added to curve _list during a subprocess, it should be placed in the list in a manner that will
allow it to be also considered by the subprocess.

After the ridge cleaning process has been completed, curve _list has been modified and
will be further processed by the live-scan compression algorithm. The endpoint_map and the
thinned image T generated by this process can be deleted at this point because it is not used
in further processing. The chamfered image C generated by ridge thinning can be eliminated
at this point, also. A flowchart for the overall ridge cleaning process is illustrated in
figure 41.

RIDGE_CLEANING[curve_list, C, z_blockmap]

•• This algorithm modifies curve _list and C
•• The chamfered image C, the thinned image T, endpoint_map, ridge_widthj;ngerprinlt

and curve_list are globally accessible for the routines called by RIDGE_CLEANING[]

1 for each block (bi, bJ) in z _ blockmap •• Zero bad block chamfer values
2 if (block (bi, bJ) is bad)
3 for each pixel (i,J) in block (bi, bj)
4 C(i,J) = 0

5 for each curve in curve list ** Initialize endpoint map
6 draw curve into T
7 place both endpoints of curve into endpoint_map

8
9

ridge _ widthj;ngerprint = average of all ridge widths in the fingerprint
PREPARE AVERAGE NEIGHBORHOOD RIDGE WIDTHS CURVE[IMAGE] - - - - -
•• The five routines below may modify curve _list, endpoint_map and T

10 SMALL_OFFSHOOT_CURVE_REMOVAL[curve_list]
11 CURVED_RIDGE_ENDING_REMOVAL[curve_list, z_blockmap] ** Appendix B
12 SMALL_RmGE_BREAK_CONNECTION[curve_list]
13· SMALL_RmGE_CONNECTION_REMOVAL[curve_list]
14 SMALL_RmGE_SEGMENT_REMOVAL[curve_list]
15 BAD_BLOCK_BLANKING[curve_list, z_blockmap] ** Appendix C

16 return

PREPARE_AvERAGE_NEIGHBORHOOD_RmGE_WIDTHS_CURVE[IMAGE]
•• This function is the same as PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS of

section 4.1.3, except that the ridges used to calculate the widths are taken from
curve _list instead of from the thinned fingerprint image.

84

---- -_._-----------------------------------

Initialization

1
TCURVE · Small Offshoot Curve Removal -FOFFSHOO

(Section 7.13)

1
Curved Ridge Ending Removal

(Appendix B)

1
E BREAK • Small Ridge Break Connection -

(Section 7.1.4)

•
Small Ridge Connection Removal

(Section 7.1.5)

•
FUNCONNE CTED CURVE .. Small Ridge Segment Removal ·

(Section 7.1.6)

•
Bad Block Blanking

(Appendix C)

. Figure 41. Flowchart of the Ridge Cleaning Process

85

7.1.1 Definitions

The thinned_image provides the ridge cleaning algorithm with a method to efficiently
check for collisions when connecting s~all ridge breaks. A collision occurs when the fill-in
curve section connecting across the small ridge break intersects with another curve already in
curve _list. A thinned _image containing the curves in curve _list is used for this check. The
thinned _image must be kept updated on modifications to curve _list so that it reflects accurate
curve infonnation for this collision check. After the small ridge break removal process is
completed, the thinned _image can be discarded.

The endpoint_map is required to provide the ridge cleaning algorithms with the
capability to quickly find curves that have endpoints in common with other curves. (Curve
endpoints are defined as the first and last points of a curve.) Without the endpoint_map, the
algorithms below would need to scan each curve in curve _list, comparing a curve's endpoint
positions with all the other curves' endpoint positions. The endpoint_map is also used to.
find curves that have endpoints in the neighborhood of a given position. Again, to find these
curves is a simple matter of referencing the endpoint_map for all the positions within the
neighborhood. Without the endpoint_map, the algorithms would have to scan the entire list
of curves, calculating whether or not each curve had an endpoint within the neighborhood.
The endpoint information is used often enough to warrant the memory and processing to
generate this map. All that is required for an effective endpoint_map is that all endpoints
that share the same position are associated, that there is an efficient method of referencing
endpoints given a desired position, and that an endpoint's originating curve is associated with
the endpoint.

Curve connectivity is determined using the endpoint map described above. The
connectivity of a curve can be either unconnected, singly connected, or doubly connected.
An unconnected curve does not intersect any other curve. A singly connected curve has
exactly one endpoint that intersects with at least one other curve and exactly one endpoint
that does not intersect with any other curve. For a doubly connected curve, both endpoints
intersect other curves. When curves intersect, their endpoints share the same position. Bya
property of the extra~tion algorithm, any curve intersection will involve three or more
curves. An intersection of two curves is invalid because they will have been appended
together to make one curve. Whether or not an intersection exists at an endpoint can be
determined quickly by counting the number of endpoints in endpoint_map at the
corresponding position of the endpoint. An intersection exists at a position if there is more
than one endpoint at that position, but if there is only one endpoint at that position (itself),
there is no intersection at that endpoint. Using this quick endpoint intersection test on both
endpoints of a curve, the connectivity of the curve can be quickly determined to be either
unconnected, singly connected, or doubly connected. Examples of the curve connectivity
types are shown in figure 42.

86

• • z
unconnected ·curve singly connected curve doubly connected curve

Figure 42. Examples of the Curve Connectivity Types

7.1.2 Average Ridge Width

The average ridge width algorithm calculates the average ridge width (ridge _ widthave)
along a section of a fingerprint curve (curve) between the specified starting and ending points
Pstart and Pend. The chamfered image C, calculated in the ridge thinning process and
modified at the beginning of ridge cleaning, is used because the value of each pixel
represents the approximate distance to the nearest edge of its ridge. Only pixels not in bad
blocks are considered. To get the ridge width at a particular pixel, the chamfer value at the
corresponding location in C is divided by 500.0. The divisor 500.0 is determined to be twice
the chamfer value of the pixel normalized by the chamfer scaling factor (1000). This
division rescales the chamfer value to represent twice the distance to the nearest ridge edge
in pixels. To find ridge _ widthave along a section of curve, the algorithm sums the values of
the pixels of C at the corresponding positions of the points within the section of curve
specified by Pstart and Pend. This sum is then divided by the number of pixels in the curve
section and further divided by 500.0 for rescaling. The calculation 'of ridge _ widthave is
illustrated in figure 43. If ridge _ widthave of an entire curve is desired, all the chamfer values
of the pixels in the curve are summed and then divided by the number of points in the curve
and further divided by 500.0. If the average ridge width for the entire fingerprint
ridge _ widthpngerprint is desired, the chamfer values of all pixels that corresponding to the
pixels in all curves of curve _list are summed, then divided by the total number of pixels, and
further divided by 500.0 for rescaling. The values of ridge _ widthave and ridge _ widthpngerprint
must be maintained as floating point numbers for the accuracy needed in next steps.

~DGE_SECTION_AvERAGE_RIDGE_ WIDTH[Pstart. Pend, curve]

•• The chamfer image C is accessed from RIDGE_CLEANING[]

1 number_ofyixels = 0
2 sum=O
3
4
5
6
7
8

for each point (i,J) between Pstart and Pend, inclusive, along curve
if (C(i, J) ::!: 0) •• Calculate using only pixels in non-bad blocks

sum = sum + C(i, J)
number_of yixels = number_of yixels + 1

ridge_widthave = sum I (500.0 x number _ofyixels)
return ridge _ widthave

87

2000
2414
3000
3000
2414
2414
2000

+ 2000

19242

ridge _ widthave
(19242/8) /500.0 = 4.81 pixels

. . '. (L C good ridge 'pixels \
ridge _ wldthave = number of good ridge pixels! / 500.0

Figure 43. Calculation of Average Ridge Width, ridge _ widthave

7.1.3 Small Offshoot Curve Removal

Small offshoot CUlve removal deletes curves from curve list that share a common
endpoint on only one end (singly connected) and that are shorter than the smallest, singly
connected curve allowed. The algorithm iterates over curve _list, considering each curve. If
a curve is classified as singly cormected, its length is checked. If the curve is either short
relative to the fingerprint as a whole (the number of pixels in the curve is less than
FOFFSHOOT CURVE x ridge _ widthj;ngerprint) or both thin and short relative to neighboring
curves (both the width of the curve is less than ZWIDTH_OFFSHOOT times the local average
ridge width and the length of the curve is less than ZLENGTH_OFFSHOOT times the local
average ridge width), the curve is removed from T, its endpoints are deleted from the
endpoint_map, and the curve is deleted from curve_list. Care must be taken when deleting
the curve from curve _list so that the iteration can continue in the proper fashion, not
neglecting consideration of any curve.

Once all the small offshoot curves are removed, curve _list must be further processed to
join curves that can be represented as one curve. When a small offshoot curve is deleted, two
intersecting curves may be left behind. These two curves can be appended into one larger
curve if they are the only curves sharing that endpoint position. To make !hese required
connections, the algorithm iterates over curve _list, considering each curve. If a curve has an

88

- -- ---

endpoint whose position is shared by the endpoint of exactly one other curve, all the points of

these two curves are joined to generate a new curve.

SMALL_OFFSHOOT_CURVE_REMOVAL[curve_list]

** This algorithm modifies curve_list, endpoint_map, and T

1 for each curve in curve_list

2 z_local_ridge_width = the average of the local average ridge widths at the

unconnected endpoint and at the midpoint of curve

3 if ((curve is singly connected)

and ((number of points in curve < FOFFSHOOT CURVE ridge_widthfingerprint)

 or ((RIDGE_SECTION_AVERAGE_RIDGE_WIDTH[curve unconnected endpt,

curve midpoint, curve]

< ZWIDTH_OFFSHOOT z_local_ridge_width)

 and (number of points in curve

< ZLENGTH_OFFSHOOT z_local_ridge_width))))

4 remove curve from T

5 delete endpoints of curve from endpoint_map

6 delete curve from curve_list

7 set curve a and b to be the curves that shared an endpoint with curve

8 JOIN_CURVES[curve a, curve b]

9 return

7.1.3.1 Join Curves

Join_Curves attaches together two curves that have an overlap of endpoints in order to

generate a single new curve. Care must be taken that the new curve is traceable between its

endpoints without redundant points. This is guaranteed if the points from the first curve are

copied into the new curve starting with its non-overlapping endpoint, then the points from

the second curve are copied into the new curve starting at its overlap end, skipping the first

endpoint in order not to have a repeated point. This new curve is inserted into curve_list and

the endpoints of this new curve are added to endpoint_map. The two curves joined by this

combination are deleted from curve_list and their endpoints are removed from the

endpoint_map. Updating of T is not necessary because the new curve completely overlaps

the two appended curves. Care must be taken when modifying curve_list so that the iteration

can continue in the proper fashion to insure the consideration of every curve, including the

newly generated curve.

89

JOIN_CURVES[curve a, curve b]

** This algorithm modifies curve _list and endpoint_map
1 if (curve a '* curve b)
2 {
3
4
5

6

7
8
9

for each point p in curve a from non-connection endpoint to connection endpoint
append point p to end of curve c

for each point p in curve b from one past the connection endpoint
to non-connection endpoint

append point p to end of curve c

remove curve a and curve b from curve list
append curve c onto curve_list
update endpoint_map

to}
11 return

7.1.4 Small Ridge Break Connection

The small ridge break connection algorithm attaches curves that can be considered to be
one ridge except for a small break in the ridge. These curves have the property of being
approximately colinear and have endpoints that are within an allowable distance. Examples
of small ridge breaks are illustrated in figure 44.

To search for these small ridge breaks, the algorithm iterates over curve _list, considering
each curve. If a curve's number of points is greater than or equal to RIDGE_SIZEMIN, its
neighboring curves are examined for colinearity. Around each unconnected endpoint of the
curve, the algorithm searches for other nearby endpoints. An endpoint is unconnected if, in
endpoint_map, it does not share its position with any other endpoint. The algorithm searches
for nearby endpoints by scanning endpoint_map for other unconnected endpoints within a
specified neighborhood of the curve's unconnected endpoint. The neighborhood is defined
as any pixel within the search radius radiussearch. The value of radius search is set to be the
minimum value between the default window size (RADIUSOEFAULT) and 3.5 x the ridge
width at the curve's unconnected endpoint (see section 7.1.2). This calculation of

~--l'........--~ T ~ ~ Small Ridge Breaks
to be Connected

Figure 44. Examples of Small Ridge Breaks to be Connected

90

radius search allows the algorithm to find other unconnected endpoints of nearby ridges that
are within a distance of FRIDGE_BREAK x ridge _ widtly;ngerprint. An example of the
calculation of the search radius is illustrated in figure 45. A list of unconnected endpoints
contained in the search area is made that includes their positions and curve identification.

Once this list of unconnected endpoints has been compiled, the algorithm searches for the
mutually best connection between curves. This search eliminates processing· order
dependencies, allowing all candidate connections in a region to be considered at the same
time. Each legal ridge break connection between the curve's endpoint and each unconnected
endpoint in the search region list is scored by a function (described in section 7.1.4.1) that
measures ridge alignment and ridge break size. The algorithm determines the maximum
value of all these scores. For each endpoint whose score is equal to the maximum score, a
list of the unconnected endpoints in its search region is compiled and scored. If the score for

, , ,

, ,
,

• • ,
, ,

.-------------- . ..
..

• . .. , ,

RADIUSDEFAULT= 81
FRIDGE_BREAK = 1.0

• , ,

ch~fer image value = 2414 ridge separation distance = 5
• • , , ,

, ,

..
curve separation distance = 10 , , , , , , , ,

.. radius search = Minimum {floor(F RIDGE BREAK x (3.5 x C(i,j) / 500», • '.. I RADIUSDEFAULT}
.......... .. = Minimum {floor(1.0 x (3.5. x 2414 /500», 81} = 16

-'. .---------------

Figure 45. Example of a Search Radius Calculation
for the Small Ridge Break Connection Algorithm

91

the connection to the initiating endpoint is equal to the maximum score of that list, then the
connection is considered to be mutually best and the curves of the initiating endpoint and the
current endpoint are connected using the curve connection algorithm in section 7.1.4.2.

SMALL RIDGE BREAK CONNECTlON[curve list] - - - -
** This algorithm modifies curve _list, endpoint -,nap, and T

1 for each curve in curve list
2 if number of points in curve> RIDGE_SIZEMIN
3 for each unconnected endpoint a in curve
4 {
5
6
7

8
9

10

11
12
13
14

15
16
17

18
19
20
21
22
23
24
25

}
return

status = FALSE

radiussearcha = min(RADIUSOEFAULT, 3.5 x ridge width at endpoint a)
candidate_list = all neighboring unconnected endpoints

within radiussearcha of endpoint a
for each endpoint b in candidate_list

score of b = CONNECTION_SCORING_FUNCTION[en~point a, endpoint b]
best _scorea = maximum of all scores of endpoints in candidate _list

** Find the mutually best connection by considering all endpoints
in candidate _Jist whose score is equal to best _scorea

for each endpoint b in candidate _list whose score equals best _scorea
(

}

radiussearchb = min(RADIUSOEFAULT, 3.5 x ridge width at endpoint b)
check_list = all neighboring unconnected endpoints

. within radiussearchb of endpoint b
for each endpoint c in check_list

score of c = CONNECTION_SCORING_FuNcTION[endpoint b,endpoint c]
best _scorec = maximum of all scores of check_list

*. Connecting endpoint b and endpoint a is mutually best if the score
of endpoint a in the list generated from endpoint b is a maximum

if score of endpoint a in check_list = best _scorec
status = CONNECT _ CURVES[curve of endpoint a, curve of endpoint b]
exit from loop

if (status)
exit from loop

92

7.1.4.1 The Scoring Function

The scoring function assigns a floating point value that is directly proportional to the

"desirability" of the connection being considered between two endpoints. This score is based

on the alignment of the two curves near those endpoints and the distance between those

endpoints, modified by the average ridge width of the curves near those endpoints. The ends

of the curves being considered for connection must first pass several tests. If any of these

tests fail, an illegal connection flag is returned to the function that called this scoring

function. This will remove the connection from further consideration. Otherwise the

floating point score value is returned.

In order to execute the curve end tests and calculate the score, several intermediate values

are calculated. First, the Euclidean distance between the endpoints is calculated. The value

of floor(distance + 1) is used as the default section size in the further calculations. Second,

the end section and end reference point for each curve are determined. This is calculated by

finding the curve end's section size (section_sizecurve), which is defined as the minimum of

the default section size and the curve's number of points. The end reference point is the

point that is section_sizecurve points down from the endpoint. The end section consists of all

the points between the endpoint and the end reference point, inclusive. Once both curve ends

are defined, the average ridge width for each end section is calculated as described in

section 7.1.2. The angle score for each curve is also calculated. The angle score is defined

as the cosine of the angle of change at an endpoint caused by traversing from the other

endpoint though this endpoint on toward its end reference point. An angle score of 1.0

indicates that the traversal was along a straight line. Before calculating the connection score,

the algorithm must determine whether each curve is small enough to be a small ridge

segment. This is necessary because if a curve is a small ridge segment, the angle score is

prone to error and should be ignored for that curve. If both curves are determined to be small

ridge segments, the connection is illegal and the scoring function returns an illegal

connection flag. For a curve to be considered a small ridge segment, the curve's number of

points must be less than the minimum ridge size and also less than the average ridge width

calculated for its end section.

If neither curve is considered to be a small ridge segment, the distance between the

endpoints, calculated earlier, is tested for being less than twice the average of the average

ridge widths of the two end sections multiplied by FRIDGE_BREAK. If this test fails, the

scoring function returns an illegal connection flag. Otherwise, each angle score and the sum

of two angle scores are tested for being less than the value of the cosine(ACOLINEAR), where

ACOLINEAR is the angular limit for colinearity. During development ACOLINEAR was set to

45 degrees so that curves within 45 degree of being colinear would be acceptable. A larger

value for ACOLINEAR will result in a tighter colinearity requirement. If any of the angle

scores are less than cosine(ACOLINEAR), the scoring function returns an illegal connection

93

/

flag. Otherwise, the score is calculated and returned as the product of the two angle scores
divided by the distance between the endpoints. An example of this calculation is illustrated
in figure 46.

distance = JX2 + y2 = h02 + 102 = 10.0
(default section size = 11) ,

ridge_widtha = 4.83

angle_scorea = cos (anglea) = 0.910 angle_scoreb = cos (angleb) = 0.965

neither curve is smaller than RIDGE_SIZEMIN
and angle _scorea ~ cOS(ACOLINEAR)
and angle _scorl!b ~ cOS(ACOLINEAR)

and (angle_scorea + angle_scort!b) ~ cOS(ACOLINEAR)
and distance S FRIDGE BREAK x (ridge widtha + ridge width")

- therefore - -
connection score = (0.910 x 0.965) /10.0 = 0.088

Figure 46. Example of a Connection Scoring Function Calculation

If only one of the curves is considered to be a small ridge segment, its average ridge
width and angle score are ignored. Instead, the average ridge width and angle score of the
larger curve is used in place of these values for the small ridge segment. The distance
between endpoints is tested for being less than twice the average ridge width of the larger
curve's end section. If this test fails, the scoring function returns an illegal connection flag.
Otherwise, the angle score of the larger curve is tested for being less than the
cosine(AsEGMENT). During development ASEGMENT was set to 60 degrees, which is
slightly less restrictive than ACOLINEAR used above in checking the colinearity of two larger
curves. If the angle score is less than cosine(AsEGMENT), the scoring function returns an

94

illegal connection flag. Otherwise, the score is calculated and returned as the square of the
larger curve's angle score divided by the distance between the endpoints.

CONNECTION_SCORING_FUNCTION[endpoint a , endpoint b]

1 curvea = the curve that contains endpoint a
2 curvl!b = the curve that contains endpoint b
3 distance = Euclidean distance between endpoint a and endpoint b
4 section_size = floor(distance + 1.0)

. 5 section_size a = minimum(section_size, the number of points in curvea)
6 rela = the point that is section _sizea points down curvea from endpoint a .
7 ridge_widtfta = RIDGE_SECfION_AvERAGE_RIDGE_WIDTH[endpoint a, refa, curvea]

8 angle _scorea = cosine(angle of change traversed from rela
through endpoint a to endpoint b)

9 section_sizeb = minimum(section_size, the number of points in curveb)
10 refi, = the point that is section _sizeb points down curveb from endpoint b
11 ridge_width" = RIDGE_SECTlON_AvERAGE_RIDGE_WIDTH[endpoint b, refb, curveb]
12 angle_scoreb = cosine(angle of change traversed from re/b

through endpoint b to endpoint a)

13 if (number of points in curvea < minimum(RIDGE_SIZEMIN, ridge _ widtfta»
14 curvea is a small ridge segment
15 if (number of points in curveb < minimum(RIDGE_SIZEMIN, ridge_width,,»
16 curveb is a small ridge segment

17 if «curvea is a small ridge segment) and (curveb is a small ridge segment»
18 return ILLEGAL_CONNECTION

19 if «curvea is not a small ridge segment) and (curveb is not a small ridge segment»
20 if «angle _scorea < cOS(ACOLINEAR» or (angle _scoreb < cOS(ACOLINEAR»

or «angle _scorea + angle _scoreb) < cOS(ACOLINEAR»

or (distance> FRIDGE_BREAK x (ridge_widtha + ridge_width,,»)
21 return ILLEGAL_CONNECTION

22 connection_score = (angle _scorea x angle _scoreb) / distance
23 if «curvea is not a small ridge segment) and (curveb is a small ridge segment»
24 if «angle_scorea < COS(ASEGMENT»

or (distance> FRIDGE_BREAK x (ridge_widtfta + ridge_widtfta»)
25 return ILLEGAL_CONNECTION

26 connection_score = angle_scorea
2 / distance

27

95

28 if «curve~ is a small ridge segment) and (curveb is not a small ridge segment»
29 if «angle_scoreb < COS(ASEGMENT»

or (distance> FRIDGE_BREAK x (ridge_widt~ + ridge_widt~»)
30 return ILLEGAL_CONNECTION

31 connection_score = angle_scoreb2 / distance

32 return connection score

7.1.4.2 Curve Connection

Curves are connected by generating a single new curve from the two curves to be
connected and a fill-in curve section'between their endpoints. First, the fill-in section to
connect the curves between the endpoints is calculated. This is done first because if the
fill-in curve section overlaps any other curve point in the thinned image, there is a potential
crossing of ridges. H this happens, the connection should not be made as it might add false
minutiae. This situation can be detected when generating the fill-in section. The fill-in
section is generated as a sequence of points calculated as a straight line starting at both
endpoints and meeting in the middle. Care must be taken that the resulting connectivity of
the complete curve follows the connectivity properties of the curve extraction algorithm (see
section 6).

Once the fill-in section is successfully calculated, the new curve is created with its size
equal to the sum of the number of points in the two curves and the number of points
generated by the fill-in section. The points of the first curve are copied into the new curve
starting with the end that will not be connected and ending with the connecting endpoint.
The fill-in section is then copied into the new curve maintaining the proper contiguous
connections. Lastly, the points of the second curve are copied into the new curve, again
maintaining proper connections so the final product is a continuous curve with each point
eight connected to its neighbors. The new curve is added to curve _list in a manner that
insures continued proper iteration over the list. The two curves that were connected are
deleted from curve _list. The endpoint_map is updated by deleting the endpoints from the
connected curves and adding the endpoints of the newly generated curve. The thinned image
T is updated by drawing in the fill-in section, thereby connecting the two curves in the
thinned image. When updating these items for the two connecting curves, care must be taken
to determine whether these two curves are actually just one curve; removing the same curve
twice from curve _list and endpoint_map must be prevented.

96

CONNECT_CURVES[curve a, curve b]

•• This algorithm modifies curve_list, endpoint_map, and T
1 generate the fill-in section between the connection endpoints of curves a and b

•• If the fill-in section overlaps another curve, this is an illegal connection
2 if (fill-in section intersects any curve in thinned image, T)
3 return FALSE

4 for each point p in curve a from non-connection endpoint to connection endpoint
5 append point p to end of curve c
6 for each point p in the fill-in section
7 append point p to end of curve c
8 for each point p in curve b from connection endpoint to non-connection endpoint
9 append point p to end of curve c

10 remove curve a and curve b from curve list
11 append curve c onto curve list
12 update T and endpoint map
13 return TRUE

7.1.5 Small Ridge Connection Removal

The small ridge connection removal algorithm deletes small doubly connected curves
from curve _list that bridge across two roughly parallel curves (see figure 47). The algorithm
iterates over each curve in curve _list to test for and remove such bridge curves. If a curve is
classified as doubly connected and is shorter than LOOUBLY CONNECTED points, the curve is
considered further, otherwise the iteration continues. -

neighboring curves

J (c::::::J==:= doubly connected curve

neighboring curves

Figure 47. Example of a Small Ridge Connection

Given a curve for further consideration, the algorithm tests the number of endpoints in
the endpoint_map for each of the curve's endpoints. If tests determine that exactly three
endpoints are present at each end, this curve is considered further, otherwise the iteration

97

.------------~-----------~~ ---~-- ~~~---

continues. This check is done because, if the curve's intersections are more complicated than
three-way overlaps, this curve may be in a very complicated section of the fingerprint where
appropriate removal decisions are not possible. Many of these complicated areas reside in
bad blocks and will be removed during bad block blanking (see Appendix C).

To continue testing of the doubly connected curve, the algorithm determines the
reference points and end sections for the four neighboring curves connected by overlapping
endpoints to the doubly connected curve (see figure 48). If ldoubly connected represents the
number of points in the doubly connected curve, the reference point of a neighboring curve is
defined to be ldoubly_connected points down the curve from the curve's overlapping endpoint.
The neighboring curve section between the endpoint and the reference point is referred to as
the end section and contains (lttoubly connected + 1) points, including the endpoint and the
reference point. If a curve contains -fewer than max(ldoubly connected/2, 3) points, which does
not allow reasonable accuracy in curve direction, the consideration of this doubly connected
curve is aborted and the iteration over curve _list continues. If a neighboring curve has fewer
than ldoubly connected points, the entire curve is used as the end section. The four end sections
and their associated reference points will be used to test the relative thickness of the doubly
connected curve, the connection angle, and the parallelism of the two ridges connected by the
doubly connected curve to decide whether the curve should be deleted.

0 thinned ridge curve

~ overlapping endpoints

(!] reference points

III curve segments

• ridge pixels

neighboring end sections

Figure 48. Definition of the Four Neighboring End Sections of a Doubly Connected Curve

98

IT all four neighboring end sections and reference points are successfully determined, the
algorithm tests to see that the doubly connected curve is sufficiently thinner than the
neighboring ridges. This is_accomplished by calculating the average ridge widths, as
described in section 7.1.2, for the doubly connected curve and the four neighboring end
sections. If the average ridge width of the doubly connected curve is less than or equal to
WOOUBLY_CONNECTED x the average of the four neighboring end sections' average ridge
widths, and the number of points of the doubly connected curve is less than
FOOUBLY_CONNECTED x the average of the average ridge widths of the four neighboring end
sections, the algorithm continues its consideration of this doubly connected curve.
Otherwise, the algorithm no longer considers this curve and instead continues to iterate over
curve list.

Next, the algorithm tests that the neighboring ridges are roughly parallel. This is
accomplished by testing the angle between the two neighboring curves that pass through the
reference points associated with each overlapping endpoint. If the angle is less than the
angular limit for parallelism (ApARALLEL), the neighboring curves are considered to be
parallel and the algorithm continues consideration of the doubly connected curve.
Otherwise, the algorithm no longer considers this curve and instead continues to iterate over
curve list.

Finally, the algorithm tests that the angles of attachment at the overlapping endpoints
roughly form an "H". To check the colinearity of the two neighboring curves at an endpoint,
the angle between the reference ends associated with the endpoint (with the vertex of the
angle located at the endpoint) is tested to determine if it is greater than the angular limit for
straightness (ASTRAIGHT). If the angles at both endpoints meet the straightness criterion, the
algorithm continues to consider this doubly connected curve, otherwise the algorithm aborts
consideration of this curve and continues the iteration over curve _li~t. Next, the algorithm
tests the angle of attachment of the doubly connected curve to each of the four end sections.
If the angle between the doubly connected curve and each end section is within AATIACH

degrees of being perpendicular, this doubly connected curve has passed all the tests for being
a small ridge connection and can be removed. The criteria for removing a small ridge
connection are summarized in figure 49. The limits for sizes and angles indicated in the
parameter summary below were the values used during development and may be selectable.

If a doubly connected curve passes all the tests, the curve is removed from T, its
endpoints are deleted from the endpoint_map, and the curve is deleted from curve _list. After
the doubly connected curve has been deleted, each pair of neighboring curves having
overlapping endpoints can be represented as a single curve. These pairs of curves must be
combined in the same manner described in section 7.1.3.1., resulting in two curves from the
original four.

99

Neighbor curve parallelism criteria
--. --.

B

BC·EF
--. --. > cosine(ApARALLEU
IIBCIIIIEFlI

C

Endpoint overlap criteria

Three overlapping endpoints
on both ends of curve

Doubly connected ridge size criteria

doubly connected curve's average ridge width
is less than or equal to

WDOUBLY CONNECTED x average ridge width of the end sections

E F

--. --.
AB·AC .
--. --. < cosme(ASTAIGHT)
IIABIlIiACIl

--. --.
DE·DE .

--. --. < cosme(ASTAIGHT)
IIDEIlIiDFlI

--.

- AND
number of points in the doubly connected curve

is less than
FDOUBLY CONNECTED x average ridge width of the end sections

- AND

number of points of each neighboring end section
is greater than

MAXJMUM(doubly connected curve number ofpoints!2, 3)

Angle or attachment criteria

--. --. - --. AD·AB
--. -IIADIIIIABIi

Ap·AC --IIADIlIiACIi
< cosine(AATIACH) < cosine(AATIACH)

-- --. -DA·DE
--. -IIDAIIIIDEIi

pA·pE
--. -IIDAIlIIDEIl

< cosine(AATIACH) < cosine(AATIACH)

AB indicates a vector from point A to point B II II is the Euclidean norm
I I is the absolute value . indicates the vector dot product

Figure 49. Criteria for Removing a Small Ridge Connection

100

SMALL RIDGE CONNECI10N REMOVAL[curve list] - - - -
•• This algorithm modifies curve_list, endpointJnap, and T

1 for each curve in curve list
2 if «curve is double connected with exactly three common endpoints at each end)

and (length of curve < LOOUBLY_CONNECTEO»
3 set endpointo and endpoint] to be the endpoints of curve
4 set curves a and b to be curves that share endpoints with curve at endpointo
5 set endpointa and endpoinfb to be the overlapping endpoints of these curves
6 set curves c and d to be the other two curves that share endpoints with curve

at endpoint]
7 set endpointc and endpointd to be the overlapping endpoints of these curves
8 reference_length = max (length of curve, 3)
9 if all of the lengths of curves a, b, c, or d> reference_length

10 refa = the point on curve a that is reference _length points from endpointa
11 refb = the point on curve b that is reference _length points from endpointb
12 refc = the point on curve c that is reference _length points from endpointc
13 refd = the point on curve d that is reference_length points from endpointd
14 w = (RIDGE_SECI10N_AvERAGEJbDGE_ WIDTH(endpointa, refa, curve a)

15

16

17
18
19
20
21 return

+ RIDGE_SECI10N_AVERAGE_RIDGE_ WIDTH(endpointb, refb, curve b)
+ RIDGE_SECI10N_AVERAGE_RIDGE_ WIDTH(endpointc, re!c, curve c)

+ RIDGE_SECI10N_AVERAGE_RIDGE_ WIDTH(endpointd, refd, curve d)
/4.0 .

if «RIDGE_SECTION_AVER AGE_RIDGE_ WIDTH[endpointo, endpoint], curve]
< WOOUBLY_CONNECTEO)

and (length of curve < FOOUBLY _CONNECTEO x w»
•• Check angle of attachment criteria
if «DOT_PRoDucT(re!a, endpointo, refb) < COS(ASTRAIGHT»

and (DOT_PRoDuCT(re!c, endpoint], refd) < COS(ASTRAIGHT»
and (IDoT_PRoDuCT(re!a, endpointo, endpoint])1 < COS(AATTACH»
and (IDoT_PRoDuCT(refb, endpoinro, endpoint])1 < COS(AATTACH»
and (IDoT_PRoDuCT(re!c, endpoint], endpoinro)1 < COS(AATTACH»
and (lDoT_PRoDucT(re!d, endpoint], endpointo)1 < COS(AATTACH»)
** Check neighbor curve parallelism criteria
if IDoT_PRoDuCT(re!a, refb, refd - (refc - refb»1 > COS(ApARALLEL)

remove curve from T
delete endpoints of curve from endpoint_map
delete curve from curve list

101

DOT_PRODUCT[points a, b, c]

1 return the nonnalized dot product of the vectors from b to a and from b to c

7.1.6 Small Ridge Segment Removal

The small ridge segment removal algorithm deletes curves from curve list that do not
share endpoint positions with any other curve (hence they are unconnected) and that have
fewer numbers of points than the minimum allowed for an unconnected curve. The
algorithm iterates over curve _list considering each curve. The curve connectivity test
described above is applied to each curve. If a curve is classified as unconnected, its length is
checked. If the curve is either short relative to the fingerprint as a whole (the number of
pixels in the curve is less than FUNCONNECTED_CURVE x ridge_width[;ngerprint) or both thin
and short relative to neighboring curves (both the width of the curve is less than
ZWIDTH UNCONNECTED times the local average ridge width and the length of the curve is
less thanZlENGTH_UNCONNECTED times the local average ridge width), the curve is
removed from T, its endpoints are deleted from the endpoint_map, and the curve is deleted
from curve list.

SMALL RIDGE SEGMENT REMOVAL[curve list] - - - -
•• This algorithm modifies curve_list, endpoint_map, and T

1 for each curve in curve list
2 z _locaCridge _width = the average of the local average ridge widths at the

endpoints of curve
3 if «curve is unconnected)

4
5
6
7 return

and «number of pts in curve < F UNCONNECTED CURVEx ridge _ width[;ngerprint)
or «RmGE_SECTION_AvERAGE_RIDGE_ WIDTH[curve first endpt,

curve last endpt, curve]
< ZWIDTH_UNCONNECTED * z _local_ridge _width)

and (number of points in curve
< ZlENGTH_UNCONNECTED * z_local_ridge_width»»

remove curve from T
delete endpoints of curve from endpoint_map
delete curve from curve list

102

7.2 SUMMARY

Parameters

AATIACH = 30 degrees
ACOLINEAR = 45 degrees
ApARALLEL = 45 degrees
ASEGMENT = 60 degrees
ASTRAIGHT = 90 degrees
FOOUBLY_CONNECTED = 2.25

FOFFSHOOT CURVE = 2.0

FUNCONNECTED_CURVE = 5.0

LOOUBLY _CONNECTED = 20

RADIUSDEFAULT = 81

WOOUBLY _CONNECTED = 0.95

ZLENGTH_OFFSHOOT = 5.0

ZLENGTH_UNCONNECTED = 10.0

ZWIDTH_OFFSHOOT = 0.65

ZWIDTH_UNCONNECTED = 0.65

Input

curve list
C

Angular limit for perpendicular attachment
Angular limit for colinearity
Angular limit for parallelism of neighboring ridges
Angular limit for colinearity with a small segment
Angular limit for straightness
Maximum length of a doubly connected curve in
terms of the average of its neighboring end
sections' average ridge widths
Length of the smallest allowable singly connected
curve in terms of ridge _ widthj;ngerprint
Maximum length of a possibly connectable ridge
break in terms of ridge _ widthj;ngerprint
Length of the smallest allowable unconnected curve
in terms of ridge _ widthj;ngerprint
Maximum length of a doubly connected curve to be
considered for removal
Default search radius for the small ridge break
connection algorithm
Minimum length of a curve allowed to be used in
calculating colinearity
Maximum average ridge width of the doubly
connected curve in terms of the average of its
neighboring end sections' average ridge widths
Length of the smallest allowable singly connected
curve in terms of the local average ridge width
Length of the smallest allowable unconnected curve
in terms of the local average ridge width
Width of the smallest allowable singly connected
curve in terms of the local average ridge width
Width of the smallest allowable unconnected curve
in terms of the local average ridge width

The list of curves for the live-scan fingerprint
Chamfered image calculated as part of ridge
thinning (section 5)
Ridge direction data structure

103

Output
modified curve list

Calculated values
T

endpoint -,nap
ridge _ width:/illgerprillt

Thinned image regenerated from curve _list and
update as the curve _list is modified
See defmition in section 7.1.1
The average ridge"width for the entire fingerprint

104

SECTION 8

RIDGE SMOOTHING

Ridge smoothing processes the cleaned, extracted curves of a fingerprint's ridges to
produce smoother versions of those same curves. This smoothing of the fingerprint ridges
removes topologically insignificant deviations in the curve. A smoother curve will
ultimately require fewer spline points to represent it; hence it will compress more efficiently.
An illustration of this situation is shown in figure 50. Notice that at each small bump in the
curve there are several spline points wasted on representing more detailed information about
that curve than is desired. By smoothing the curve we elimi~ate those extra points, reducing
the information to be encoded about that curve. However, it should be noted that the
smoothing process preserves the general shape and the exact locations of the endpoints of
each curve, therefore preserving the precise location of minutiae points.

Original Curve

11 Spline Points

Smoothed Curve

5 Spline Points

Figure 50. Illustration of the Difference in the Number of the Spline Points on a Curve
and Its Smoothed Counterpart

Ridge smoothing is accomplished by a window filter that averages pixel coordinates
along each curve in the fingerprint curve list. A window filter is a fIlter that applies a
function on each subgroup of adjacent pixels as it traverses over the entire group of pixels.

105

Each curve consists of a list of pixel coordinates. In this algorithm, the window filter
averages the pixel coordinates of a small group of pixels in a curve as it traverses the entire
list of pixels in a curve. This has the effect of low-pass filtering the shape of each curve,
making the curve smoother. The amount of smoothing effect is controlled by the size of the
window used. The window size used during development was 15, but this value, like all
other parameters, is selectable. This parameter is referred to as the target window size in the
algorithm description below.

8.1 ALGORITHM DESCRIPTION

It is assumed that each curve is represented as an ordered list of pixels and that the
positional coordinates are available for each pixel in the curve. It is also assumed that the
frrst and last points in the ordered list of pixels are the endpoints for the curve. The
properties of the curve extraction algorithm described earlier in section 6 guarantee these
assumptions. In order to calculate a smoothed curve from an original curve, it is required
that a new ordered list of pixels be generated to represent the new smoothed curve. The
original pixels of a curve must be available throughout the smoothing process on that curve.
Once a new ordered list for a curve is completely generated, the original ordered list for that
curve may be discarded. By a property of the smoothing algorithm, the number of pixels in
the new ordered list is guaranteed to be less than or equal to the sum of the number of pixels
in the original ordered list and the target window size W. In practice, however, due to
overlapping pixel removal, the number of new pixels is less than or equal to the original
number of pixels.

The smoothing algorithm is applied to each ridge in the fingerprint independently. The
three components to the smoothing algorithm are window positioning, candidate pixel
calculation, and new pixel addition. Window positioning is the most complicated and the
most important component in the smoothing algorithm. It controls which pixel positions are
averaged together to create a candidate pixel position, and it also ensures the exact
preservation of the curve's endpoints. Candidate pixel calculation generates a ~ew candidate
pixel position that is considered by the new pixel addition step for inclusion into the new
smoothed curve.

Window positioning moves a window over the ordered list of pixels of a curve starting at
one endpoint and stopping at the other endpoint while maintaining the front and back
boundaries of the window and the current window size, Wcurrent. The front boundary is
defined to be the boundary over which new pixels are added to the window. The back
boundary is defmed to be the boundary over which pixels leave the window. The value of
Wcurrent indicates the number of pixels within the window at a particular iteration. At the
first iteration on a curve, Wcurrent is initialize to be 1, and the front and back boundaries are

106

set to point at the starting endpoint. For the subsequent iterations until wcurrent equals W or

the front boundary reaches the stopping endpoint, wcurrent is incremented by one and the front

boundary is moved one pixel down the ordered list of pixels. If wcurrent reaches W, the

subsequent iterations move the window by moving both the front and back boundaries one

pixel down the ordered list of pixels. When the front boundary reaches the stopping

endpoint, the subsequent iterations move and shrink the window by decrementing wcurrent by

one and moving the back boundary one pixel down the ordered list of pixels. Iteration stops

when wcurrent is one and the front and back boundaries are at the stopping endpoint.

