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Abstract—Moving Target Indicator (MTI) analysts in the field
are responsible for processing the increasing amounts of live
streaming data. Analysts manually access unique data sources
through a set of tools, and perform analysis on the available data.
Operationally, analysts can only concentrate on small areas of
interest and are subject to attentional blindness. Abnormalities
in the periphery are often not detected until the forensic stage.
Analysts are in need of assistance in performing data analysis.

This paper presents the implementation of a heuristic-based
stream mining approach for cueing the analyst user on patterns
in near real-time. This approach is designed to aid analysts in
detecting noteworthy events scattered within the overabundance
of data, a problem which is well-documented and recognized
[1], [2]. The implementation involves two-phases: the isolation
of areas of unusual activity using density grids, followed by
event detection within those areas. Four events (aka. patterns)
- starburst, inverse starburst, fanning, and inverse fanning -
were identified for automated detection using these techniques.
The event detection method was employed as a service within
the Sensor Data & Analysis Framework (SDAF). The algorithm
implementation and evaluation produced findings and informal
user feedback. The results of this effort aids in establishing
the foundation for near real-time event detection in MTI data
analysis.

I. INTRODUCTION

Automating event detection on operational data is an iden-
tified problem. According to the JASON Defense Advisory
Board [1]:

As the greatest challenge will come from the need
to automate analysis, the most immediate need is for
algorithmic advances that can help cue the analyst
and trigger closer observation as well as possible
fusing of other relevant data. (p. 3)

The advisory board recognizes the need for automated analysis
while understanding the initial steps, such as cueuing.

This effort presents an approach, beyond basic data char-
acterization and filtering, to the event detection challenge in
a near real-time environment. Section III describes a heuristic
method used to detect four analyst-identified patterns: star-
burst, inverse starburst, fanning, and inverse fanning. The
method is evaluated using simulated and exercise data, as
discussed in Section IV. Section V reveals the findings from
informal user feedback, which provide the direction for future
work outlined in Section VI.

A. Problem Statement

There is a common perception that data collected by sen-
sors is increasing at a possibly unmanageable rate within
the Department of Defense (DoD) and Intelligence Commu-
nity (IC). The JASON Defense Advisory Board recognizes
this perception although report that “data requirements are
certainly significant but not unmanageable given trends in
storage technology”(p. 2). Data-intensive fields of science,
such as high energy physics, are similar to the DoD and IC
through the volumes of data requiring analysis. It is estimated
that these data-intensive fields will experience exponential
growth to the 100’s of Petabytes by 2015 [1]; this estimation
includes consideration of user needs. Given the similarity in
data volumes handled by the data-intensive science fields and
the DoD/IC, the DoD/IC may assume to experience similar
growth.

Ultimately, the analyst user is at the receiving end of
this data pipe. Assisting the analyst is a crucial part of the
data analysis problem. The JASON Defense Advisory Board
highlights the need to view the analysis timeline: “the key
challenge is to empower the analyst by ensuring that results
requiring rapid response are made available as quickly as
possible while also insuring that more long term activities such
as forensic analysis are adequately supported”(p. 2). These
time requirements dictate how the data should be handled (see
Table I derived from [1]).

Time Period Method
retrospective homogeneous data structures
intermediate service-oriented architectures

rapid response event-driven architectures

TABLE I
SUGGESTED DATA HANDLING BASED ON TIME REQUIREMENTS.

The data handling requirements outlined in Table I are ad-
dressed by numerous efforts. See [3] for a summary of related
intermediate and rapid response approaches. The effort in [4]
is an example of an event-driven service-oriented architecture
designed for rapid response on near real-time data streams and
historical data.

Despite the potential to manage the increasing amounts of
data, an estimated 70% of collected data is not processed [1].
Processing the data, through analysis and fusion, remains a
challenge.
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B. Motivation

Moving Target Indicator (MTI) analysts in the field are
responsible for processing the increasing amounts of live
streaming data. Analysts manually access unique data sources
through a set of tools, and perform analysis on the available
data. Operationally, analysts can only concentrate on small
areas of interest and are subject to attentional blindness [5].
Abnormalities in the periphery are often not detected until the
forensic stage. Forensic analysis has proven to be very effec-
tive; therefore research in abnormality detection has primarily
focused on the forensic analysis of sensor data. However, any
intelligence on interesting activities gathered and reported in
near real-time can prove invaluable to the situational awareness
of warfighters in theatre. Used in conjunction with high fidelity
forensic intelligence, near real-time intelligence extracted from
streaming data will enable warfighters to proactively meet
emerging threats. Assistance is needed to share the cognitive
load in analyzing streaming data.

C. Contributions

Employing event detection methods on streaming data has
the potential to improve operational analysts’ efficiency in
theatre. This increases situational awareness and shortens
decision-response time by allowing analysts to quickly key
in on important events in near real-time. Although event
detection methods are potentially useful, the methods must
be useable and proven to detect events at an acceptable
rate. A benchmark, detailing usability and detection rate, is
currently undefined given event detection is new to the analyst
community.

This effort introduces event detection methods, beyond
filtering, to the operational analyst community. The algorithm
implementation and evaluation produced findings and informal
user feedback. The results of this effort aids in establishing the
foundation for near real-time event detection in operational
analysis.

II. RELATED WORK

Data stream processing, or stream mining, is an established
field of research, as evidenced by the large amount of literature
covering the topic. The authors in [6] provide an overview of
the field. The following paragraphs present related work within
data stream mining which includes systems and algorithms.

A. Stream Mining Overview

Stream mining is employed in fields that need to reveal
events in incoming data, such as the financial industry or
monitoring applications. The nature of streaming data involves
a one-pass viewing of the data, in part due to the potential
volume of incoming data. Charu Aggarwal provides the def-
inition for streaming data while presenting a survey of the
stream mining field in [7]. Throughout the survey of existing
stream mining methods, Aggarwal emphasizes that there is
not a direct application of multi-pass algorithms to the one-
pass streaming data. This is due to the temporal locality of
data streams as they evolve over time. Thus, stream mining

algorithms need to be designed for data evolution in addition to
one-pass processing. On the contrary, Mohammed Gaber from
Monash University draws similarities between data mining and
stream mining; as data stream mining can be seen as a direct
subset of traditional database mining. His work in [8] presents
how data mining techniques may be used on data streams.

Current and future research focus for stream mining in-
cludes mining methods such as stream clustering (nearest-
neighbor searches), frequent pattern mining, change detec-
tion (anomaly search), stream synopsis (minimization of data
stream by emphasizing present input), and new emerging ideas
such as distributed data stream mining (separating different
tasks of mining to different systems) [7].

B. Systems

The authors in [9] present the following six requirements
for a stream mining system:

1) Small, constant processing time per record to prevent
falling behind.

2) Use a fixed amount of memory.
3) Build a model using one-pass of the streaming data,

given potential data volumes and no guarantee the data
is stored.

4) A model should be available at any point in time given
there may be no end to the data.

5) The model produced should be equivalent to one gener-
ated by a database mining algorithm.

6) Maintain an update model that withstands concept-drift
within the streaming data (i.e. an evolving data stream)
and incorporates past data.

Systems, such as the streaming query engines detailed in
[10], were designed to handle querying streams in near real-
time. The work in [11] provides detail of a system that con-
sumes real-time radio-frequency identification (RFID) data and
supports querying. The authors in [12] consider a framework
for producing trends within data streams.

The effort detailed in [3], [4], [13] takes a slightly different
approach through providing an integrated query on streaming
and historical data simultaneously; the intent was to reduce
time analysts spent manually querying different data sources.
The Sensor Data & Analysis Framework (SDAF) is an event-
driven service-oriented architecture (SOA) which manages
the logistics of executing a user’s spatial-temporal query.
This simplifies querying for the user by removing the need
to know how to access individual data sources. SDAF was
designed to handle streaming data, thus attempts to comply
with the requirements listed above. Analysts were interested in
querying and being alerted of patterns within the data. SDAF
was modified to support event detection services [4]. SDAF
provided the framework by which the effort presented in this
paper was implemented and evaluated.