At each iteration of the window positioning the candidate pixel position is calculated as

the average position of the pixels within the window. This is accomplished by averaging the

row coordinate values of the pixels within the window and averaging the column coordinate

values of the pixels within the window. The process of averaging these coordinates can be

accelerated by keeping a running sum of the row and column coordinate values currently

within the window. When the window is moved, the row and column coordinate values of

the pixel leaving the window is subtracted from the respective sums, and the row and column

coordinate values of the new pixel entering the window is added to the respective sums.

Then the average row and column positions can be obtained by dividing these sums by

wcurrent. This method reduces the algorithm complexity from an order n
2
 to an order n.

These average values, which are real numbers, are rounded to integer coordinates by

selecting the nearest integer, (i.e., floor(average_value + 0.5)).

Before the new candidate pixel can be appended to the new ordered list of pixels, it

must be tested to ensure it is not identical to the previously added pixel on the new list.

This test is accomplished by checking if the new pixel's coordinate is the same as the

coordinate of the last pixel currently in the new ordered list. If the coordinates do not match,

the candidate pixel is appended to the end of the new ordered list. Otherwise, the new pixel

is redundant and is not added to the list. Note that in the first iteration of the window

positioning, the candidate pixel is automatically added because the new ordered list of pixels

is empty. This process of curve smoothing is illustrated on an example curve in figure 51.

107

Original Curve

~b~~nfcrnIa~~IaDI~~
pixel coordinates
within the window

to calculate
new pixel coordinate

14- W. pixel --.
wmdow

Grow window size from endpoint
until window size constant is reached

to ensure endpoint preservation.

Shrink window size toward endpoint
when window boundary reaches endpoint

to ensure endpoint preservation. ,
, Ir

TTTT

, 'r I I I I

I Smoothed Curve • Endpoints

Figure 51. Illustration of the Curve Smoothing Algorithm

8.2 SUMMARY

Parameters
W

Input
curve list

Output
smooth curve list

Calculated Values

Wcu"ent
Srow

Scolumn

J.lcolumn

The window size constant for the smoothing window

The list of fingerprint curves from the ridge cleaning process

The list of fingerprint curves after having been smoothed

The current window size
The running sum of the row coordinate values within the current
window
The running sum of the column coordinate values within the
current window
The mean value of the row coordinate values within the current
window
The mean value of the column coordinate values within the current
window

108

- -~----------~------------------------------

•• This algorithm modifies curve_list

1 for each curve in the fingerprint curve_list
2 {
3 generate a smooth curve on the smooth_curve_list to contain the processed curve

4 STOW =0.0
5 Scolumn = 0.0
6 Weurrelll = 0
7 set pixel b to first pixel in curve
8 n = minimum [W • number of pixels in curve]

•• Expand window while moving it until Weurrent reaches n
9 for each pixel a in curve from first pixel to nth pixel

10 (
11 srow = Srow + row coordinate of pixel a
12 Seolumn = Seolumn + column coordinate of pixel a
13 Weurrelll = Weurrenl + 1
14 J.!row = floor(srow/weUrrenl + 0.5)
15 J.lcolumn = floor(Seolumn/Weurrenl + 0.5)

16
17
18

••
19"

20
21
22
23
24

25
26
27
28

}

if (the pixel (J.!row. J.lcolumn)::1: the last pixel in smooth_curve)
add pixel (J.!row. J.lcolumn) to the end of smooth_curve

Move window with Weurrent set to n until reaching last pixel in curve
while pixel a is not last pixel in curve
(

}

STOW = Srow + row coordinate of pixel a - row coordinate of .pixel b
Seolumn = Seolumn + column coordinate of pixel a - column coordinate of pixel b

J.!row = floor(srow/wcurreiat + 0.5)
J.lcolumn = floor(Scolumn/Wcurrenl + 0.5)

if (the pixel (J.!row. J.lcolumn)::1: the last pixel in smooth_curve)
add pixel (J.!row. J.lcolumn) to the end of smooth_curve

set pixel b to next pixel in curve

109

** Shrink window while moving it until window only contains the last pixel
29 while pixel b is not the last pixel in curve
30 (
31 Srow = Srow - row coordinate of pixel b
32 scoiumn = Scolumn - column coordinate of pixel b
33 Wcurrent = Wcu"ent - 1
34 J.Irow = floor(srowlwcurrent + 0.5)
35 J.!column = flOOr(Scolumnlwcurrent + 0.5)

36 if (the pixel (J.1,.ow, ~olumn) ¢ the last pixel in smooth_curve)
37 add pixel (J.Irow, J.!column) to the end of smooth_curve
38 set pixel b to next pixel in curve
39 }
40}
41 end

110

SECTION 9

CHORD SPLITTING

Chord splitting selects the fingerprint ridge points that will be .used by the B-spline
algorithm to reconstruct the ridge during decompression. The input to the process is an array
containing an ordered set of all of the points representing a ridge. The output of the process
is an ordered subset of the original ridge points. The algorithm is iterative, selecting the
subset of points based upon the perpendicular distance to a line (chord) connecting the
current ridge segment endpoints. This perpendicular distance is the error, or residue, for the
current chord segment. A greater number of selection points result from a smaller allowable
error (see figure 52).

Larger Allowable Error Smaller Allowable Error

Figure 52. Effects of Allowable Error or Residue

9.1 ALGORITHM DESCRIPTION

The variables and parameters that the chord splitting algorithm uses are described below.

x(i) The x coordinate information for the ith point on a curve segment
y(i) The y coordinate information for the ith point on a curve segment
d(i)jk The perpendicular distance from point (x(l), y(i» to the line segment with

endpoints described by (x{J), y{j) and (x(k), y(k».
ALLOWABLE_RESIDUE The smallest acceptable perpendicular distance between

curve segment and the chord segment

The chord splitting process involves several steps (figure 53) described at length in the
following paragraphs. Two arrays, x and y, are passed to the chord splitting function. Array

111

x contains the x coordinate infonnation for the given line segment; similarly, array y contains
y coordinate information. In the input arrays, the fIrst endpoint is referenced by j, the second
endpoint is referenced by k. To calculate the residue distance, d(i»kt an array containing
intennediate values describing the endpoint ridge segment is maintained [6]. The values
within the array are

a(O) = yV) - y(k)
a(1) =x(k) -xV)
a(2) = (y(k) x xV) - (yV) x x(k».

The algorithm begins by calculating the perpendicular distance from each point on the
input segment to the line segment connecting the ridge endpoints. For each point within the
input ridge (subscript i), the distance is calculated using the following fonnula:

d(i)jk = (a(O) x x(i» + (a(l) x y(i» + a(2).

The largest distance is found and the index is stored in m. If the largest distance is
greater thfUl 'ALLOWABLE_RESIDUE, it is acceptable and the point indexed by m is added
to a linked list that stores valid spline points.

If the largest distance was above the threshold, the process is repeated for a new segment
defIned by the fIrst endpoint and the point indexed by m. The algorithm continues to fInd the
largest acceptable point. With each successful iteration a smaller line segment is defIned.
When an acceptable distance is not found, the algorithm moves to areas not yet investigated.
The new areas are investigated by defIning a new line segment with the last valid point found
and the unused endpoint of the previous segment, then repeating the process described
above.

In the special case of a loop, which consists of a single endpoint, the ridge endpoints are
defined differently. One endpoint is defIned as the actual ridge endpoint, while the other
endpoint is defIned as the point along the ridge that is furthest away from the ridge endpoint.
The selection of these endpoints effectively divides the loop into two segments. Each of the
two segments is then processed using the normal chord splitting process.

Figure 54 shows the sequence of iterations in processing a simple arc. In this fIgure, a
line segment is joined from the original ridge endpoints labeled A and B. The largest
perpendicular distance is found to be located at C. The second iteration creates a new line
segment AC. The largest perpendicular distance between the ridge points A and C is found
to be D. The process continues, using AD as a line segment. In this case, an acceptable
distance is not found. Next, the algorithm uses the line segment joining DC, where an
acceptable distance is not found. Point E is the largest distance from segment CB. A check
is then made for segments CE and EB, with no valid points being found. The fInal points
retained by the algorithm are A, 0, C, E, B, in that order.

I

112

The chord splitting process is perfonned by a recursive function. The recursive function
maintains the ordering of the selected points. This is particularly important, since the
B-spline program that will use the points selected by the chord splitting algorithm expects the
points to be orc,lered.

Add Points to Chord List:
Update Endpoints

Input Coordinate
Information

t
Calculate Chord Determined·

by Segment Endpoints

YES ..

Scan Ridge Points to
Find largest Residue

t

Output Coordinate
Information

Figure 53. Flowchart of Operations

113

c

a. First Iteration

c

A~--------~--------~

b. Second Iteration

c. Third Iteration

Figure 54. Sequence ofIterations

114

B

• Segment Endpoint

• Selected point

o Valid point not in
current iteration

9.2 SUMMARY

This section provides parameters, input variables, output variables, and pseudocode for
the chord splitting algorithm.

Parameters
ALLOWABLE_RESIDUE Smallest acceptable perpendicular distance between the

curve segment and the chord segment

Input
curve list

Output
modified curve list

List of curves that represent the fingerprint

List of curves which now includes chord points for each curve

** Algorithm to select the fingerprint ridge points to be used by the reconstruction algorithm

CALCULATE CHORD POINTs[curve list] - - -
** temp_chordJ'oints and the arrays x andy are globally accessible by the routines

called by this process.
1 for each curve in curve list -** x is an array which holds x coordinate information for curve

** y is an array which holds y coordinate information for curve
2 if (the number of points in curve> 1)
3 {
4 j = frrst index of the coordinate arrays for curve
5 k = last index of the coordinate arrays for curve

6 initialize temp_chordJ'oints with the frrst and last point of curve

7 LINE_FrrTING[j, k] ** Refers to x, y, and temp_chordJ'oints;
and modifies temp_chordJ'oints

8 copy the chord points in temp_chordJ'oints into the chord points for curve
9 }

10 else
11 copy the one point of curve into the chord points for curve

12 return

115

** The values of temp_chord-IJoints and the arrays x and yare globally accessible and
modifiable by this routine.

·1 first _endpoint =(x(j), y(j)
2 second_endpoint =(x(k), y(k»

3 if (first_endpoint = second_endpoint)
4 {

** Special case if the curve is a loop
5 m = index betweenj and k where (x(m), y(m» has

the largest distance from/irst_endpoint
6 residue = perpendicular distance from (x(m), y(m» to/irst_endpoint
7 }
8 else
9 {

10
11

chord = the line passing through/irst_endpoint and second_endpoint
residue = 0

12 previous_residue = 0
13 same residue = 0
14 for i fromj to k
15 {
16 point = (x(z), y(i»
17 p _distance = perpendicular distance from the point on the

curve to the chord connecting the endpoints

** If there are consecutive points with the same perpendicular distance,
find the middle one

18 if (p _ distance ~ residue)
19 {
20 residue = p _distance
21 if (residue = previous residue)
22 {
23 increment same residue
24 }
25 else
26 {

116

27 same residue = 0
28 }
29 m=i
30 }
31 previous_residue = p _distance
32 }

33
34
35 }

** Find the midpoint if there are consecutive points with the
same perpendicular distance

if (same _residue ~ 0)
m = m - (same_residue + 2)

36 if (residue> ALLOWABLE_RESIDUE)
37 {
38 insert the point (x(m). y(m» between the points in temp_chordJloints that

correspond to first_endpoint and second_endpoint

** Recursive processing to continually divide segment into smaller segments

** Line fitting for left hand side
39 LINE_FrrTINGU. m]

** Line fitting for right hand side
40 LINE_FrrTING[m. k]
41 }
42 end

117

118

SECTION 10

CURVE SORTING

After the chord splitting process has been completed, there is no particular order to the
resulting list of curves. Absolute coordinates could be used to encode the positions of the
curve endpoints from this list, but this would not, in general, be very efficient. It was found
that fewer bits are needed· to encode the curve endpoint positions if relative offsets between
curves are used. Thus, to further improve encoding efficiency, the list of curves are
reordered to minimize the relative offsets between consecutive curves. Therefore, it is
desirable to sort the curve list by closest relative offsets, taking advantage of curves that are
grouped closely together to maximize encoding efficiency. The sorting process described
below generates a new soned list. The first curve in this list is represented using an absolute
coordinate and the remaining curves are represented with relative offsets. Figure 55 shows
an example of the results of the sorting process applied to a list of four curves .

• .. Origin
-~ absolute distance tl

-,--.--~".~ ;:~~ve distance [I
o center of image it

~~~~~:::::!s::;;sill:::=:"-:::~~ili::::::..~:;;::;:"::~~:::~~~~%::~::-:::~~Il 

.. 

.. 

Figure 55. Results of the Soning Process 

The algorithm developed to son the curve list does not calculate the optimal curve order, 
because this would be far too computationally intensive. Therefore, the algorithm described 
in this section is a heuristic that is far less computationally complex than optimal ordering, 
but still provides an efficient ordering of the fingerprint curves. 

119 



10.1 ALGORITHM DESCRIPTION 

The sorting algorithm is a two stage algorithm that receives an unordered list of curves 
and generates an ordered list of curves. The fIrst stage sorts the curves by repeatedly 
transferring the curve from the original unordered list (unsorted list) that is closest to the last 
curve of the ordered list being generated (sorted list) onto the end of sorted list. This fIrst 
stage (selective processing) usually places the entire original unsorted list of curves onto the 
sorted list of curves. Only when the fIrst stage fails to place all the curves onto sorted_list 
(under conditions described in section 10.1.1.3) is the second stage reached. This stage 
(cyclic processing) takes any remaining unsorted curves in the original list and inserts them 
into the sorted list. 

In both stages of sorting, a curve is selected or inserted according to a "best fIt" criterion 
which is based on inter-curve offsets. When searching for a closest curve, the best fIt 
criterion must be applied to every inter-curve offset (jump) between each endpoint of the 
curve being considered and each endpoint of every remaining unsorted curve to determine 
which of the unsorted curves minimizes jump. This requires that a total of four inter-curve 
offsets must be compared for every curve that is a candidate. Therefore, to uniquely identify 
jump for a pair of curves, the endpoints of the two curves that defme this inter-curve offset 
must be recorded. (See section 10.1.1.1 for further details regarding the handling of these 
situations.) 

CURVE SORTING[ unsorted list] - -

1 sorted_list = SELECTIVE_PROCESSING[ unsorted list] 
2 if (unsorted_list is not empty) 
3 sorted_list = CYCLIC_PROCESSING[ unsorted_list, sorted_list] 
4 return sorted list 

10.1.1 First Stage: Selective Processing 

Selective processing sorts the original list of curves so as to minimize inter-curve offsets. 
Prior to selective processing, the curve that has either endpoint closest to the center of the 
image is found and is designated as the fIrst curve in the sorted list. After the fIrst curve is 
found, the remainder of the processing repeatedly selects the unsorted curve that is closest to 
the last curve in the sorted list and appends it to the list (see section 10.1.1.1). The flowchart 
in fIgure 56 is an overview of the selective processing stage. 

120 



Unsorted List of Curves 

Make Centermost 
Curve the First Curve 

in the Sorted List 

Yes 

Sorted List of Curves 

Search for Unsorted Curve 
Closest to the Last Curve 

in the Sorted List 
Reset Search 

Criteria 

Yes ApRend Curve 
">----11 .. to Sorted List 

No Alter Search 
Criteria 

Sorted List of Curves 
(Unsorted List not empty) 

Figure 56. Flowchart of Selective Processing 

121 



SELECTIVE PRocESSING[unsorted list] - -

•• Initialized for global use 

•• First, find the curve closest to the center of the image and make it the first 
curve in the sorted list 

2 curve = curve in unsorted _list that is closest to the center of the image 
3 put curve into sorted list 

4 status = CONTINUE_FIRST_STAGE 

5 while (status = OONTINUE_FlRST_STAGE) 

6 { 
7 
8 

last curve = last curve in sorted list 
max_offset = DSELECT 

•• Curve to be jumped from 
•• Initialize the filter value 

•• The following three variables are initialized for global use. These values are 
modified in SEARCH_FoR_THE_BEST_FIT_CURVE[] and used in 

RESULTS_CHECKING[] to indicate the closest curve to last_curve 
9 closest curve = NULL 

10 endpoint Jlag = NULL 
11 reverse Jlag = NULL 

•• Find next curve from unsorted_list, repeating the search 
with larger limits if necessary 

12 status = REPEAT_FlRST_STAGE_SEARCH 

13 while (status = REPEAT_FlRST_STAGE_SEARCH) 

14 { 
•• Look for a curve that is close to the last curve in the sorted list 

15 SEARCH_FoR_THE_BEST-FIT_CURVE[ max_offset] 

•• Check to see if a close curve was found and perform the appropriate actions 
16 status = RESULTS CHECKING[] 
17 if (status = REPEAT_FlRST_STAGE_SEARCH) 

18 max_offset = 2 x max_offset ** The search is repeated using 
twice the filter value (max_offset) 

19 } 
20 } 
21 return sorted list 

122 



10.1.1.1 Search for the Best-Fit Curve 

The search process examines the unsorted list of curves to find a close curve to jump to 
from the last curve in the sorted list. This routine computes the distance from the last curve 
in the sorted list to each curve in the unsorted list. Each distance comprises two values: an x 
offset and a y offset. Each offset is a component of the jump vector and is the magnitude of 
the coordinate difference from an endpoint of one curve to the endpoint of another curve. 
For example, the distance between endpoints (180, 200) and (140, 235) is (40,35). 

When computing the jump vector from the last curve in the sorted list to a curve in the 
unsorted list, there are four distance Gumping) scenarios to consider: the first point of the 
last curve in the sorted list to the first point of the current curve; the last point of the last 
curve in the sorted list to the first point of the current curve; the first point of the last curve in 
the sorted list to the last point of the current curve; and, finally, the last point of the last curve 
in the sorted list to the last point of the current curve. Figure 57 depicts the four distance 
scenarios, where each arrow represents a different endpoint offset between the two curves. 

In addition to the jump distance, the reference endpoint (first or last) of the last curve as 
well as the closest endpoint (first or last) of the closest curve to the last curve must be noted. 
The reference endpoint of a curve is the endpoint from which to jump to the next curve. In 
situations where the closest endpoint of the closest curve is in fact its last endpoint, the list of 
points representing this curve are reversed. The reference endpoint information is retained 
using a flag, because it is required by the encoding and decoding processes. For example, 
this flag (the reference_endJlag) would be set to lAST_ENDPOINT whe~jumping from its last. 
endpoint, and to FIRST_ENDPOINT when jumping from its first endpoint. (The values 
FIRST_ENDPOINT and lAST_ENDPOINT are used for the remainder of the document and reflect the 
usage in the previous example.) 

Given the last curve in the sorted list, the values of the best jump vector, (best-.Jumpx, 
best-.JUI1I{Jy), represent the jump to the closest curve in the unsorted list and are determined 
by comparing the jumping scenarios of this last curve to every curVe left in the unsorted list. 
Prior to the search over the unsorted list, both offset values representing the best jump vector 
are initialized to the value MAXOFFSET. MAXOFFSET is defined as the larger of the width 
and height of the image, plus one. 

To avoid unnecessary computation, a filter test is applied before the distance comparison 
for each jumping scenario. The components of the inter-curve offset (current -.JumPx and 
current -.JumPy) for a jumping scenario are compared to max_offset, the filter value. If both 
current -.JumPx and current -.JumPy are less than max_offset, the distance comparison 
(section 10.1.1.2) is applied for this jumping scenario. 

Empirical analysis during development has shown that 128 is the best initial value of 
max_offset when dealing with an image of 450 pixels (horizontal) by 600 pixels (vertical). 

123 



For the remainder of the document, the value of DSELECT (initial max_offset during the 
selection sort) is 128. 

The best jump vector values are then used by the distance comparison process to keep 
track of the offset to the closest curve found so far in the current search. Therefore, if the 
search finds a valid closest curve, best .JumPx and best.JUln[Jy will reflect the offsets to this 
curve. 

First Point 

-----~ ajump 

~ acurve 

Last curve in the sorted list 

Last Point \ .......... 
\ ............... .... .... / ,............... .... .... / , .......... ........ / 

\ 
.......... ........ / .................. / 

\ ':.<' / 
\ .... ..... 

........ .......... J , .... ........, . ........ 
,........ Last Point 

First Point 

Current curve 

Figure 57. The Four Possible Jumping Scenarios 

124 

»: 

I 
ill > 

. __ ._--------------------------------



1 best.J""'Px = MAXOFFSET 
2 best.JUInpy = MAXoFFSET 

3 for each curve in unsoned list 
4 ( 

•• Distance comparison is called four times, once for each 
of the four jumping scenarios 

•• Evaluate the frrst-to-flTSt scenario 

5 current.JumPx = abs[curvefU'Scendpoincx -last_curvefU'scendpoinCx] 
6 current .JumPy = abs[curvefU'SCendpointJ -last _ curvefU'scendpointJ] 
7 if (current .JumPx < max_offset and current .JumPy < max_offset) ** The filter test 
8 if (DISTANcE_COMPARISoN[current.Jump, best.Jump] = TRUE) 

9 endpoint Jlag = FIRST_ENDPOINT 

10 reverse Jlag = FALSE 

11 closest curve = curve 
12 best.Jump = current.Jump 

•• Check to see if the flTSt-to-Iast scenario is better 
13 current .Jump,r = abs[ curvelasCendpoincx - last _ curverU'Scendpoincx] 
14 current.JumPy = abs[curvelascendpointJ -last_curvefU'scendpointJ] 
15 if (current.JumPx < max_offset and current.JumPy < max_offset) ** The filter test 
16 if (DISTANcE_COMPARISoN[currentjump, best jump] = TRUE) 

17 endpointJlag = FIRST_ENDPOINT 

18 reverseJiag = TRUE 

19 closest curve = curve 
20 best.Jump = current .Jump 

•• Check if the last-to-first scenario is better 

21 current.JumPx = abs[curvefU'Scendpoincx -last_curvewscendpoincx] 
22 current.JumPy = abs[curvefU'SCendpointJ -last_curvelascendpointJ] 
23 if (current.JumPx < max_offset and current.JumPy < max_offset) ** The filter test 
24 if (DIsTANcE_COMPARISoN[current.Jump, best.Jump] = TRUE) 

25 endpointJlag = LAST_ENDPOINT 

26 reverse Jlag = FALSE 

27 closest curve = curVe 
28 best .Jump = current .Jump 

125 



•• Check if the last-to-last scenario is better 
29 currentJU1n[Jx = abs[curvezascendpoinCx -last_curve,asce~poincx] 
30 currentJll11IPy = abs[curvezasCendpoint...,y -last_curvezascendpoint...,y] 
31 if (currentJumpx < max_offset and currentJumPy < max_offset) •• The filter test 
32 if (DISfANcE_COMPARISoN[currentJump, bestJump] = TRUE) 
33 endpoint Jlag = LAST_ENDPOINT 

34 reverseJlag = TRUE 
35 closest curve = curve 
36 best Jump = current Jump 
37 } 

•• The global values of closest_curve, bestJump, endpointJlag and reverseJlag 
indicate the best fit curve found and its jump information 

38 return 

10.1.1.2 Distance Comparison 

This section describes the distance comparison used to determine if a jump is better than 
the best jump, which consists of the two values best Jumpx and best JumPy. The variables 
current JU1n[Jx and current Jll11IPy contains the pair of endpoint offsets (jump vector) from the 
last curve in the sorted list to the curve currently being processed. 

Distance comparison uses several auxiliary functions and values. MAX_BITS returns the 
larger of the number of bits necessary to represent the x or y offset in a jump vector. . 
SUM_BITS returns the aggregate number of bits necessary to represent both the x and y 

offsets. SUM_DISTANCES returns the sum of the x and y offsets. These functions are used 
with the current jump vector and best jump vector to obtain the values max_current _bits, 
max_best_bits, sum_current_bits, sum_best_bits, sum_current_distance, and 
sum_best _distance. The calculation of these values is explained in the pseudocode at the end 
of this subsection. 

To prefer jumps whose offset components are roughly equivalent in magnitude, the 
algorithm fIrst compares max_current_bits and max_best_bits to penalty_size (the penalty 
test). If both max current bits and max best bits are less than or equal to penalty size, the - - - - -
current jump will be considered better than the best jump if sum_current _distance is less 
than sum_best_distance and if sum_current_bits is less than or equal to sum_best_bits. 

126 



Otherwise, if either (or both) max_current _bits or max_best _bits is greater than 
penalty _size, then the current jump will be considered better than the best jump if either of 
the following two conditions are true: 

1. max current bits is less than max best bits. - - - -

2. max_current_bits is equal to max_best_bits, and sum_current_bits is less than 
the sum best bits. - -

Figure 58 shows an example of comparing the four jumping scenarios between the last 
curve in the sorted list and the current candidate curve from the unsorted list. Bypassing 
both the filter test and the penalty tes~ the current curve becomes the best curve and 
bestJump is set to currentJump. Searching continues until every unsorted curve is 
examined and the best Jump over the entire unsorted list is found. 

Empirical analysis during development has shown that 6 is the best initial value of 
penalty _size when dealing with an image of 450 pixels (horizontal) by 600 pixels (vertical). 
For the remainder of the document, the value for PINIT (initial penalty _size) is 6. 

127 



Last curve in 
sorted list 

(#, #) --- endpoint 

a jump 

(127,90) 
A 

(63,0) (190,90) 
~------------- .... ~ 

\ / , / , / 
\ / 
\ / , / 

C \ "/ D 
(53, 150) \ / (50, 110) , / , / , / 

\ / , / 
X / , 

/ \ 
/ , 

/ \ 
/ , --..... , 

(140,200) " \ " \ "" , 
B " \ 

(40,35) "" \ " \ (#,#) x andy jump offsets " 
(180,235) 

iJmJ/l£ ottws. sum bits max bits S.Ull1 dis.tal1c.e.s. 
A (63,O) 6+1=7 6 63 + 0= 63 
B (40,35) 6 + 6 = 12 6 40 + 35 = 75 
C (53. 150} 6 + 8 = 14 8 53 + 150 = 203 
D (50, ItO) 6+7=13 7 50 + 110 = 160 

Given that the penalty _size is 6, only jumps A and B satisfy the penalty test. 
Because max bits for jumps A and B are equal, the sum bits must be compared. 
Based on this comparison, jump A is selected as the best jump. 

Figure 58. Example of Comparing the Four Jumping Scenarios Between the Last Curve 
in the "Sorted List and the Current Candidate Curve 

128 



DISTANCE_ COMPARISON[ current.jump, best. jump] 

•• Now perfonn the penalty test 
1 max_current._bit.s = MAX_BITs[current.jump] 
2 max_best._bits = MAX_BITs[best.jump] 

•• max _ besf_ bit.s is global 
3 sum_current._bit.s = SUM_BITs[currentJump] 
4 sum_best._bit.s = SUM_BITs[best.jump] 
5 sum_current_dist.ance = SUM_DISTANcE[current.jump] 
6 sum_best._dist.ance = SUM_DISTANcE[best.Jump] 
7 if (max_current._bit.s ~penalt.y_size and max_best_bits ~penalt.y_size)·· Penalty Test 
8 { 

9 
•• Offset components are roughly equivalent in magnitude 
if (sum_current_dist.ance < sum_best_distance 

and sum_current._bit.s ~ sum_best._bits) 
10 
11 } 
12 else 
13 { 

return TRUE 

•• Offset components are not roughly equivalent in magnitude 
14 if (max_current_bits < max_best_bits) 
15 return TRUE 

16 else 
17 { 
18 if (max_current._bit.s = max_best._bit.s 

and sum_current_bit.s < sum_best._bit.s) 
19 return TRUE 

20 } 
21 } 
22 return FALSE 

The function MAX_BITs[] returns the largest number of bits necessary to represent the 
magnitude of the x or y offset. 

MAX_BITsUump] 

1 return max[NUM_BITSUumpx], NUM_BITSUUI7lpy]] 

129 



The function SUM_BITs[ ] returns the sum of the number of bits necessary to represent the 
magnitudes from a pair of x and y offsets. 

SUM_BITSUump ] 

1 return NUM_BITSUUInJ'x] + NUM_BITSUumPy] 

The function SUM_DISTANCE[ ] returns the sum of the magnitudes from a pair of x and y 
offsets. 

SUM_DISTANCEUump] 

1 return jumpx + jumPy 

The function NUM_BITs[n] returns the smallest number of binary bits needed to represent 
the absolute value of the integer value n. 

NUM_BITs[ n ] 

1 return floor(log2(n) + 1) 

10.1.1.3 Results Checking 

Results checking determines if a sufficiently close curve has been found. If so, the 
closest curve is added to the sorted list. This curve to be appended may need to have the 
order of its points reversed. The assignment of the appropriate endpoint reference value to 
reference_end flag must take such a reversal into account. This is necessary because it has 
been defined that a curve in the sorted list always jumps to the first point of the next curve in 
the sorted list; therefore, if the last curve jumps to the last point of the closest curve, the 
closest curve must be reversed prior to appending it to the sorted list. Also, 
reference_end flag of the last curve in the sorted list must be saved to indicate which 
endpoint of the last curve was used to jump to the first endpoint of the closest curve. Before 
continuing, the penalty value is set to be the larger of itself or max_best _bits, because future 
jumps should be allowed to use as many bits as do existing jumps in the sorted list. 

If a curve is not found during this search that is close enough to satisfy the distance 
comparison, there are two options available: the filter value is doubled and the selection sort 
begins again, or cyclic processing begins. This decision is based on the length of the 
unsorted list. If the length of the unsorted list is at or below 25 percent of its original length, 
then cyclic processing begins; otherwise, the filter value is doubled and the selection sort 

130 

-- -- ----------------------------------------



begins again. The capacity value, set at 25 percent during testing, is defmed by the 
parameter Colo. If the first option is chosen and a closest curve is found after further passes 
through the unsorted list, then the value max_offset must be reset to its initial value of 
DSELECT before continuing the selective process. 

Given this closest curve, results checking will decide which of the following operations 
to perform: to append the closest curve to the end of the sorted list; to indicate that the 
search should be repeated with a larger filter value; or to indicate that first stage processing 
has completed and second stage processing should begin. 

RESULTS_CHECKING 0 

•• At least one of the best -.Jwnp offsets will no longer be set to its initialization value if 
a close curve has been found 

1 if «best-.JwnPx '* MAXoFFSET) and (best-.JwnPy '* MAXOFFSET» 
2 (. 

•• A close curve has been found, so append closest_curve to the sorted list 
3 last_curverelerence_end.flag = endpointJlag 
4 if (reverseJiag = LAST_ENDPOINT) 

5 reverse the order of the spline points of closest_curve 

6 append closest_curve to sorted_list 

8 
9 

10 
11 
12 } 

•• closest curve is the new last curve in sorted list - -

if (unsorted_list is empty) 
return FIRST _STAGE_FINISHED 

else 
return CONTINUE_FIRST _STAGE 

** First stage has successfully sorted all curves 

•• Find next curve using the first stage sorting 

•• If a close curve was not found, determine if entry into the cyclic 
stage is necessary by checking if the number of curves in the unsorted list 
is down to C%, or less, of its original size 

13 else if (percentage of curves in unsorted_list S C% of curves in original unsorted_list) 
14 return FlRST_STAGE_FINISHED ** Proceed onto the second stage sort 

15 else •• Cyclic processing is not permissible try once again to find a close curve 
16 return REPEAT_FIRST_STAGE 

131 



10.1.2 Second Stage: Cyclic Processing 

If the cyclic stage in the sorting process is reached, the unsorted list is processed until it is 
completely empty. This process iterates through the unsorted list and attempts to find a place 
to insert each curve on that list between two curves in the sorted list. Like the first stage, the 
cyclic stage has a search subprocess, a distance subprocess, and a results checking 
subprocess. However, there exist some differences between the two processes. The first is 
that during cyclic processing a filter value is associated with each unsorted curve. Second, in 
the cyclic stage, if the search does not yield an insertion location in the sorted list, the curve 
is put onto the end of the unsorted list and its associated filter value is doubled. 

Upon entering the cyclic stage, the filter value for every unsorted curve is initialized to 
DCYCLIC. The value of DCYCLIC used during testing was empirically detennined to be 64. 
For the remainder of this document the parameter representing this value is referred to as 
DCYCLIC. Each step in cyclic processing consists of three subprocesses: searching for an 
insertion location, linkage comparison, and results checking. These steps are performed until 
every remaining curve in the unsorted list has been placed in the sorted list. Once the 
unsorted list is empty, the sorted list is the same size as the original' unsorted list, since all of 
the curves have been transferred to it. The flowchart in figure 59 is an overvi~w of the cyclic 
processing stage. 

132 



Sorted List of Curves 

Yes 

Sorted List of Curves 

Search for Best Insertion 
Location in Sorted List 

for First Curve in Unsorted 
List 

Put this Curve 
at End of 

Unsorted List 

No Chan~e Search >--...... Critena for this 
Curve 

Yes 

Insert Curve 
in Sorted List 

Figure 59. Flowchart of Cyclic Processing 

133 

- -~ ~--------------------



CYCLIC PROCESSING[ unsorted list, sorted list] - --
•• Initialize the filter value of every curve remaining in unsorted_list 

1 for each curve in unsorted list 
2 curvejilter _value = DCYCLIC 

3 while (unsorted_list is not empty) 
•• Initialize the following seven variables for global use 

4 saved_endpointJlag_one = NULL 

5 saved_endpointJlag_two = NULL 

6 saved_reverseJlag_one = NULL 

7 saved_reverse Jlag_two = NULL 

8 first_curve = fIrst curve in unsorted_list 
9 best_insertion _linkagex _offseuo = first _ curve/ilter _value 

10 best_insertion _linkagey _offseuo = first _ curvejilter _value 
11 best_insertion_linkagex_offsetJrom = first_curvejilter_value 
12 best_insertion _linkagey _offset Jrom = first _ curvejilter _value 

•• Try to fInd an insertion location for first curve in the sorted list 
13 best _insertion_location = SEARCH_FoR_ THE_BEST _INSERTION_LOCATION[] 

•• Test whether an insertion location was found for first_curve in sorted_list 
14 RESULTS_CHECKING_AND _INSERTION_OF _UNSORTED _ CURvE[best _insertion_location] 

15 return sorted list 

10.1.2.1 Search for the Best Insertion Location 

The search routine in cyclic processing operates similarly to the search routine in the fIrst 
stage; however, instead of searching the unsorted list for an appropriate curve to append, the 
sorted list is searched for two curves (labeled i and i+ 1) that comprise an insertion location 
for an unsorted curve. When searching fot an insertion location for an unsorted curve, the 
filter value max_offset, which is used for any distance comparisons, is set to the fIlter value 
associated with that curve. The two curves i and i+ 1 must be adjacent in the sorted list and a 
series of jumps must be found to go from curve i to the fIrst curve in the unsorted list, then 
from this unsorted curve to curve i+ 1. Figure 60 shows the "before" and "after" appearance 
of an insertion location. Unlike the fIrst stage, which has a single best jump, two different 
sets of best jump values must be determined. One set describes the jump from curve i to the 
candidate insertion curve, and the other set describes the jump from the candidate curve to 

134 



curve i 
A. Before insertion 

,---.... ~ , , 
, " , , 
1 ,,' , 

the unsorted curve u 

B. Afterinsertion 
curve i 

curve i + 1 

curve i + 1 

curve i + 2 

Figure 60. Insertion of an Unsorted Curve into the List of Sorted Curves 

135 



curve i+ 1. These two best jumps are the best jumping scenario that leads to the unsorted 
curve from curve i, and the best jumping scenario that leads from the unsorted curve to curve 
i+1. The best jumping scenarios are detennined by applying the distance comparison criteria 
(from the first stage) over the four possible jumps between curve i and the unsorted curve, 
and also over the four possible jumps between the unsorted curve and curve i+ 1. The two 
best jumps together are called the insertion linkage for the insertion location between curve i 
and curve i+ 1. If two sets of best -.Jumps are found that pass the distance comparison criteria 
and result from the jumps of two adjacent sorted list curves and the unsorted curve, then a 
complete insertion linkage has been found .. Due to the relative distance between the unsorted 
curve and curves i and i+ 1, however, it is possible that two best -.Jumps may not be found 
because one or more of the curves might not pass the filter test (section 10.1.1.2). If two 
feasible jumps are not found for an insertion location then the insertion location is abandoned 
as a possibility for the current unsorted curve. For each insertion location that yields a 
complete insertion linkage, a comparison against the best _insertion _linkage is performed to 
detennine which insertion linkage represents the best insertion location. This comparison is 
described in the next section. 

SEARCH_FOR_THE_BEST_INSERTION_LoCATION[] 

1 max_offset = first ~curvefiller _value 
2 best insertion location = NULL ** Initialize to indicate no location found - -

3 for each curve from the fIrst curve in sorted list 
to the curve before the last curve in sorted list 

4 curve ylus _one = the curve following curve in sorted_list 

** Initialize variables 
5 best Jump_to _unsorted _ curvex = first _ curvefiller value 
6 best Jump _to_unsorted _curve, = first _ curvefilter _value 
7 best -.Jump Jrom _unsorted _ curvex = first _ curvefilter _value 
8 best Jump Jrom _unsorted_curve, = first _ curvefilter _value 

136 



** Calculate and detennine the best endpoint offset of the four endpoint offset 
. pairs from curve to first_curve 

** Check to see if the ftrst-ta-ftrst scenario (from curve i to 
, the candidate unsorted curve) is acceptable 

9 current .JumPx = absfjirst _ curvefU'sCetulpoinCz - curvt!j"U'Scetulpoincz] 
10 current.JumPy = absfjirst_curvefU'sCetulpoint,J - curvefU'scetulpoin(y] 
11 if (current .JumPx < max_offset and current.JUI1I{Jy < max_offset) ** The ftlter test 
12 if (DISTANCE_ COMPARISoN[current .Jump, best .Jump_to _unsorted_curve] 

= TRUE) 

13 endpointJlag_one = FIRST_ENDPOINT 

14 reverse.Jlag_one = FALSE 

15 best.Jump_to_unsorted_curve = current.Jump 

** Check to see if the ftrst-to-Iast scenario (from curve ito 
the candidate unsorted curve) is better 

16 current.JumPx = absfjirst_curverascendpoinCz - curvefU'Scendpoincz] 
17 current .JumPy = absfjirst _ curverascendpointJ - curvt!j"U'Scendpoint,J] 
18 if (current.JumPx < max_offset and current.JumPy < max_offset) *. The ftlter test 
19 if (DISTANCE_ COMPARISON [current .Jump, best .Jump_to _unsorted_curve] 

= TRUE) 

20 endpointJlag_one = FIRST_ENDPOINT 

21 reverseJlag_one = TRUE 

22 best.Jump _to _ UlJ.Sorted _curve = current .Jump 

** Check to see if the last-to-fIrst scenario (from curve i to 
the candidate unsorted curve) is better 

23 current.JumPx = absfjirst_curvefU'scendpoinCz - curverascendpoinCz] 
24 current .JumPy = absfjirst _ curvefU'scendpoint,J - curverascendpoint,J] 
25 if (current.JumPx < max_offset and current.JumPy < max_offset) ** The fIlter test 
26 if (DISTANCE_ COMPARISoN[current .Jump, best .Jump _to_unsorted _curve] 

= TRUE) 

27 endpointJlag_one = LAST_ENDPOINT 

28 reverseJlag_one = FALSE 

29 best.Jump _to_unsorted _curve = current .Jump 

137 



•• Check to see if the last-to-last scenario (from curve i to 
the candidate unsorted curve) is better 

30 current.JU1nfJx = absrJirst _ curvewsCendpoinCx - curvewscendpoincx] 
31 current .JumPy = absrJirst _ curvewsCendpoinl-y - curvewscendpoinl-y] 
32 if (current JUITl[Jx < max_offset and current JumPy < max_offset) •• The filter test 
33 if (DISTANCE_ COMPARlSoN[current Jump, best.Jump _to_unsorted _curve] 

= TRUE) 

34 { 
35 endpointJlag_one = LAST_ENDPOINT 

36 reverseJlag_one = TRUE 

37 best Jump_to _unsorted_curve = current .Jump 
38 } 

•• Now determir:te the best endpoint offset of the four endpoint offset pairs 
from first_curve to curve "'plus_one 

•• Check to see if the first-to-first scenario (from candidate unsorted curve 
to sorted curve i+ 1) is better 

39 current .Jumpx = abs[curv~"'plus _ onejirsCendpoinCx -first _ curvejirsCendpoinCx] 
40 current.JUlnPy = abs[curve "'plus _ onejirscendpoinl-y -first _ curvejirsCendpoinl-y] 
41 if (current.JumfJx < max_offset and current.JumPy < max_offset) ** The filter test 
42 if (DISTANcE_ COMPARISON [current .Jump,best .Jump Jrom _unsorted_curve] 

= TRUE) 

43 endpoint Jlag_two = FIRST_ENDPOINT 

44 reverse Jlag_ two = FALSE 

45 best.Jump Jrom _unsorted_curve = current.Jump 

•• Check to see if the first-to-Iast scenario (from candidate unsorted curve 
to sorted curve i+ 1) is better 

46 current .JumPx = abs[curve "'plus _ onewsCendpoinCx - first _ curvejirscendpoinCx] 
47 current .JumPy = abs[curve "'plus _ oneulSCendpoinl-y - first _ curvejirsCendpoinl-y] 
48 if (current .JumPx < max _offset and current .JumPy < max_offset) •• The filter test 
49 if (DISTANCE_ COMPARISON [current .Jump ,best .Jump Jrom _unsorted_curve] 

= TRUE) 

50 endpointJlag_two = FIRST_ENDPOINT 

51 reverse Jlag_ two = TRUE 

52 best .Jump Jrom _unsorted_curve = current .Jump 

138 



** Check to see if the last-to-fIrst scenario (from candidate unsorted curve 
to sorted curve i+ 1) is better 

53 current -.JumPx = abs[ curve "'plus _ oner".,CendpoinCz - first _ curvi!/QsCendpoinCz] 
54 current -.JumPy = abs[ curve "'plus _ oner""Cendpoin/J - first _ curvi!lascendpoin/J] 
55 if (current -.JumPx < max_offset and current -.JumPy < max_offset) ** The fIlter test 
56 if (DISTANCE_ COMPARISoN[current -.Jump ,best -.Jump Jrom _unsorted_curve] 

= TRUE) 

57 endpointJlag_two = LAST_ENDPOINT 

58 reverse Jlag_ two = FALSE 

59 best -.Jump Jrom _unsorted_curve = current -.Jump 

** Check to see if the last-to~last scenario (from candidate unsorted curve 
to sorted curve i+ 1) is better 

60 current -.JumPx = abs[ curve "'plus _ onelasCendpoinCz - first _ curvi!/Qscendpoincz] 
61 current -.JumPy = abs[curve "'plus _ onelasCendpoinl""'y -first _ curvi!/QsCendpoint.....Y] 
62 if (current-.JumPx < max_offset and current-.JumPy < max_offset) ** The fIlter test 
63 if (DISTANCE_ COMPARISON [current -.Jump ,best -.Jump Jrom _unsorted_curve] 

= TRUE) 

64 endpointJlag_two = LAST_ENDPOINT 

65 reverse Jlag_two = TRUE 

66 best -.Jump Jrom _unsorted_curve = current -.Jump 

** Hthe best-.Jump values are all uninitialized, then this is a feasible insertion 
location and therefore must be tested to see if it is better than the best 
insertion location found so far 

67 if «best -.Jump_to _unsorted _ curve x *" first _ curvefilter value) 
and (best -.Jump _to _unsorted _ curvey *" first _ curvefilter _value) 
and (best -.Jump Jrom _unsorted _ curvez *" first _ curvefilter value) 
and (best -.Jump Jrom _unsorted _ curvey *" first _ curvefilter _value» 

68 current_insertion _linkagetoJump = best -.Jump_to _unsorted_curve 
69 current_insertion _linkageJromJump = best -.Jump yom_unsorted _curve 

70 if (LINKAGE_ COMPARISoN(current _insertion _linkage, best _insertion_linkage) 
= TRUE) 

** H the current insertion linkage is the best, set flags 
71 { 
72 saved_endpoint Jlag_ one = endpoint Jlag_ one 
73 saved_endpointJlag_two = endpointJlag_two 
74 saved_reverseJlag_one = reverseJlag_one 

139 



75 
76 
77 
78 } 

saved_reverse JIag_ two = reverse JIag_ two 
best _insertion_linkage = current _insertion_linkage 
best insertion location = curve - -

79 return best insertion location - -

10.1.2.2 Linkage Comparison 

This section describes the conditions for detennining the best insertion location among 
all feasible candidate locations in the sorted curve list. The best _insertion _linkage is the 
linkage that best satisfies the following two tests: (1) the linkage has the smallest value for 
the maximum number of bits of the four component offsets in the insertion linkage, and (2) 
the linkage has the most component offsets that are less than or equal to S, where S is a 
parameter that was set to 15 during testing and has been empirically detennined to give the 
best encoding results. 

LINKAGE _ COMPARISON[ current _insertion _linkage, best _insertion_linkage] 

•• Set current _ numbits to the number of bits of the largest offset magnitude in 
current _insertion_linkage 

1 current_numbits = NUM_BITS[rriax[current_insertion_linkagex_offseUo, 
current _insertian _linkagey offset to, 
current_insertion _linkage x =offsetJrom, 
current_insertion _linkagey _offsetJrom]] 

•• Set current_quantity _smalls to the sum of the offsets from current _insertion_linkage 
that are S S. This is detennined by the function IS_SMALL[]. 

2 current_quantity_smalls = IS_SMALL[current_insertion_linkagex_offset_to] 
+ Is _SMALL[ current_insertion _linkagey _offset_to] 
+ Is _SMALL[ current_insertion _linkage x _offset Jrom] 
+ Is _SMALL[ current_insertion _linkagey _offset Jrom] 

•• Set best _ numbits to the number of bits of the largest offset magnitude 
in best _insertion_linkage 

3 best_numbits = NUM_BITs[max[best_insertion_linkagex_o/fset_to, 
best_insertion _linkagey _offset_to, 
best_insertion _linkage x _offset Jrom, 
best_insertion _linkagey _offset Jrom]] 

140 



** Set best_quantity _smalls to the number of offsets from best _insertion_linkage 
, that are S S, which is calculated using the function IS_SMALL[]. 

4 best_quantity _smalls = Is _ SMALL[ best_insertion _linkagex offset to] 
+ Is _ SMALL[ best _insertion _linkage; offset to] 
+ Is_SMALL[best_insertion_linkagex=offsetJrom] 
+ Is _ SMALL[ best_insertion _linkagey _offset Jrom] 

** If the current linkage uses as many or fewer bits to represent offsets as the best 
linkage and also has more small words, then it is better than the best linkage 

5 if «(current_numbits S best_numbits) 
and (current_quantity _smalls> best_quantity _smalls» 

6 return TRUE 

** If the current linkage us~s fewer bits to represent offsets than the best linkage 
and has as many or more small words than the best linkage, then it is better 
than the best linkage 

7 else if «current_numbits < best_numbits) 
and (current_quantity_smalls ~ best_quantity_smalls») 

8 return TRUE 

** Otherwise, the current linkage uses as many or more bits and also has 
as many or fewer small words and the best linkage remains unchanged 

9 else 
10 return FALSE 

The function Is_SMALL[] determines if value S S, and returns one if this condition is true, 
otherwise it returns zero. 

Is _ SMALL [ value] 
1 if (value S S) 
2 return 1 
3 else 
4 return 0 

141 



10.1.2.3 Results Checking and Insertion of Unsorted Curve 

If an insertion location for a curve in the unsorted list is found, operations are petfonned 
to insert that curve into the sorted list, reversing the order of its points if necessary, and 
setting or resetting reference_end .flag for the appropriate curves. In figure 60, it is apparent 
that the unsorted curve u would need to be reversed because the last endpoint of u is closer to 
curve i than to the first endpoint. Reversing the unsorted curve u directly affects the 
reference end flag for u. In part A of the figure, the reference end flag is initially set to 
represent jumping from the last endpoint. However, once u is reversed, the reference end 
flag needs to be changed to represent jumping from the first endpoint (see part B of 
figure 60). After the curve has been inserted, if the number of bits of any value in the 
best _insertion _linkage is larger than the penalty value, penalty _size is set to this maximum 
value. 

If an insertion location is found for an unsorted curve, the curve is inserted there. If an 
insertion location is not found, however, this unsorted curve is placed at the end of the 
unsorted list and the filter value associated with this curve is doubled. In either case, the 
unsorted list will now have a new first curve (unless the curve being processed is the only 
remaining unsorted curve). 

RESULTS_CHECKING_AND _INSERTION_OF _UNSORTED _ CURVE[] 

•• Best insertion location will be set to a value other than NULL - -
when a good insertion location has been found. 

1 if (best _insertion_location ¢ NULL) 

2 ( 
3 before_curve = best _insertion_location 
4 after_curve = the curve after best _insertion_location 

5 insert first_curve between the curves before_curve and after_curve 
•• The second curve in unsorted list is now the first curve 

6 before _ curvereference _end Jlag = saved_endpoint .flag_one 
7 first_curverejerence_endJlag = saved_endpoint.flag_two 
8 if (saved_reverse .flag_one = TRUE) 

9 toggle first _ curvereference _end Jlag 
10 reverse the order of the spline points of first_curve 
11 if (saved_reverse Jlag_two = TRUE) 

12 toggle after _curvereference_endJiag 

142 



13 
14 
15 
16 

17 

reverse the order of the spline points of curve after_curve 
to_endpoint _offset = best_insertion _linkagelo_endpoinCoffset 
from_endpoint _offset = best_insertion _linkagejrom_endpoinCoffset 
component_max ='NUM_BITs[max[to_endpoint_offset,r, 

to_endpoint _offset" 
from_endpoint _ offset,r, 
from_endpoint _offset,]] 

penalty_size = max [penalty_size, component_max] 
18 } 
19 
20 

else 
{ 

** An insertion location was not found, therefore move this curve 
to the end of the unsorted list and double its filter value 

21 first _ curvefilter _value = first _ curvefilter _value * 2 
22 move first_curve to the end of unsorted_list 

** The value of max_offset will be larger the next time first_curve is processed 
23 } 

** The curve that was originally second on the unsorted list is now first 
24 return 

143 



10.2 SUMMARY 

The parameter values used during development and testing of the sorting algorithm, as 
well as the constants, input variables, and output variables, are listed below. 

Parameters 

PINIT = 6 
DSELECT = 128 

DCYCLIC = 64 

s= 15 

Initial value for the penalty variable 
Initial value assigned to the filter variable upon entering 
the selective processing stage 
Initial filter value assigned to each curve upon entering 
The cyclic processing stage 
Limit used to test whether one insertion linkage has 
more small offsets than another insertion linkage 
Maximum percentage of curves that can exist in 
the unsorted _list before the cyclic processing stage 

MAXOFFSET = 601 

will begin if SEARCH_FoR_THE_BEST-FIT_CURVE fails 
The larger of the width and height of the image, plus one 

Constants 

FIRST_ENDPOINT Flag assigned to the reference_end Jlag of a curve when 
the first endpoint is used as the reference endpoint for the jump 
to the curve following this curve in sorted_list 

LAST_ENDPOINT Flag assigned to the reference_endJlag of a curve when 

Input 
unsorted list 

Output 

sorted list 

the last endpoint is used as the reference endpoint for the jump 
to the curve following this curve in sorted_list 

List of curves from the chord splitting process 

List of curves sorted by inter-curve offsets 

144 



SECTION 11 

ENCODING 

The encoding step follows the sorting process and has two purposes: (1) to prepare the 
fingerprint data for transmission, and (2) to compress the fingerprint information even further 
by representing it in an efficient bit-stream format. Once the data has been encoded and 
transmitted, the decoding step (described in section 12) reverses the process to extract and 
reformat the information into a more usable form. This decoded data can then be interpreted 
correctly by the spline reconstruction process to regenerate the image. 