C. Algorithms

Data clustering has been extensively studied in data mining,
as evident in [14]. However, its application on data streams
has proven problematic because the dataset can only be seen
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by the algorithm at most once for real-time mining. K-means
and Fuzzy-C are two general methods used. Many of these
algorithms deal with determining distance between points, and
also using a predetermined definition of distance for each case
of data. In [15], the authors provide an overview of general
techniques for data stream clustering algorithms. The authors
interestingly comment that the clustering technique provided
by [16] only outputs cluster centers and does not store the
metadata of which cluster a specific point has been assigned
to. This method reduces overhead, but may be problematic
in maintaining data pedigree. The authors in [17] present an
example of a more recent clustering algorithm which uses time
windows. The benefit of time windows is under debate.

Many efforts have addressed frequent pattern mining, in-
cluding [18]–[21]. Frequent pattern mining is useful in gaining
knowledge of how often an event occurs. The authors of chap-
ter four in [7] cite memory management and computational
costs as the emblematic problems of frequent pattern mining
on data streams. Algorithms described in the chapter attempt
to find useable error bounds in order to approximate results,
minimize memory, and computational usage. The challenge
with frequent pattern mining is that it is often case specific.

Outlier detection can be thought of as a specialized case of
clustering or the inverse of clustering. Instead of finding near-
neighboring data points, outlier detection searches for data
largely differing from past, current, or future. The authors in
[22] provide a brief synopsis of outlier detection methods,
including a grid technique for maintaining statistical data.
The authors in [23] created a distributed algorithm using a
kernel density function for observing outliers in a sensor
network intended to detect broken sensors. The authors in
[24] present two contrasting algorithms for outlier detection.
The first algorithm focuses on accurate results at the expense
of increasing storage space. The second algorithm uses the
sliding window for approximate answer with bounded errors.
The paper also comments on the querying approach for outlier
detection. The authors suggest that a continuous analysis of
the data stream for outliers may lead to inaccurate results
due to concept drift of incoming data. Their solution was
to use a single query approach to analyze the data stream
only when wanted. The effort in [25] generalizes the outlier
detection problem to consider anomalies within streaming data
representing moving targets; the algorithms used include local
clustering.

Other groups have considered methods alternative to those
discussed above. The authors in [26] focus on density-based
clusters and distance-based outliers using neighbor-based pat-
terns on MTI data. Machine learning techniques are also
options for stream mining. The authors of [27] directed the
effort on the development of a tool to work with the analyst.
The tool would learn the intelligence analyst’s behaviors in
order to serve the analyst. The intent was to compliment the
analyst’s cognitive strengths with the tool speed and pattern
recognition ability. The authors in [28] provide a survey of
uncertain data mining techniques. These methods include the
classic techniques above.

The algorithm methods discussed in this section may be of
use for MTI data. Filtering and data characterization are two
current methods used to indicate potential events in MTI data.
An analyst may use filtering to view data only in a certain area
and of a specified type. Behaviors or objects may be inferred
given specific data characteristics as well. This is challenging
in that large amounts of data with behavior and object ground
truth need to be available to build and test the data character-
izations for certainty. The effort detailed in Section III goes
beyond simple filtering and data characterization by making
use of heuristic techniques to cue on spatial-temporal patterns
recognized by analysts.

III. TWO-PHASE APPROACH FOR LIVE DATA STREAMS

The primary constraint for this effort was imposed by
the users’ need for near real-time information. Near real-
time is defined by the National Communications System
as “pertaining to the delay introduced, by automated data
processing, between the occurrence of an event and the use
of the processed data” [29]. There is a time lag between when
the event being picked up by the ground MIT (GMTI) sensor
and the data being viewed by the analyst. The following steps
occur before the analyst views the data:

1) GMTI sensors collect the data containing the event.
2) Data is transferred to a ground station.
3) Ground station re-broadcasts the data for consumption.
4) Data is translated and ready for processing.
5) Data processing is completed.