As shown in figure 61, the encoded data stream consists of two types of information: the 
fingerprint header, and the curve or ridge information. The fingerprint header consists of 
general data about the encoded fmgerprint, which will be used by the decoding process. 
There is only one header record in the data stream for each fingerprint. The second type of 
information is the ridge data, including one ridge record for each of the ridges in the 
fingerprint. The ridge data consists of jump information from the endpoint of the last ridge 
encoded, a header of general ridge information, and the relative distances (delta offsets) 
between points of the ridge. Each of these will be discussed in more detail in the following 
sections. In summary, if the fingerprint being encoded has n ridges, the encoded data stream 
will contain one header record and n ridge records. 

Fi,!print Header r ...... _____ .Ri •.• dg.e.~~fO~7 .. a.ti.on ______ ." .... 

Ridge Header 
Jump Data Delta Offsets 

Figure 61. Encoded Fingerprint Components 

Many different techniques are used to encode the data efficiently, including relative 
values (differential encoding), Huffman encoding, duplication elimination, a process referred 
to as shortllong word encoding, and bit packing. Each of these techniques is used to reduce 

145 



the number of bits required to represent data within the fingerprint. A savings of just a few 
bits per curve (or per point within a curve) can amount to a savings of many bits for the 
entire fingerprint. 

11.1 EXPLANATION OF TERMS 

In this section, several terms and concepts will be described that are used frequently in 
the subsequent sections. The first two terms, jump values and delta offsets, describe relative 
coordinate distances between points in separate ridges and within a ridge, respectively. The 
third term, reference end, describes the end of the ridge from which a jump is made to reach 
the next curve. The monotonicity type describes the sign fluctuation pattern for the x and y 
relative coordinates (delta offsets) along a ridge. 

11.1.1 Delta Offsets 

Figures 62 and 63 illustrate two methods that can be used to describe relative distance 
values used in encoding. Both relative distances are determined by computing the 
differences between the respective x and y values of two adjacent, or consecutive, points. 
The first term, delta offset, is used to describe relative distances between points along a 
ridge. For example, if the absolute coordinates for the first and second points in a fingerprint 
curve are (10,14) and (15,19), the second point can be represented relative to the first as 
(dx,dy) or (+5,+5) (Le., dx = 15 - 10, and dy = 19 - 14). 

~ 
(2,0) ttl (10,0) 

~(31) (2,0) 
, (3,-1) 

\t t 
Curve A: Absolute Coordinates Curve A: Delta Offsets 

Figure 62. Absolute Coordinates and Delta Offsets Within a Curve 

11.1.2 Jump Values and Reference End 

Jump values (see figure 63) describe the relative distances between an endpoint of one 
ridge and the first endpoint of the next consecutive ridge as it is listed in the data stream. 
This does not necessarily mean that the jump is from the last point of one curve to the first of 
the next, since this may not create the shortest jump distance. The sorting process 

146 



detennines the best way to make the jump from one ridge to the next, and the reference end 
(see figure 64) is used to describe which end of the first ridge is jumped from to get to the 
next . 

...-~ ... ~ ...-~ ... ~ 
(6,5) (8.5) (2,0) . 

f f 
Curve A to B: Absolute Coordinate Curve A to B: Jump Value 

Figure 63. Absolute Coordinates and Jump Values Between Curves 

, 
, .. 
'r---~·"''''~''''' 

beginning 

11.1.3 Monotonicity Type 

end 

Figure 64. Reference End Values 

Monotonicity type refers to the sign fluctuations determined for the delta offsets of a 
particular ridge. The four types are monotonic both, monotonic delta x, monotonic delta y, 
and non-monotonic (see figure 65). Recall that the delta offset values are relative distance 
values calculated between adjacent points along a ridge. These offsets in x and y must 
contain a sign flag in order to detennine if there is a relative increase or decrease in the value 
from the last point. For example, without sign information, a (5,5) delta offset value could 
be interpreted as either (+5,+5), (+5,-5), (-5,+5), or (-5,-5). If a ridge can be characterized 
as having constant positive or negative sign values in the x and/or y coordinate, a bit savings 
can be achieved by encoding the pattern and sign once, and not explicitly for every value. 

The sign fluctuations are determined independently for the x delta offsets and the, y delta 
offsets along a ridge. Monotonic both refers to the case where all of the x values have the 

147 



Monotonic Both 

delta x values have same sign 

delta y values have same sign 

Monotonic Delta x 
delta x values have same sign 

delta y signs oscillate between positive and negative 

Monotonic Delta y 

delta x signs oscillate between positive and negative 

delta y values have same sign 

Non-Monotonic 

delta x signs oscillate between positive and negative 

delta y signs oscillate between positive and negative 

(+2,0) 
(+3,-1) 

(+2,0) 
(+~+1,-1) 

.. i'<-I,-2) 

Figure 65. Sign Monotonicity Type 

same sign and all of the y values have the same sign. Monotonic delta x and monotonic delta 
y refer to consistent signs along either the x or y values, as appropriate. Finally, 
non-monotonic describes those cases where both the x and y sign values fluctuate. 

11.2 DESCRIPTION OF ENCODING TECHNIQUES 

The following sections briefly describe several of the techniques used in encoding the flat 
live-scan searchprint information. 

11.2.1 Relative Values 

The first encoding technique, relative values, allows numbers to be specified in terms of a 
reference, which is provided in the fingerprint header information. Three areas where 

148 



relative values are used include coordinate distances between curves (jump values), 
coordinate distances within curves (delta offsets), and the number of deltas per cUrve. 
Encoding this information in relative terms can provide a significant savings in the number 
of bits required to represent the word size(s) necessary for these values. 

For relative distances, the reference value is the first ridge point of the fingerprint; this is 
the only absolute coordinate given in the data stream. The rest of the coordinates are 
detennined by computing the differences between the respective x and y values of two 
adjacent points or coordinates. Using relative distances can provide a substantial reduction 
in the word size necessary to represent the position of a point. For example, since a flat 
live-scan searchprint file size is 450 pixels by 600 pixels for this study, an absolute 
coordinate may require as many as nine bits to represent an x value and ten bits to represent a 
y value. If relative coordinates are used, many fewer bits may be required for both the x and 
y values. Given that several hundred spline points have to be represented for a typical image, 
this can amount to a substantial savings. 

Relative values are also used to represent the number of deltas per curve. The number of 
deltas per curve is important for later stages when the curves will be regenerated; however, 
this value can never be zero, since one point curves are not allowed. The minimum number 
of deltas per curve is calculated independently for each fingerprint and will generally be one, 
although the algorithm allows higher values. The minimum number is recorded in the header 
information for the fmgerprint and all curves are specified relative to this value. That is, for 
each curve, the number of deltas is calculated as the actual number of deltas for that curve, 
minus the minimum number of deltas for all curves in the fingerprint. For example, given 
that the minimum number of deltas per curve for a particular fingerprint is one, a curve 
having 16 deltas will actually be encoded as having 15 deltas (Le., 16 - 1 = 15). 

An example of the bit savings achieved by relative values applied to the number of deltas 
per curve is given in figure 66. In this example, the original minimum number of deltas for 
all of the ridges in a fingerprint is one and the maximum is 32. Normally, six bits would be 
required to represent the maximum number. If relative values are used instead, the new 
minimum would be zero and the new maximum would be 31. Since 31 only requires five 
bits to represent, there would be a savings of one bit for the word size required. 

11.2.2 Huffman Codes 

With Huffman encoding, bit savings are achieved based on the frequency of occurrences 
of certain values (symbols), since this type of encoding assigns the most frequently used 
symbols to the shortest codes [7,8]. Each Huffman code is unique in that no complete 
Huffman code word comprises the initial sequence of bits in another Huffman code word. 
An example series of Huffman codes for four symbols is: 0, 10, 110, Ill. Notice that the 

149 



12~------------~ 

10 

8 
Number of 
Curves 6 

4 

~ In~ ~ I~nn 
o 8 16 24 32 

Number of Deltas / Curve 

Number of deltas per curve: 
Original minimum = 1 
Original maximum = 32 (6 bits) 

For every curve, subtract 1 from number of deltas: 
New minimum = 0 
New maximum = 31 (5 bits) 

...u.§~vi~ts .~i/lk!tio repres~.ntift~nd#we~· u. 
.<oldeltasp'~rcU!Ve ... ...... ........ .... . ..... . ....... . 

Figure 66. Number of Deltas per Curve Example 

"0" code cannot be misinterpreted as any other code, since no other code starts with O. 
Similarly, in the case of the "10" code, no other code starts with 10, and so on. 

Huffman codes are used to encode the sign monotonicity type of fingerprint ridges. 
Assigning a monotonicity type allows the encoder to make certain assumptions about the 
signs of the delta offsets within a ridge. The encoder can then take advantage of redundancy 
by using another technique called duplication elimination, which will be discussed further in 
section 11.2.3. For monotonicity type, suppose that the distribution of ridges of each type is 
ordered by frequency and given in table 1. Using the Huffman codes given, the number of 
bits required to represent this information is: (1 x 60) + (2 x 20) + (3 xIS) + (3 x 5) = 160 
bits. Using a straight (natural) two-bit code to represent the four symbols (i.e., 00, 01, 10, 
11) would require: 2 x 100 = 200 bits. In this simple example, the savings from using 
Huffman codes is 40 bits over a straight two-bit code. 

Table l. Monotonicity Types and Huffman Codes 

Monotonicity Type 

Non-Monotonic 
Monotonic Delta x 
Monotonic Delta y 
Monotonic Both 

# Curves Huffman Code 

60 0 
20 10 
15 110 
5 111 

150 

# Bits 

1 
2 
3 
3 



11.2.3 Duplication Elimination 

If sign monotonicity exists in the ridges, it is redundant (and costly) to assign a sign bit 
for every offset value in the data stream. So, monotonicity types are determined for each 
curve in order to identify patterns. Once the monotonicity type has been determined, the 
encoder can specify the sign once in the ridge header and avoid designating a sign for every 
offset value. For offset values with fluctuating signs along a curve, the sign bits are supplied 
with every offset value. 

11.2.4 Short WordILong Word 

In the cases of the number of deltas per curve, delta offsets, and jump values, it may be 
advantageous to use more than one word size in representing the values. However, multiple 
word sizes incur some overhead, since varying the word size requires a flag to indicate which 
word size is being used. Therefore, it is necessary to perform a trade-off analysis to 
determine the most efficient representation. 

The encoding algorithm allows a maximum of two word sizes for the number of deltas 
per curve and delta offsets (x and y), and three word sizes for jump values (x and y). As 
discussed in the following sections, two word sizes are allocated a two-bit flag in the 
fingerprint header (this can be implemented as a one-bit flag), and three word sizes for jump 
values require a one or two-bit flag, since Huffman codes are used. Note that within the 
delta offset and jump value categories, the word sizes for the x and y values are computed 
separately. The results of the word size trade-off analysis may indicate that the best 
representation is for the x values to have a different number of word sizes than the y values. 

Since the best word size or sizes to use depends upon the distribution of specific values in 
a particular fingerprint, the calculations should be performed independently for each 
fingerprint. The easiest way to perform multiple word size analyses is first to calculate a 
frequency distribution by putting the values into bins indexed by the number of bits required 
to represent the values. Examples of these frequency distributions by number of bits are 
shown in figures 67, 68, and 69. 

The calculation of the number of bits required for just one word size should be performed 
for any case where multiple word sizes are allowed. This provides a value for comparison 
that, for some distributions, may be the most efficient representation. Since the use of just 
one word size does not require flag bits, the calculation of the number of bits required is very 
straightforward, and is shown in the following equation: 

L 
B = L Lj(i) (1) 

i=l 

151 



where B denotes the total number of bits, L is the word size (number of bits) required for the 
largest value calculated, andf(i) is the number of values to be' encoded that can be 
represented with i bits. 

11.2.4.1 Delta Offset and Number or Deltas per Curve Calculations 

For the number of deltas per curve and delta offsets, equation I is used to calculate the 
number of bits required when only one word size is used. In addition, the minimum number 
of bits required for two word sizes must be determined: 

(2) 
i=1 i=S+1 

where B denotes the total number of bits, S is the short word size (in bits), L is the word size 
(in bits) required for the largest value calculated, ns and nlare the number of bits required for 
a short flag and a long flag respectively, andf(i) is the number of values that can be 
represented with i bits. When only two word sizes are used, the flag sizes ns and TIl are equal 
to one. 

This value is calculated for every possible short word size, with the long word size 
remaining fixed, since the long word size must always represent the largest value. The first 
term gives the number of bits required for values representable by the short word size, the 
second term is the number of bits for the rest of the values, and the third term expresses the 
number of bits required for flag bits. The short word size that gives the minimum number of 
bits is determined and compared to the number of bits required if only a single word size is 
used. The best approach is then chosen. 

Figure 67 shows an example of calculating the two best word sizes for the number of 
deltas per curve. The resulting 1221 bits calculated for two word sizes (including flag bits) is 
a much better choice than the 1795 bits required for a fixed word size. 

Figure 68 provides an extensive example of calculating the best word sizes for the x and y 
values of the given delta offsets. Note that the best two word sizes for x require 5893 bits 
(including flag bits), and a fixed word size requires 7007 bits. For the y component of the 
delta offset, 5548 bits (including flag bits) are required by the best two word sizes, compared 
to 7007 bits for a fixed word size. The better choice is two word sizes for both the x and y 
components. 

11.2.4.2 Jump Value Calculations 

Due to the distribution of jump values, a maximum of three word sizes is allowed. Since 
ridge bifurcations are actually split into three curves by the curve extraction routine and these 
curves have common endpoints, there are often many zero jump values. Another alternative 

152 



Number of Deltas per Curve 
Distribution: 

# bits # deltas #Curves 

1 
2 
3 
4 
5 

0-1 
2-3 
4-7 
8-15 

16- 31 

222 
89 
35 
12 
1 

Short/LOng Word Size Calculations: 
short word long word total # bits 

1 5 907 

3 5 1103 
4 5 1437 

Fixed Word ~ize: 5 bits~J59 ~rves = 1795 bits ~ no flag bits needed 
Two Word Slzes:IJ22Lbl => mc1udes 359 flag bits 

Figure 67: Short/Long Word Sizes for Number of Deltas per Curve 

Fixed Word Size: 

Delta x: 
7 bits x 1001 pts = 7007 bits 
Deltay: 
7 bits x 1001 pts = 7007 bits 
=> no flag bits needed 

Delta Short/LOng Word Size Calculations: 
short word long word delta x bits delta y bits 

1 
2 
3 
4 
5 
6 

7 
7 
7 
7 
7 
7 

6413 
5802 
5175 
4892 

151491 
6008 

6077 
5257 
4547 

145711 
5111 
6010 

Delta Offset Distribution: 
# bits Value # of delta x # of delta y 

1 0-1 99 
2, 2-3 142 
3 4-7 217 
4 8-15 247 
5 16- 31 224 
6 32- 63 70 
7 64-127 2 

155 
195 
265 
197 
136 
49 

4 

••••• ~}a •• ~·~~.··.g~~~.·~t~···.·· ••.•.. ·•· .•. ·· .•.•..••............•.•..•••. 
i==> includes 1001' flY.gJ)its· .•• 

Figure 68. Short/Long Word Sizes for Delta Offsets 

153 



for calculating word sizes for jump values is to use zero as one word size, and calculate the 
short and long word sizes from the distribution of jumps greater than zero. Again, 
comparisons must be made to determine whether one, two, or three word sizes is best. 

For one fixed word size, the calculation is the same as for equation 1; for the short and 
long word values, the calculations are described by equation 2. The three word size 
calculation is the same as described in equation 2 with the zero jump distances removed from 
the distribution list. Short and long word sizes are calculated on all jumps other than zero, 
since zero has its own word. Fixed Huffman codewords (Le., 0, 10, 11) are used to represent 
the three word size flags, where one bit is used for jump values of zero, and two bits are used 
for the other two word sizes. The Huffman code "0" for jump distances of zero is actually 
very efficient, since it requires no additional information (Le., no sign or magnitude). Once 
all of the calculations are done, the best choice is made from one, two, and three word sizes. 

An example of jump values and the three types of word size calculations is given in 
figure 69. In this example, a fixed word size for the x component of the jump value would 
require 2506 bits, two word sizes would require a total of 1298 bits (including flag bits), and 
three word sizes need only 1198 bits (including flag bits). For the y component, a fixed word 
size would require 2506 bits, two word sizes would require a total of 1310 bits (including 
flag bits), and three word sizes need only 1238 bits (including flag bits). Three word sizes is 
the best choice for both the x and y components in this case. 

11.2.5 Bit Packing 

Bit packing refers to the creation of a bit stream with the bit patterns generated by the 
encoding techniques described in the previous sections. The bit stream contains variable 
length bit patterns concatenated, from which the decoding routines can reconstruct the 
original information. 

11.3 BIT STREAM COMPONENTS 

As shown in figure 61, the bit stream consists of two major components: the fmgerprint 
header, and the ridge information. These two components are described in more detail in the 
following sections. 

11.3.1 The Fingerprint Header 

The fingerprint header is composed of image size parameters and information necessary 
to interpret the ridge data. Word sizes determined for delta offsets, jump values, and the 
number of deltas per curve are found here, as well as the minimum number of deltas per 
curve for the fingerprint and the Huffman codes for interpreting monotonicity type. For the 
word sizes, the first value gives the number of word sizes expected to follow for that type of 

154 



Fixed Word Size: 
Jump Offset Distribution: 
# bits 

Jump x: 7 bits x 358 pts = 2506 bits 
Jump y: 7 bits x 358 pts = 2506 bits 0 
~ no flag bits needed 1 

2 
Two Word Sizes: 3 
Jump x: 1298 bits 4 
Jump y: 1310 bits 5 
~ includes 358 flag bits 6 

7 

Jump Short/Long Word Size Calculations: 
short word long word jump x bits jump y bits 

1 
2 
3 
4 
5 
6 

7 
7 
7 
7 
7 
7 

734 
689 
688 

16921 
786 
913 

749 
770 
753 
725 

18011 
932 

Value # of jump x # of jumpy 

0 206 203 
1 55 56 

2-3 20 7 
4-7 19 20 
8-15 30 37 

16- 31 15 22 
32-63 12 11 
64-127 1 2 

.... '.' .. '. .. " 

~~ ~ :;:.'.~' .. -: ....... ".... .. ' ..... ' .... " ... :. ' ...... :. : ... :: -' '.' . . 

/Jurppx:1198 bits 

~jIlClti<l~!!510tlag bits·. . •• 

i<1.~PY:li~~U)i~ ....... . 

.'#ffi81J4~~5i3~~~bi~ ••••• ·••· •• 

Figure 69. Short/Long Word Sizes for Jump Values 

information, and then the actual word sizes. In the case of delta offsets and jump values, 
word sizes are provided for both x and y components. 

One Huffman code is assigned to each of the four monotonicity types depending upon the 
frequency of occurrence (see section 11.2.2). The four fixed Huffman codewords in the 
fingerprint header are listed in order in table 2. Also shown in this figure are two example 
assignments of monotonicity types to the Huffman codewords. These assignments are based 
on the frequency of sign types within two hypothetical fingerprints. The monotonicity types 
are defined using a two-bit code. One example definition is given in table 3. 

Table 4 describes the fingerprint header information in detail with the number of bits 
expected for each field. The number of bits in the header can range from a minimum of 51 
bits to a maximum of 79 bits. 

11.3.2 The Ridge Information 

The information for a given ridge consists of three major data segments and is encoded 
based upon the parameters given in the fingerprint header. The three segments are jump 

155 



Table 2. Example of Monotonicity Type Assignments to Huffman Codewords 

Fixed Huffman Code Assignment 1 Assignment 2 

Code 0 01 11 
Code 10 11 01 
Code no 00 10 
Code 111 10 00 

Table 3. Monotonicity Type Codes 

Monotonic Both 00 
Monotonic Delta x 01 
Monotonic Delta y 10 
Non-monotonic 11 

values, ridge header information, and delta offsets. This information structure is the same for 
all encoded ridges. 

The jump values provide relative distance data from the reference end of the previous 
ridge (except for the flrst ridge where an absolute coordinate is used). The ridge header 
provides speciflc information required for that particular ridge, such as the number of delta 
offsets, the reference end, and the monotonicity type. Following the jump values and the 
ridge header are the delta offset values, a set of x and y values for each offset along the ridge. 
If the ridge is deflned by n points, then the number of delta offsets is n-l. Zero/short/long 
word flags and sign flags are provided as appropriate. Table 5 gives detailed information 
about the flelds and number of bits found in the ridge information for each curve. 

The first curve in the fingerprint is encoded slightly differently from the 'other curves. 
Absolute coordinates are specifled for the jump to this curve to provide context for every 
other point. In addition, no sign bits are used, since the absolute coordinates are always 
positive. For flat live-scan searchprints with a width of 450 pixels and a length of 600 pixels, 
nine bits are used to represent the x value and 10 bits are used to represent the y value. Delta 
offsets are then used for every other point in the flrst curve and jump values are used to reach 
all remaining curves. 

156 



Table 4. Fingerprint Header 

Field 

Image Width 
Image Height . 
Number of Ridges 
Number of Word Sizes for Delta Offset x (maximum of 2) 

Delta x Word Size 1 
Delta x Word Size 2 (optional) 

Number of Word Sizes for Delta Offset y (maximum of 2) 
Delta y Word Size 1 
Delta y Word Size 2 (optional) 

Number of Word Sizes for Jump Value x (maximum of 3) 
Jump x Word Size 1 
Jump x Word Size 2 (optional) 
Jump x Word Size 3 (optional) 

Number of Word Sizes for Jump Value y (maximum of 3) 
Jump y Word Size 1 
Jump y Word Size 2 (optional) 
Jump y Word Size 3 (optional) 

Number of Word Sizes for Number of Deltas/Curve (maximum of 2) 
Number of Deltas Word Size 1 
Number of Deltas Word Size 2 (optional) 

Minimum Number of Deltas 
Coordinate Sign Huffman Codes 

Code 0 
Code 10 
Code 110 
Code 111 

157 

Number of Bits 

16 
16 
11 
2 
4 
4 
2 
4 
4 
2 
4 
4 
4 
2 
4 
4 
4 
2 
4 
4 
2 

2 
2 
2 
2 

Minimum 83 bits 
Maximum 111 bits 



Table 5. Ridge Information 

Field 

Jump Values 
Jump x Zero/Short/Long Word Flag 
Jump x Value 
Jump x Sign 
Jump y Zero/Short/Long Word Flag 
Jumpy Value 
Jumpy Sign 

Ridge Header Information 
Number of Deltas Short/Long Word Flag 
Number of Deltas Value 
Reference End 
Monotonicity Sign Type 
Sign (if Monotonic) 
Sign (if Monotonic Both) 

Delta Offsets 
Delta x Short/Long Word Flag 
Delta x Value . 
Delta x Sign 
Delta y Short/Long Word Flag 
Delta y Value 
Deltay Sign 

Number of Bits 

1-2 
O,S,orL 

0-1 
1-2 

0, S, or L 
0-1 

1 
SorL 

1 
1-3 
0-1 
0-1 

1 
SorL 

0-1 
1 

SorL 
0-1 

Note: In this table, S represents the number of bits required for the short word 
size, and L represents the number of bits required for the long word size. 

158 



11.4 ALGORITHM DESCRIPTION AND SUMMARY 

Figure 70 shows the flowchart for the encoding process. The encoding process actually 
consists of three stages: calculating relative distances, detennining properties of the 
fingerprint, and, finally, encoding the data. Pseudocode is provided in the following sections 
for each of these steps. 

C Sorted Curve Data) 
_t 

Calculate Curve 

t Monotonicity 

Calculate Relative t 
Distances 

t Encode Header 

Calculate Minimum and t , 
Word Sizes for Number 

of Deltas Per Curve 
Encode First Curve 

t 
t Calculate Jump 

x and y Word Sizes 
Encode All Other 

t Curves 

Calculate Delta Offset t 
x and y Word Sizes C Compressed Data ) 

I 

Figure 70. Encoding Flowchart 

159 



Parameters 

BITSIMAGE_SIZE = 16 The number of bits used to represent the image 
size in pixels horizontally and vertically 

BITSNUMBER_OF _WORD_SIZES = i The number of bits used to represent the number 
of word sizes in a word_size coding scheme 

BITSwORD_SIZE = 4 The number of bits used to represent a word 
size in a word_size coding scheme 

BITSHUFFMAN_INDEX = 2 The number of bits used to represent the sign 
monotonicity type index that is assigned to a 
particular Huffman symbol 

BITSNUMBER_OF _CURVES = 11 The number of bits used to represent the number 
of curves in the fingerprint curve list 

BITSx_COORDINATE = 9 The number of bits used to represent an absolute 
x-coordinate in the live-scan fingerprint image 
(based on the width of the image) 

BITSY_COORDINATE = 10 The number of bits used to represent an absolute 
y-coordinate in the live-scan fingerprint image 
(based on the height of the image) 

BITSMINIMUM_NUMBER_OF _DELTA = 2 The number of bits used to represent the 
minimum number of deltas of any curve of the 
curve list 

SIZESDELTAS = 2 Maximum number of word sizes allowed for 
encoding the deltas of curves 

SIZESJUMPS = 3 Maximum number of word sizes allowed for 
encoding the jumps between curves 

SIZESNUM_DELTAS = 2 Maximum number of word sizes allowed for 
encoding the number of deltas in curves 

Input 

curve list 

Output 

The fmallist of curves from the live-scan fingerprint which are 
to be encoded into a data stream 

An encoded data stream representing a live-scan fingerprint 

Calculated Values 

Minimum number of deltas of any c.urve of the curve list (not 
to exceed that which can be represented by 

BITSMINIMUM_NUMBER_OF _DELTA) 

160 



ENCODE F'INGERPRINT[curve list] - -

** The value of deltllminimumJ'er_curve is globally available to all the functions below. 
1 CALCULATE_RELATIVE_DISTANCES [curve_list] ** See section 11.4.1 
2 DETERMINE_F'INGERPRINT_DATA)'ROPERTIEs[curve_list] ** See section 11.4.2 
3 ENCODE_CURVE_LIST[curve_list] *. See section 11.4.3 
4 return 

11.4.1 Calculating Relative Distances 

To prepare the data for further processing the relative distance values are calculated 
between points passed from the sorting routine (see section 11.2.1). This includes both the 
delta offset values for points within a ridge and the jump values from endpoint to endpoint. 

** Calculate the delta offsets for all the curves in curve list 
** The jumps and deltas calculated here are stored in association with their curves so 

that they are available for further processing 
1 for each curve in curve list 
2 DETERMINE_ CURVE_DELTA_ OFFSETs[curve] 

** Calculate jump offsets for all the curves in curve_list 
3 for each curve b from second curve to last curve in curve list 

curve a = the previous curve in curve _list before curve b 4 
5 
6 

jump from curve a to curve b = DETERMINE_CURvE_JUMP_OFFSETs[curve a,curve b] 
return 

DETERMINE CURVE DELTA OFFSETs[curve] - - - ** See section 11.1.1 

1 for each point b in curve from second point to last point 
2 point a = the previous point in curve before point b 
3 deltax from point a to point b = bx - ax 
4 deltay from point a to point b = by -ay 
5 return 

161 

-------------------------------------------------------------------------------------



DETERMINE_JUMP_OFFSET[curve a, curve b] 

1 if (reference_end of curve a = FIRST_ENDPOINT) 

2 ref yt = fIrst point in curve a 
3 else if (reference_end of curve a = LAST_ENDPOINT) 

4 ref yt = last point in curve a 
5 first yt = first point in curve b 
6 jW1lfJx from curve a to curve b = first ytx - ref ytx 
7 jlDnPy from curve a to curve b = first yly - ref yty 
8 return jump from curve a to curve b 

11.4.2 Determining Fingerprint Data Properties 

** See section 11.1.2 

This stage of processing determines the various values needed for encoding the data. 
Word sizes are calculated for fIve types of fIngerprint information: the number of deltas per 
curve, jump values (x and y), and delta offsets (x and y) (see the description of each of these 
word size calculations in section 11.2.4). In addition, the monotonicity codes are generated 
based upon the sign fluctuation patterns in the fIngerprint ridges (see section 11.2.2), and the 
minimum number of deltas per curve is found. 

162 



DETERMINE_F'INGERPRINT_DATA_PROPERTIES[] 

** Generate the word sizes for encoding the number of delta offsets in each curve 
1 delttJminimwn yer _curve = minimum number of deltas per curve for all curves in curve _list 

not exceeding that which can be written in 
BITSMINIMUM_NUMBER_OF _DELTA 

2 histogram = GENERATE_HISTOGRAM[number of deltas of each curve 
- delttJminimwn yer _curve] 

3 word_sizesnum_deltas = DETERMINE_WORD_SIZES[histogram, SIZESNUM_DELTA] 

** Generate the word sizes for encoding the jU1nfJx 
4 histogram = GENERATE_HISTOGRAM[all the jumpx] 
5 word_sizesjumpx = DETERMINE_WORD_SIZES[histogram, SIZESJUMP] 

** Generate the word sizes for encoding the jumPy 
6 histogram = GENERATE_HISTOGRAM[all the jumPy] 
7 word_sizes jumpy = DETERMINE_WORD_SIZES[histogram, SIZESJUMP] 

** Generate the word sizes for encoding the deltax 
8 histogram = GENERATE_HISTOGRAM[all the deltax] 
9 word_sizeSdeltax = DETERMINE_WORD_SIZES[histogram, SIZESDELTA] 

** Generate the word sizes for encoding the deltay 
lO histogram = GENERATE_HISTOGRAM[all the deltay] 
11 word_sizeSdeltay = DETERMINE_WORD_SIZES[histogram, SIZESDELTA] 

** Assign Huffman symbol to curve_sign_monotonicity (See section 11.2.2) 
12 for each curve in curve list 
13 
14 
15 
16 
17 
18 

sign monotonicity of curve = DETERMINE_CURVE_SIGN_MoNOTONICITY[curve] 
count the number of curves of each sign monotonicity type 

assign the Huffman symbol 0 to the most common curve_sign_monotonicity 
assign the Huffman symbollO to the next most common curve_sign_monotonicity 
assign the Huffman symbol 110 and 111 to the remainmg two curve_sign_monotonicity 
return 

163 

_. -----------



GENERATE_HISTOGRAM[list of magnitudes] 

•• Use log2(0} = -1 to separate zero-valued elements from elements with magnitude 1 
1 initialize all histogram bins to 0 
2 for each magnitude in the list 
3 increment by one the bin of the histogram representing fIoor[log2(magnitude} + 1] 
4 return histogram 

•• See section 11.2.4 
1 lengthLw = the largest number of bits needed to represent any element of histogram 
2 total = total number of elements in histogram 
3 bitsmill = lengthLw x total 
4 number _of_word_sizes = 1 
5 if (maximum_number _ of_word _sizes ~ 2) 
6 totalsw = 0 
7 for SW from 0 to lengthLw -1 
8 totalsw = totalsw + number of elements in histogram bin SW 
9 bits = totalsw x SW + (total- totalsw) x lengthLw + total 

10 if (bits < bitsmill) 
11 lengthsw = SW 
12 number_of_word_sizes = 2 
13 bitsmill = bits 
14 if (maximum_number_of_word_sizes = 3) 
15 totalzero = number of elements in histogram equal to 0 
16 totalsw = 0 
17 for SW from 1 to lengthLw -1 
18 totalsw = totalsw + number of elements in histogram bin SW 
19 bits = totalsw x (SW+2) + (total- totalsw - totalzero ) x (lengthLw +2) + totalzero 
20 if (bits < bitsmill) 
21 lengthzero = 0 
22 lengthsw = SW 
23 number_of_word_sizes = 3 
24 bitsmin = bits 
25 return word sizes 

164 



** See section 11.1.3 

1 if (the number of deltas in curve> 0) 
2 curve _signx = SIGN[frrst deltax in curve] 
3 monotonic x = TRUE 

4 for each deltax from the second deltax to the last deltax in curve 
5 if (curve_signx = ZERO) 

6 curve _sign x = SIGN[deltax ] ** SIGN[] is defined below 
7 if «SIGN[deltax] *" curve_signx ) and (SIGN[deltax] *" ZERO» 

8 
9 

10 

monotonic x = FALSE 

break from loop 

11 curve_signy = SIGN[frrst deltay in curve] 
12 monotonicy = TRUE; 

13 for each deltay from the second deltay to the last deltay in curve 
14 if (curve_signy = ZERO) 

15 curve_signy = SIGN[deltay] 
16 if «SIGN[deltay] *" curve_signy) and (SIGN[deltCly] *" ZERO» 

17 monotonicy = FALSE 

18 break from loop 

•• If a curve _sign is ZERO, force it to POSITIVE for encoding purposes 
19 if (curve_sign x = ZERO) 

20 curve_signx = POSITIVE 

21 if (curve_signy = ZERO) 

22 curve _signy = POSITIVE 

23 if (monotonic x and monotonicy) 
24 curve_sign _mono tonicity = MONOTONIC_BOTH 

25 else if (monotonic x) 
26 curve_sign_monotonicity = MONOTONIC_DX 

27 else if (monotonicy) 
28 curve_sign _ mono tonicity = MONOTONIC_DY 

29 else 
30 curve_sign_monotonicity = NON_MONOTONIC 

31 return curve_sign_monotonicity 
32 end 

165 



SIGN[ value] 

1 if (value> 0) 
2 return POSITIVE 

3 else if (value < 0) 
4 return NEGATIVE 

5 else 
6 return ZERO 

7 end 

11.4.3 Encoding 

Once all the auxiliary infonnation has been calculated, the actual encoding of the bit 
stream can begin. First, the header is encoded with the information shown in table 4. Then, 
the flI'st curve is encoded with absolute coordinates being given for the flI'st point of this 
curve. The rest of the flI'St curve (the ridge header and delta offset information) is the same 
as shown in table 5. Finally, all other curves are encoded as shown in table 5. 

ENCODE_ CURVE_LIST[ curve_list] 

1 ENCODE_HEADER[] 

** See section 11.3 

2 OUTPUT_STREAM[number of curves in curve_list, BITSNUMBER_OF _CURVES] 

** Encode flI'St curve of curve list 
3 OUTPUT_STREAM[x-coordinate of first point in flI'st curve, B1TSx COORDINATE] 

4 OUTPUT_STREAM[y-coordinate of first point in flI'st curve, BITSY=COORDINATE] 

5 ENCODE_CURVE_DELTAS[flI'st curve of curve_list] 

** Encode the rest of the curves in curve list 
6 for each curve from second curve to last curve in curve list 
7 ENcoDE_JUMP[curve previous to curve in curve_list, curve] 
8 ENCODE_CURVE_DELTAs[curve] 
9 return 

166 



ENCODE HEADER[ ] 

** Write image size to stream 
1 OUTPUT_STREAM[Iwidth, BITSIMAGE_SIZE] 

2 OUTPUT_STREAM [I height , BITSIMAGE_SIZE] 

•• Write code strategies to stream (header) 
3 ENCODE_WORD _SIZES[ word _SiZeSdeltax] 
4 ENCODE_WORD _SIZES[ word _SiZeSdeltay] 
5 ENCODE_WORD_SIZES[word_sizesjumpx] 
6 ENCODE_WORD _SIZES[ word _sizesjumpy] 

** See section 11.3.1 

7 ENCODE WORD SIZEs[word sizesnwn deltas] 

8 OUTPUT =STREAM[deltaminirr::m yer _ cu~e, BITSMINIMUM_NUMBER_ OF _DELTA] 
. 9 OUTPUT_STREAM[sign monotonicity type for symbol 0, BITSHUFFMAN INDEX] 

10 OUTPUT_STREAM[sign monotonicity type for symbol 10, BITSHUFFMAN_INDEX] 

11 OUTPUT_STREAM[sign monotonicity type for symbol 110, BITSHUFFMAN_INDExl 

12 OUTPUT_STREAM[sign monotonicity type for symbol 111, BITSHUFFMAN_INDEX] 
13 return 

ENCODE_WORD _SIZES[ word ~sizes] 

•• word _sizes is a list of word sizes used in encoding particular types of data 
(e.g., word_sizesnum_deltas indicates the sizes of words in bits used in encoding the 
number of deltas in a curve) 

1 OUTPUT_STREAM[number of word sizes in word_sizes, BITSNUMBER_OF _WORD_SIZES] 
2 for each word size in word sizes - -
3 OUTPUT_STREAM[word_size, BITSwORD_SIZE] 
4 return 

OUTPUT_STREAM[value, n] ** See section 11.2.5 

•• Note: If n is missing on invocation of OUTPUT_STREAM[], the number of bits 
required to append value will be obvious from the defmition of value 
(e.g., a Huffman symbol) 

1 append value in n bits onto end of the encoded data stream 
2 return 

167 



1 for word _size from smallest to largest 
2 if (ceil[log2(magnitude)] ~ word_size) 
3 OUTPUf_STREAM[Huffman symbol for word_size] 
4 if (word_size:;t 0) 
5 OUTPUT_STREAM[magnitude, word_size] 
6 break from loop 
7 return 

ENCODE_JUMP[curve a, curve b] 

1 ENcoDE_JUMP_REFERENCE_END[curve a] 
2 ENCODE_USING_WORD_SIZESUumpx from curve a to curve b, word_sizesjumpx] 
3 ENCODE_SIGN[SIGNUumPx from curve a to curve b]] 
4 ENCODE_USING_WORD_SIZEsUumPy from curve a to curve b, word_sizes jumpy] 
5 ENCODE_SIGN[SIGNUumPy from CUlve a to curve b]] 
6 return 

1 if (reference end of curve = FIRST_ENDPOINT) 

2 OUTPUT STREAM[O, 1] 
3 else if (reference end of curve = LAST_ENDPOINT) 

4 OUTPUT_STREAM[I, 1] 
5 return 

ENCODE_SIGN[sign] 

** Note: If sign is ZERO, nothing is appended to the outpucstream 
1 if (sign = NEGATIVE) 

2 OUTPUT_STREAM[1,I] 
3 else if (sign = POSITIVE) 

4 OUTPUT STREAM[O, 1] 
5 return 

168 



ENCODE_CURVE_D ELTAS [curve] 

1 delta_count = number of deltas in curve - delto"unimum yer _curve 
2 ENCODE_USING_WORD_SIZEs[delta_count, word_sizesnum deltas] 

3 if (sign monotonicity of curve = MONOTONIC_Barn) 
4 OUTPUT _STREAM [Huffman symbol for MONOTONIC_BOTH] 
5 ENCODE_SIGN[signx of curve] 
6 ENCODE_SIGN[signy of curve] 
7 for each delta in curve 
8 ENCODE_ USING_ WORD_SIzEs[deltax, word _SiZeSdeltax] 
9 ENCODE_USING_WORD_SIZES[deltay, word_sizeSdeltay] 

10 else if (sign monotonicity of curve = MONOTONIC_OX) 
11 
12 
13 

OUTPUT_STREAM[Huffman symbol for MONOTONIC_OX] 
ENCODE_SIGN[signx of curve] 
for each delta in curve 

14 ENCODE_USING_WORD_SIZEs[deltax, word_sizeSdeltax] 
15 ENCODE_USING_WORD _ SIZES [ deltay, word _sizeSdeltay] 
16 ENCODE_SIGN[SIGN[deltay )) 

17 else if (sign monotonicity of curve = MONOTONIC_OY) 
18 OUTPUT_STREAM [Huffman symbol for MONOTONIC_OY] 
19 ENCODE_SIGN[signy of curve] 
20 for each delta in curve 
21 ENCODE_ USING_WORD _SIZEs[deltax , word _SiZeSdeltax] 
22 ENCODE_SIGN[SIGN[deltax]] 

23 ENCODE_USING_WORD_SIzEs[deltay, word_sizeSdeltay] 
24 else if (sign monotonicity of curve = NON_MONOTONIC) 
25 OUTPUT _STREAM [Huffman symbol for NON_MONOTONIC] 
26 for each delta in curve 
27 ENCODE_USING_WORD _SIzEs[deltax , word _SiZeSdeltax] 
28 ENCODE_SIGN[SIGN[deltax]] 
29 ENCODE_USING_WORD _ SIZES[ deltay, word _ SiZeSdeltay] 
30 ENCODE_SIGN[SIGN[deltay]] 
31 return 

169 



11.5 FINGERPRINT EXAMPLE 

This section contains a very simple example to illustrate the encoding process. The 
example contains only six fingerprint ridges (see figure 71). It has been constructed to 
illustrate delta offsets, jump values, reference ends, word sizes, monotonicity types, and 
encoding to create the bit stream. Word size calculations are not explicitly shown, but can be 
easily derived. Table 6 shows the fingerprint header information for this example, and 
table 7 shows the encoded ridge information. Both tables show the information first in 
decimal and then in binary bit-stream form. 

(-3,+1) 

Number of Deltas: 
Curve A = 4; Curves B,C,D,E,F = 2; 

Minimum Number of Deltas/Curve = 2 
Number of Deltas Word Sizes = 1 and 2 bits 
Delta x Offsets: 

Delta x Short Word Size = 3 bits 
Delta x Long Word Size = 4 bits 

Delta y Offsets: 
Delta y Short Word Size = 2 bit 
Delta y Long Word Size = 3 bits 

(+8,-7) 

• (-1,-2) 

(-4,+4) 

• (-2,-1) 

Jump x Values: 
Jump x Shon Word Size = 1 bit 
Jump x Long Word Size = 7 bits 

Jump y Values: 
Jump y Short Word Size = 1 bits 
Jump y Long Word Size = 2 bits 

Monotonicity: 
Monotonic Both = 4 curves 
Monotonic Delta x = 2 curves 

Figure 71. Encoding Example Ridges 

170 



Table 6. Encoded Fingerprint Header 

Decimal V","es 

Iptage Width 
Image Height 

Delta Offsets 

450 
600 

Jump Values Deltas/Curve Huffman Codes 

##~~#~~#~~~#~~~#~~~~~~~ 
rdgswd sz sz wd sz sz wd sz sz sz sz wd sz sz wd sz sz del 0 10 11 0 111 

6232243211 222 2 1 220 1 2 3 

Biruuy V","es 

0000000111 {)()()()1 0 Q{)()()()Q 1 001 011 000 
00000000110100011 0100 1000100011 100001 0010 100001 0010 10 0001 0010 10 00 01 10 11 

171 



Table 7. Encoded Ridge Information 

Decimal Values 

Jump Values Ridge Header Delta Offsets 

wd val sign wd val sign wd # of ref sign sign sign wd val sign wd val sign 
s/l s/l sIl del end type sIl s/l 

I) 10 14 1 2 1 10 0 0 5 1 5 0 
0 5 0 2 0 
1 8 0 2 1 
1 8 1 7 1 

fa) ~ l~ 0 1 2 1 0 0 0 0 0 6 1 6 ' •• :x·' 

0 7 0 3 

J .... .,: e ,'::- 0 0 0 0 0 0 0 0 0 5 0 2 
0 7 1 5 

e .,,-:.,::. 0 0 0 0 0 0 1 0 0 1 0 6 5 
0 5 5 

8 .: ... 1 2 1 0 1 1 0 0 1 0 1 0 0 4 1 4 
0 4 0 2 

8 .... :> •• 1 3 1 0 1 0 0 0 0 1 0 5 0 2 
0 5 1 5 

B11UII'Y Values 

0000010100000001100 110 1 10 0 0 101 1 101 00101 01001 1000 0 10 1 1 1000 1 111 1 
0111101001010011011100111011 
0000000011010101001111101 
00000010010110110101011101 
110101100101001101 1100110010 
1 11 1 0 1 00001 10101 0100 101 1 101 

172 



SECTION 12 

DECODING 

Decoding the bit stream after transmission is a strictly mechanical process. Since only 
transmission of the data occurs between encoding and decoding, the form of the data to be 
decoded is the same as shown in figure 61, and tables 4 and 5, of section 11. The fingerprint 
header information is parsed and interpreted first, providing the information needed to 
decode the subsequent ridge information. A~ter the decoding process interprets and expands 
all of the fingerprint header and ridge information, it is passed to the final processing stage, 
the ridge reconstruction algorithm. 

The decoding algorithm is position-based and flag-based. That is, each category of 
information is interpreted either by its position in the bit stream, or by a flag preceding it, 
which tells the decoder how to interpret the subsequent information. It is basically the 
reverse of encoding, but much simpler, since no analyses of the data are performed. The 
types of flags used are short/long word flags, reference end flags, monotonicity flags, and 
sign flags. 

12.1 ALGORITHM DESCRIPTION 

The decoding process consists of three steps (see figure 72). First, the fingerprint header 
information is parsed and decoded. Information extracted from the fingerprint header is then 
used to assist in the second step, parsing and decoding the ridge information. Finally, after 
all of the binary bit stream has been parsed and interpreted, relative values, such as delta 
offsets and jump values, are converted to absolute coordinates. 

Parsing and interpreting the fingerprint header is very straightforward. The values are 
interpreted one by one, as shown in table 4 of section 11. Notice that the size of the header 
varies with the number of word sizes calculated for delta offsets, jump values, and number of 
deltas per curve. This, in turn, depends upon the distributiori of these numbers in each 

. fingerprint. Table'3 of section 11 shows the monotonicity type codes used for the two-bit 
allocation in assigning Huffman codes. 

As with the encoder, the decoder expects the first point of the first curve of the ridge 
information to be represented with absolute coordinates and all following points to be 
represented in relative coordinates. This first absolute coordinate provides the context for 
converting all subsequent points to absolute coordinates. For flat live-scan fingerprints used 
in generating and testing these algorithms, the image width is 450 pixels and the image 
height is 600 pixels, requiring nine and 10 bits, respectively, for the absolute coordinate. 
Note that in this instance no short/long word flag is needed. 

173 



C Encoded Data) 

t 
Decode Header 

Information 

t 
Decode Ridge Data 

t 
Convert Relative 
Values to Absolute 

Coordinates 

t 
C Decoded Data) 

Figure 72. Decoding Processing Steps 

Following the fIrst curve, all remaining curves are expected to be in the fonn shown in 
table 5 of section 11. These values are also parsed and interpreted one by one. The 
interpretation of one value may preclude the need for another value. For instance, a jump 
value of zero eliminates the need for a sign flag, and a monotonicity sign type of monotonic 
delta x (or y), or monotonic both, eliminates the need for some or all coordinate sign flags. 
Note that one bit is used to represent the word size for delta offsets and number of deltas per 
curve, where zero indicates a short word size and one indicates a long word size. Zero or 
two bits are required for Huffman encoded jump value word sizes, since three word sizes are 

. allowed: "0" indicates the zero word size, "10" the short word size, and "11" the long word 
size. 

174 



12.2 SUMMARY 

This section provides parameters, input yariables, output variables, and pseudocode for 
the decoding algorithm. 

Parameters 

BITSIMAGE_SIZE = 16 

BITSNUMBER_OF _WORD_SIZES = 2 

BITSwORD_SIZE = 4 

BITSNUMBER_OF _CURVES = 11 

BITSx_COORDINATE = 9 

BITSY_COORDINATE = 10 

Input 

The number of bits used to represent the image 
size in pixels horizontally and vertically 
The number of bits used to represent the number 
of word sizes in a wonCsize coding scheme 
The number of bits used to represent a word 
size in a wonLsize coding scheme 
The number of bits used to represent the sign 
monotonicity type index which is assigned to a 
particular Huffman symbol 
The number of bits used to represent the number 
of curves in the fingerprint curve list 
The number of bits used to represent an absolute 
x coordinate in the live-scan fingerprint image 
(based on the width of the image) 
The number of bits used to represent an absolute 
y coordinate in the live-scan fingerprint image 
(based on the height of the image) 
The number of bits used to represent the 
minimum number of deltas of any curve of the 
curve list 

An encoded data stream representing a live-scan fmgerprint 

Output 

curve list 

Calculated Values 

The reconstructed list of curves from the live-scan fingerprint 
which had been encoded into a data stream 

Minimum number of deltas of any curve of the curve list (not 
to exceed that which can be represented by 

BITSMINIMUM_NUMBER_OF _DELTA) 

175 



DECODE_CURVE _ LIST[ encoded fingerprint data stream] 

1 DECODE_HEADER[] 

2 INPUT STREAM[number of curves in curve list, BITSNUMBER OF CURVES] - " - - -
•• Decode first curve of curve list 

3 INPUT_STREAM[x-coordinate of first point in first curve, BITSX_COORDINATE] 

4 INPUT_STREAM[y-coordinate of first point in first curve, BITSY_COORDINATE] 

5 DECODE_ CURVE_DELTAS[first curve of curve_list] 

•• Decode the rest of the curves in curve list 
6 for each curve from second curve to last curve in curve_list 
7 DEcoDE_JUMP[curve previous to curve in curve_list, curve] 
8 DECODE_CURVE_DELTAs[curve] 

•• Reconstruct the absolute coordinates for the points in each curve of curve_list 
9 ApPLY_CURVE_DELTA_OFFsETs[frrst curve of curve_list] 

10 for each curve b from second curve to last curve in curve_list 
11 

12 

13 

14 

curve a = the previous curve in curve _list before curve b 
ApPLY JUMP OFFSETs[curve a, curve b] - -
ApPLY CURVE DELTA OFFSETs[curve b] - - -

return curve list 

DECODE_HEADER[ ] 

•• Read image dimensions from stream 
1 INPUT STREAM[lwidth, BITSIMAGE SIZE] - -
2 INPUT_STREAM[lheight, BITSIMAGE_SIZE] 

•• Read coding strategies from stream (header) 
3 DECODE_WORD _SIZES[ word _SizeSdelttu] 
4 DECODE_WORD _SIZES[ word _SizeSdeltay] 
5 DECODE_WORD_SIZEs[word_sizesjumpx] 
6 DECODE_WORD _SIZES[ word _sizes jumpy ] 
7 DECODE WORD SIZEs[word sizesnum deltas] 
8 INPUT _STREAM[delta"unimum~er _curve: BITSMINIMUM_NUMBER_OF _DELTAl 
9 INPUT_STREAM[sign monotonicity type for symbol 0, BITSHUFFMAN_INDEX] 

10 INPUT_STREAM[sign monotonicity type for symbol 10, BITSHUFFMAN_INDEX] 

11 INPUT_STREAM[sign monotonicity type for symbol 110, BITSHUFFMAN_INDEX] 

12 INPUT_STREAM[sign monotonicity type for symbol 111, BITSHUFFMAN_INDEX] 

13 return 

176 



DECODE WORD SIZEs[word sizes] - - -
•• word _sizes is a list of word sizes used in encoding particular types of data 

(e.g., word_sizesnum deltas indicates the sizes of words in bits used in encoding the 
number of deltas in a curve) 

1 INPUT_STREAM[number of word sizes in word_sizes, BITSNUMBER OF WORD SIZES] 
2 for each word size in word sizes - - -- -
3 INPUT_STREAM[word_siu, BITSwORD_SIZE] 
4 return 

INPUT_STREAM[value, n] 

•• Note: If n is missing on invocation of INPUT_STREAM[], the number of bits required 
to read value will be obvious from the definition of value (e.g., a Huffman symbol) 

1 read value in n bits from the encoded data stream 
2 return 

DECODE_JUMP[curve a, curve b] 

1 DEcoDE_JUMP_REFERENCE_END[curve a] 
2 DECODE_USING_WORD_SIZESUwnpx from curve a to curve b, word_sizesjumpx] 
3 DECODE_SIGN_FoR_VALUEUwnpx from curve a to curve b] 
4 DECODE_USING_WORD_SIZEsUwnPy from curve a to curve b, word_sizes jumpy] 
5 DECODE_SIGN_FoR_VALUEUwnPy from curve a to curve b] 
6 return 

DECODE_JUMP _REFERENCE_END[ curve] 

1 INPUT_STREAM [flag, 1] 
2 if (flag = 0) 
3 reference end of curve = FIRST_ENDPOINT 

4 else 
5 reference end of curve = LAST_ENDPOINT 

6 return 

177 



DECODE_USING_WORD_SIZEs[magnitude, word_sizes] 

1 INPUT_STREAM [Huffman symbol for word_size] 
2 if (word_size ~ 0) 
3 INPUT_STREAM[magnitude, word_size] 
4 return 

DECODE_SIGN_FOR_ V ALuE[value] 

** Note: If sign was ZERO, nothing was appended to the stream 
if (value ~ 0) 

1 INPUT_STREAM [f1ag, 1] 
2 if (flag = 1) 
3 negate value 
4 return 

178 



DECODE_CURVE_DELTAS[curve] 

1 DECODE USING WORD SIZEs[delta count, word sizesnum deltas] - - - - --
2 number of deltas in curve = delta_count + deltOminimum "'per_curve 

3 INPUT_STREAM [Huffman symbol for sign monotonicity of curve] 
4 if (sign monotonicity of curve = MONOTONIC_BOTH) 

5 DECODE_SIGN[signx of curve] 
6 DECODE_SIGN[signy of curve] 
7 for each delta in curve 
8 DECODE_USING_WORD_SIzEs[deltax, word_sizesdeltax] 
9 ApPLY_SIGN_TO_VALUE[signx of curve, deltax] 

10 DECODE_USING_WORD_SIzEs[deltay, word_sizesdeltay] 
11 ApPLY_SIGN_TO_ VALUE[signy of curve, deltay] 
12 else if (sign monotonicity of curve = MONOTONIC_DX) 

13 DECODE_SIGN[signx of curve] 
14 for each delta in curve 
15 DECODE_ USING_WORD _SIzEs[deltax, word _sizesdeltax] 
16 ApPLY_SIGN_TO_ VALUE[signx of curve, delta x] 
17 DECODE_USING_WORD_SIZEs[deltay, word_sizeSdeltay] 
18 DECODE_SIGN_FoR_ VALvE[deltay] 
19 else if (sign monotonicity of curve = MONOTONIC_DY) 

20 DECODE_SIGN[signy of curve] 
21 for each delta in curve 
22 DECODE_USING_WORD_SIzEs[deltax , word_sizesdeltax] 
23 DECODE_SIGN_FoR_ VALvE[deltax] 
24 DECODE_USING_WORD_SIzEs[deltay, word_sizeSdeltay] 
25 ApPLY_SIGN_TO_ VALUE[signy of curve, deltay] 
26 else if (sign monotonicity of curve = NON_MONOTONIC) 

27 for each delta in curve 
28 DECODE_USING_WORD_SIzEs[deltax, word_sizesdeltax] 
29 DECODE_SIGN _FOR_ VALvE[deltax] 
30 DECODE_USING_WORD _ SIZES[ deltay, word _ sizesdeltay] 
31 DECODE_SIGN_FoR_VALvE[deltay] 

32 return 

179 



DECODE_SIGN[sign] 

•• Note: If sign was ZERO, nothing was appended to the stream 
1 INPUT_STREAM [flag , 1] 
2 if (flag = I) 
3 
4 
5 
6 

sign = NEGATIVE 

else 
sign = POSITIVE 

return 

ApPLY_SIGN_To_ VALuE[sign, value] 

1 if (sign = NEGATIVE) 

2 negate value 
3 return 

ApPLY_JUMP_OFFSET[curve a, curve b] 

1 if (reference end of curve a = FIRST_ENDPOINT) 

2 ref yt = fIrst point in curve a 
3 else if (reference-end of curve a = LAST_ENDPOINT) 

4 ref yt = last point in curve a 
5 first yt = fIrst point in curve b 
6 first ytx = ref ytx + jumPx from curve a to curve b 
7 first yly = ref yly + jumPy from curve a to curve b 
8 return 

ApPLY_CURVE_DELTA_OFFSETs[curve] 

1 for each point b from second point to last point in curve 
2 point a = the previous point in curve before point b 
3 bx = ax + deltax from point a to point b 
4 by = ay + deltay from point a to point b 
5 return 

180 



12.3 EXAMPLE 

In order to illustrate the decoding process, the same example from the encoding section 
will be used. Figures 6 and 7 of section 11 show the fmgerprint header and the ridge 
information bit streams. Figure 73 illustrates parsing and interpreting just the fingerprint 
header information in the bit stream. Figure 74 illustrates parsing and decoding the ridge 
information data for the first curve. Note that absolute coordinate positions are given instead 
of jump values for this ridge. Figure 75 shows parsing and decoding of the second ridge. 
Although it is not shown, the process would proceed similarly for the remaining four ridges 
in this example. (Note: The binary bit stream values in these figures are shown grouped to 
show the parsed structure.) 

181 



Bit Stream: 
()()()()()OO()( 111 0000 1 0 00000o 1 00 1011 000 
000000110 100011 0100 1000100011 100001 0010 100001 0010 100001 0010 11 00 01 10 11 

Parsing: 

Bit # Parse Value Interpretation 
Stream Bits 

()()()()OO() 111 0000 1 0 16 450 Image is 450 pixels wide 
00000o 1 00 1 011 000 16 600 Image is 600 pixels high 
()()()()OO()O 11 0 11 6 6 ridges 
10 2 2 delta offset: 2 word sizes 
0011 4 3 delta offset short x word size 
0100 4 4 delta offset long X word size 
10 2 2 delta offset: 2 word sizes 
0010 4 2 delta offset short y word size 
0011 4 3 delta offset long y word size 
10 2 2 jump value: 2 word sizes 
0001 4 1 jump value short x word size 
0010 4 2 jump value long X word size 
10 2 2 jump value: 2 word sizes 
0001 4 1 jump value short y word size 
0010 4 2 jump value long y word size 
10 1 2 num. deltas per curve: 2 word sizes 
0001 4 1 num. deltas per curve short word size 
0010 4 2 num. deltas per curve long word size 
11 2 3 minimum number of deltas per curve 
00 2 0 monotonic both 
01 2 1 monotonic delta X 

10 2 2 monotonic delta y 
11 2 3 non-monotonic 

Figure 73. Fingerprint Header Parsing 

182 



Bit Stream: 
()()()()()10100000001100 1 10 1 10 0 0 101 1 101 00 101 0 100 1 1000 0 10 1 1 1000 1 111 1 

Parsing: 
Bit # Parse Value Interpretation 
Stteam Bits 

()()()()() 1 0 10 9 10 X coordinate of fIrst point 
0000001100 10 14 Y coordinate of fIrst point 
1 1 1 num. deltas per curve long word 
10 2 2 4 deltas (2 + min. num. deltas per curve) 
1 1 1 reference end: LAST_ENDPOINT 

10 2 2 monotonic delta X 

0 1 0 positive monotonic sign for delta X 

0 1 0 delta offset short X word 
101 3 5 delta offsetx value 
1 1 1 delta offset long y word 
101 3 5 delta offset y value 
0 1 0 positive delta offset y sign 
0 1 0 delta offset short X word 
101 3 5 delta offset x value 
0 1 0 delta offset short y word 
10 2 2 delta offset y value 
0 1 0 positive delta offset y sign 
1 . 1 1 delta offset long X word 
1000 4 8 delta offset x value 
0 1 0 delta offset short y word 
10 2 2 delta offset y value 
1 1 1 negative delta offset y sign 
1 1 1 delta offset long X word 
1000 4 8 delta offsetx value 
1 1 1 del~ offset long y word 
111 3 7 delta offset y value 
1 1 1 negative delta offset y sign 

Reconstruction: 
Decoded Relative Coordinates: (10,14), (+5,+5), (+5,+2), (+8,-2), (+8,-7) 

Decoded Absolute Coordinates: (10,14), (15,19), (20,21), (28,19), (36,12) 

Figure 74. Ridge Infonnation Decoding: First Curve 

183 



Bit Stream: 
011110 1 0010100 110 1 1100111011 

Parsing: 
Bit # Parse Value Interpretation 
Stream Bits 

O· 1 0 jump value short x word 
1 1 1 jump value x value 
1 1 1 negative sign 
1 1 1 jump value long y word 
10 2 2 jump value y value 
1 1 1 negative sign 
0 1 0 num. deltas per curve short word 
0 1 0 2 deltas (0 + min. num. deltas per curve) 
1 1 1 reference end: LAST_ENDPOINT 
0 1 0 monotonic both 
1 1 1 negative sign for all delta x 
0 1 0 positive sign for aU delta y 
0 1 0 delta offset short x word 
110 3 6 delta offset x value 
1 1 1 delta offset long y word 
110 3 6 delta offset y value 
0 1 0 delta offset short x word 
111 3 7 delta offset x value 
0 1 0 delta offset short y word 
11 2 3 delta offset y value 

Reconstruction: 
Decoded Relative Coordinates: (-1,-2), (-6,+6), (-7,+3) 
Decoded Absolute Coordinates: (35,10), (29,16), (22,19) 

Figure 75. Ridge Infonnation Decoding: Second Curve 

184 



SECTION 13 

RIDGE RECONSTRUCTION 

Mter decoding, ridge reconstruction regenerates the single pixel width representation of 
the fingerprint ridges using a B-spline algorithm. The input to the B-spline algorithm is a set 
of ordered control points previously determined by the chord splitting stage of processing .. 
For each set of ordered points, the output of the B-spline algorithm is a reconstructed 
fingerprint ridge. Multiple sets of ordered points describe all of the ridges within one 
fingerprint image. Figure 76 illustrates the curve that would be generated by the B-spline 
process given an input set of five points. B-splines differ from other spline curves in that the 
resulting curve does not necessarily pass directly through the set of input points, which 
results in a more uniform and smooth curve [9]. 

~Pline segment 

Figure 76. B-spline Curve Representation 

13.1 ALGORITHM DESCRIPTION 

Figure 77 describes the processing steps of the B-spline algorithm. The algorithm that 
computes the B-splines uses a set of four consecutive control points to calculate each spline 
segment [10]. Due to the nature of the process, it is also necessary to duplicate the original 
coordinate segment endpoints four times to ensure that the spline curve is drawn to the 
endpoints. 

A B-spline is determined using two input arrays, x and y. The B-spline algorithm creates 
curve segments between successive points Pi and Pi+l for each curve to be constructed. It is 
not necessary to calculate a B-spline for ridges containing one or two points. A ridge 
containing one point will be represented as a single pixel, and a ridge containing two points 
will be represented by a line. The curve segment between points Pi and Pi+l is constructed 
by calculating x(t) and y(t) as t increases from zero to one: 

185 



-

NO 

Input Coordinate 
Information 

t 
Coordinate Array 

Allocation 

t 
Spline Coefficient 

Calculation 

t 
Spline 

Reconstruction 

t 
YES 
• ( output) 

Figure 77. Flow Chart of Operations 

x(t) = A[x, i] + t(8[x, i] + t(C[x, i] + tD[x, i]) 
y(t) = A[y, I] + t(8[y, I] + t(C[y, I] + tD[y, I]» 

where A, 8, C, and D are functions defined as: 

A[x, i] = (x(i-I) + 4x(i) + x(i+ 1» + 6 
8[x,11 = (-x(i-I) +x(i+I» + 2 
C[x, 11 = (x(i-I) - 2x(i) + x(i+ 1» + 2 
D[x, i] = (-x(i-I) + 3x(i) - 3x(i+ 1) + x(i+ 2» + 6 

186 



The functions are similarly defined for A[y, 11. B[y, 11, cry, 11, D[y, 11. 

The coefficients are computed for each point in the x and y input arrays. After the 
coefficients are computed for an individual point, a loop increasing from zero to N is 
executed. Within this loop, x(t) and y(t) are calculated. Starting with the second input point, 
a line segment is drawn for each successive x(t) and y(t). The process ends when the input 
arrays are exhausted. 

13.2· SUMMARY 

This section provides parameters, input variables, output variables, and pseudocode for 
the B-spline algorithm. 

Parameters 

N=30 

Input Variables 

curve list 

Output Variables 

Number of iterations 

List containing the coordinate control points for a group of 
curves with the endpoints added four times to each curve 

spline_x, spline-y Arrays that hold spline coordinates 

187 



•• Algorithm used to construct a smooth curve using a given set of ordered coordinates 

B.SPLINE[curve _list] 

1 while curve in curve list 
2 ( 

•• x and y are arrays that hold coordinate information 
3 x = ordered set of x coordinates 
4 y = ordered set of y coordinates 

•• Spline coefficient calculations 
5 for i from 1 to number_of Joints_in _curve 
6 for j from 0 to N 
7 t=j+N 
8 x_coordinate = Afy, 11 + t(Bfy, 11 + t(Cfy, i] + tDfy, i]» 
9 y_coordinate = Afy, 11 + t(Bfy, i] + t(Cfy, 11 + tDfy, i]» 

10 spline_x = x_coordinate 
11 spline -y = y _coordinate 

•• At each iteration, the calculated x and y coordinate positions may be used to 
reconstruct an image array, using the spline-y array for row values and the 
spline_x array for column values. 

12 } 
13 return 

•• The following functions are also used to calculate Ary, i], Bfy, i], Cfy, 11, Dfy, i] 

A [x, 11 

1 return (-x(i-I) + 3x(i) - 3x(i+ 1) + x(i+2» + 6 

B[x,11 

1 return (x(i-I) - 2x(i) + x(i+ 1» + 2 

C[x,11 

1 return (-x(i-I) +x(i+l» + 2 

D[x,11 

1 return (x(i-l) + 4x(i) + x(i+ 1» + 6 

188 



LIST OF REFERENCES 

1. National Crime Information Center (NCIC) 2000 Requestfor Proposal (RFP). 
RFP 5060. Attachment 1. National Crime Information Center (NCIC) 2000 System 
Requirements, Federal Bureau of Investigation, Washington, D.C. 

2. An Analysis of Standards in Fingerprint Identification, June 1972, FBI Law 
Enforcement Bulletin, Federal Bureau of Investigation, U.S. Department of Justice, 
Washington, D.C. 

3. Lepley, M. A., April 1994, NCIC 2000 Image Compression Algorithms, Volume II: 
Mugshot Compression, MTR-94BOOOOO21 V2, The MITRE Corporation, Bedford, MA. 

4. Horn, B. K. P., 1986, Robot Vision, Cambridge, MA: MIT Press, pp. 49-53. 

5. Barrow, H. G., J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, August 1977, 
"Parametric Correspondence and Chamfer Matching: Two New Techniques for Image 
Matching," Proceedings of International Joint Conference on Artificial Intelligence, 
Vol. 2, pp. 659~63, Cambridge, MA. 

6. Pavlidis, Theo, 1982, Algorithms for Graphics and Image Processing, Rockville, MD: 
Computer Science Press, pp. 283-287. 

7. Hamming, R. W., 1986, Coding and Information Theory, Second Edition. New Jersey: 
Prentice-Hall. 

8. Gonzalez, R. C. and P. Wintz, 1977, Digital Image Processing, Reading, MA: 
Addison-Wesley Publishing Co. 

9. Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Hughes, 1990, 
Computer Graphics: Principles and Practice, Second Edition, Reading, MA: 
Addison-Wesley Publishing Co., p. 491. 

to. Ammeraal, Leendert. 1986, Programming Principles in Computer Graphics, 
New York: John Wiley and Sons, pp. 28-33. 

11. Home Office Algorithm Package, Volumes 1 and 2, Issue 1, April 1992, Department of 
the Government of the United Kingdom, London, England. 

189 



190 



APPENDIX A 

MODIFIED BHO BINARIZATION 

The algorithm used for thresholding the fingerprint image is based upon the Home Office 
Automatic Fingerprint Recognition System (HOAFRS) Encoder. This algorithm generates a 
smoothed ridge direction map, thresholds each 24x24 block based upon the primary 
indicated direction, and then extracts minutiae points. We used the portion of the Encoder 
that generates the thresholded image, hereafter referred to as British Home Office (BHO) 
binarization, with a few minor modifications to accommodate variable image sizes. The 
BHO algorithm is described in detail in the Home Office Algorithm Package Volume 1: 
Description of Encoders and Matchers [11]. This section describes how the source code 
provided by the Home Office was modified for use with the Flat Live-Scan Searchprint 
Compression algorithm. 

A.I SOURCE CODE ALTERATIONS 

The modifications described in this section fall into two categories: those that are 
implementation dependent and those that are required modifications to the HOAFR 
algorithm. Implementation dependent details, such as the FORTRAN-to-C conversion and 
methods used for faster execution, are mentioned here only as a guide. Required changes are 
necessary to process variable image sizes, to obtain acceptable encoded fingerprints, and to 
produce the required output files. The required changes must be implemented and will be 
prefixed by a "*,, in the following subsections. 

A.I.I FORTRAN-to-C Conversion 

The five source files of the Encoder that are used in BHO binarization are "encoder.f', 
"initrg.f', "insspr.f', "mainI2.f', and "main3.f'. Since the original source code was in 
FORTRAN, "f2c", a public domain FORTRAN-to-C conversion program, was used to create 
a C version of the code. This conversion program, written by David Gay, Stu Feldman, Mark 
Maimone, and Norm Schryer, is available via electronic transfer from research.att.com. This 
C version was then modified to make it possible to compile without the include file ("f2c.h") 
and the FORTRAN libraries required by"f2c". The changes needed were: 

- References to logical were changed to into 
- References to integer were changed to into 
- References to real were changed to float. 
- Unnecessary static declarations were removed. 
- Global data structures were moved to an include file. 
- All the I/O was changed since the output of f2c for I/O code is indecipherable. 

191 



- Replaced the functions min, max, and drnax by macros. 
- Added the rmod function source to the code. 
- Removed #include "t2c.h" from each file. 

A.l.2 Variable Image Size Accommodation 

The stand-alone C version was modified to generate only the thresholded image and was 
then modified to handle rectangular images of any size. This change required careful 
attention to detail to determine the meaning of many of the hardwired constants in the code. 
(Although the capability is not being used at this time, changes were also made to allow 
smaller block sizes, if desired.) In summary, the changes at this stage were: 

*- Output a thresholded image with ridges being black and valleys being white. 
*- Variables were created to contain the following information about the image: height, 

width, block size, the number of blocks contained in the horizontal and vertical 
direction, and the positions of blocks. The variables are initialized as the image is read. 

*- Constants within the code were replaced by the appropriate variables or combinations of 
variables. For example, mx11520 + 1920 became mx(blocksizexiwidth) + (4xiwidth). 

*- Arrays whose sizes vary according to the input image size were allocated dynamically 
and freed when they were no longer needed. 

*- The ridge direction consistency checking function consis was modified to allow the 
spiraling portion of the algorithm to reach all parts of a rectangular image. 

Please note that changes made up to this point have no effect on the behavior of the 
algorithm on a 512x512 or a 480x480 image. 

A.l.3 Change to BHO Algorithmic Behavior 

As a result of testing, we determined that some undesirable effects were produced by the 
original algorithm. Therefore, the following changes were made to the BHO binarization 
algorithm. 

*- Removal of cnnect call and function. 

*- An absolute upper threshold, ZZ_lOp, is generated on a per image basis, for use in 
non-blanked blocks. This allows pixels with a gray level above this threshold to be 
automatically marked as BACKGROUND pixels. This change was required in the functions 
if i 1 t 7 and b i nb 1 k which do the directional and non-directional thresholding. 

Before calculating the threshold zz _top, a determination is made whether the image gray 
values have saturated, i.e., whether there are an inordinate number of white pixels 
because of the particular brightness or contrast level settings in effect during image 
capture. Assuming that 255 corresponds to the maximum gray value, i.e., white, the 
image is deemed to be saturated if the number of pixels with gray value 255 is greater 
than ZSATURATION_RATIO times the number of pixels with gray value 254. 

192 



If the image is saturated, thresholding is not effective and zz _top is set to 255. 
Otherwise, zz _top is set to a value Z THRESHOLD_FRACTION of the distance between the 
mean pixel value ZJll and the maximum pixel Z11UlX[ value in the image: 

zz_top = (l-ZTHRESHOLD_FRACTION) * ZJll + ZTHRESHOLD_FRACTION * Z11UlX[. 

A.I.4 Integration with Fingerprint Compression 

A few modifications were made to integrate the code into the rest of the fingerprint 
compression process. 

- The main routine was converted to a subroutine which was passed an image data 
structure and the desired block size and returned a thresholded image data structure. 

- The function to read an image file was changed to read data from the image data 
structure. 

- The ability to write the thresholded image to a Lucid image file was removed. 
*- Code was added to write out the ridge direction map ~d to store it in a data structure 

passed back to the calling routine. The file containing this information is called the 
block file and is transmitted along with the encoded fingerprint for use during minutiae 
extraction. Section A.2 below describes the contents of the ridge direction data structure 
and specifies how that information is written to a file. 

A.I.5 Code Speed Up 

Finally, a large set of changes was made to improve the processing speed of this 
algorithm. These changes again involved careful attention to detail to avoid making errors, 
and frequent checks were made against a validated older version. 

- Many explicit casts to float in equations were removed. 
- Some parameters passed by reference due to the FORTRAN to C conversion were 

changed to be pas~ed by value to avoid being accessed via pointers. 
- Zero-based indexing was used for loops and for accessing arrays. This frequently 

removed many references to "i-I". 
- Variables were added to store intermediate values that are used frequently. 
- Where beneficial, pointers were used to access arrays. 

A.2 RIDGE DIRECTION MAP 

The ridge direction map contains the smoothed edge directions for each 24x24 block in 
the image. Due to processing constraints, this map must contain an even number of blocks in 
both the horizontal and vertical directions. When the image size is not a multiple of 48 
(2x24), the area that is covered by this map is the largest multiple of 48 that fits inside the 
image, centered in the entire image area (see figure A-I). Information about this map is 
stored in a ridge direction data structure and written out to a block file. 

193 



Horizontal Offset 

Vertical Offset ~ ( __ 

~+- Ridge Direction Map Blocks _'*1""'-
Image Border -..,. 

~+-- Image Center 

Block Size 

Figure A-I. Blocks Used in Ridge Direction Map 

A.2.t Ridge Direction Data Structure 

The ridge direction data structure, z_hlockmap, contains the following infonnation: 

- The horizontal offset (in pixels) of the upper-leftmost block 
- The vertical offset (in pixels) of the upper-leftI?1ost block 
- Number of blocks horizontally (always a multiple of 2) 
- Number of blocks vertically (always a multiple of 2) 
- Block size used (blocks are square) 
- A 2-dimensional array of the block ridge directions when a valid ridge direction existed, 

or the type of block when there is no valid ridge direction. There are 16 valid ridge 
directions, and the types of blocks that can occur when there is no valid ridge direction 
are: blank block, core/delta block, and "bad" (other) block. 

A.2.2 Writing the Block File 

At the end of the BHO binarization, the infonnation in the ridge direction data structure 
is written to a file called the block file. The infonnation in the encoded fingerprint file and 
the block file together can be used to recreate the fingerprint image and extra~t valid 
minutiae points. 

194 



The following pseudocode describes an effiCient method for encoding this data. In order 
to make the most efficient use of space, the bit-packing function OUTPUT_STREAM described 
in section 11.4.3 is used to write bits to the block file. 

WRITE_BLOCK_FILE[ z_blockmap, blockJile] 

** Write information about the ridge direction map to blockJile 

1 open blockJile for writing 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

OUTPUT_STREAM[horizontal offset of z_blockmap, 16] 
OUTPUT_STREAM[vertical offset of z_blockmap, 16] 
OUTPUT_STREAM[number of blocks horizontally in z_blockmap, 16] 
OUTPUT_STREAM[number of blocks vertically in z_blockmap, 16] 
OUTPUT_STREAM[block size used in z_blockmap, 5] 
for each block (bi, bJ) in z_blockmap 

if ( block (bi, bJ) is blanked out) 
OUTPUT STREAM[O, 5] 

else if (block (bi, bJ) is bad) 
OUTPUT_STREAM[I,5] 

else if ( block (bi, bj) is a core/delta block) 
OUTPUT_STREAM[2,5] 

else if ( block (bi, bJ) has a valid direction) 
OUTPUT_STREAM[direction of block (bi, bJ) + 3, 5] 

16 close blockJile 

17 return 

A.3 SUMMARY 

Parameters 

ZN = 24 Height and width (in pixels) of the.blocking factor used for the ridge 
direction map 

ZSATURATION_RATIO = 2.0 Maximum ratio between pixels at 254 and pixels at 255 for 
an unsaturated image 

ZTHRESHOLD_FRACTION = 0.8 Fraction of the distance between the mean pixel value 
and the maximum pixel value in an image used to determine zz _top 

Input 

I Gray-scale fingerprint image 

195 



Output 

T Thresholded fingerprint image 
z blockmap Ridge direction data structure 
block_file File containing infonnation about ridge directions as well as blocks that 

should not be used when extracting minutiae 

BHO _BINARIZATION[ 1] 

•• The image 1 is thresholded using the modified BHO algorithm to produce image T 
1 Run the modified BHO binarization on 1 with block size ZN, writing out blockJile. 
2 return (T, z _ blockmap) 

196 



APPENDIXB 

CURVED RIDGE ENDING REMOVAL 

Curved ridge ending removal is a part of ridge cleaning (see section 7). The purpose of 
this algorithm is to remove curved endings that may lead to a less accurate ridge ending 
direction estimation. This process is used by ridge cleaning after small offshoot curve 
removal and before small ridge break connection (see figure 41 in section 7). Only ridge 
endings that are not connected to other ridges (Le., not bifurcations) and are not near a bad 
block as defined by the thresholding process (see Appendix A) are processed by curved ridge 
ending removal. If a ridge ending is determined to be curved, points are removed until the 
curved part is removed or an upper limit is reached on the number of points allowed to be 
removed. 

B.1 ALGORITHM DESCRIPTION 

It is assumed that endpoint_map and the thinned image T generated in ridge cleaning and 
the chamfered image C used by ridge cleaning is globally available to this algorithm. The 
parameter ZEND_SIZE specifies that maximum number of points that may be removed from 
any ridge ending as part of the curved ridge ending removal process .. This parameter is also 
used as part of the curvature and taper calculation for each ridge ending. 

Both ends of each ridge that is represented by a curve in the curve _list having more than 
3 x ZEND SIZE points are considered. If an endpoint is unconnected and this endpoint is not 
near a bad block as defined by z_hlockmap, then that end is considered further. Care is taken 
to retain ridge endings on the borders of bad blocks in order to prevent the generation of false 
minutiae during minutiae extraction. 

To check the bad block proximity of a ridge endpoint, the endpoint is checked against all 
the bad blocks defined in z_hlockmap. If the endpoint is within one pixel of any bad block, it 
is declared to be near a bad block. Several examples of ridge endpoints near a bad block are 
shown in figure B-1. In this figure, endpoints of ridges A, B, and C are near the bad block 
because their endpoints lie within one pixel of the bad block. The endpoint of ridge D is not 
near the bad block. 

Each ridge ending meeting the size and bad block proximity conditions is then checked 
for amount of curvature and taper. The curvature criterion is measured by selecting three 
points along the ridge, somewhat equally spaced according to specific criteria, where the first 
point is the current endpoint of the ridge. This process is illustrated in figure B-2. In this 
figure, point A is the endpoint of the ridge. Point B is selected as the point that is 
ZEND_SIZE+2 points down from point A. Point C is selected as the frrst point whose 

197 



Ridges A, B, and C 
are in proximity of 
the bad block 

Ridge D is not 

• Ridge endpoint 
• Ridge pixel 

Figure B-1. Proximity of Ridge Endpoints to Bad Block 

Euclidean distance from point B is greater than or equal to the Euclidean distance between 
point A and point B. Point C is defined to be at least ZEND_SIZE+2 + 1 points down the 
curve from point B. Once the three points have been selected, the absolute value of the 
cosine of the angle between the two segments defined by point B to point A and point B to 
point C is calculated. If this cosine is less than or equal to the cosine of ZTHRESH_ANGLE, 

then the ridge ending is considered to be curved. 

A second criterion is checked to estimate the taper of the ridge ending. Occasionally, a 
ridge ending will not be curved enough to meet the curvature criterion, but will still have a 
small flip to it caused by an angled ridge edge at the end. The taper criterion is designed to 
catch these instances. By comparing the ridge width of the endpoint to the average ridge 
width of a reference section further down the curve, the taper can be estimated. This 
reference section is defined to be the set of points between point B and point C, not including 
point B, but including point C. Because chamfer values are directly proportional to ridge 
widths, they are used in the ridge width comparisons. If the chamfer value of point A is less 
than or equal to ZTAPER_RATIO times the average chamfer value of the reference section, the 
ridge ending is considered to have enough curvature to take action. 

If either the curvature criterion or the taper criterion is met, point A is moved down the 
curve by one point, thus marking that previous point for removal. If fewer than ZEND_SIZE 

points have been marked for removal and the curvature or the taper criterion has been met, 
the process is repeated with the new point A. Otherwise, the process is finished for this ridge 
ending by removing all points in curve from the original endpoint up to point A, and 
updating the thinned image T and endpoint_map. 

198 



Z THRESH_ANGLE = 30 

ZEND SIZE = 6 

ZTAPER_RATIO = 0.75 

o curve pixel 
• curve endpoint 

average chamfer value = (2000+2000+2414+1414)+4 = 1957 

if 
Icos(8)1 S COS(ZTHRESH':"ANGLE) 

or 
chamfer value at point A S ZTAPER_RATIO x average3hamfer value of reference section 

then 
remove point A from ridge 

Figure B-2. Criteria for Removing Curved Ridge Ends 

1 for each curve in curve list 
2 if (number of points in curve> 3 x ZEND_SIZE) 

3 { 
4 

5 

6 

7 
8 } 
9 end 

if «curve is unconnected at the flrst endpoint) 
and (the flrst endpoint is not near a "bad" block in z_blockmap» 
PROCESS_RmGE_ENDING[ curve, flrst endpoint of curve] 

if «curve is unconnected at the last endpoint) 
and (the las~ endpoint is not near a "bad" block in z _ blockmap» 
PROCESS_RmGE_ENDING[ curve, last endpoint of curve] , 

199 