This is a variable time lag that constitutes a GMTI data
stream being classified as near real-time. Event detection
processing is not useful if too much time is added to the period
between event occurrence and analyst viewing. Analysts will
ultimately define an acceptable detection response time after
the capability is available and in testing.

In order to address the near real-time constraint, a two-phase
method was devised to minimize computation time:

1) Dot Group - Determine which groups of dots (aka.
GMTI detections) constitute an individual event.

2) Event Type - Analyze dot groups to determine whether
any specific recognizable types of events were present
in the group.

A. An Alternative to Traditional Clustering

Initially, standard clustering algorithms were considered as a
means of grouping dots. These algorithms included hierarchi-
cal clustering, K-means and derivatives, and Quality Threshold
(QT) clustering [7]. Each method presented challenges; either
they were simply too slow to seem viable in a near real-time
context, or had other limitations that conflicted with the analyst
field. For instance, K-means requires specifying the number of
clusters in advance. Analysts are concerned with evaluating an
area for events; the number of events are not known advance.

The aforementioned two-phase method is feasible within
the operational analysis environment and had the potential to
tolerate live data streams. The first phase is an alternative
to traditional clustering. It utilizes a density grid to divide
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the map into approximately equal-sized regions. Rather than
looking at apparent clusters of dots, the system considers each
region as the potential location of an event. The intuition
behind this method is the promise of feasibility in a near
real-time context, while still being effective in extracting
individual, regional events from a large area.

Multiple methods were considered for the second phase.
An initial concept was to look at each potential event as
something approximating a time-lapse image of the activ-
ity in the region. This opens up the option of employing
machine-learning-based computational vision techniques for
event detection. While this idea is still a possible avenue
for later experimentation, the technique that was implemented
for this effort was a heuristic one. A known set of events
were requested by analysts for detection, and the simplest,
most straightforward mathematical description of what each
detectable event looks like provided the detection foundation.
For example, the starburst pattern can be simply described as
a group of dots in close proximity to each other that diverge
over time. Such a time-based pattern is relatively simple to
translate into the language of mathematics; therefore, it can
be represented algorithmically.

B. Isolating Unusual Activity using Density Grids

The analyst’s area of interest (AOI) is divided into g overlap-
ping grids with square (or nearly square, based on geospatial
measurements) cells. Every dot on the map, therefore, falls
into g different cells, one from each overlapped grid. The
intent is to avoid the possibility of a single noteworthy activity
occurring across multiple cells within a grid, which would
result in the system seeing two separate “events”, neither of
which capture the true character of the actual event.

The number of overlapping grids and the cell granularity
are not limited per se, but more and finer grids require more
processing power. The grids themselves are represented as
DensityGrid objects within the implementation. Each Densi-
tyGrid object contains one or more overlapping grids of equal
granularity and uniform spacing. Multiple DensityGrid objects
can be used to define grids of varying granularity. The grid
cells are represented as GridSquare objects.

Average activity represents the number of dots per Grid-
Square per second. This is measured over a time window for
all GridSquares. The time window for determining average
activity is generally one to two hours. This time window was
found to work well with progressive traffic, but can be easily
adjusted to fit different environments. The assumed average
activity for GridSquares which have not yet been “seen”, may
be dealt with in various ways. For instance, assume average
activity is equal to the global average, or a regional average.
Figure 1 presents a visual notion of a density grid containing
uniform squares with computed activity averages.

Current activity is measured in dots per GridSquare per
second as seen in the past u seconds. U is a user-defined
parameter. It represents the duration of the current activity
window. Current activity is used to determine unusual activity
level. Figure 2 shows the current activity for GridSquares.

Fig. 1. Density grid with uniform grid squares and computed activity
averages.

Fig. 2. Density grid with uniform grid squares and computed current
averages.