** Assume chamfer image C. thinned image T. and endpointJnap are globally available 
1 set point Z JJOintA to Z _endpoint 
2 Z _number JJoints _removed = 0 
3 Z not done = TRuE 

** Process the ridge ending until ZEND_SIZE points have been removed from the 
curved ridge ending. or the curvature and taper criteria indicate that no further action 
should be taken. 

4 while (z_number JJoints_removed ~ ZEND_SIZE and z_not_done = TRUE ) 

5 ( 
6 
7 
8 
9 

set point zJJointB to be ZEND_SIZE + 2 points down z_curve from zJJointA 
set point zJJointe to be ZEND_SIZE + 2 points down z_curve from zJJointB 
z _ distanceAB = Euclidean distance between z JJointA and z JJointB 
z distanceBC = 0 
** Adjust position of Z JJointe so that z _distanceAB is similar to z _ distanceBC 

10 while ( z _distanceBC < z _ distanceAB ) 
11 move point z JJointe down the curve by one point 
12 z _ distanceBC = Euclidean distance between z JJointA and Z JJointB 

** Calculate the average chamfer value for section between Z JJointB and z JJointe 
13 z sum =0 
14 for each (z_i. zJ) between zJJointB and zJJointe. zJJointe inclusive.along z_curve 
15 z _sum = z _sum + C(z _i. z J) 
16 z_average_chamjer _value = z_sum I (number of points in the summation) 
17 if (DOT_PRODUCT(ZJJointe. zJJointB. zJJointA) ~ COS(ZTHRESH_ANGLE) ) 

18 
19 
20 
21 
22 
23 
24 } 

or ( C(x coordinate of Z JJointA. y coordinate of Z JJointA) 
~ ZTAPER_RATIO x z_average_chamJer _value) 

{ 
move point z JJointA down the z _curve by one point 
z _number JJoints _removed = z _number JJoints _removed + 1 

} 
else 

z not done = FALSE 

25 if number JJoints _removed> 0 
26 delete z_endpoint of z_curve from z_endpoint_map 
27 remove the points from T starting at z_endpoint and up to point zJJointA of z_curve 
28 remove the points starting at z_endpoint and up to point zJJointA from z_curve 
29 add new endpoint (zJJointA) of z_curve to z_endpoint_map 
30 end 

200 



B.l.l Summary 

Parameters 

ZEND_SIZE = 6 

ZTHRESH ANGLE = 30 degrees 
ZTAPER_RATIO = 0.75 

Input 
curve list 
C 

T 

z_hlockmap 
endpoin(map 

Output 

modified curve list 
modified endpoint_map 
modified T 

Maximum number of points that can be removed 
from a curved ridge end 
. Curvature limit for curved ridge end 
Tapering ridge width ratio limit for ridge end 

The list of curves for the live-scan fingerprint 
Chamfered image calculated as part of ridge 
thinning (section 5) 
Thinned image regenerated from curve _list and 
update as the curve _list is modified 
Ridge direction data structure 
See defmition in section 7.1.1 

201 



202 



 

 

 

 

 

 

 

APPENDIX C  

BAD BLOCK BLANKING  

 

During the thresholding stage certain blocks are found to contain smudges or other 

inconsistent fingerprint information.  These blocks are labeled as bad blocks but are  

thresholded, nevertheless, so that artificial ridge endings will not appear at the edge of bad    

blocks.  During the bad block blanking stage, the ridge sections that cross bad blocks are 

removed so that the encoded file is as small as possible. This process takes place at the end 

of ridge cleaning, because ridge fragments internal to the bad blocks may contain 

information useful for cleaning.  

 

C.1 ALGORITHM DESCRIPTION  

The bad block blanking process works as a two stage process. The first stage follows  

each ridge in the fingerprint structure and removes segments that cross bad blocks. The  

segments that need to be removed may be at the beginning, end, or middle of a curve; each of   

these cases requires slightly different handling, including potentially modifying, removing, and 

adding curves. The second stage is needed for cleaning, since during the process of  

removing segments that cross bad blocks, a curve that enters a bifurcation may be removed.     

(This removal changes the bifurcation where three curves intersect into a location where only two 

curves intersect.) The second stage of bad block blanking, therefore, identifies this  

condition and joins the two curves in question.  

C.1.1 Removing Curve Segments  

In the first stage, each curve in curve_list is processed in turn. During processing, the 

endpoint_map is modified when an endpoint from the incoming curve list is removed. The 

modified endpoint_map will be used in the second stage to identify the locations where 

exactly two curves intersect.  

Each curve is traversed from beginning to end while searching for the first two  

contiguous curve points that fall outside of a bad block. If there is no such location on the 

curve, then the entire curve is deleted from curve_list and the curve endpoints are removed 

from the endpoint_map. (See curve d in figures C-1 and C-2 for an example of such a  

curve.)  If, on the other hand, the curve does contain two contiguous points outside a bad  

block, then the location of these first two good points determines whether the beginning of the 

curve must be removed.  

If the first two good points are not the first two points in the curve, then the first endpoint  

(which is in or next to a bad block) is removed from the endpoint_map and the curve points  
 
 

203  
 



f 

Figure C-l. Curve List Before and After the First Stage of Bad Block Blanking. 

prior to the flrst two good points are removed from the curve. (For example, see curve e in 
flgure C-l when traversed from left to right.) After any initial bad block points are removed, 
the modifled curve is treated the same as any curve that begins in a good block. 

When the flrst two points in a curve are in a good block, the curve must be searched for 
any later sections that might enter a bad block. First, the curve is searched for the flrst point 
in a bad block. If there is no such point (the most common occurrence), then there are no 
further changes to this curve and processing of the next curve begins. (Curves a,/, ana g in 
flgure C-l fall in this category, as well as curve e after the removal of its initial bad block 
section.) If a bad block point is found, the last endpoint of this curve is removed from the 
endpoint -,nap and the current curve is modified to end just prior to the first bad block point. 
(This happens to curves b and c in the example.) 

jJ .b jJ 
c- c. c- i. 

• d· .d • f e. f e. • .g • .g 
ef,g /,g 

Figure C-2. Endpoint Map Before and After the First Stage of Bad Block Blanking. 

204 



The bad block segment is then followed until it ends (two contiguous points are found in 
a good block). If the bad bl~k continues until the end of the original curve, no further 
processing is needed (see curve b in the example). Otherwise, a new curve must be created 
to contain the next good curve segment. (From curve c, ftrst curve h and then curve i are 
created in the example.) This new curve is added to z _new_curve _list, which temporarily 
stores all new curves. If the end of this new curve is the same as the end of the original 
curve, then the second endpoint must be added back to the endpoint_map (for example, at the 
far end of curve O. Otherwise, if more of the original curve points remain, the process 
described in this paragraph is repeated until the entire curve has been traversed. 

Once all the curves in curve _list have been checked for bad block sections, the new 
curves that were generated and stored in z _new_curve _list are moved into curve_list. 

C.l.2 Joining Curves at Lost Bifurcations 

The last stage of bad block blanking is to check each of the curve endpoints to ensure that 
no two-curve intersections exist. Recall that two-curve intersections occur when one curve 
of a bifurcation has been removed by the process described above. For each curve, an 
examination of the endpoint_map at each of the endpoints shows how many curves touch the 
endpoint. If the value is two at either endpoint, then the two curves that meet at this point are 
combined. For example, ftgure C-2 shows that curves e,!, and g share and endpoint prior to 
bad block blanking. After the ftrst stage, the portion of curve e that intersects curves f and g 
has been removed, so the endpoint_map shows only f and g sharing that endpoint. Therefore, 
curves f and g create a two-curve intersection and must be joined to form the curve j shown 
in Figure C-3. 

-. 
1 

Figure C-3. Curve List After Last Stage of Bad Block Blanking 

205 



C.2 SUMMARY 

Input 

curve list 
z_blockmap 
endpoint_map 

The list of curves for the live-scan fingerprint 
Ridge direction data structure 
See defmition in section 7.1.1 

Output 

modified curve list 

BAD_BLOCK_BLANKING[ curve_list, z_blockmap] 

•• Note that endpoint_map is globally accessible 
1 z new curve list = EMPrY 

2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 

13 
14 
15 

16 
17 
18 
19 

- - -
for each z curve in curve list 
{ 

- -

z=O 
z _ num yoints = number of points in z _curve 
Z_POINT = points in z_curve (in order) 

do 
{ 

•• Search for two contiguous points in good blocks 

z=z+1 
while «z S; z_numyoints) and (Z_POINT(z+I) E bad block» 

z=z+1 
} while «z < z_numyoints) and (Z_POINT(z) E bad block» 

if (z ~ z _ num yoints) •• Did not find two contiguous points in good blocks 
delete endpoints of z _curve from endpoint_map 
delete z curve from curve list 

else ** Found two contiguous points in good blocks 
{ 

if (z > 1) 
( 

•• The first good segment is not at the beginning of z _curve, so 
remove the initial endpoint from the endpoint_map and the 
initial bad points from z _curve 

20 delete first endpoint of z _curve from endpoint_map 
21 delete Z _POINT( 1 Y through Z _POINT(z-I) from z _curve 
22 } 

206 



•• The initial segment must now be good, so find the end of it 
23 while «z S z_nwnyoints) and (Z_POINI'(z) E good block» 
24 z=z+l 

•• z is now the index of the point after the last good point found 
25 if (z S z _ nwn yoints) 
26 ( 

•• Only part of the curve is good. Keep the first good segment on the list 
27 delete the last endpoint of z _curve from endpoint_map 
28 deleteZ_POINT(z) through Z_POINI'(z_nwnyoints) from z_curve 

•• Now search for any other good sections that might exist 
29 while (z S z_nwnyoints) 
30 { 

•• Scan to beginning of next good section 
31 while «z S z_nwnyoints) and (Z_POINT(z) E bad block» 
32 z = z + 1 
33 z Jirst yoint = z 

•• Find end of this good segment 
34 while «z S z_nwnyoints) and (Z_POINT(z) E good block» 
35 z = z + 1 ~ 

•• Check the length of the good segment 
36 if «z - z Jirst yoint) > 1) 
37 ( 

38 

39 
40 
41 
42 
43 } 
44 } 
45 } 
46 } 

} 

•• A valid segment with at least two pixels, 
so create a new curve for it 

create z_new _curve with points Z_POINT(zJirstyoint) 
through Z_POINT(z-l) 

put z _ new_curve on z _ new_curve _list 
if (z > z_nwnyoints) 

add last endpoint of z _ new_curve to endpoint_map 

•• Add newly created curves to original curve list 
47 for each z _curve in z _new_curve _list 
48 add z curve to curve list - -

207 



** Curves that entered a bifurcation may have been removed. Wherever this happened, 
connect the remaining curves 

49 for each Z curve in curve list 

50 
51 
52 
53 

- -** Consider each curve in order of appearance on the list of curves, so that any 
curve that is added to the end of the list will also be considered 

if (first endpoint of z_curve is shared by exactly one other curve) 
JOIN CURVES[Z curve, other curve] ** Section 7.1.3.1 - -

else if (second endpoint of z_curve is shared by exactly one other curve) 
JOIN CURVES[Z curve, other curve] ** Section 7.1.3.1 - -

** Return the updated curve list 
54 return curve list 

208 



APPENDIXD 

PARTITIONING FOR NEIGHBORHOOD AVERAGE RIDGE WIDTHS 

The algorithms for Pore Filling (section 4) use the average ridge width in the 
neighborhood of each pore candidate. Rather than calculate the average ridge width in 
neighborhoods centered on each candidate, which would be computationally expensive, the 
average ridge width is found for fixed regions across the fmgerprint image. The average 
ridge width in the neighborhood of a pore candidate is then approximated by the average 
ridge width in the fixed region in which it lies. 

D.I ALGORITHM DESCRIPTION 

The R x C (rows x columns) fingerprint image is partitioned into Rp sections vertically 
and Cp sections horizontally (figure D-l). Each resulting AlRe x C/Cp rectangle is used as 
a neighborhood for the average ridge width calculation. The parameter values used during 
development and testing of the Pore Filling algorithms are given in section 4.2. The values 
of Rp and Cp were chosen to evenly partition the image so that the resulting neighborhoods 
were roughly 60 x 60, thus covering large enough portions of the fingerprint to yield 
meaningful average ridge widths. To allow for a range of fingerprint image sizes, an 
algorithm was developed to choose the number of horizontal and venical sections in an 
image that would most closely partition the image into 60 x 60 pixel regions. 

~ Cp sections ~ 
- ~r---""--""--""-----' , 

Rp sections 

, 

, ___ 4 ___ ~ ____ ~ __ _ 

, , , 
___ J ___ ~ ____ ~ __ _ 

, , , 
, , , ---, ----,- ---,- ---, , , 

---4---~----~---, , 

- "--'---'---'---'------' 

Figure D-l. Partitioning of Fingerprint Image for Neighborhood Average Ridge Width 
Calculation 

The procedure to choose Rp, the number of sections venically in the image, is the same 
as the procedure to find Cpo the number of sections horizontally. Therefore, in the following 

209 



discussion, the image height or width is referred to as ZZimage size. First, ZZimage size is 
divided by the desired section sizeZOESIREO SECTION SIZE~ If the result of this division is 
an integer, then that integer is the number of Sections (Rp or Cp) in the given image 
dimension. Otherwise, ZOESIREO_SECTION_SIZE is alternately incremented and 
decremented (up to a maximum of ZOElTA SECTION SIZE from its original value) to find a 
section size that divides ZZimage size evenly.-If such a-section size is not found, then the 
section size that results in the smallest remainder from the division is chosen. Finally, 
ZZimage size is divided by the resulting section size to obtain the number of sections (Rp or 
Cp). Typical values of the section size and number of sections obtained for various image 
dimensions are given in table D-l. 

Table D-l. Partitions for Typical Image Sizes 

height (width) 

440 
450 
480 
512 
600 
640 
750 
800 

D.2 SUMMARY 

number of sections Rp (Cp) 

8 
9 
8 
8 
10 
10 
15 
16 

pixels per section 

55 
50 
60 
64 
60 
64 
50 
50 

The parameter values used during development and testing of the algorithms described in 
this section, as well as the input and output variables, are listed below. 

Parameters 

** ZOElTA_SECTION_SIZE = 20 
Maximum variation in the height or width of a 

fingerprint section 

ZOESIREO_SECTION_SIZE = 60 

Input 

Desired height and width of a fingerprint section 

ZZimage _size 

Output 

Image height or width 

Number of sections into which the input dimension should be partitioned 

210 



F'IND_BEST_PARTITION[ ZZimage_size ] 

•• ZZimage_size is either the image width or height 
•• Returns the number of sections into which this dimension should be partitioned 

1 if «ZZimage_size mod ZOESIREO_SECTION_SIZE) = 0) •• mod is the modulus operator 
•• Can form an integer number of sections of ZOESIREO SECTION SIZE 

2 return (zZimage_size / ZOESIREO_SECTION_SIZE) - -
3 else 

4 
5 
6 

7 
8 
9 

10 
11 
12 

13 
14 

15 
16 
17 
18 
19 
20 

21 
22 
23 

•• Try ZZsection size within ZOESIREO SECTION SIZE ± ZOELTA SECTION SIZE 
ZZbest remainder:::; ZOESIREO SECTION -SIZE - --

for zz from 1 to ZOELTA_SECTION_SIZE 
( 

} 

•• ~ry ZZsection size> ZOESIREO SECTION SIZE 

ZZsection_size = Z-OESIREO_SECTIO-N_SIZE + ZZ 
ZZremainder = (ZZimage size mod ZZsection size) 
if (ZZremainder = 0) - -

return (ZZimage _size / zZsection _size) 
else 

if (ZZremainder < ZZbest remainder) 
** This partitioning is the best so far, so save it 
ZZbest remainder = zZremainder 

ZZbest_section_size = ZZsection_size 

•• Try ZZseclion size < ZOESIREO SECTION SIZE 

ZZseclion_size = iOESIREO_SECTIO-N_SIZE - ZZ 
ZZremainder = (ZZimage size mod ZZsection size) 
if (ZZremainder = 0) - -

return (ZZimage_size / ZZseclion_size) 
else 

if (ZZremainder < ZZbesl remainder) 
•• This partitioning is the best so far, so save it 

ZZbesl remainder = ZZremainder 

ZZbesl_section _size = zZseclion -.size 

•• No ZZseclion_size was found to yield an integral partition, so return the best one found 
24 return (ZZimage_size / ZZbesl_seclion_size) 

211 



212 



APPENDIXE 

PSEUDOCODE FUNCTION CALL TREE 

This appendix contains the pseudocode function call tree for the Flat Live-Scan 
Searchprint Compression and Decompression algorithms. The main functions, 
SEARCHPRINT_COMPRESSION and SEARCHPRINT_DECOMPRESSION, are given as flowcharts 
instead of as pseudocode routines. The functions are listed in the order that they appear in 
the document 

SEARCHPRINT _COMPRESSION 

Calls: BHO _BINARIZATION 
IMAGE_CLEANING 
PORE_FILLING 
RIDGE_THINNING 
CURVE_ExTRACTION 
RIDGE_CLEANING 
RIDGE_SMOOTHING 
CALCULATE_CHORD _POINTS 
CURVE_SORTING 
ENCODE_FINGERPRINT 

SEARCHPRINT _DECOMPRESSION 

Calls: DECODE_CURVE_LIST 
B-SPLINE 

IMAGE_CLEANING 

Called by: SEARCHPRINT_COMPRESSION 

Calls: SpUR_REMOVAL 

SpUR_REMOVAL 

Called by: IMAGE_CLEANING 

Calls: PROCESS _ CANDIDATE_SPUR_PIXEL 

PROCESS_ CANDIDATE_SPUR_PIXEL 

Called by: SpUR_REMOVAL 
PROCESS_ CANDIDATE_SPUR_PIxEL 

Calls: PROCESS _ CANDIDATE_SPUR_PIxEL 

213 

Figure 2 

Figure 3 

Section 3 

Section 3.2.1 

Section 3.2.1 



PORE_FILLING 

Called by: SEARCHPRINT _COMPRESSION 

Calls: REMOVE_SMALL_PORES 
REMOVE_LARGE_PORES 

REMOVE_SMALL_PORES 

Called by: PORE_FILLING 

Calls: FOUR.CONNECTED _COMPONENTS 
PREPARE_A VERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 
AVERAGE_NEIGHBORHOOD _RIDGE_WIDTH 

REMOVE_LARGE_PORES 

Called by: PORE_FILLING 

Calls: PREPARE_AVERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 
AVERAGE_NEIGHBORHOOD _RIDGE_WIDTH 
LARGE_PORE_ TEST 

LARGE_PORE_TEST 

Called by: REMOVE_LARGE_PORES 

Calls: SEARCH_EDGE_FOR_MINIMIZING J)IXEL 

SEARCH_EDGE_FOR_MINIMIZING_PTxEL 

Called by: LARGE_PORE_TEST 

PREPARE_AvERAGE _NEIGHBORHOOD _RIDGE_WIDTHS 

Called by: REMOVE_SMALL_PORES 
REMOVE_LARGE_PORES 

Calls: RIDGE THINNING 
AVERAGE_SECTlON_RIDGE_WIDTH 

AVERAGE_SECTION_RIDGE_ WIDTH 

Called by: PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS 

AVERAGE_NEIGHBORHOOD _RIDGE_WIDTH 

Called by: REMOVE_SMALL_PORES 
REMOVE_LARGE_PORES 

214 

Section 4.1 

Section 4.1.1 

Reference [3] 

Section 4.1.2.2 

Section 4.1.2.3 

Section 4.1.2.4 

Section 4.1.3 

Section 4.1.3 

Section 4.1.3 



RIDGE_THINNING 

Called by: PREPARE_AVERAGE_NEIGHBORHOODJbDGE_WIDTHS 
SEARCHP~_CoMPREsmoN 

Calls: 

CHAMFER 

CHAMFER 
DETECT_LoCAL_MAXIMA 
FOLLOW_RIDGE 

Called by: RIDGE_THINNING 

DETECT_LoCAL_MAXIMA 

Called by: RIDGE_THINNING 

FOLLow_RIDGE 

Called by: RIDGE_THINNING 
FOLLOW RIDGE 

Calls: FOLLow_RIDGE 

CURVE_EXTRACTION 

Called by: SEARCHP~ _COMPRESSION 

Calls: CONVERT_TO_SINGLE_PIXEL_WIDE_RmGES 
EXTRACT_CURVES 

CONVERT_TO _SINGLE_PIxEL_ WIDE_RIDGES 

Called by: CURVE_EXTRACTION 

Calls: ApPLY_MASKS 

ApPLY MASKS 

Called by: CONVERT_TO_SINGLE_PIxEL_WIDE_RmGES 

EXTRACT_CURVES 

Called by: CURVE_EXTRACTION 

Calls: INITIALIZE_AND _FOLLOW_CURVE 
FOLLOW_To _Do_LIST 

INITIALIZE_AND_FoLLOW_CURVE 

Called by: EXTRACT_CURVES 

Calls: FOLLow 

215 

Section 5.1 

Section 5.1.1 

Section 5.1.2 

Section 5.1.3 

Section 6.1 

Section 6.1.1.1 

Section 6.1.1.2 

Section 6.1.2 

Section 6.1.2.1 



FOLLOW 

Called by: INITlALIZE_AND_FoLLOW_CURVE 
FOLLOW_To_Do_LIST 
FOLLOW 

Calls: COUNT_NEIGHBORS10R_FoLLOWING 
FOLLOW 
FIND_POSSIBLE_BRANCHES 
INITIALIZE_BRANCHES 

COUNT _NEIGHBORS_FOR_FoLLOWING 

Called by: FOLLOW 

FIND _PossmLE_BRANCHES 

Called by: FOLLOW 

INITIAUZE_BRANCHES 

Called by: FOLLOW 

FOLLOW_To _Do_LIST 

Called by: EXTRACT_CURVES 

Calls: FOLLOW 

Section 6.1.2.2 

Section 6.1.2.3 

Section 6.1.2.3 

Section 6.1.2.5 

Section 6.1.2.6 

RIDGE_CLEANING Section 7.1 

Called by: SEARCHPRINT _COMPRESSION 

Calls: PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_WIDTHS_CURVE 
SMALL_OFFSHOOT_CURVE_REMOVAL 
CURVED_RIDGE_ENDING_REMOVAL 
SMALL_RIDGE_BREAK_ CONNECTION 
SMALL_RIDGE_ CONNECTION_REMOVAL 
SMALL_RIDGE_SEGMENT_REMOVAL 
BAD _BLOCK_BLANKING 

PREPARE_AVERAGE_NEIGHBORHOOD _RmGE_ WIDTHS_CURVE 

Called by: RIDGE_CLEANING 

RIDGE_SECTION_AVERAGE_RIDGE_ WIDTH 

Called by: CONNECTION_SCORING_FUNCTION 
SMALL_RIDGE_ CONNECTION_REMOVAL 

SMALL_OFFSHOOT_CURVE_REMOVAL 

Called by: RIDGE_CLEANING 

Calls: JOIN_CURVES 

216 

Section 7.1 

Section 7.1.2 

Section 7.1.3 



JOIN_CURVES 

Called by: SMALL_OFFSHOOT_CURVE_REMOVAL 
BAD _BLOCK_BLANKING 

SMALL_RIDGE_BREAK_ CONNECTION 

Called by: RIDGE_CLEANING 

CallS: CONNECTION_SCORING_FUNCTION 
CONNECT_CURVES 

CONNECTION _SCORING_FUNCTION 

Called by: SMALL_RIDGE_BREAK_CONNECTION 

Calls: RIDGE_SECTlON_AVERAGE_RIDGE_ WIDTH 

CONNECT_CURVES 

Called by: SMALL_RIDGE_BREAK_CONNECTION 

SMALL_RIDGE_ CONNECTION_REMOVAL 

Called by: RIDGE_CLEANING 

Calls: RIDGE_SECTlON_AvERAGE_RIDGE_ WIDTH 
DOT_PRODUCT 

DOT_PRODUCT 

Called by: SMALL_RIDGE_CONNECTION_REMOVAL 

SMALLJbDGE_SEGMENT_REMOVAL 

Called by: RIDGE_CLEANING 

RIDGE_SMOOTHING 

Called by: SEARCHPRINT _COMPRESSION 

CALCULATE_CHORD _POINTS 

Called by: SEARCHPRINT_COMPRESSION 

Calls: LINE_F'rrTING 

LINE FrrTING 

Called by: CALCULATE_CHORD_POINTS 
LINE_F'rrTING 

Calls: LINE FITTING 

217 

Section 7.1.3.1 

Section 7.1.4 

Section 7.1.4.1 

Section 7.1.4.2 

Section 7.1.5 

Section 7.1.5 

Section 7.1.6 

Section 8.2 

Section 9.2 

Section 9.2 



CURVE_SORTING 

Called by: SEARCHPRINT _COMPRESSION 

Calls: SELECTIVE_PROCESSING 
CYCLIC_PROCESSING 

SELECTTVE_PROCESSING 

Called by: CURVE_SORTING 

Calls: SEARCH_FoR_THE_BEST-FIT_CURVE 
RESULTS_CHECKING 

SEARCH_FOR_THE_BEST-FIT_CURVE 

Called by: SELECTIVE_PROCESSING 

Calls: DISTANCE_COMPARISON 

DISTANCE_COMPARISON 

Called by: SEARCH_FoR_THE_BEST-FIT_CURVE 
SEARCH_FoR_ THE_BEST JNSERTION_LoCATION 

Calls: MAX_BITS 

MAx_BITS 

SUM_BITS 
SUM_DISTANCE 

Called by: DISTANCE_COMPARISON 

Calls: NUM_BITS 

SUM_BITS 

Called by: DISTANCE_COMPARISON 

Calls: NUM_BITS 

SUM_DISTANCE 

Called by: DISTANCE_COMPARISON 

NUM BITS 

Called by: MAX_BITS 
SUM_BITS 
LINKAGE_COMPARISON , 
RESULTS_CHECKING _AND_INSERTION _ OF_UNSORTED _CURVE 

RESULTS_CHECKING 

Called by: SELECTIVE_PROCESSING 

218 

Section 10.1 

Section 10.1.1 

Section 10.1.1.1 

Section 10.1.1.2 

Section 10.1.1.2 

Section 10.1.1.2 

Section 10.1.1.2 

Section 10.1.1.2 

Section 10.1.1.3 



CYCLIC_PROCESSING Section 10.1.2 

Called by: CURVE_SORTING 

Calls: SEARCH_FoR_THE_BEST_INSERTION_LoCATION 

RESULTS_CHECKING_AND _INSERTION_OF _UNSORTED_CURVE 

SEARCH_FoR_ THE_BEST _INSERTION_LOCATION 

Called by: CYCLIc_PROCESSING 

Calls: DISTANCE_COMPARISON 

LINKAGE_COMPARISON 

LINKAGE_COMPARISON 

Called by: SEARCH_FoR_THE_BEST_INSERTION_LoCATION 

Calls: NUM_BITS 
IS_SMALL 

IS_SMALL 

Called by: LINKAGE_COMPARISON 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVE 

Called by: CYCLIC_PROCESSING 

Calls: NUM BITS 

ENCODE_FINGERPRINT 

Called by: SEARCHPRINT _COMPRESSION 

Calls: CALCULATE_RELATIVE_DISTANCES 
DETERMINE_FINGERPRINT_DATA_PROPERTIES 
ENCODE_ CURVE_LIST 

CALCULATE_RELATIVE_DISTANCES 

Called by: ENCODE_FINGERPRINT 

Calls: DETERMINE_ CURVE_DELTA_ OFFSETS 

DETERMINE_ CURVE_JUMP _OFFSETS 

DETERMINE_ CURVE_DELTA_ OFFSETS 

Called by: CALCULATE_RELATIVE_DISTANCES 

DETERMINE_ CURVE_JUMP _OFFSETS 

Called by: CALCULATE_RELATIVE_DISTANCES 

219 

Section 10.1.2.1 

Section 10.1.2.2 

Section 10.1.2.2 

Section 10.1.2.3 

Section 11.4 

Section 11.4.1 

Section 11.4.1 

Section 11.4.1 



DETERMINE_F'INGERPRINT_DATA_PROPERTIES 

Called by: ENCODE_F'INGERPRINT 

Calls: DETERMINE_ CURVE_SIGN_MONOTONICITY 
GENERATE HISTOGRAM 

. DETERMINE_WORD_SIZES 

GENERATE_HISTOGRAM 

Called by: DETERMINE_F'INGERPRINT_DATA_PRoPERTIES 

DETERMINE_ WORD_SIZES 

Called by: DETERMINE_FINGERPRINT_DATA_PROPERTIES 

DETERMINE_ CURVE_SIGN_MoNOTONICITY 

Called by: DETERMINE_FINGERPRINT_DATA_PROPERTIES 

Calls: SIGN 

SIGN 

Called by: DETERMINE_CURVE_SIGN_MONOTONICITY 
ENcODE_JUMP 

ENCODE_ CURVE_LIST 

Called by: ENCODE_FINGERPRINT 

Calls: ENCODE_HEADER 
OUTPUT_STREAM 
ENCODE_ CURVE_DELTAS 
ENCODE_JUMP 

ENCODE_HEADER 

. Called by: ENCODE_CURVE_LIST 

Calls: ENCODE_WORD _SIZES 
OUTPUT_STREAM 

ENCODE WORD SIZES . - -
Called by: ENCODE_HEADER 

Calls: OUTPUT_STREAM 

220 

Section 11.4.2 

Section 11.4.2 

Section 11.4.2 

Section 11.4.2 

Section 11.4.2 

Section 11.4.3 

Section 11.4.3 

Section 11.4.3 



OUTPUT_STREAM 

Called by: ENCODE_CURVE_LIST 

ENCODE HEADER 
ENCODE_ WORD_SIZES 

ENCODE_USING_WORD _SIZES 
ENCODE_JUMP _REFERENCE_END 
ENCODE_SIGN 
ENCODE_ CURVE_DELTAS 

ENCODE_ USING_WORD _SIZES 

Called by: ENCODE_JUMP 
ENCODE_ CURVE_DELTAS 

Calls: OUTPUT_STREAM 

ENCODE_JUMP 

Called by: ENCODE_CURVE_LIST 

Calls: ENCODE_JUMP _REFERENCE_END 
ENCODE_USING_WORD_SIZES 
ENCODE_SIGN 
SIGN 

ENCODE_JUMP _REFERENCE_END 

Called by: ENCODE_JUMP 

Calls: OUTPUT_STREAM 

ENCODE_SIGN 

Called by: ENCODE_JUMP 
ENCODE_ CURVE_DELTAS 

Calls: OUTPUT_STREAM 

ENCODE_ CURVE_DELTAS 

Called by: ENCODE_CURVE_LIST 

Calls: ENCODE_USING_WORD_SIZES 

OUTPUT_STREAM 
ENCODE_SIGN 

221 

Section 11.4.3 

Section 11.4.3 

Section 11.4.3 

Section 11.4.3 

Section 11.4.3 

Section 11.4.3 



DECODE_ CURVE_LIST 

Called by: SEARCHPRINf_DECOMPRESSION 

Calls: DECODE_HEADER 
INPUT_STREAM 
DECODE_ CURVE_DELTAS 
DECODE_JUMP 
ApPLY_CURVE_DELTA_OFFSETS 
ApPLY_JUMP _OFFSETS 

DECODE_HEADER 

Called by: DECODE_CURVE_LIST 

Calls: DECODE_WORD_SIZES 
INPUT_STREAM 

DECODE_WORD _SIZES 

Called by: DECODE_HEADER 

Calls: INPUT_STREAM 

INPUT_STREAM 

Called by: DECODE_CURVE_LIST 
DECODE_HEADER 
DECODE_WORD _SIZES 
DECODE_JUMP_REFERENCE_END 
DECODE_USING_ WORD_SIZES 

DECODE_SIGN_FOR_ VALUE 
DECODE_ CURVE_DELTAS 
DECODE_SIGN 

DECODE_JUMP 

Called by: DECODE_ CURVE_LIST 

Calls: DECODE_JUMP _REFERENCE_END 

DECODE_USING_WORD_SIZES 

DECODE_SIGN_FOR_ VALUE 

DECODE_JUMP _REFERENCE_END 

Called by: DEcoDE_JUMP 

Calls: INPUT_STREAM 

222 

Section 12.1 

Section 12.1 

Section 12.1 

Section 12.1 

Section 12.1 

Section 12.1 



DECODE_USING_ WORD_SIZES 

Called by: DECODE_JUMP 
DECODE_ CURVE_DELTAS 

Calls: INPUT_STREAM 

DECODE_SIGN_FOR_ VALUE 

Called by: DEcoDE_JUMP 

Calls: INPUT_STREAM] 

DECODE_ CURVE_DELTAS 

Called by: DECODE_CURVE_LIST 

Calls: DECODE_USING_WORD_SIZES 

DECODE_SIGN 

INPUT_STREAM 
DECODE_SIGN 
ApPLy_SIGN_TO _VALUE 

Called by: DECODE_ CURVE_DELTAS 

Calls: INPUT_STREAM 

ApPLy_SIGN_To.:. VALUE 

Called by: DECODE_ CURVE_DELTAS 

ApPLY_JUMP _OFFSET 

Called by: DECODE_ CURVE_LIST 

ApPLY _ CURVE_DELTA_ OFFSETS 

Called by: DECODE_CURVE_LIST 

B-SPLINE 

Called by: SEARCHPRINT _DECOMPRESSION 

A 

B 

Calls: A 
B 
C 
D 

Called by: B-SPLINE 

Called by: B-SPLINE 

223 

Section 12.1 

Section 12.1 

Section 12.1 

Section 12.1 

Section 12.1 

Section 12.1 

Section 12.1 

Section 13.1 

Section 13.1 

Section 13.1 



C 

Called by: B-SPUNE 

D 

Called by: B-SPLINE 

BHO _BINARIZATION 

Called by: SEARCHPRINT _COMPRESSION 

Calls: WRITE_BLOCK_FILE 

WRITE _BLOCK_FILE 

Called by: BHO _BINARIZATION 

CURvED_RIDGE_ENDING_REMOVAL 

Called by: RIDGE_CLEANING 

Calls: PROCESS_RIDGE_ENDING 

PROCESS _RIDGE_ENDING 

Called by:· CURVED_RIDGE_ENDING_REMOVAL 

BAD_BLOCK_BLANKING 

Called by: RIDGE_CLEANING 

Calls: JOIN_CURVES 

FIND _BEST_PARTITION 

224 

Section 13.1 

Section 13.1 

Appendix A 

Appendix A 

Appendix B 

Appendix B 

Appendix C 

Appendix D 



APPENDIX F 

LISTS OF CONSTANTS, PARAMETERS, AND VARIABLES 

This appendix contains separate tables for constants, parameters, and variables that are 
used in the pseudocode in this document. Each table contains the name of the item, the 
pseudocode function that refers to it, and the section where the pseudocode resides. The 
parameter and variable lists also contain a brief description of the item, while the constant list 
is preceded by a table showing the constant groupings within which the values must be 
distinct. 

Table F·l. Constant Groupings 

WHITE,BLACK 

FALSE, TRUE 

TOP _LEFf, TOP _RIGHr, BOTI'OM_LEFf, BOTI'OM_RIGHT, LEFf, TOP, RIGHr, BOTI'OM 

MONOTONIC_BOTH, MONOTONIC_DX, MONOTONIC_DY, NON_MONOTONIC 

POSn1VE, NEGATIVE 

BACKGROUND, RIDGE, LOCAL_MAXIMUM 

225 



Table F-2. List of Constants 

Constant Function Section 

BACKGROUND DETECT_LoCAL_MAXIMA 5.1.2 
BACKGROUND FOLLOW_RIDGE. 5.1.3 
BIFURCATION EXTRACT_CURVES 6.1.2 
BIFURCATION FOLLOW 6.1.2.2 
BIFURCATION FOLLOW_To_Do_LIST 6.1.2.6 
BIFURCATION INITIALIZE_AND _FOLLOW_CURVE 6.1.2.1 
BIFURCATION INITIALIZE BRANCHES 6.1.2.5 
BLACK AVERAGE_SECTION_RIDGE_ WIDTH 4.1.3 
BLACK CONVERT_TO_SINGLEJ'IXEL_WIDE_RIDGES 6.1.1.1 
BLACK DYNAMIC THRESHOLDING 2.2 
BLACK EXTRACT_CURVES 6.1.2 

tv BLACK FIND _PossmLE_BRANCHES 6.1.2.3 tv 
0\ 

FOLLOW 6.1.2.2 BLACK 

BLACK FOLLOW To Do LIST 6.1.2.6 - - -
BLACK PROCESS_CANDIDATE_SPUR_PIxEL 3.2.1 
BLACK REMOVE_LARGE_PORES 4.1.2.2 
BLACK REMOVE_SMALL_PORES 4.1.1 
BLACK SpUR_REMOVAL 3.2.1 
BOTI'OM FOLLOW_RIDGE 5.1.3 
BOTI'OM_LEFr FOLLOW RIDGE 5.1.3 
BOTI'OM_RIGHf FOLLOW_RIDGE 5.1.3 
CONTINUE_FIRST_STAGE RESULTS_CHECKING 10.1.1.3 
CONTINUE_FIRST_STAGE SELECTIVE PROCESSING 10.1.1 
EMPTY EXTRACT_CURVES 6.1.2 
EMPTY FIND_POSSIBLE_BRANCHES 6.1.2.3 
EMPTY FOLLOW To Do LIST 6.1.2.6 - - -

" 



Table F-2. List of Constants (continued) 

Constant Function Section 

EMPTY INrnALIZE_AND _FOLLOW_CURVE 6.1.2.1 
EMPTY INITIALIZE_BRANCHES 6.1.2.5 
EMPTY BAD_BLOCK_BLANKING Appendix C 
FALSE ApPLY_MASKS 6.1.1.2 
FALSE CONNECT_CURVES 7.1.4.2 
FALSE CONVERT_TO_SINGLEJ'IXEL_ WIDE_RIDGES 6.1.1.1 
FALSE DETERMINE_ CURVE_SIGN_MoNOTONICITY 11.4.2 
FALSE DISTANCE_COMPARISON 10.1.1.2 
FALSE FOLLOW_RIDGE 5.1.3 
FALSE LINKAGE_COMPARISON 10.1.2.2 
FALSE REMOVE_SMALL_PORES 4.1.1 

tv FALSE SEARCH_FoR_ THE_BEST-FIT _CURVE 10.1.1.1 tv . -.J 
SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 FALSE 

FALSE SMALL_RIDGE_BREAK_ CONNECTION 7.1.4 
FIRST_ENDPOINT ApPLY_JUMP_OFFSET 12.2 
FIRST_ENDPOINT DECODE_JUMP _REFERENCE_END 12.2 
FIRST_ENDPOINT DETERMINE_JUMP _OFFSET 11.4.1 
FIRST_ENDPOINT ENCODE_JUMP_REFERENCE_END 11.4.3 
FIRST_ENDPOINT SEARCH_FoR_THE_BEST-FIT_CURVE 10.1.1.1 
FIRST_ENDPOINT SEARCH_FoR_THE_BEST_INSERTION_LOCATION 10.1.2.1 
FlRST_STAGE_~SHED RESULTS_CHECKING 10.1.1.3 
ILLEGAL_CONNECTION CONNECTION_SCORING_FUNCTION 7.1.4.1 
LARGE_PORE_CANDIDATE LARGE_PORE_TEST 4.1.2.3 
LARGE_PORE_CANDIDATE REMOVE_ LARGE_PORES 4.1.2.2 
LAST_ENDPOINT ApPLY_JUMP_OFFSET 12.2 
LAST_ENDPOINT DECODE_JUMP _REFERENCE_END 12.2 



~ 

Table F-2. List of Constants (continued) 

Constant Function S~~tion 

LAST_ENDPOINT DETERMINE_JUMP _OFFSET 11.4.1 
LAST_ENDPOINT ENCODE_JUMP _REFERENCE_END 11.4.3 
LAST_ENDPOINT RESULTS_CHECKING 10.1.1.3 
LAST_ENDPOINT SEARCH_FoR_ THE_BEST-FIT _CURVE 10.1.1.1 
LAST_ENDPOINT SEARCH_FoR_THE_BEST_INSERTION_LOCATION 10.1.2.1 
LEFf FOLLOW_RIDGE 5.1.3 
LOCAL_MAXIMUM DETECT_LoCAL_MAXIMA 5.1.2 
LOCAL_MAXIMUM FOLLOW_RIDGE 5.1.3 
LOCAL_MAXIMUM FOLLOW RIDGE 5.1.3 
LOCAL_MAXIMUM RIDGE_THINNING 5.1 
MAJCOFFSET _POssmLE RESULTS_CHECKING 10.1.1.3 

N ~_OFFSET_POssmLE SEARCH_FoR_ THE_BEST-FIT_ CURVE 10.1.1.1 N 
00 

DECODE_CURVE_DELTAS 12.2 MONOTONIC_BOTH 

MONOTONIC_BOTH DETERMINE_ CURVE_SIGN_MoNOTONICITY 11.4.2 
MONOTONIC_BOTH ENCODE_ CURVE_DELTAS 11.4.3 
MONOTONIC_DX DECODE_CURVE_DELTAS 12.2 
MONOTONIC_DX DETERMINE_ CURVE_SIGN_MoNOTONICITY 11.4.2 
MONOTONIC_DX ENCODE_ CURVE_DELTAS 11.4.3 
MONOTONIC_DY DECODE_ CURVE_DELTAS 12.2 
MONOTONIC_DY DETERMINE_ CURVE_SIGN_MoNOTONICITY 11.4.2 
MONOTONIC_DY ENCODE_ CURVE_DELTAS 11.4.3 
NEGATIVE ApPLY_SIGN_To_ VALUE 12.2 
NEGATIVE DECODE_SIGN 12.2 
NEGATIVE ENCODE_SIGN 11.4.3 
NEGATIVE SIGN 11.4.2 
NON_MONOTONIC DECODE_ CURVE_DELTAS 12.2 



Table F-2. List of Constants (continued) 

Constant Function S~tiQn 

NON_MONOTONIC DETERMINE_ CuavE_SIGN_MoNOTONICITY 11.4.2 
NON_MONOTONIC ENCODE_ CURVE_DELTAS 11.4.3 
NOT_VAUD LARGE_PORE_TEST 4.1.2.3 
NOT_VAUD SEARCH_EDGE10R_MINIMIZING _PIXEL 4.1.2.4 
NULL CYCLIC_PROCESSING 10.1.2 
NULL RESULTS_ CHECKING_AND_INSERTION_ OF_UNSORTED _CURVE 10.1.2.3 
NULL SEARCH_FoR_THE_BEST_INSERTION_LOCATION 10.1.2.1 
NULL SELECTIVE_PROCESSING 10.1.1 
POsmvE DECODE_SIGN 12.2 
POSmvE DETERMINE_CuavE_SIGN_MoNOTONICITY 11.4.2 
POSmvE ENCODE_SIGN 11.4.3 

tv POSmvE SIGN 11.4.2 tv 
\0 

FIND POSSIBLE BRANCHES 6.1.2.3 POssmLE - -
REPEAT _FIRST_STAGE RESULTS_CHECKING 10.1.1.3 
REPEAT_FIRST_STAGE_SEARCH SELECTIVE_PROCESSING 10.1.1 
RIOOE CHAMFER 5.1.1 
RIOOE FOLLOW RIDGE 5.1.3 
RIGHT FOLLOW RIDGE 5.1.3 
SEED FIND_POSSIBLE_BRANCHES 6.1.2.3 
SEED FOLLOW 6.1.2.2 
SEED INITIALIZE_BRANCHES 6.1.2.5 
TRUE ApPLY_MASKS 6.1.1.2 
TRUE CONNECT_CURVES 7.1.4.2 
TRUE CONVERT_TO _SINGLE_PIXEL_ WIDE_RIDGES 6.1.1.1 
TRUE DETERMINE_ CuavE_SIGN_MoNOTONICITY 11.4.2 
TRUE DISTANCE_COMPARISON 10.1.1.2 

CI 



Table F·2. List of Constants (continued) 

Constant function S~liQD 

TRUE FOLLOW_RIDGE 5.1.3 
TRUE LINKAGE_COMPARISON 10.1.2.2 
TRUE PORE FILLING 4.1 
TRUE REMOVE_SMALL_PORES 4.1.1 
TRUE RESULTS_CHECKING_AND_lNsERTION_OF_UNSORTED_CURVE 10.1.2.3 
TRUE SEARCH_FoR_THE_BEST-FIT_CURVE 10.1.1.1 
TRUE SEARCH_FoR_THE_BEST_INSERTION_LOCATION 10.1.2.1 
UNDEANED_DmECTION RIDGE THINNING 5.1 
WHITE CONVERT_TO_SINGLE_PIXEL_ WIDE_RIDGES 6.1.1.1 
WHITE CREASE_TRIMMING 3.1.1 
WHITE DYNAMIC_THRESHOLDING 2.2 

tv WHITE FOLLOW 6.1.2.2 w 
0 

WHITE FOLLOW_To _Do_LIST 6.1.2.6 
WHITE INITIALIZE_AND _FOLLOW_CURVE 6.1.2.1 
WHITE PROCESS _ CANDIDATE_SPUR_PIxEL 3.2.1 
WHITE REMOVE_ LARGE_PORES 4.1.2.2 
WHITE REMOVE_SMALL_PORES 4.1.1 
ZERO DECODE_SIGN 12.2 
ZERO DECODE_SIGN_FOR_ VALUE 12.2 
ZERO DETERMINE_CURVE_SIGN_MONOTONICITY 11.4.2 
ZERO SIGN 11.4.2 



N 
w -

Parameter 

ACOLINEAR = 45 degrees 

ApARALLEL = 45 degrees 

ASEGMENT = 60 degrees 

ASTRAIGHT = 90 degrees 

ALLOWABLE_RESIDUE 

BITSHUFFMAN_INDEX = 2 

Table F -3. List of Parameters 

Function 

CONNECTION_SCORING _FuNCTION 

SMALL_RIDGE_ CONNECTION_REMOVAL 

CONNECTION_SCORING _FUNCTION 

SMALL_RIDGE_CONNECTION_REMOVAL 

LINE FITTING 

ENCODE HEADER 

Section Description 

7.1.4.1 Angular limit 
for colinearity 

7.1.5 Angular limit 
for parallelism 
of neighboring 
ridges 

7.1.4.1 Angular limit 
for colinearity 
with a small 
segment 

7.1.5 Angular limit 
for straightness 

9.2 Smallest 
acceptable 
perpendicular 
distance 
beiween the 
curve segment 
and the chord 
segment 

11.4.3 The number of 
bits used to 
represent the 
sign 
monotonicity 
type index that 
is assigned to a 
particular 
Huffman 
symbol 



tv w 
tv 

-- ---------------------------------------------------------------------------------------------------------------------------, 

Parameter 

BITSIMAGE_SIZE = 16 

BITSIMAGE_SIZE = 16 

Table F -3. List of Parameters (continued) 

Function 

ENCODE_HEADER 

DECODE_HEADER 

BITSMINIMUM NUMBER OF DELTA = 2 DECODE HEADER - - - -

BITSMINIMUM_NUMBER_OF _DELTA = 2 DETERMINE_FINGERPRINT_DATA_PROPERTIES 

" 

Section Description 

11.4.3 The number of 
bits used to 
represent the 
dimensions of 
the image 

12.2 The number of 
bits used to 
represent the 
dimensions of 
the image 

12.2 The number of 
bits used to 
represent the 
minimum 
number of 
deltas of any 
curve of the 
curve list 

11.4.2 The number of 
bits used to 
represent the 
minimum 
number of 
deltas of any 
curve of the 
curve list 



tv 
~ 
~ 

Table F·3. List of Parameters (continued) 

Parameter Function 

BITSMINIMUM_NUMBER_OF _DELTA = 2 ENCODE_HEADER 

BITSNUMBER_OF _WORD_SIZES = 2 DECODE_WORD _SIZES 

BITSNUMBER_OF _WORD_SIZES = 2 ENCODE_WORD _SIZES 

BITSNUMBER_OF_CURVES = 11 DECODE_ CURVE_LIST 

Section Description 

11.4.3 The number of 
bits used to 
represent the 
minimum 
number of 
deltas of any 
curve of the 
curve list 

12.2 The number of 
bits used to 
represent the 
number of word 
sizes in a 
word_size 
coding scheme 

11.4.3 The number of 
bits used to 
represent the 
number of word 
sizes in a 
word_size 
coding scheme 

12.2 The number of 
bits used to 
represent the 
number of 
curves in the 
fingerprint 
curve list 



tv 
Vl 
~ 

Parameter 

BITSNUMBER_OF _CURVES = 11 

BITSwORD_SIZE = 4 

BITSwORD_SIZE = 4 

BITSx_COORDINATE = 9 

Table F -3. List of Parameters (continued) 

Function 

ENCODE_ CURVE_LIST 

DECODE_WORD _SIZES 

ENCODE_WORD _SIZES 

DECODE_ CURVE_LIST 

Section Description 

11.4.3 The number of 
bits used to 
represent the 
number of 
curves in the 
fingerprint 
curve list 

12.2 . The number of 
bits used to 
represent a 
word size in a 
word_size 
coding scheme 

11.4.3 The number of 
bits used to 
represent a 
word size in a 
word_size 
coding scheme 

12.2 The number of 
bits used to 
represent an 
absolute 
x -coordinate in 
the live-scan 
fingerprint 
image (based on 
the width of the 
. image) 



N 
u,) 

V\ 

Parameter 

BITSX_CooRDINATE = 9 

BITSY_CooRDINATE = 10 

BITSy _COORDINATE = 10 

Table F·3. List of Parameters (continued) 

Function 

ENCODE_ CURVE_LIST 

DECODE_ CURVE_LIST 

ENCODE_ CURVE_LIST 

Section Description 

11.4.3 The number of 
bits used to 
represent an 
absolute 
x-coordinate in 
the live-scan 
fingerprint 
image (based on 
the width of the 
image) 

12.2 The number of 
bits used to 
represent an 
absolute 
y-coordinate in 
the live-scan 
fingerprint 
image (based on 
the height of the 
image) 

11.4.3 The number of 
bits used to 
represent an 
absolute 
y-coordinate in 
the live-scan 
fingerprint 
image (based on 
the height of the 
image) 



N 
W 
0'1 

Parameter 
C=450 

Cp=9 

C%=25% 

DCYCLIC = 64 

Table F·3. List of Parameters (continued) 

Function Section Description 

PREPARE_AvERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 4.1.3 Number of 
columns in the 
fingerprint 
Image 

PREPARE_AVERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 4.1.3 Number of 
horizontal 
sections in the 
partition of the 
fingerprint 
image used to 
calculate 
average ridge 
widths 

RESULTS_CHECKING 10.1.1.3 Maximum 

CYCLIC_PROCESSING 

percentage of 
curves that can 
exist in the 
unsorted list 
before the 
cyclic 
processing stage 
will begin if 
SEARCH FOR 
THE BEST-

FIT_CURVE fails 
10.1.2 Initial filter 

value assigned 
to each curve 
upon entering 
the cyclic 
processing stage 



N 
W 
.....:J 

Parameter 

DSElECT = 128 

EMAX=50 

EMAX = 50 

FOOUBlY_CONNECTEO = 2.25 

Table F -3. List of Parameters (continued) 

Function 

SELECTIVE PROCESSING 

LARGE_PORE_TEST 

SEARCH_EDGE_FOR_MINIMIZING_PIXEL 

SMALL_RIDGE_CONNECTION _REMOVAL 

Section Description 

10.1.1 Initial value 
assigned to the 
filter variable 
upon entering 
the selective 
processing stage 

4.1.2.3 The maximum 
distance for a 
search along a 
ridge edge, in 
pixels 

4.1.2.4 The maximum 
distance for a 
search along a 
ridge edge, in 
pixels 

7.1.5 Maximum 
length of a 
doubly 
connected curve 
in terms of the 
average of its 
neighboring end 
sections' 
average ridge 
widths 



tv 
Vl 
00 

Parameter 

FOFFSHOOT CURVE = 2.0 

FRIDGE_BREAK = 1.0 

FUNCONNECTED_CURVE = 5.0 

Table F-3. List of Parameters (continued) 

Function 

SMALL_OFFSHOOT_CURVE_REMOVAL 

. CONNECTION_SCORING_FuNCTION 

SMALL_RIDGE_SEGMENT _REMOVAL 

Section Description 

7.1.3 Length of the 
smallest 
allowable singly 
connected curve 
in terms of 
ridge _ widthfinge 
rprint 

7.1.4.1 Maximum 
. length ofa 
possibly 
connectable 
ridge break in 
terms of 
ridge _ widthfinge 
rprint 

7.1.6 Length of the 
smallest 
allowable 
unconnected 
curve in terms 
of 
ridge _ widthfinge 
rprint 



N 
W 
\0 

Parameter 

H=5 

LOOUBlY_CONNECTED = 20 

LMAx = 10 

Table F -3. List of Parameters (continued) 

Function 

SEARCH_EDGE_FOR_MINIMIZING_PIXEL 

SMALL_RIDGE_ CONNECTION_REMOVAL 

REMOVE LARGE PORES - -

Section Description 

4.1.2.4 When choosing 
a ridge edge 
pixel to 
minimize the 
distance to a 
point, a pixel is 
considered to 
minimize this 
distance if no 
ridge edge pixel 
within H pixels 
yields a smaller 
distance 

7.1.5 Maximum 
length ofa 
doubly 
connected curve 
to be considered 
for removal 

4.1.2.2 Maximum ratio 
between the 
white area of a 
large pore 
candidate and 
the average 
ridge width in 
its 
neighborhood 



Table F-3. List of Parameters (continued) 

Parameter Function Section Description 

lUMAX = 15 LARGE_PORE_TEST 4.1.2.3 Maximum 
distance to the 
left of, or up 
from, an initial 
pore pixel to its 
enclosing ridge 
edge, in pixels 

MAXOFFSET = 601 RESULTS_CHECKING 10.1.1.3 The larger of 
the width and 
height of the 
image, plus one 

MAXOFFSET = 601 SEARCH_FoR_ THE_BEST-FIT_ CURVE 10.1.1.1 The larger of 
the width and 

tv 
height of the ~ 

0 
image, plus one 

N =30 B-SPLINE 13.2 Height and 
width (in 
pixels) of the 
pixel 
neighborhood 
window 

N=9 DYNAMIC THRESHOLDING 2.2 Height and 
width (in 
pixels) of the 
pixel 
neighborhood 
window 

PINIT=6 SELECTIVE PROCESSING 10.1.1 Initial value for 
the penalty 
variable 



~ .... 

Parameter 

PMAX=2.5 

PMIN = 3.0 

R=600 

Rp= 10 

Table F -3. List of Parameters (continued) 

Function 

LARGE_PORE_TEST 

LARGE_PORE_TEST 

Section Description 

4.1.2.3 Maximum ratio 
between the 
pore and ridge 
widths ofa 
candidate and 
the average 
neighborhood 
ridge width in 
the large pore 
model 

4.1.2.3 Minimum ratio 
between the 
width of a pore 
candidate and 
the ridges to 
either side of it 
in the large pore 
model 

PREPARE_AvERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 4.1.3 Number of rows 
in the 
fingerprint 
image 

PREPARE_AvERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 4.1.3 Number of 
vertical sections 
in the partition 
of the 
fingerprint 
image used to 
calculate 
average ridge 
widths . 



~ 
N 

Parameter 

RADIUSOEFAULT = 81 

RIDGE_SIZEMIN = 5 

RIDGE_SIZEMIN = 5 

S = 15 

Table F·3. List of Parameters (continued) 

Function 

SMALL_RIDGE_BREAK_ CONNECTION 

CONNECTION_SCORING _FuNcrION 

SMALL_RIDGE_BREAK_CONNECTION 

IS_SMALL 

Section Description 

7.1.4 Default search 
radius for the 
small ridge 
break 
connection 
algorithm 

7.1.4.1 Minimum 
length ofa 
curve allowed 
to be used in 
calculating 
colinearity 

7.1.4 Minimum 
length ofa 
curve allowed 
to be used in 
calculating 
colinearity 

10.1.2.2 Limit used to 
test whether one 
insertion 
linkage has 
more small 
offsets than 
another 
insertion 
linkage 



~ 
I.N 

Parameter 

S= 15 

SVERTICAL_RUN = 1/2 IWIDTH 

SIZESDELTAS = 2 

SIZESJUMPS = 3 

SIZESNUM_DELTAS = 2 

Table F -3. List of Parameters (continued) 

Function 

LINKAGE_COMPARISON 

CREASE_TRIMMING 

DETERMINE FINGERPRINT DATA PROPERTIES - --

DETERMINE_FINGERPRINT_DATA_PROPERTIES 

DETERMINE FINGERPRINT DATA PROPERTIES - --

Section Description 

10.1.2.2 Limit used to 
test whether one 
insertion 
linkage has 
more small 
offsets than 
another 
insertion 
linkage 

3.1.1 Width of 
sampled 
venical run 

11.4.2 Maximum 
number of word 
sizes allowed 
for encoding the 
deltas of curves 

11.4.2 Maximum 
number of word 
sizes allowed 
for encoding the 
jumps between 
curves 

11.4.2 Maximum 
number of word 
sizes allowed 
for encoding the 
number of 
deltas in curves 



tv 

t 

Parameter 

TOFFSET =40 

W 

WOOUBLY_CONNECTEO = 0.95 

WMAX = 8.0 

Table F·3. List of Parameters (continued) 

Function 

CREASE_TRIMMING 

RIDGE_SMOOTIDNG 

SMALL_RIDGE_ CONNECTION_REMOVAL 

AVERAGE_SECTION_RIDGE_ WIDTH 

Section Description 

3.1.1 Number of rows 
below the 
crease where 

8.2 
trimming begins 
The window 
size constant for 
the smoothing 
window 

7.1.5 Maximum 
average ridge 
width of the 
doubly 
connected curve 
in terms of the 
average of its 
neighboring end 
sections average 
ridge widths 

4.1.3 Maximum 
width of a ridge 
for the average 
ridge width 
calculation, in 
pixels 



Table F-3. List of Parameters (continued) 

Parameter Function Section Description 

WMIN = 1.4· AVERAGE_SECTION_RIDGE_ WIDTH 4.1.3 Minimum width 
of a ridge for 
the average 
ridge width 
calculation, in 
pixels 

ZDELTA_SECTION_SIZE = 20 FIND BEST PARTITION D.2 Maximum - -
variation in the 
width or height 
of a fingerprint 
section 

ZDESIRED_SECTION_SIZE = 60 FIND_BEsT_PARTITION D.2 Desired width 

tv 
and height of a 

~ fingerprint 
VI 

section 

ZEND_SIZE = 6 CURVED_RIDGE_ENDING_REMOVAL B.1 Maximum 
number of 
points that can 
be removed 
from a curved 
ridge ending 

ZEND_SIZE = 6 PROCESS _ RIDGE_ENDING B.1 Maximum 
number of 
points that can 
be removed 
from a curved 
ridge ending 



Table F-3. List of Parameters (continued) 

Parameter Function Section Description 

ZLENGTH_OFFSHOOT = 5.0 SMALL_OFFSHOOT_CURVE_REMOVAL 7.1.3 Length of the 
smallest 
allowable singly 
connected curve 
in terms of the 
local average 
ridge width 

ZLENGTH_UNCONNECTED = 10.0 SMALL_RIDGE_SEGMENT_REMOVAL 7.1.6 Length of the 
smallest 
allowable 
unconnected 
curve in terms 
of the local 

N average ridge ~ 
0'\ width 

ZSATURATION_RATIO = 2.0 BUO _BINARIZATION A.l.3 Maximum ratio 
between pixels 
at 254 and 
pixels at 255 for 
an unsaturated 
image 

ZTAPER_RATIO =0.75 PRocESs_RIDGE_ENDING B.1 Tapering ridge 
width ratio limit 
for curved ridge 
ending 

Z THRESH_ANGLE = 30 degrees PRocESs_RIDGE_ENDING B.l Curvature limit 
for curved 
ridge ending 



Table F-3. List of Parameters (continued) 

Parameter Function Section Description 

Z THRESHOLD_FRACTION = 0.8 BHO _BINARIZATION A.1.3 Fraction of the 
distance 
between the 
mean pixel 
value and the 
maximum pixel 
value in an 
image used to 
detennine 
zz_top 

ZWIDTH_OFFSHOOT = 0.65 SMALL_OFFSHOOT_CURVE_REMOVAL 7.1.3 Width of the 
smallest 

tv allowable singly ~ ...... connected curve 
in tenns of the 
local average 
ridge width 

ZWIDTH_UNCONNECTED = 0.65 SMALL_RIDGE_SEGMENT _REMOVAL 7.1.6 Width of the 
smallest 
allowable 
unconnected 
curve in tenns 
of the local 
average ridge 
width 

ZN=24 BHO _BINARIZATION AppA Height and 
width (in 
pixels) of 
blocks 



Table F -4. List of Variables 

Variable Function Section Description 

J.lcolumn RIDGE_SMOOTIflNG 8.2 Average column 
coordinate of the 
points currently 
within the 
smoothing window 

JlI DYNAMIC_THRESHOLDING 2.2 Image overall 
mean pixel value 

Ilrow RIDGE SMOOTIDNG 8.2 Average row 
coordinate of the 
points currently 
within the 
smoothing window 

tv Jlverticatrun CREASE TRIMMING 3.1.1 Mean of the 
.,:::.. sampled 00 

vertical_run 
lengths 

f.lwindow DYNAMIC_THRESHOLDING 2.2 Mean pixel value 
of a pixel's 
neighbOrhood 
window 

CJyertical run CREASE_TRIMMING 3.1.1 Standard deviation 
of the sampled 
verticaLrun 
lengths 

a ApPLY_CURVE_DELTA_OFFSETS 12.2 Index in curve of 
point prior to one 
currently being 
considered 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

a ApPLy_JUMP_OFFSET 12.2 Index in curve list 
of curve prior to 
one currently being 
considered 

a CALCULATE_RELATIVE_DISTANCES 11.4.1 Index in curve list 
of curve prior to 
one currently being 
considered 

a CHAMFER 5.1.1 Candidate chamfer 
value 

a CONNECT_CURVES 7.1.4.2 One of two curves 
to be connected 

tv into one curve 
~ 
\0 a CONNECTION_SCORING_FuNCTION 7.1.4.1 An endpoint that is 

on one side of a 
potential small 
ridge break 

a DECODE _CURVE_LIST 12.2 Index in curve list 
of curve prior to 
one currently being 
considered 

a DECODE_JUMP 12.2 Index in curve list 
of curve prior to 
one currently being 
considered 

a DETERMINE_CURVE_DELTA_OFFSETS 11.4.1 Index in curve of 
point prior to one 
currently being 
considered 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

a DETERMINE_JUMP _OFFSET 11.4.1 Index in curve list 
of curve prior to 
one currently being 
considered 

a DOT_PRODUcr 7.1.5 A point 
a ENCODE_JUMP 11.4.3 Index in curve list 

of curve prior to 
one currently being 
considered 

a JOIN_CURVES 7.1.3.1 One of two curves 
to be concatenated 
into one curve 

tv a RIDGE_SMOOTIDNG 8.2 Point on the front VI 
0 

of the smoothing 
window 

a SMALL_OFFSHOOT_CURVE_REMOVAL 7.1.3 One of two curves 
that shares an 
endpoint with the 
curve being 
considered 

a SMALL_RIDGE_BREAK_CONNECTION 7.1.4 Endpoint initiating 
search for small 
ridge break 

a SMALL_RIDGE_ CONNECTION_REMOVAL 7.1.5 A curve 
overlapping the 
curve being 
considered for 
being a small ridge 
connection 



tv 
VI -

Variable 

after _curve 

after _ curvereference _end flag 

angle_scorea 

angle _scoreb 

area_vector 

ax 

llx 

Table F 4. List of Variables (continued) 

Function Section Description 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVEI0.1.2.3 
Curve in 
soned list before 
which the first 
curve in 
unsoned list best 
fits in soned list 

RESULTS_CHECKING_AND_INSERTIoN_OF_UNSORTED_CURVEI0.1.2.3 
The reference end 
flag of after _curve 

CONNECTION_SCORING_FUNCTION 7.1.4.1 Value related ~ the 
angle of change 
traversed from 
refathrough 
endpoint a to 
endpointb 

CONNECTION_SCORING_FUNCTION 7.1.4.1 Value related to the 
angle of change 
traversed from 
refbthrough 
endpoint b to 
endpoint a 

REMOVE_SMALL_ PORES 4.1.1 Vector of areas 
corresponding to 
labels in 

ApPLY_CURVE_DELTA_OFFSETS 

DETERMINE_CURVE_DELTA_OFFSETS 

LABEL_IMAGE 
12.2 The x coordinate 

of point a 
11.4.1 The y coordinate 

of point a 



Table F -4. List of Variables (continued) 

Variable Functio.n Section Description 

l1y ApPLY_CURVE_DELTA_OFFSETS 12.2 The y coordinate 
of point a 

l1y DETERMINE_ CURVE_DELTA_ OFFSETS 11.4.1 The y coordinate 
of point a 

b ApPLY _ CURVE_DELTA_ OFFSETS 12.2 Index in curve of 
point currently 
being considered 

b ApPLY_JUMP _OFFSET 12.2 Index in curve list 
of curve currently 
being considered 

b CALCULATE_RELATIVE_DISTANCES 11.4.1 Index in curve list 
tv of curve currently 
VI being considered tv 

b CHAMFER 5.1.1 Candidate chamfer 
value 

b CONNECT_CURVES 7.1.4.2 One of two curves 
to be connected 
into one curve 

b CONNECTION_SCORING_FUNCTION 7.1.4.1 An endpoint that is 
on one side of a 
potential small 
ridge break 

b DECODE_CURVE _LIST 12.2 Index in curve list 
of curve currently 
being considered 

b DECODE_JUMP 12.2 
) 

Index in curve list 
of current curve 
being considered 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

b DETERMINE_ CURVE_DELTA_ OFFSETS 11.4.1 Index in curve of 
point currently 
being considered 

b DETERMINE_JUMP _OFFSET 11.4.1 Index in curve list 
of curve currently 
being considered 

b DOT PRODUCT 7.1.5 A point 

b ENCODE_JUMP 11.4.3 Index in curve list 
of curve currently 
being considered 

b JOIN_CURVES 7.1.3.1 One of two curves 
to be concatenated 

tv 
into one curve 

VI 
b RIDGE_SMOOTmNG 8.2 Point on the back w 

of the smoothing 
window 

b SMALL_OFFSHOOT _CURVE_REMOVAL 7.1.3 One of two curves 
that shares an 
endpoint with the 
curve being 
considered 

b SMALL_RIDGE_BREAK_CONNECTION 7.1.4 Candidate 
endpoint for being 
part of small ridge 
break 



tv 
VI 
,f:. 

Variable 

b 

bx 

bx 

by 

by 

before_curve 

before _ curvere/erence _end Jlag 

Table F -4. List of Variables (continued) 

Function 

SMALL_RIDGE_CONNECTION_REMOVAL 

ApPLY _ CURVE_DELTA_ OFFSETS 

DETERMINE_CURVE_DELTA_OFFSETS 

ApPLY_CURVE_DELTA_OFFSETS 

Section Description 

7.1.5 A curve 
overlapping the 
curve being 
considered for 
being a small ridge 
connection 

12.2 The x coordinate 
of point b 

11.4.1 The x coordinate 
of point b 

12.2 The y coordinate 
of point b 

DETERMINE_CURVE_DELTA_OFFSETS 11.4.1 The x coordinate 
of point b 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVElO.I.2.3 

Curve in 
sorted list after 
which the fIrst 
curve in 
unsorted list best 
fIts in sorted list 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVElO.1.2.3 

The reference end 
flag of 
before_curve 



tv 
VI 
VI 

Variable 

best _insertion_linkage 

Table F -4. List of Variables (continued) 

Function Section Description 

SEARCH_FoR_THE_BEST_lNsERTION_LoCATION 10.1.2.1 The best insertion 
linkage found for 
placing the fIrst 
curve of 
unsorted list into 
sorted list 

best_insertion _linkage from _endpoint_offset RESULTS_CHECKING_AND _INSERTION_OF _UNSORTED_CURVE 10.1.2.3 
The offset of the 
"from" side of the 
best insert linkage 

best_insertion _linkageto endpoint offset RESULTS_CHECKING _AND_INSERTION_OF _UNSORTED_CURVE 10.1.2.3 
- - The offset of the 

"to" side of the 

best_insertion _linkage x _offset Jrom CYCLIC_PROCESSING 

best_insertion _linkage x _offsetJrom LINKAGE_COMPARISON 

best_insertion _linkage x _offseuo CYCLIC_PROCESSING 

best insert linkage 
10.1.2 The x offset of the 

"from" side of the 
best insert linkage 

10.1.2.2 The x offset of the 
jump of 
best insertion link - -
age from fIrst 
curve of 
unsorted list to 
curve of sorted list 

10.1.2 The x offset of the 
"to" side of the 
best insert linkage 



tv 
VI 
0\ 

Variable' 

best insertion linkagex offset to - - --

best_insertion _linkagey _offset Jrom 

best insertion )inkagey offset Jrom - -

best_insertion _linkagey _offseuo 

best_insertion _linkagey _offseuo 

Table F-4. List of Variables (continued) 

Function 

LINKAGE_COMPARISON 

CYCLIC_PROCESSING 

LINKAGE_COMPARISON 

CYCLIC_PROCESSING 

LINKAGE_COMPARISON 

Section Description 

10.1.2.2 The x offset of the 
jump of 
best insertion - -
linkage from curve 
of sorted list to 
ftrst curve of 
unsorted list 

10.1.2 The y offset of the 
"from" side of the 
best insert linkage 

10.1.2.2 The y offset of the 
jump of 
best insertion 
Iinklige from first 
curve of 
unsorted list to 
curve of sorted list 

10.1.2 The y offset of the 
"to" ~ide of the 
best insert linkage 

10.1.2.2 The y offset of the 
jump of 
best insertion 
Iinklige from cUrve 
of sorted list to 
ftrst curve of 
unsorted list 



N 
VI 
...J 

Variable 

best insertion location 

best insertion location - -

" 
best insertion location 

best~ump 

best~ump 

~>-

best~umpx 

Table F -4. List of Variables (continued) 

Function 

CYCLIC_PROCESSING 

Section Description 

10.1.2 Curve in 
sorted _list having 
after which 
first curve of 
unsorted list 
should be placed 

RESULTS_CHECKING_AND_INSERTlON_OF_UNSORTED_CURVEIO.1.2.3 
Curve in 
sorted list after 
which the ftrst 
curve in 
unsorted list best 
ftts in sorted list 

S,EARCH_FoR_THE_BEsT_INSERTlON_LoCATION 10.1.2.1 Location in 

DISTANCE_COMPARISON 

SEARCH_FoR_ THE_BEST.FIT _CURVE 

RESULTS_CHECKING 

sorted list that the 
ftrst curve in 
unsorted list is to 
be placed 

10.1.1.2 Best jump found 
so far in the sorting 
process 

10.1.1.1 The best jump to 
and point in 
unsorted list from 
the last point in 
sorted list 

10.1.1.2 The x offset of the 
best jump found by 
the sorting process 



tv 
Ut 
00 

Variable 

best.Jump Jrom _unsorted _ curvex 

best.Jump _to_unsorted _ curvex 

best.Jumpx 

best.Jumpy 

best.Jumpy 

best numbits 

best quantity smalls - -

Table F -4. List of Variables (continued) 

Function Section Description 

SEARCH FOR THE BEST INSERTION LOCATION 10.1.2.1 The x offset of the 
- - - - - best jump from 

first curve of 
unsorted list to 
curve "'plus_one of 
sorted list 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The x offset of the 
best jump from 
curve of sorted list 
to first curve of 
unsorted list 

SEARCH_FoR_THE_BEST-FIT_CURVE 10.1.1.1 The x value of 
best.Jwnp 

RESULTS_CHECKING 10.1.1.2 The y offset of the 
best jump found by 
the sorting process 

SEARCH_FoR_THE_BEST-FIT_CURVE 10.1.1.1 The y value of 
best.Jwnp 

LINKAGE COMPARISON 10.1.2.2 Number of bits 
-required to 

represent the 
largest offset 
magnitude in 
best insertion - -
linkage 

LINKAGE_COMPARISON 10.1.2.2 Number of offsets 
in best insertion 
linkage that are 
less than or equal 
toS 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

best score CREASE_TRIMMING 3.1.1 The largest score 
encountered while 
searching for the 
crease 

best _scorea SMALL_RIDGE_BREAK_ CONNECTION 7.1.4 The largest score 
of the endpoints in 
the candidate list 

bi RIDGE_CLEANING 7.1 Block row index 
bi WRITE_BLOCK_FILE A.2.2 Block row index 
bits DETERMINE_WORD _SIZES 11.4.2 The number of bits 

calculated for 
some combination 

tv of word sizes 
VI 

bitsmin DETERMINE_WORD _SIZES 11.4.2 The minimum \0 

number of bits 
bj RIDGE_CLEANING 7.1 Block colmn index 
bj WRITE_BLOCK_FILE A.2.2 Block colmn index 
blockJile BHO _BINARIZATION A.3 File containing the 

ridge direction data 
structure 

blockJile WRITE_BLOCK_FILE A.2.2 File containing the 
ridge direction data 
structure 

branch INITIALIZE BRANCHES 6.1.2.5 A leg ofa 
bifurcation 

c CHAMFER 5.1.1 Candidate chamfer 
value 



Table F-4. List of Variables (continued) 

Variable Function Section Description 
c CONNECT_CURVES 7.1.4.2 Curve being 

generated by 
connecting two 
curves across a 
small ridge break 

C DETECT _LOCAL_MAXIMA 5.1.2 Chamfered image 
c DOT PRODUCT 7.1.5 A point 
c JOIN_CURVES 7.1.3.1 Curve being 

generated by 
joining two curves 

C RIDGE_CLEANING 7.1 Chamfer image 
C RIDGE_SECTION_AVERAGE_RIDGE_ WIDTH 7.1.2 Chamfered image 
C RIDGE TmNNING 5.1 Chamfered image N -

0'1 C SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 A curve 0 

overlapping the 
curve being 
considered for 

. being a small ridge 
connection 

C CURVED_RIDGE_ENDING _REMOVAL B.1 Chamfered image 
Cbottom CREASE TRIMMING 3.1.1 The row index 

corresponding to 
the estimated 
bottom of the 
flexion crease 

Ccenter CREASE_TRIMMING 3.1.1 The row index 
corresponding to 
the estimated 
center of the 
flexion crease 



tv 
0'1 -

Variable 

Cmax 

candidate 

candidate list 

CHAMFER 

CHAMFER 

check list 

chord 

closest curve 

Table F-4. List of Variables (continued) 

Function 

CHAMFER· 

LARGE_PORE_TEST 

SMALL_RIDGE_BREAK_ CONNECTION 

AVERAGE_SECTION_RIDGE_ WIDTH 

Section Description 

5.1.1 A very large 
integer value to 
indicated that a 
pixel has not been 
yet processed 

4.1.2.3 White region 
containing Po, i.e., 
the pore candidate 

7.1.4 List of candidate 
endpoints that may 
be part of a small 
ridge break 

4.1.3 Chamfered 
fingerprint image 

PREPARE AVERAGE NEIGHBORHOOD RIDGE WIDTHS 4.1.3 - - --

SMALL_RIDGE_BREAK_ CONNECTION 

LINE_FITTING 

RESULTS_CHECKING 

Chamfered 
fingerprint image 

7.1.4 A list of candidate 
endpoints that are 
to be checked for 
being the mutually 
best small ridge 
break 

9.2 The line passing 
through 
first_endpoint and 
second_endpoint 

10.1.1.2 Curve found to be 
closest to last point 
in sorted list 



N 
0\ 
N 

Variable 

closest curve 

column 

column 

columns yer _section 

columns yer _section 

component_max 

Table F -4. List of Variables (continued) 

Function 

SEARCH_FoR_THE_BEST-FIT_CURVE 

AVERAGE_NEIGHBORHOOD _RIDGE_WIDTH 

Section Description 

10.1.1.1 Curve found to be 
closest to last point 
in sorted list 

4.1.3 Column index of 
the 
RIDGE_WIDTH_ 
ARRAY 

PREPARE AVERAGE NEIGHBORHOOD RIDGE WIDTHS 4.1.3 - - --

AVERAGE_NEIGHBORHOOD _RIDGE_WIDTH 

Column index of 
the 
RIDGE_WIDTH_ 
ARRAY 

4.1.3 Number of 
columns in a 
fingerprint image 
section 

PREPARE_AVERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 4.1.3 
Number of 
columns in a 
fingerprint image 
section 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVEIO.1.2.3 
Number of bits 
necessary to 
represent largest 
offest 



t-.) 
0\ 
Vol 

Variable 

connection score 

count 

current _insertion_linkage 

current_insertion _linkagefrom..Jump 

current_insertion _linkageloJump 

Table F -4. List of Variables (continued) 

Function 

CONNECTION_SCORING _FuNCTION 

Section Description 

7.1.4.1 Value indicating 
the relative 
possibility that a 
pair of endpoints is 
part of a small 
ridge break 

AVERAGE_SECTION_RIDGE_ WIDTH 4.1.3 Number of ridge 
points in the 
current fingerprint 
image section 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 Linkage between 
curves in 
sorted list and the 
first curve of 
unsorted list that 
is currently being 
considered 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The jump of the 
current insertion 
linkage from the 
first curve of 
unsorted list to 
curve yius _one in 
curve list 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The jump of the 
current insertion 
linkage from curve 
in curve list to 
first curve of 
unsorted list 

... "."! r::.t!·. 

~:~ 



N 

~ 

Variable 

Table F -4. List of Variables (continued) 

Function 

current_insertion _linkage x _offset Jrom LINKAGE_COMPARISON 

current_insertion _linkage x _offset _to LINKAGE_COMPARISON 

current_insertion Jinkagey _offset Jrom LINKAGE_COMPARISON 

current_insertion _linkagey _offset_to LINKAGE_COMPARISON 

current -.Jump DISTANCE_COMPARISON 

Section Description 

10.1.2.2 The x offset of the 
jump of 
current insertion - -
linkage from the 
ftrst curve of 
unsorted list to 
curve of sorted list 

10.1.2.2 The x offset of the 
jump of 
current insertion - -
linkage from curve 
of sorted list to 
ftrst curve of 
unsorted list 

10.1.2.2 The x offset of the 
jump of 
current insertion - -
linkage from ftrst 
curve of 
unsorted list to 
curve of sorted list 

10.1.2.2 The y offset of the 
jump of 
current insertion - -
linkage from curve 
of sorted list to 
ftrst curve of 
unsorted list 

10.1.1.2 Jump currently 
being compared 
against best -.Jump 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

currentJump SEARCH_FoR_ THE_BEST-FIT _CURVE 10.1.1.1 Jump between 
endpoints in 
last curve and 
curve 

current Jump SEARCH_FoR_THE_BEsT_INSERTlON_LoCATION 10.1.2.1 The jump between 
the first curve in 
unsorted list to a 
curve from 
sorted list 

current Jumpx SEARCH_FoR_ THE_BEST-FIT _CURVE 10.1.1.1 Absolute 
difference between 
the x coordinates 
of endpoints in 

tv last curve and 0'\ 
VI -

curve 
currentJumpx SEARcH_FoR_THE_BEsT_lNsERTlON_LoCATION 10.1.2.1 The x offset of 

current Jump 
current-.JumPy SEARCH_FoR_THE_BEST-FIT_CURVE 10.1.1.1 Absolute 

difference between 
the y coordinates ~ \.'::f 

of endpoints in 
last curve and 
curve 

current JumPy SEARCH_FoR_THE_BEST_INSERTlON_LoCATION 10.1.2.1 The y offset of 
current Jump 



Table F-4. List of Variables (continued) 

Variable Function Section Description 
current numbits LINKAGE_COMPARISON 10.1.2.2 Number of bits 

required to 
represent the 
largest offset 
magnitude in 
current insertion - -
linkage 

current_quantity _smalls LINKAGE_COMPARISON 10.1.2.2 Number of offsets 
in 
current insertion 
linkage that are -
less than or equal 
toS 

tv curve ApPLY _ CURVE_DELTA_ OFFSETS 12.2 One curve in the 0'1 
0'1 curve list 

curve B-SPLINE 13.2 Current curve 
being processed 

curve CALCULATE_CHORD _POINTS 9.2 The fingerprint 
curve currently 
being processed 

curve CALCULATE_RELATIVE_DISTANCES 11.4.1 One curve in the 
curve list 

curve CYCLIC_PROCESSING 10.1.2 Curve from 
unsorted list 
currently being 
considered 

curve DECODE_ CURVE_DELTAS 12.2 One curve in the 
curve list 

curve DECODE_ CURVE_LIST 12.2 One curve in the 
curve list 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

curve DECODE_JUMP _REFERENCE_END 12.2 One curve in the 
curve list 

curve DETERMINE_CURVE_DELTA_OFFSETS 11.4.1 One curve in the 
curve list 

curve DETERMINE_CURVE_SIGN_MoNOTONICITY 11.4.2 One curve in the 
curve list 

curve DETERMINE_FINGERPRINT_DATA_PROPERTIES 11.4.2 One curve in the 
curve list 

curve CURVED_RIDGE_ENDING_REMOVAL B.l A curve under ;:~ 
consideration for 
having a curved 
ridge ending 

N curve ENCODE CURVE DELTAS 11.4.3 One curve in the 
0'1 - -
-....J curve list 

curve ENCODE_CURVE_LIST 11.4.3 One curve in the 
curve list 

curve ENCODE_JUMP_REFERENCE_END 11.4.3 One curve in the 
curve list 

curve EXTRACT_CURVES 6.1.2 A curve being : -<, 
extracted from a 
fingerprint image 

curve FOLLOW_To_Do_LIST 6.1.2.6 A curve being 
extracted from a 
fingerprint image 

curve INITIALIZE_AND_FoLLOW_CURVE 6.1.2.1 A curve being 
extracted from a 
fingerprint image 



Variable 

curve 

curve 

curve 

curve 

curve 

N 
0"1 
00 

curve 

curve 

curve 

Table F -4. List of Variables (continued) 

Function 

INITIALIZE_BRANCHES 

RIDGE_SECTION_AVERAGE_RIDGE_ WIDTH 

RIDGE_SMOOTHING 

SEARCH_FoR_ THE_BEST.FIT _CURVE 

SEARCH_FoR_THE_BEST_lNsERTION_LoCATION 

SELECTIVE_PROCESSING 

SMALL_OFFSHOOT _CURVE_REMOVAL 

SMALL_RIDGE_BREAK_CONNECTION 

Section Description 

6.1.2.5 A curve being 
extracted from a 
fingerprint image 

7.1.2 The curve along 
which the ridge 
section resides 

8.2 The curve that is in 
the process of 
being smoothed 

10.1.1.1 Curve currently 
being considered 

10.1.2.1 Curve in sort list 
being considered 
for being an 
insertion point 

10.1.1 Curve that is 
closest to the 
center of the 
fingerprint image 

7.1.3 The curve being 
considered for 
being a small 
offshoot curve 

7.1.4 Curve being 
considered for 
being part of a 
small ridge break 



Table F -4. List of Variables (continued) 

Variable Function Section Descriotion 

curve SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 A curve under 
consideration for 
being a small ridge 
connection 

curve SMALL_RIDGE_SEGMENT_REMOVAL 7.1.6 A curve under 
consideration for 
being a small ridge 
segment 

curvejirsCendpo;nCx SEARCH_FoR_ THE_BEST-FIT _CURVE 10.1.1.1 The x coordinate 
of ftrst endpoint in 
curve 

curvejirsCendpo;nCx SEARCH_FoR_ THE_BEST _INSERTION_LOCATION 10.1.2.1 The x coordinate 
of the ftrst 

tv 
0\ endpoint of the 
\0 

curve from 
sorted list 

curvejirsCendpo;nt..,Y SEARCH_FoR_ THE_BEST-FIT _CURVE 10.1.1.1 The y coordinate 
of fIrst endpoint in 
curve 

curvejirscendpo;nt..,Y SEARCH_FoR_ THE_BEST _INSERTION_LOCATION 10.1.2.1 The y coordinate 
of the rust 
endpoint of the 
curve from 
sorted list 

curvewsCendpo;ncx SEARCH_FoR_ THE_BEST-FIT _CURVE 10.1.1.1 The x coordinate 
of last endpoint in 
curve 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

curvt!lasCetulpoillCx SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The x coordinate 
of the last endpoint 
of curve from 
sorted list 

curvt!lascelldpoilltJ SEARCH_FoR_THE_BEST-FIT_CURVE . 10.1.1.1 The y coordinate 
of last endpoint in 
curve 

curvt!lascetulpoilltJ SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The y coordinate 
of the last endpoint 
of curve from 
sorted list 

curvea CONNECTION _SCORING_FUNCTION 7.1.4.1 One of two curves 

tv that are potentially 
-.J part of a small 0 

ridge break: 
curveb CONNECTION _SCORING_FUNCTION 7.1.4.1 One of two curves 

that are potentially 
part of a small 
ridge break: 

curvefilter _value CYCLIC_PROCESSING 10.1.2 Filter value for 
curve 

curve 2 INITIALIZE_AND _FOLLOW_CURVE 6.1.2.1 The second half of 
a curve being 
extracted from a 
fingerprint image 

curve list BAD_BLOCK_BLANKING C.2 List of curves that 
represent the 
fingerprint 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

curve list B-SPLINE 13.2 List of curves that 
represent the 
fingerprint 

curve list CALCULATE_CHORD _POINTS 9.2 List of curves that 
represent the 
fingerprint 

curve list CALCULATE_RELATIVE_DISTANCES 11.4.1 List of curves 
representing the . 

, .. fingerprint 
curve list CONNECT_CURVES - 7.1.4.2 List of curves 

representing the 
fingerprint 

curve list DECODE_CURVE_LIST 12.2 List of curves 
N representing the .....,J ...... fingerprint 

curve list DETERMINE_FINGERPRINT_DATA_PROPERTIES 11.4.2 List of curves 
representing the 
fingerprint 

curve list CURVED_RIDGE_ENDING_REMOVAL B.l List of curves 
representing the 
fingerprint 

curve list ENCODE_ CURVE_LIST 11.4.3 List of curves 
representing the 
fingerprint 

curve list ENCODE_FINGERPRINT 11.4 List of curves 
representing the 
fingerprint 

curve list JOIN_CURVES 7.1.3.1 List of curves 
representing the 
fingerprint 



tv 
-.....J 
tv 

Variable 

curve list 

curve list 

curve list 

curve list 

curve list 

curve list 

curve ylus _one 

curve yllis _ onejirsCendpoinCx 

Table F-4. List of Variables (continued) 

Function Section Description 

RIDGE CLEANING 7.1 List of curves 
- representing the 

fingerprint 
RIDGE SMOOTHING 8.2 List of curves 

- representing the 
fingerprint 

SMALL OFFSHOOT CURVE REMOVAL 7.1.3 List of curves 
- - - representing the 

fingerprint 
SMALL_RIDGE_BREAK_CONNECTION 7.1.4 List of curves 

representing the 
fingerprint 

SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 List of curves 
representing the 
fingerprint 

SMALL_RIDGE_SEGMENT_REMOVAL 7.1.6 List of curves 
representing the 
fingerprint 

SEARCH FOR THE BEST INSERTION LOCATION 10.1.2.1 The curves 
- - - - - following curve in 

sorted list 
SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The x coordinate 

of the first 
endpoint of 
curve ylus _one 
from sorted list 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

curve "'plus _ onefirsCendpointJ SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The y coordinate 
of the first 
endpoint of 
curve "'plus_one 
from soned list 

curve "'plus _ onelasCendpoinC% SEARcH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The x coordinate 
of the last endpoint 
of curve "'plus_one 
from soned list 

curve "'plus _ onelasCendpoint...,y SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The y coordinate 
of the last endpoint 
of curve "'plus_one 
from soned list 

tv 
CURVE_EXTRACTION 6.1 Set of curves ....,J curve set w 

extracted from 
fingerprint image 

curve set EXTRACT_CURVES 6.1.2 Set of curves 
extracted from 
fingerprint image 

curve set FOLLOW To Do LIST 6.1.2.6 Set of curves - - -
extracted from 
fingerprint image 

curve _sig1lx DETERMINE_CURVE _SIGN _MONOTONICITY 11.4.2 The sign of the 
first deltOx in curve 

curve_signy DETERMINE_CURVE_SIGN_MoNOTONICITY 11.4.2 The sign of the 
first deltay in curve 



Table F-4. List of Variables (continued) 

Variable Function Section Description 

curve _sig n Jnonotonicity DETERMINE_ CURVE_SIGN_MoNOTONICITY 11.4.2 The monotonicity 
type, or sign 
fluctuations, 
determined for the 
delta offsets of a 
particular curve 

curve _sig n _ monotonicity DETERMINE_FINGERPRINT _DATA_PROPERTIES 11.4.2 The monotonicity 
type, or sign 
fluctuations, 
determined for the 
delta offsets of a 
particular curve 

d CHAMFER 5.1.1 Candidate chamfer 
N value .....,J 
~ 

d SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 A curve 
overlapping the 
curve being 
considered for 
being a small ridge 
connection 

delta DECODE_ CURVE_DELTAS 12.2 The relative 
distance between 
two adjacent.points 
within a curve 

delta ENCODE_ CURVE_DELTAS 11.4.3 The relative 
distance between 
two adjacent points 
within a curve 



rTable F 4. List of Variables (continued) 

Variable Function Section Description 

deitOminimum yer _curve DECODE_ CURVE_DELTAS 12.2 The minimum 
number of deltas 
per curve for all 
curves in 
curve list 

deitaminimum yer _curve DECODE_HEADER 12.2 The minimum 
number of deltas 
per curve for all 
curves in 
curve list 

deltOminimum yer _curve DETERMINE_FINGERPRINT_DATA_PROPERTIES 11.4.2 The minimum 
number of deltas 
per curve for all 

tv curves in -....J 
VI curve list 

deltax ApPLY_CURVE_DELTA_OFFSETS 12.2 The relative 
distance in the x 
direction of two 
adjacent points 
within a curve 

deltax DECODE_ CURVE_DELTAS 12.2 The relative 
distance in the x 
direction of two 
adjacent points 
within a curve 



Table F-4. List of Variables (continued) 

Variable Function Section Description 

de/tOx DECODE HEADER 12.2 The relative 
distance in the x 
direction of two 
adjacent points 
within a curve 

de/tOx DETERMINE_CURVE_DELTA_OFFSETS 11.4.1 The relative 
distance in the x 
direction of two 
adjacent points 
within a curve 

de/tOx DETERMINE_CURVE_SIGN_MoNOTONICITY 11.4.2 The relative 
distance in the x 
direction of two 

N 
adjacent points -...J 

0\ 
within a curve 

de/tOx DETERMINE_F'INGERPRINT_DATA_PROPERTIES 11.4.2 The relative 
distance in the x 
direction of two 
adjacent points 
within a curve 

de/tOx ENCODE_ CURVE_DELTAS 11.4.3 The relative 
distance in the x 
direction of two 
adjacent points 
within a curve 

de/tOx ENCODE_HEADER 11.4.3 The relative 
distance in the x 
direction of two 
adjacent points 
within a curve 



Table F-4. List of Variables (continued) 

Variable Function Section Description 

deltay ApPLY_CURVE_DELTA_OFFSETS 12.2 The relative 
distance in the y 
direction of two 
adjacent points 
within a curve 

deltay DECODE_ CURVE_DELTAS 12.2 The relative 
distance in the y 
direction of two 
adjacent points 
within a curve 

deltay DECODE_HEADER 12.2 The relative 
distance in the y 
direction of two 

tv adjacent points .....,J 
.....,J 

within a curve 

deltay DETERMINE_ CURVE_DELTA_ OFFSETS 11.4.1 The relative 
distance in the y 
direction of two 
adjacent points 
within a curve 

deltay DETERMINE_ CURVE_SIGN _MONOTONICITY 11.4.2 The relative 
distance in the y 
direction of two 
adjacent points 
within a curve 

deltay DETERMINE_FINGERPRINT_DATA_PROPERTIES 11.4.2 The relative 
distance in the y 
direction of two 
adjacent points 
within a curve 



Table F -4. List of Variables (continued) 

Variable Function Section pescription 

deltay ENCODE_ CURVE_DELTAS 11.4.3 The relative 
distance in the y 
direction of two 
adjacent points 
within a curve 

deltay ENCODE HEADER 11.4.3 The relative 
distance in the y 
direction of two 
adjacent points 
within a curve 

delta count DECODE_ CURVE_DELTAS 12.2 The number of 
deltas in curve less 

tv 
delta",inimum yer_ 

-....l curve 00 
delta count ENCODE_ CURVE_DELTAS 11.4.3 The number of 

deltas in curve less 
delta",inimum yer_ 

curve 
direction FOLLOW RIDGE 5.1.3 Pixel direction to 

previous pixel of 
ridge following 

direction SEARCH _EDGE10R_MINIMIZING _PIXEL 4.1.2.4 The search 
direction: either 
clockwise or 
counterclockwise 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

distance CONNECTION_SCORING _FUNCTION 7.1.4.1 Euclidean distance 
between two 
endpoint that are 
on either side of a 
potential small 
ridge break 

e CHAMFER 5.1.1 Candidate chamfer 
value 

edge/eft CREASE_TRIMMING 3.1.1 The left edge of 
the fingeIprint 
impression 

edge,ight CREASE_TRIMMING 3.1.1 The right edge of ~. 

N 
the fingeIprint 

.....,J impression 
\0 

endpointo SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 An endpoint of the 
curve being .. ~.::s. 

considered for 
being a small ridge 
connection 

endpoint] SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 An endpoint of the 
curve being 
considered for 
being a small ridge 
connection 

endpointa SMALL_RIDGE_CONNECTION _REMOVAL 7.1.5 The endpoint of a 
curve overlapping 
the curve being 
considered for 
being a small ridge 
connection 



Table F -4. List of Variables (continued) 

Variable Function Section Description 
endpoinfb SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 The endpoint of a 

curve overlapping 
the curve being 
considered for 
being a small ridge 
connection 

endpoin1c SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 The endpoint of a 
curve overlapping 
the curve being 
considered for 
being a small ridge 

-J connection 
endpointd SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 The endpoint of a 

IV 
curve overlapping 00 

0 
the curve being 
considered for 
being a small ridge 
connection 

endpoint flag RESULTS_CHECKING 10.1.1.2 Flag indicating 
whether a jump 
originated from the 
fIrst or last 
endpoint in a curve 

endpoint flag SEARCH_FoR_ THE_BEST-FIT _CURVE 10.1.1.1 Flag indicating 
whether a jump 
originated from the 

. fIrst or last 
endpoint in a curve 



tv 
00 -

Variable 

endpoint Jlag 

endpointJlag_one 

endpoint Jlag_ two 

endpoint_map 

endpoint_map 

Table F -4. List of Variables (continued) 

Function Section Description 

SELECTIVE_PROCESSING 10.1.1 Flag indicating 
whether a jump 
originated from the 
ftrst or last 
endpoint in a curve 

SEARCH_FoR_ THE_BEST _INSERTION_LOCATION 10.1.2.1 Temporary 
endpoint flag for 
curve from 
sorted list 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 Temporary 
. endpoint flag for 

the ftrst curve on 
unsoned list 

BAD _BLOCK_BLANKING 

CONNECT_CURVES 

C.2 A representation of 
curve endpoints 
allowing efficient 
search for 
endpoints near a 
specifted 
coordinate 

7.1.4.2 A representation of 
curve endpoints 
allowing efficient 
search for 
endpoints near a 
specifted 
coordinate 



N 
00 
N 

Variable 

endpoint_map 

endpoint_map 

endpoint_map 

endpoint_map 

Table F -4. List of Variables (continued) 

Function 

CURVED_RIDGE_ENDING_REMOVAL 

JOIN_CURVES 

RIDGE_CLEANING 

SMALL_OFFSHOOT _CURVE_REMOVAL 

Section pescription 

B.l A representation 
of curve endpoints 
allowing efficient 
search for 
endpoints near a 
specified 
coordinate 

7.1.3.1 A representation of 
curve endpoints 
allowing efficient 
search for 
endpoints near a 
specified 
coordinate 

7.1 A representation of 
curve endpoints 
allowing efficient 
search for 
endpoints near a 
specified 
coordinate 

7.1.3 A representation of 
curve endpoints 
allowing efficient 
search for 
endpoints near a 
specified 
coordinate 



N 
00 
Vl 

Variable 

endpoint_map 

endpoint_map 

f 

first_curve 

first_curve 

first _ curvefilter _value 

first _ curvefilter _ vaiue 

first _ curvefilter _value 

Table F -4. List of Variables (continued) 

Function 

SMALL_RIDGE_ CONNECTION_REMOVAL 

SMALL_RIDGE_SEGMENT _REMOVAL 

CHAMFER 

Section Description 

7.1.5 A representation of 
curve endpoints 
allowing efficient 
search for 
endpoints near a 
specified 
coordinate 

7.1.6 A representation of 
curve endpoints 
allowing efficient 
search for 
endpoints near a 
specified 
coordinate 

5.1.1 Candidate chamfer 
value 

CYCLIC PROCESSING 10.1.2 First curve in 
unsoned list 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVEIO.1.2.3 

The first curve of 
unsoned list 

CYCLIC_PROCESSING 10.1.2 Filter value for 
first_curve 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVEIO.1.2.3 

The filter value of 
the first curve in 
unsorted list 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 Filter value for 
first curve in 
unsoned list 



N 
00 
+:0. 

Variable 

first _ curvejirseendpoinex 

first _ curvejirseendpoin(.J 

first _ curvelast_endpoinex 

first _ curv~seendpoint....Y 

first _ curvereference _ end Jlag 

first endpoint 

firstyt 

firstyt 

Table F -4. List of Variables (continued) 

Function Section Description 

SEARCH_FoR_THE_BEST_INSERTION_LOCATION 10.1.2.1 The x coordinate 
of the first 
endpoint of the 
ftrst curve in 
unsoned list 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The y coordinate 
of the fIrst 
endpoint of the 
ftrst curve in 
unsoned list 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The x coordinate 
of the fIrst 
endpoint of the 
ftrst curve in 
unsorted list 

SEARCH_FoR_THE_BEST_lNsERTION_LoCATION 10.1.2.1 The y coordinate 
of the fIrst 
endpoint of the 
ftrst curve in 
unsoned list 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVEIO.1.2.3 

LINE FITTING 

ApPLY_JUMP_OFFSET 

DETERMINE_JUMP _OFFSET 

The reference end 
flag of first_curve 

9.2 An endpoint of the 
current chord 

12.2 First point in curve 
b 

11.4.1 First point in curve 
b 



tv 
00 
VI 

Variable 

firstytx 

firstytx 

firstyty 

firstyty 

flag 

flag 

flag 

from_endpoint _offset 

from_endpoint _ offsetz 

Table F -4. List of Variables (continued) 

Function 

ApPLY_JUMP..;OFFSET 

DETERMINE_JUMP _OFFSET 

ApPLY_JUMP _OFFSET 

DETERMINE_JUMP _OFFSET 

DECODE_JUMP _REFERENCE_END 

DECODE_SIGN 

DECODE_SIGN_FOR_ VALUE 

Section Description 

12.2 The x coordinate 
of fIrst point in 
curveb 

11.4.1 The x coordinate 
of the frrst point in 
curve b 

12.2 The y coordinate 
of frrst point in 
curve b 

11.4.1 The y coordinate 
of the frrst point in 
cUrveb 

12.2 Flag value to 
decode 

12.2 

12.2 

Flag value to 
decode 
Flag value to 
decode 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVElO.1.2.3 

The jump from 
first_curve to 
after _curve 

RESULTS_CHECKING_AND _INSERTION_OF _UNSORTED_CURVE 10.1.2.3 

The x offset of the 
jump from 
first_curve to 
after _curve 



tv 
00 
0'1 

Variable 

from_endpoint _offset, 

g 

h 

height 

height 

height 

height 

height(: 

heightr 
histogram 

histogram 

Table F -4. List of Variables (continued) 

Function Section Description 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVElO.I.2.3 

The y offset of the 
jump from 
first_curve to 
after_curve 

CHAMFER 5.1.1 Candidate chamfer 
value 

CHAMFER 5.1.1 Candidate chamfer 
value 

EXTRACT_CURVES 6.1.2 

PREPARE_AVERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 

Height of 
fingerprint image 
4.1.3 

REMOVE_LARGE_PORES 

REMOVE_SMALL_PORES 

DETE~T_LoCAL_MAXIMA 

CHAMFER 

DETERMINE_FINGERPRINT_DATA_PROPERTIES 

DETERMINE_WORD _SIZES 

4.1.2.2 

4.1.1 

5.1.2 

5.1.1 

11.4.2 

Height of 
fingerprint image 
Height of 
fingerprint image 
Height of 
fingerprint image 
Height of chamfer 
imageC 
Height of image 1 
A histogram of 
differences of 
number of deltas 
of each curve less 
deZtOminimum yer _ 
curve 

11.4.2 Frequency 
distribution of 
values 



Table F-4. List of Variables (continued) 

Variable Function Section Description 

histogram GENERATE_HISTOGRAM 11.4.2 Frequency 
distribution of 
values 

horizontaCrun CREASE_TRIMMING 3.1.1 The longest run of 
consecutive white 
pixels for every 
row 

i A 13.1 Array index for x 
coordinates 

i ApPLY_MASKS 6.1.1.2 Row index 
i AVERAGE_NEIGHBORHOOD _RIDGE_WIDTH 4.1.3 Row index 
i AVERAGE_SECTION_RIDGE_ WIDTH 4.1.3 Row index 

tv i B 13.2 Array index for x 00 
-....J coordinates 

1 BHO _BINARIZATION A.3 Gray-scale 
fingerprint image 

i RIDGE_CLEANING 7.1 Row index 
i B-SPLINE 13.2 Array index of 

current curve 
i C 13.2 Array index for x 

coordinates 
i CHAMFER 5.1.1 Row index 
1 CHAMFER 5.1.1 Gray-scale 

fingerprint image 
i CONVERT_TO _SINGLE)'IXEL_ WIDE_RIDGES 6.1.1.1 Row index 
i CREASE_TRIMMING 3.1.1 Row index 
1 CREASE_TRIMMING 3.1.1 Gray-scale 

fingerprint image 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

i D 13.2 Array index for x 
coordinates 

i DETECT_LoCAL_MAXIMA 5.1.2 Row index 
i DYNAMIC THRESHOLDING 2.2 Row index 
I DYNAMIC_THRESHOLDING 2.2 Gray-scale 

fingerprint image 
i EXTRACT_CURVES 6.1.2 Row index 
i FOLLOW_RIDGE 5.1.3 Row index 
I IMAGE_CLEANING 3 Gray-scale 

fingerprint image 
i INITIALIZE_AND _FOLLOW_CURVE 6.1.2.1 Row index 

tv i LARGE_PORE_TEST 4.1.2.3 Row index 
00 
00 i LINE_FITTING 9.2 Loop index 

i PROCESS _ CANDIDATE_SPUR_PIxEL 3.2.1 Row index 
I PROCESS_CANDIDATE_SPUR_PIxEL 3.2.1 Gray-scale 

fingerprint image 
i REMOVE_LARGE_PORES 4.1.2.2 Row index 
i REMOVE_SMALL_PORES 4.1.1 Row index 
i RIDGE_THINNING 5.1 Row index 
I RIDGE_THINNING '5.1 Gray-scale 

fingerprint image 
i SpuR_REMOVAL 3.2.1 Row index 
I SPUR REMOVAL 3.2.1 Gray-scale 

fingerprint image 
IMAGE ApPLY_MASKS 6.1.1.2 Fingerprint image 

to which masks are 
being applied 



Table F -4. List of Variables (continued) 

Vari~ Function Section Description 

IMAGE CONVERT_TO _SINGLEJ'IXEL_ WIDE_RIDGES 6.1.1.1 Fingerprint image 
in which ridges is 
being converted to 
single-pixel width 

IMAGE CURVE_ExTRACTION 6.1 Fingerprint image 
from which curves 
are being extracted 

IMAGE EXTRACT CURVES 6.1.2 Fingerprint image 
from which curves 
are being extracted 

IMAGE FOLLOW 6.1.2.2 Fingerprint image 
from which curves 

N 
are being extracted 

00 IMAGE FOLLOW_To_Do_LIST 6.1.2.6 Fingerprint image 10 
from which curves 
are being extracted 

IMAGE INITIALIZE_AND _FOLLOW_CURVE 6.1.2.1 Fingerprint image 
from which curves 
are being extracted 

IMAGE PORE FILLING 4.1 Fingerprint image 
for which pores are 
being filled 

IMAGE PREPARE_AVERAGE_NEIGHBORHOOD_RIDGE_ WIDTHS 4.1.3 
Fingerprint image 
from which 
neighborhood 
ridge widths are 
being extracted 



Table F -4. List of Variables (continued) 

Variable Function Section Description 
IMAGE REMOVE_LARGE_PORES 4.1.2.2 Fingerprint image 

from which large 
pores are being 
removed 

IMAGE REMOVE_SMALL_PORES 4.1.1 Fingerprint image 
from which small 
pores are being 
removed 

j ApPLY_MASKS 6.1.1.2 Column index 
j AVERAGE_NEIGHBORHOOD _RIDGE_WIDTH 4.1.3 Column index 
j AVERAGE_SECTION_RIDGE_ WIDTH 4.1.3 Column index 
j RIDGE_CLEANING 7.1 Column index 

N j 8·SPLINE 13.1 Array index of 
\0 

current point in 0 

current curve 
j CALCULATE_CHORD _POINTS 9.2 First index 
j CHAMFER ' 5.1.1 Column index 
j CONVERT_TO_SINGLEJ'IXEL_WIDE_RIDGES 6.1.1.1 Column index 
j CREASE_TRIMMING 3.1.1 Column index 
j DETECT_LoCAL_MAXIMA 5.1.2 Column index 
j DYNAMIC_THRESHOLDING 2.2 Column index 
j EXTRACT_CURVES 6.1.2 Column index 
j FOLLOW RIDGE 5.1.3 Column index 
j INITIALIZE_AND _FOLLOW_CURVE 6.1.2.1 Column index 
j LARGE_PORE_TEST 4.1.2.3 Column index 
j LINE_FITTING 9.2 First index 
j PROCESS_CANDIDATE_SPUR_PIxEL 3.2.1 Column index 
j REMOVE_LARGE_PORES 4.1.2.2 Column index 



Table F-4. List of Variables (continued) 

. Variabk Function Section Description 

j REMOVE_SMALL_PORES 4.1.1 Column index 

j RIDGE THINNING 5.1 Column index 

j SpuR_REMOVAL 3.2.1 Column index 

jump DETERMINE_JUMP _OFFSET 11.4.1 The relative 
distances from the 
endpoint of one 
curve and the frrst 
endpoint of the 
next consecutive 
curve 

jump MAX_BITS 10.1.1.2 Jump for which the 
largest number of 

N bits is being \0 - calculated 

jump SUM_BITS 10.1.1.2 Jump for which the 
sum of the bits is 
being calculated ~:-

jump SUM_DISTANCE 10.1.1.2 Jump for which the 
sum of the 
distances is being 
calculated 

jumpx ApPLY_JUMP _OFFSET 12.2 The relative 
distance in the x 
direction of the 
endpoint of one 
curve and the fIrst 
endpoint of the 
next consecutive 
curve 



Table F -4. List of Variables (continued) 

Variable Function Section Description 
jU1nfJx DECODE HEADER 12.2 The relative-

distance in the x 
direction of the 
endpoint of one 
curve and the ftrst 
endpoint of the 
next consecutive 
curve 

jumpx DEcODE_JUMP 12.2 The relative 
distance in the x 
direction of the 
endpoint of one 
curve and the ftrSt 

N endpoint of the \0 
N next consecutive 

curve 
jumpx DETERMINE_FINGERPRINT_DATA_PROPERTIES 11.4.2 The relative 

distance in the x 
direction of the 
endpoint of one 
curve and the ftrst 
endpoint of the 
next consecutive 
curve 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

jumpx DETERMINE_JUMP _OFFSET 11.4.1 The relative 
distance in the x 
direction of the 
endpoint of one 
curve and the fust 
endpoint of the 
next consecutive 
curve 

jumpx ENCODE_HEADER 11.4.3 The relative 
distance in the x 
direction of the 
endpoint of one 
curve and the fust 

N endpoint of the \0 
w next consecutive 

curve 

jumpx ENcoDE_JUMP 11.4.3 The relative 
distance in the x 
direction of the 
endpoint of one 
curve and the fust 
endpoint of the 
next consecutive 
curve 

jumpx MAX_BITS 10.1.1.2 The x offset of 
jump 

jumpx SUM_BITS 10.1.1.2 The x offset of 
jump 

jumpx SUM_DISTANCE 10.1.1.2 The x offset of 
jump 



tv 
1.0 
,J::o. 

Variable 

jUln[Jy 

jumPy 

jumPy 

Table F -4. List of Variables (continued) 

Function 

ApPLY_JUMP _OFFSET 

DECODE_HEADER 

DECODE_JUMP 

Section Description 

12.2 The relative 
distance in the y 
direction of the 
endpoint of one 
curve and the ftrst 
endpoint of the 
next consecutive 
curve 

12.2 

12.2 

The relative 
distance in the y 
direction of the 
endpoint of one 
curve and the ftrst 
endpoint of the 
next consecutive 
curve 
The relative 
distance in the y 
direction of the 
endpoint of one 
curve and the frrst 
endpoint of the 
next consecutive 
curve 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

jumPy DETERMINE_F'INGERPRINT_DATA_PROPERTIES 11.4.2 The relative 
distance in the y 
direction of the 
endpoint of one 
curve and the fIrst 
endpoint of the 
next consecutive 
curve 

jumPy DETERMINE_JUMP _OFFSET 11.4.1 The relative 
distance in the y 
direction of the 
endpoint of one 
curve and the f1l'st 

tv endpoint of the \0 
VI next consecutive 

curve 
jumPy ENCODE HEADER 11.4.3 The relative 

distance in the y 
direction of the 
endpoint of one 
curve and the f1l'st 
endpoint of the 
next consecutive 
curve 



tv 
\0 
0\ 

Variable 

jUlnfJy 

jumPy 

jumPy 

jumPy 

k 

k 

k 

LABEL_IMAGE 

last curve 

last _ curvejirsCendpoinCx 

last _ curvejirsCendpoinl...y 

Table F -4. List of Variables (continued) 

Function 

ENCODE_JUMP 

MAX_BITS 

SUM_BITS 

SUM_DISTANCE 

CALCULATE_CHORD _POINTS 

CREASE TRIMMING 

LINE_FITTING 

REMOVE_SMALL_PORES 

SELECTIVE PROCESSING 

SEARCH_FoR_THE_BEST-FIT_CURVE 

SEARCH_FoR_THE_BEST-FIT_CURVE 

Section Description 

11.4.3 The relative 
distance in the y 
direction of the 
endpoint of one 
curve and the ftrst 
endpoint of the 
next consecutive 
curve 

10.1.1.2 The y offset of 
jump 

10.1.1.2 The y offset of 
jump 

10.1.1.2 The y offset of 
jump 

9.2 Last index 
3.1.1 Temporary row 

index 
9.2 Last index 
4.1.1 Fingerprint image 

with labeled white 
regions 

10.1.1 Curve at the end of 
sorted list 

10.1.1.1 The x coordinate 
of ftrst endpoint in 
last curve 

10.1.1.1 The y coordinate 
of ftrst endpoint in 
last curve 



Table F-4. List of Variables (continued) 

Variable Function Section Desqription 

last _ curveiasCendpoincx SEARCH_FoR_ THE_BEST.FIT _CURVE 10.1.1.1 The x coordinate 
of last endpoint in 
last curve 

last _ curveiascendpointJ SEARCH_FoR_ THE_BEST.FIT _CURVE 10.1.1.1 The y coordinate 
of last endpoint in 
last curve 

last _ curvereference _end Jlag RESULTS_CHECKING 10.1.1.2 reference end flag 
for the last curve in 
sorted list 

lastyoint COUNT_NEIGHBORS_FOR_FOLLOWING 6.1.2.2 Last point on a 
curve 

lastyoint FIND _POSSIBLE_BRANCHES 6.1.2.3 Last point on a 
tv curve 
\0 
-J lastyoint FOLLOW 6.1.2.2 Last point on a 

curve 

lastyoint FOLLOW_To_Do_LIST 6.1.2.6 Last point on a 
curve 

lastyoint INITIALIZE BRANCHES 6.1.2.5 Last point on a 
curve 

lengthtw DETERMINE_WORD _SIZES 11.4.2 The largest number 
of bits needed to 
represent any 
element of the 
histogram 

lengthsw DETERMINE_WORD_SIZES 11.4.2 The largest number 
of bits needed to 
represent any 
element of the 
histogram 



Table F-4. List of Variables (continued) 

Variable Function Section Description 

lengthzero DETERMINE_WORD _SIZES 11.4.2 For three word size 
case, number of 
bits needed to 
represent the value 
zero 

m LINE_FITnNG 9.2 Boundary of points 
with same residue 

m SEARCH_EDGE_FOR_MINIMIZING_PIXEL 4.1.2.4 The distance 
between P and Q 
orQ' 

magnitude DECODE_USING_ WORD_SIZES 12.2 Absolute value 
magnitude ENCODE_USING_ WORD_SIZES 11.4.3 Absolute value 

tv magnitude GENERATE HISTOGRAM 11.4.2 Absolute value \0 
00 mask ApPLY_MASKS 6.1.1.2 A mask from a 

mask set 
mask set ApPLY MASKS 6.1.1.2 One of 

nub mask set or - -
topology_mask _set 

maxi DYNAMIC THRESHOLDING 2.2 Maximum pixel 
value over entire 
image 

maxvertical run CREASE TRIMMING 3.1.1 Maximum of the 
sampled 
verticaLrun 
lengths 



tv 
\0 
\0 

Variable 

max best bits - -

max best bits - -

max current bits 

max_offset 

max offset 

max offset 

maximum number of word sizes - - - -

mill[ 

Table F -4. List of Variables (continued) 

Function Section Description 

DISTANCE_COMPARISON 10.1.1.2 Largest number of 
bits necessary to 
represent the 
magnitude of the x 
or y offset of 
best.Jump 

RESULTS_CHECKING 10.1.1.2 Largest number of 
bits necessary to 
represent the 
magnitude of the x 
or y offset of 
best.Jump 

DISTANCE_COMPARISON 10.1.1.2 Largest number of 
bits necessary to 
represent the 
magnitude of the x 
or y offset of 
current .Jump 

SEARCH_FoR_THE_BEST-FIT_CURVE 10.1.1.1 Limit for largest 
offset 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 Limit for largest 

SELECTIVE_PROCESSING 

DETERMINE_WORD _SIZES 

DYNAMIC THRESHOLDING 

offset 
10.1.1 Limit for largest 

offset 
11.4.2 The maximum 

number of word 
sizes allowable 

2.2 Minimum pixel 
value over entire 
image 



Variable 

monotonic x 

monotonicy 

n 
n 

w 
8 

n 
n 

n 

n 
n_neighbors 

Table F -4. List of Variables (continued) 

Function 

DETERMlNE_ CURVE_SIGN_MoNOTONICITY 

DETERMINE_ CURVE_SIGN _MONOTONICITY 

INpUT_STREAM 
NUM_BITS 

OUTPUT_STREAM 
PROCESS_CANDIDATE_SPURJ'DCEL 

RIDGE_SMOOTHING 

SEARCH_EDGE_FOR_MINIMIZING _PIXEL 
COUNT _NEIGHBORS_FOR_FoLLOWING 

Section Description 

11.4.2 Constant positive 
or negative sign 
values in the x 
coordinate 

11.4.2 Constant positive 
or negative sign 
values in the y 
coordinate 

12.2 Number of bits 
10.1.1.2 Value for which 

the number of bits 
necessary to 
represent it is 
being calculated 

11.4.3 Number of bits 
3.2.1 Number of pixels 

neighboring the 
current pixel [(i,)) 
whose value equals 
BLACK 

8.2 Current size of the 
smoothing window 

4.1.2.4 Pixel counter 
6.1.2.2 Number of 

neighbors to be 
followed from a 
curve point 



Table F-4. List of Variables (continued) 

Variable Function Section Description 

n_neighbors FOLLOW 6.1.2.2 Number of 
neighbors to be 
followed from a 
curve point 

nyast_min SEARCH_EDGE_FOR_MINIMIZING_PIXEL 4.1.2.4 Number of pixels 
past the current 
Clmin that the 
search has 
proceeded 

neighbor COUNT _NEIGHBORS_FOR_FOLLOWING 6.1.2.2 A neighbor of a 
curve point 

neighbor FIND _POSSIBLE_BRANCHES 6.1.2.3· A neighbor of a 

w 
curve point 

0 neighbor FOLLOW 6.1.2.2 A neighbor of a - curve point 

neighbor_l INITIALIZE_AND _FOLLOW_CURVE 6.1.2.1 The ftrst neighbor 
of an initial curve 
point 

neighbor _2 INITIALIZE_AND _FOLLOW_CURVE 6.1.2.1 The second 
neighbor of an 
initial curve point 

nub· mask set CONVERT_TO _SINGLE_ PIXEL_WIDE_RIDGES 6.1.1.1 Set of masks for - -
nub removal 

num_regions REMOVE_SMALL_PORES 4.1.1 Number of white 
regions in 
ftngerprint image 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

number_of yixels RIDGE_SECTION_AVERAGE_RIDGE_ WIDTH 7.1.2 The number of 
pixels in ridge 
section on curve 
between Pstart and 
Pend 

number_of yoints _in_curve B·SPLINE 13.2 Number of points 
in current curve 

number _of_word _sizes DETERMINE_WORD _SIZES 11.4.2 The calculated 
number of word 
sizes allowable 

p CONNECT_CURVES 7.1.4.2 Point in curve 
being appended 

Vol p JOIN_CURVES 7.1.3.1 Point in curve 
0 being appended. tv . 

P SEARCI(EDGE_FOR_MINIMIZING_PIXEL 4.1.2.4 The ftxed pixel to 
which this routine 
minimizes the 
distance along a 
ridge edge 

Pc LARGE_PORE_TEST 4.1.2.3 Center of area of 
large pore 
candidate 

Pccwl LARGE_PORE_TEST 4.1.2.3 Ridge pixel on 
side 1 of large pore 
candidate in 
counterclockwise 
direction 



Table F-4. List of Variables (continued) 

Variable Function Section Description 

Pccw2 LARGE_PORE_ TEST 4.1.2.3 Ridge pixel on 
side 2 of large pore 
candidate across 
ridge from Pcew1 

Pew1 LARGE_PORE_TEST 4.1.2.3 Ridge pixel on 
side 1 of large pore 
candidate in 
clockwise 
direction 

Pew2 LARGE_PORE_TEST 4.1.2.3 Ridge pixel on 
side 2 of large pore 
candidate across 
ridge from Pew1 

Vl 
Pe LARGE PORE TEST 4.1.2.3 Initial edge pixel 0 

Vl - -
of ridge 
surrounding large 
pore candidate 

Pe,left LARGE_PORE_TEST 4.1.2.3 Left ridge edge 
pixel of large pore 
candidate 

Pe,up LARGE PORE TEST 4.1.2.3 Top ridge edge - -
pixel of large pore 
candidate 

Pend RIDGE_SECTION_AvERAGE _RIDGE_WIDTH 7.1.2 The ending point 
of a ridge section 

Po LARGE PORE TEST 4.1.2.3 Initial pixel of - -
large pore 
candidate 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

Ppl LARGE_PORE_TEST 4.1.2.3 Ridge edge pixel 
on side 1 of large 
pore candidate 
closest to Pc 

Ppl.ccw LARGE_PORE_TEST 4.1.2.3 Ridge edge pixel 
on side 1 of large 
pore candidate 
closest to Pc in 
counterclockwise 
direction from P e 

Ppl.cw LARGE_PORE_TEST 4.1.2.3 Ridge edge pixel 
on side 1 of large 
pore candidate 

w 
closest to Pc in ~ 
clockwise 
direction from P e 

Pp2 LARGE_PORE_TEST 4.1.2.3 Ridge edge pixel 
on side 2 of large 
pore candidate 
closest to Pc 

PS1arl RIDGE_SECTION_AVERAGE_RIDGE_ WIDTH 7.1.2 The starting point 
of a ridge section 

P'emp LARGE_PORE_TEST 4.1.2.3 Temporary pixel 
for large pore 
candidate 
calculations 



Vl o 
VI 

Variable 

p_distance 

peak_score 

penalty size 

penalty_size 

penalty. size 

penalty_size 

pixel 
pixel_set _to_white 
point 

possible branches 

possible branches 

rTable F -4. List of Variables (continued) 

Function 

LINE_FITTING 

CREASE TRIMMING 

DISTANCE_COMPARISON 

RESULTS_CHECKING 

Section Description 

9.2 Perpendicular 
distance from the 
point to the chord 
connecting the 
endpoints 

3.1.1 The score 
proportional to the 
area of each peak 
in the row_score 

10.1.1.2 Limit for the 
penalty test 

10.1.1.2 Limit for the 
penalty test 

RESULTS_CHECKING _AND_INSERTION_OF _UNSORTED_CURVE 10.1.2.3 

SELECTIVE PROCESSING 

REMOVE_LARGE_PORES 

CONVERT_TO _SINGLE_PIXEL_ WIDE_RIDGES 

LINE_FITTING 

FIND_POSSIBLE_BRANCHES 

FOLLOW 

Limit for the 
penalty test 

10.1.1 Limit for the 
penalty test 

4.1.2.2 An image pixel 
6.1.1.1 Flag 
9.2 

6.1.2.3 

Point on curve 
currently being 
considered 

Set of possible 
branches from a 
cUlVe point 

6.1.2.2 Set of possible 
branches from a 
cUlVe point 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

possible_branches INITIALIZE_BRANCHES 6.1.2.5 Set of possible 
branches from a 
curve point 

previous yoint COUNT..."NEIGHBORS10R_FoLLOWING 6.1.2.2 Next to last point 
on a curve 

previous yoint F'IND_PossmLE_BRANCHES 6.1.2.3 Next to last point 
on a curve 

previous yoint FOLLOW 6.1.2.2 Next to last point . 
on a curve 

previous_residue LINE_FITTING 9.2 Previous largest 
residue value 

Q SEARCH_EDGE_FOR_MINIMIZING_PIXEL 4.1.2.4 A white pixel on a 
w ridge edge that 0 
0\ serves as a starting 

point for the search 

Qmin SEARCH_EDGE_FOR_MINIMIZING_PIXEL 4.1.2.4 The minimizing 
white pixel on a 
ridge edge from 
the search 

Q' SEARCH_EDGE_FOR_MINIMIZING_PIXEL 4.1.2.4 The current white 
pixel on a ridge 
edge in the search 

radiussearcha SMALL_RIDGE .... BREAK_ CONNECTION 7.1.4 Search limit for 
finding candidate 
endpoints for small 
ridge breaks 

RAW_THIN AVERAGE_SECTION_RIDGE_ WIDTH 4.1.3 Raw (not final) 
thinned fingerprint 
image 



Vol 

S 

Variable 

RAW_THIN 

refa 

refa 

reJb 

re/b 

re!c 

rTable F -4. List of Variables (continued) 

Function Section Description 

PREPARE_AvERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 4.1.3 
Raw (not final) 
thinned fingerprint 
image 

CONNECTION_SCORING_FuNcnoN 7.1.4.1 The point that is 

SMALL_RIDGE_ CONNECTION_REMOVAL 

CONNECTION_SCORING_FUNCTION 

SMALL_RIDGE_ CONNECTION_REMOVAL 

SMALL_RIDGE_CONNECTION_REMOVAL 

section _sizea 
points down curve a 

from endpoint a 
7.1.5 The point that is 

reference_length" 
points down curve 
a from its 
overlapping 
endpoint 

7 .1.4.1 The point that is 
section _size a 
points down curve a 
from endpoint a 

7.1.5 The point that is 
reference_length" 
points down curve 
b from its 
overlapping 
endpoint 

7.1.5 The point that is 
reference_length" 
points down curve 
c from its 
overlapping 
endpoint 



Table F-4. List of Variables (continued) 

Variable Function Section Description 

refd SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 The point that is 
reference_length" 
points down curve 
dfrom its 
overlapping 
endpoint 

refyt ApPLY_JUMP_OFFSET 12.2 Reference end 
point of curve a 

refyt DETERMINE_JUMP _OFFSET 11.4.1 First point in curve 
a 

refytx ApPLY_JUMP_OFFSET 12.2 The x coordinate 
of reference end 

Ul point of curve a 
0 refytx DETERMINE_JUMP _OFFSET 11.4.1 The x coordinate 00 

of the fIrst point in 
curve a 

refyty ApPLY_JUMP _OFFSET 12.2 The y coordinate 
of reference end 
point of curve a 

refyty DETERMINE_JUMP _OFFSET 11.4.1 The y coordinate 
of the fIrst point in 
curve a 

reference_length SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 Size of the desired 
curve reference 
section 

residue LINE FITTING 9.2 Distance from 
point to chord 



Variable 

reverse flag 

reverse flag 

Vl 

~ 
reverse flag 

reverse flag_one 

reverse flag_two 

ridge _ widtha 

Table F -4. List of Variables (continued) 

Function 

RESULTS_CHECKING 

SEARCH_FoR_THE_BEST-FIT_CURVE 

SELECTIVE_PROCESSING 

Section Description 

10.1.1.2 Boolean indicating 
whether the current 
curve being added 
to sorted list needs 
its point order 
reversed 

10.1.1.1 Boolean indicating 
whether the current 
curve being added 
to sorted list needs 
its point order 
reversed 

10.1.1 Boolean indicating 
whether the current 
curve being added 
to sorted list needs 
its point order 
reversed 

SEARCH_FoR_THE_BEST_lNsERTION_LoCATION 10.1.2.1 Temporary 
reversal flag for 
curve from 
sorted list 

SEARCH_FoR_ THE_BEST_INSERTION_LoCATION 10.1.2.1 Temporary 
reversal flag for 
the first curve on 
unsorted list 

CONNECTION_SCORING_FUNCTION 7.1.4.1 Average ridge 
width of the curve 
section on curvea 



rTable F -4. List of Variables (continued) 

Variable Function Section Description 

ridge _ widthalle RIDGE_SECTION_AVERAGE_RIDGE_ WIDTH 7.1.2 The resulting 
average ridge 
width value for the 
ridge section on 
curve between 
P start and Pend 

ridge _ widtllb CONNECTION_SCORING_FUNCTION 7.1.4.1 Average ridge 
width of the curve 
section on CUTVi!b 

ridge _ widtllj;ngerprint RIDGE_CLEANING 7.1 Average width of 
all ridges in 
fingerprint 

ridge _ widtllj;ngerprint SMALL_OFFSHOOT_CURVE_REMOVAL 7.1.3 Average width of 
VJ all ridges in -0 fingerprint 

ridge _ widtllj;ngerprint SMALL_RIDGE_SEGMENT_REMOVAL 7.1.6 Average width of 
all ridges in 
fingerprint 

RIDGE_WIDTH_ARRAY AVERAGE_NEIGHBORHOOD _RIDGE_WIDTH 4.1.3 Array of average 
section ridge 
widths 

RIDGE_WIDTH_ARRAY PREPARE_AvERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 4.1.3 
Array of average 
section ridge 
widths 

rotation ApPLy_MASKS 6.1.1.2 A rotation for a 
nub mask 

row AVERAGE_NEIGHBORHOOD_RIDGE_ WIDTH 4.1.3 Row index of the 
RIDGE_WIDTH_ 
ARRAY 



VJ --

Variable 

row 

row_score 

rows yer _section 

rows yer _section 

Scolumn 

srow 

same residue 

Table F -4. List of Variables (continued) 

Function Section Description 

PREPARE_AVERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 4.1.3 

CREASE_TRIMMING 

AVERAGE_NEIGHBORHOOD _RIDGE_WIDTH 

Row index of the 
RIDGE_WIDTH_ 
ARRAY 

. 3.1.1 The row score 
. proportional to the 

white region 
around each 
horizontal runi 

4.1.3 Number of rows in 
a fingerprint image 
section 

PREPARE_ AVERAGE_NEIGHBORHOOD _RIDGE_WIDTHS 4.1.3 

RIDGE_SMOOTHING 8.2 

RIDGE_SMOOTHING 8.2 

LINE FITTING 9.2 

Number of rows in 
a fingerprint image 
section 

A running sum of 
column 
coordinates along a 
section of a curve 
being smoothed 
A running sum of 
row coordinates 
along a section of a 
curve being 
smoothed 

Boundary of points 
with same residue 

,. 



w -tv 

Variable 

saved_endpoint~ag_one 

saved_endpoint~ag_one 

saved_endpoint~ag_one 

saved_endpoint~ag_~o 

saved_endpoint~ag_~o 

saved_endPoint~ag_~o 

Table F-4. List of Variables (continued) 

Function 

CYCLIC_PROCESSING 

Section Description 

10.1.2 Endpoint flag for 
the curve on the 
"from" side of the 
candidate insertion 
point 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVEI0.1.2.3 

The endpoint flag 
for curve of the 
best insertion - -
linkage 

SEARCH_FoR_THE_BEST_lNsERTION_LoCATION 10.1.2.1 The endpoint flag 
for curve of the 
best insertion link - -
age 

CYCLIC_PROCESSING 10.1.2 Endpoint flag for 
the curve on the 
"to" side of the 
candidate insertion 
point 

RESULTS_CHECKING_AND_lNsERTION_OF_UNSORTED_CURVEIO.1.Z.3 

< The endpoint flag 
for first_curve of 
the best insertion 
linkage 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The endpoint flag 
for first_curve of 
the best insertion 
linkage 



\.JJ -\.JJ 

Variable 

saved_reverse Jlag_ one 

saved_reverseJlag_one 

saved_reverse Jlag_ one 

saved_reverse Jlag_ two 

saved_reverse Jlag_ two 

saved_reverseJlag_two 

Table F-4. List of Variables (continued) 

Function Section Description 

CYCLIC_PRO~ESSING 10.1.2 Reversal flag for 
the curve on the 
"from" side of the 
candidate insertion 
point 

RESULTS_CHECKING_AND _INSERTION_OF _UNSORTED_CURVE 10.1.2.3 
The reversal flag 
for curve of the 
best insertion - -
linkage 

SEARCH_FoR_THE_BEST_INSERTION_LoCATION 10.1.2.1 The reversal flag 
for curve of the 
best insertion - -
linkage 

CYCLIC_PROCESSING 10.1.2 Reversal flag for 
the curve on the 
"to" side of the 
candidate insertion 
point 

RESULTS_CHECKING_AND _INSERTION_OF _UNSORTED_CURVE 10.1.2.3 
The reversal flag 
for first_curve of 
the best insertion 
linkage 

SEARCH_FoR_THE_BEST_lNsERTION_LoCATION 10.1.2.1 The reversal flag 
for first_curve of 
the best insertion - -
linkage 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

score SMALL_RIDGE_BREAK_ CONNECTION 7.1.4 Value indicating 
the relative 
possibility that a 
pair of endpoints is 
part of a small 
ridge break 

second_endpoint LINE_FITnNG 9.2 An endpoint of the 
current chord 

section size CONNECTION_SCORING_FUNCfION 7.1.4.1 Size of the desired 
curve end section 

section _ sizea CONNECTION _SCORING_FUNCTION 7.1.4.1 Size of end section 
for curve a 

w section _sizeb CONNECTION_SCORING _FUNCfION 7.1.4.1 Size of end section -~ for curve b 
seed index EXTRACT_CURVES 6.1.2 Index for labeling 

branch seed curves 
seed index INITIALIZE BRANCHES 6.1.2.5 Index for labeling 

branch seed curves 
sign ApPLY_SIGN_To_ VALUE 12.2 Sign of value 
sign ENCODE_SIGN 11.4.3 Sign of value 
signx DECODE_ CURVE_DELTAS 12.2 The x coordinate 

sign 
signy DECODE_ CURVE_DELTAS 12.2 The y coordinate 

sign 
smooth curve RIDGE_SMOOTHING 8.2 The resulting curve 

that is in the 
process of being 
smoothed 



Table F-4. List of Variables (continued) 

Variable Function Section Description 

smooth curve list RIDGE_SMOOTHING 8.2 List of curves - -
representing the 
fingerprint that 
have been 
smoothed 

sorted list CURVE_SORTING 10.1 List of curves after 
having been 
processed by 
sorting 

."~ 

sorted list CYCLIC_PROCESSING 10.1.2 List of curves after 
having been placed 
by sorting 

sorted list RESULTS CHECKING 10.1.1.2 List of curves after 
Vl -..- having been placed 
VI 

by sorting 
soned list SEARCH_FoR_THE_BEST_INSERTION_LoCATION "10.1.2.1 List of curves after 

having been placed 
by sorting 

sorted list SELECTIVE_PROCESSING 10.1.1 List of curves after 
having been plac"ed 
by sorting 

spline_x B-SPLINE 13.2 Calculated x 
coordinate for 
current iteration 

splineJ B.SPLINE 13.2 Calculated 
y-coordinate for 
current iteration 



Vl -0'\ 

Variable 

status 

status 

status 

sum 

sum 

sum 

sum best bits - -

TableF -4. List of Variables (continued) 

Function 

FOLLOW_RIDGE 

SELECTIVE PROCESSING 

SMALL_RIDGE_BREAK_ CONNECTION 

AVERAGE_SECTION_RIDGE_ WIDTH 

CREASE_TRIMMING 

RIDGE_SECTION _AVERAGE_RIDGE_WIDTH 

DISTANCE_COMPARISON 

Section Description 

5.1.3 Boolean value 
indicating end 
condition of ridge 
following 

10.1.1 Boolean indicating 
the completion of 
this stage of curve 
sorting 

7.1.4 Boolean value 
indicating status of 
the search for 
small ridge breaks 

4.1.3 Sum of ridge 
widths in section 

3.1.1 The estimation of 
white area in the 
fingerprint image 
surrounding a 
particular row 

7.1.2 Sum of chamfer 
values along a 
ridge section 

10.1.1.2 Sum of the bits 
necessary to 
represent the 
magnitudes of the 
x and y offsets of 
bestJump 



Table F-4. List of Variables (continued) 

Variahk Function Section Description 

sum best distance DISTANCE_COMPARISON 10.1.1.2 Sum of the - -
magnitudes of the 
x and y offsets of 
bestJump 

sum current bits DISTANCE_COMPARISON 10.1.1.2 Sum of the bits 
necessary to 
represent the 
magnitudes of the 
x and y offsetS of 
current Jump 

sum current distance DISTANCE COMPARISON 10.1.1.2 Sum of the - -
magnitudes of the 

w x and y offsets of ..... 
....,J current Jump 

SW DETERMINE_WORD _SIZES 11.4.2 Short word size in 
number of bits 

T BUO BINARIZATION A.3 Thresholded -~ 

fingerprint image 

t B·SPLINE 13.2 B-Spline 
correction 
coefficient 

t CREASE_TRIMMING 3.1.1 Threshold of 
verticaCrun 
lengths 

T CURVlm_RIDGE_ENDING_REMOVAL B.l Thinned 
fingerprint image 

T DYNAMiC_THRESHOLDING 2.2 Thresholded 
fingerprint image 



Table F-4. List of Variables (continued). 

Variable Function Section Description 
T FOLLOW_RIDGE 5.1.3 Thinned 

fingerprint image 
T JOIN_CURVES 7.1.3.1 Thinned 

fingerprint image 
T RIDGE_THINNING 5.1 Thinned 

fingerprint image 
T SMALL_OFFSHOOT_CURVE_REMOVAL 7.1.3 Thinned 

fingerprint image 
T SMALL_RIDGE_ CONNECTION_REMOVAL 7.1.5 Thinned 

fingerprint image 
T SMALL_RIDGE_SEGMENT _REMOVAL 7.1.6 Thinned 

fingerprint image 
w tlower DYNAMIC THRESHOLDING 2.2 Absolute lower -00 limit for 

thresholding 
tmax CREASE_TRIMMING 3.1.1 Maximum 

threshold of 
vertical_run 
lengths 

tupper DYNAMIC_THRESHOLDING 2.2 Absolute upper 
limit for 
thresholding 

temp_chordJloints CALCULATE_CHORD _POINTS 9.2 Temporary ordered 
list of chord points 

temp_chordJloints LINE FITTING 9.2 Temporary ordered 
list of chord points 

to do FOLLOW_To _Do_LIST 6.1.2.6 List of branch seed 
curves yet to be 
followed 



Vl -\0 

Variable 

to_endpoint _offset 

to_endpoint _ offsetx 

to_endpoint _offset, 

topology_mask _set 

total 

totalsw 

total zero 

Table F·4. List of Variables (continued) 

Function Section Description 

RESULTS_CHECKING_AND_INSERTlON_OF_UNSORTED_CURVElO.I.2.3 
The jump from 
before curve to 
first curve 

RESULTS_CHECKING _AND _INSERTION_OF _UNSORTED_CURVE 1 0.1.2.3 
The x offset of the 
jump from 
before curve to 
first_curve 

RESULTS_CHECKING_AND_lNsERTION_OF_UNSORTED_CURVEI0.1.2.3 
The y offset of the 
jump from 
before_curve to 
first curve 

CONVERT_TO_SINGLEJ'IXEL_WIDE_RIDGES 6.1.1.1 Set of masks for 
non-topology
changing pixel 
removal 

DETERMINE_WORD_SIZES 11.4.2 The total number 

DETERMINE WORD SIZES - -

DETERMINE_ WORD_SIZES 

of elements in the 
histogram 

11.4.2 The total number 
of elements to be 
represented with a 
short word 

11.4.2 The number of 
elements in the 
histogram equal to 
zero 



Variable 

unsoned list 

unsoned list 

unsorted list 

Vl 

~ 

unsorted list 

unsoned list 

Table F-4. List of Variables (continued) 

Function Section Description 

CURVE SORTING 10.1 List of CUIVes 
- representing the 

fingerprint that has 
not been processed 
by sorting 

CYCLIC_PROCESSING 10.1.2 List of CUIVes 
representing the 
fingerprint that has 
not been placed by 
sorting 

RESULTS_CHECKING 10.1.1.2 List of CUIVes 
representing the 
fingerprint that has 
not been placed by 
sorting 

RESULTS_CHECKING_AND_INSERTION_OF_UNSORTED_CURVElO.1.2.3 

List of curves 
representing the 
fingerprint that has 
not been placed by 
sorting 

SEARCH_FoR_THE_BEST-FIT_CURVE 10.1.1.1 List of CUIVes 
representing the 
fingerprint that has 
not been placed by 
sorting 



Table F -4. List of Variables (continued) 

Variabk Function Section Description 

unsorted list SELECTIVE_PROCESSING 10.1.1 List of curves 
representing the 
fingerprint that has 
not been placed by 
sorting 

value ApPLY_SIGN_To_ VALUE 12.2 Value being tested 
value DECODE_SIGN_FOR_ VALUE 12.2 Value being tested 
value INpUT_STREAM 12.2 Value being read 

from input stream 
value IS_SMALL 10.1.2.2 An offset value 

that is being 
compared to S ;"j 

value OUTPUT_STREAM 11.4.3 Value being 
w written to output tv - stream 

value SIGN 11.4.2 Value being tested 
":'. 

verticaCrun CREASE_TRIMMING 3.1.1 The longest run of 
consecutive white 
pixels for every 
column 

W AVERAGE_SECTION_RIDGE_ WIDTH 4.1.3 Ridge width at 
current pixel 

W SMALL_RIDGE_CONNECTION_REMOVAL 7.1.5 Average ridge 
width of the 
neighboring 
reference sections 

Wa LARGE_PORE_TEST 4.1.2.3 Average ridge 
width in a 
neighborhood of a 
pixel 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

Wa REMOVE LARGE PORES - - 4.1.2.2 Average ridge 
width in a 
neighborhood of a 
pixel 

Wa REMOVE_SMALL_PORES 4.1.1 Average ridge 
width in a 
neighborhood of a 
pixel 

Wccw LARGE PORE TEST - - 4.1.2.3 Width of ridge in 
counterclockwise 
direction from 
large pore 
candidate 

w 
Wcurrent RIDGE_SMOOTIDNG 8.2 Current size of the N 

N smoothing window 
WCW LARGE PORE TEST 4.1.2.3 Width of ridge in - -

clockwise 
direction from 
large pore 
candidate 

wp LARGE_PORE_TEST 4.1.2.3 Width oflarge 
pore candidate 

Wr LARGE PORE TEST 4.1.2.3 Width of ridge to - -
side of large pore 
candidate 

width EXTRACT_CURVES 6.1.2 Width of 
fingerprint image 

width PREPARE_AvERAGE_NEIGHBORHOOD_RIDGE_WIDTHS 4.1.3 
Width of 
fingerprint image 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

width REMOVE_LARGE_PORES 4.1.2.2 Width of 
fingerprint image 

width REMOVE_SMALL_PORES 4.1.1 Width of 
fingerprint image 

widthc DETECT _LOCAL_MAXIMA 5.1.2 Width of chamfer 
imageC 

width[ CHAMFER 5.1.1 Width of image I 

word size DECODE_USING_ WORD_SIZES 12.2 One word size in 
word sizes 

word size DECODE_WORD _SIZES 12.2 One word size in 
word sizes 

Vl word size ~ ENCODE_USING_ WORD_SIZES 11.4.3 One word size in 
tv word sizes Vl 

word sizes DECODE_USING_ WORD_SIZES 12.2 The calculated 
number of word 
sizes allowable 

word sizes DECODE_WORD_SIZES 12.2 The calculated ~ 

-
number of word 
sizes allowable 

word sizes ENCODE_USING_ WORD_SIZES 11.4.3 The calculated 
number of word 
sizes allowable 

word sizes ENCODE_WORD _SIZES 11.4.3 The calculated 
number of word 
sizes allowable 

word _sizesdeltax DECODE_ CURVE_DELTAS 12.2 The calculated 
word sizes for the 
delta x 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

word _sizesdeltox DECODE_HEADERS 12.2 The calculated 
word sizes for the 
deltax 

word _siZeSdeltox DETERMINE_F'INGERPRINT_DATA_PROPERTIES - 11.4.2 The calculated 
word sizes for the 
deltax 

word _sizesdeltox ENCODE_ CURVE_DELTAS 11.4.3 The calculated 
word sizes for the 
deltax 

word _ sizesdeltox ENCODE HEADERS 11.4.3 The calculated 
word sizes for the 
deltax 

word _sizesdeltay DECODE_ CURVE_DELTAS 12.2 The calculated 
w 

word sizes for the N 
~ 

deltay 
word _siZeSdeltay DECODE_HEADER 12.2 The calculated 

word sizes for the 
deltay 

word _siZeSdeltay DETERMINE_FINGERPRINT_DATA_PROPERTIES 11.4.2 The calculated 
word sizes for the 
deltay 

word _sizesdeltay ENCODE_ CURVE_DELTAS 11.4.3 The calculated 
word sizes for the 
deltay 

word _sizesdeltay ENCODE_HEADER 11.4.3 The calculated 
word si~es for the 
deltay 

word _sizesjumpx DECODE HEADER 12.2 The calculated 
word sizes for the 
jumPx 



'\ 

Table F -4. List of Variables (continued) 

Variable Function Section Description 

word _s;zesjumpx DECODE_JUMP 12.2 The calculated 
word sizes for the 
jU1nfJx 

word _s;zesjumpx DETERMINE_F'INGERPRINT_DATA_PROPERTIES 11.4.2 The calculated 
word sizes for the 
jumpx 

word_s;zesjumpx ENCODE HEADER 11.4.3 The calculated 
word sizes for the 
jumPx 

word _s;zesjumpx ENCODE_JUMP 11.4.3 The calculated 
word sizes for the 
jumPx 

w word_s;zesjumpy DECODE HEADER 12.2 The calculated 
tv 

word sizes for the VI 

jU1nfJy 
word _s;zesjumpy DECODE_JUMP 12.2 The calculated 

word sizes for the 
jU1nfJy 

word _s;zesjumpy DETERMINE_FINGERPRINT_DATA_PROPERTIES 11.4.2 The calculated 
word sizes for the 
jumPy 

word _s;zesjumpy ENCODE_HEADER 11.4.3 The calculated 
word sizes for the 
jU1nfJy 

word _s;zesjumpy ENcoDE_JUMP 11.4.3 The calculated 
word sizes for the 
jU1nfJy 



Table F -4. List of Variables (continued) 

Vari.abk Function Section Description 

word sizesnum deltas DECODE_ CURVE_DELTAS 12.2 The calculated 
word sizes for the 
number of deltas 
per curve 

word sizesnum deltas DECODE HEADER 12.2 The calculated - -
word sizes for the 
number of deltas 
per curve 

word _sizesnum _deltas DETERMINE_FINGERPRINT_DATA_PROPERTIES 11.4.2 The calculated 
word sizes for the 
number of deltas 
per curve 

w word _sizesnum _deltas ENCODE_ CURVE_DELTAS 11.4.3 The calculated 
tv 
0'\ word sizes for the 

number of deltas 
per curve 

word _sizesnum _deltas ENCODE HEADER 11.4.3 The calculated 
word sizes for the 
number of deltas 
per curve 

x A 13.2 Array ofx 
coordinates in 
current curve 

x B 13.2 Array ofx 
coordinates in 
current curve 

x B-SPLINE 13.2 Array ofx 
coordinates in 
current curve 



Table F-4. List of Variables (continued) 

Varia~ Function Section Description 

x C 13.2 Array ofx 
coordinates in 
current curve 

x CALCULATE_CHORD _POINTS 9.2 An array which 
holds x coordinate 
information for 
curve 

x D 13.2 Array ofx 
coordinates in 
current curve 

x LINE_FITTING 9.2 An array which 
holds x coordinate 

w information for 
N curve -....J 

x coordinate B·SPLINE 13.2 Calculated 
B-Spline x 
coordinate 

y B·SPLINE 13.2 Array ofy 
coordinates in 
current curve 

y CALCULATE_CHORD _POINTS 9.2 An array which 
holds y coordinate 
information for 
curve 

y LINE FITTING 9.2 An array which 
holds y coordinate 
information for 
curve 



Table F -4. List of Variables (continued) 

Variable Function Section Description 
y _coordinate B-SPLINE 13.2 Calculated 

B-Spline y 
coordinate 

z BAD _BLOCK_BLANKING C.2 Index 
ZJ.1I BUO _BINARIZATION A.l.3 Image overall 

mean pixel value 
Zmaxl BUO _BINARIZATION A. 1.3 Maximum pixel 

value over entire 
image 

z_average_c~fer_value PRocESs_RIDGE_ENDING B.l Average chamfer 
value for last half 
of reference 

Vl section 
tv z blockmap BAD_BLOCK_BLANKING C.2 Ridge direction 00 

map 
z blockmap BUO _BINARIZATION A.3 Ridge direction 

map 
z blockmap RIDGE_CLEANING 7.1 Ridge direction 

map 
z_blockmap CURVED_RIDGE_ENDING_REMOVAL B.1 Ridge direction 

map 
z blockmap PROCESS _RIDGE_ENDING B.l Ridge direction 

map 
z blockmap RIDGE_ TIHNNING 5.1 Ridge direction 

map 
z blockmap WRITE BLOCK FILE A.2.2 Ridge direction - -

map 
z curve BAD _BLOCK_BLANKING C.2 One curve in the 

curve list 



Table F -4. List of Variables (continued) 

Variable Function Section Description 

z curve PRocESs_RIDGE_ENDING B.1 One. curve in the 
curve list 

z distanceAB PRocESs _RIDGE_ENDING B.l Euclidean distance 
between z "'pointA 
and Z "'pointB 

Z distanceBC PROCESS RIDGE ENDING - - B.l Euclidean distance 
between Z "'pointB 
and Z "'pointe 

z_endpoint PROCESS RIDGE ENDING B.l One endpoint of - -
the curve being 
processed 

z Jirst "'point BAD _BLOCK_BLANKING C.2 Index of curve 
w point 
N 
\0 z _local_ridge _width SMALL_OFFSHOOT _CURVE_REMOVAL 7.1.3 Average of the 

local average ridge 
widths at the 
unconnected 
endpoint and at the 
midpoint of curve 

z _local_ridge _width SMALL_RIDGE_SEGMENT _REMOVAL 7.1.6 Average of the 
local average ridge 
widths at the 
endpoints of curve 

z new curve BAD _BLOCK_BLANKING - - C.2 New curve 
structure 

z new curve list BAD_BLOCK_BLANKING C.2 Temporary list of - - -
new curves 

z not done PROCESS _RIDGE_ENDING B.l Flag indicating 
loop status 



Table F -4. List of Variables (continued) 

Variable Function Section Description 
Z _nwnber yoints _removed PRocESs_RIDGE_ENDING B.1 Counter of current 

number of points 
marked for 
removal 

Z _ num yoints BAD_BLOCK_BLANKING C.2 Number of points 
in a curve 

Z_POINT BAD_BLOCK_BLANKING C.2 Temporary array of 
points in a curve 

zyoinlA PROCESS _RIDGE_ENDING B.1 First point of 
reference section 

zyointB PRocESs_RIDGE_ENDING B.1 Midpoint of 
reference section 

zyointc . PROCESS _RIDGE_ENDING B.1 Last point of 
VJ reference section VJ 
0 z sum PROCESS _RIDGE_ENDING B.1 Sum of the 

chamfer values for 
last half of 
reference section 

zz FIND _BEST_PARTITION D.2 Index 
ZZbest Jemaindi!r FIND BEST PARTITION D.2 Size of best-case . - -

remainder section, 
in pixels 

zZbest section size FIND BEST PARTITION - - D.2 Size of best-case - -
section, in pixels 

ZZimage _size FIND_BEST _PARTITION D.2 Image width or 
height 

zZremaindi!r FIND BEST PARTITION - - D.2 Size of remainder 
section, in pixels 

zZsection size FIND BEST PARTITION - - D.2 Size of section, in 
pixels 



t p
"
 

I 
p

"
 

:s 
£

:9
 

:s 
0 

'
§
~
 

~~ 

I 
~
 

-< 
- "t:J CI.I 
"t:J 
=

 
'ti 
c 0 
U

 
-rl -~ " .-.. 

:z 
~
 

0 ... 
'-

ti: 
0 

-
toOl 

.
~
 

iii 
~
 

-< 

~
 j 

~
 

=
 

~
 

I 

CI.I 
0 

-
:c 

~
 

~
 

=
 

331 