The amount of unusual activity, defined as the current
activity divided by the average activity, is calculated for each
GridSquare. A small smoothing constant is added to account
for noise in the data. Figure 3 presents the unusual activity
levels calculated for a DensityGrid.

The GridSquares exhibiting an unusual activity level above
a user-defined threshold are flagged for further processing as
individual units. In order to make efficient use of resources,
unflagged GridSquares are ignored; exhaustively processing
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Fig. 3. Density grid with uniform grid squares and computed unusual activity
levels.

Fig. 4. Notional time-lapse visual of dots appearing within the current time
window.

every GridSquare would likely be far too computationally
expensive to fit within the near real-time constraint. The result
is a collection of areas on the map, each with an unusual level
of activity, and each containing the GMTI dots detected within
the currently active time window. A visual representation of
each GridSquare over the current activity window of size
u would look like a time-lapse image of the dots as they
progressively appeared (see Figure 4).

C. Event Detection within Unusual Activity GridSquares
Once a GridSquare is flagged, it is sent through a series of

tests to detect the following patterns:
1) Starburst - dots diverging in various directions from a

common location
2) Inverse Starburst - dots converging on a common

location from various directions
3) Fanning - dots diverging from a common location in a

fan pattern with uniformly spaced directions; this looks
like a moving, directed starburst

4) Inverse Fanning - dots converging on a common loca-
tion from uniformly spaced directions; this looks like an
organized moving, directed starburst

There are two primary dot traits used to identify these
four patterns: change in dispersion and average dot position.
Starburst and inverse starburst patterns are detected by mea-
suring the change in dispersion of dots within a GridSquare
between the early and late parts of the time window. Fanning
and inverse fanning patterns are detected by measuring a
combination of change in dispersion and change in average
position.

Definition 1. With a geospatial temporal data sequence con-
taining collections of longitude (x), latitude (y), and time stamp
(t) triplets, d = {x, y, t}, is called a dot.

Definition 2. A GridSquare contains a set of dots
within a defined region over a time window, GS =
{d1 . . . dk, dk+1 . . . dn}, where dk is the last dot detected in
the first half of the current time window and dn is the last dot
detected in the second half.

The classification method used to detect starburst, inverse
starburst, fanning, and inverse fanning events uses the dots
within a GridSquare as input. It contains four steps given the
following:
• di is the ith dot detected
• τµ is the gross movement to distinguish between starburst

behavior and fanning behavior
• τσ is the threshold for the minimum dispersion required

to report starburst andor fanning behavior
1) Calculate Early Centroid:

µx1
=

∑k
i=1 dix
k

µy1 =

∑k
i=1 diy
k

(1)

2) Calculate Late Centroid:

µx2
=

∑n
i=k+1 dix
n− k

µy2 =

∑n
i=k+1 diy
n− k

(2)

3) Calculate Gross Movement:

∆µ =
√

(µx1
− µx2

)2 + (µy1 − µy2)2 (3)

4) Calculate Change in Dispersion:

σGS =

(∑k
i=1 | dix − µx1

|
k

+

∑k
i=1 | diy − µy1 |

k

)
−
(∑n

i=k+1 | dix − µx2
|

n− k
+

∑n
i=k+1 | diy − µy2 |

n− k

)
(4)
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5) Interpretation of Resulting Values:

σGS > τσ and∆µ > τµ : Fanning

σGS > τσ and∆µ ≤ τµ : Starburst

σGS < −τσ and∆µ > τµ : Inverse Fanning

σGS < −τσ and∆µ ≤ τµ : Inverse Starburst

Level of “confidence′′ reported in [0, 1] =| σGS | (5)

IV. EVALUATION

The GridSquare model has proven effective for picking out
and detecting areas of interest which likely contain a particular
event type. The present implementation simply alerts the user
every time a grid square matches the user’s query. However,
this simple model has limitations. First, a list of individual
GridSquare detections often provides an overabundance of
information. If there is an sudden increase in activity over
a larger area, for example, the user would be alerted to a large
number of GridSquares containing unusual activity levels; a
better solution would be to alert the user to the area which
contains all those GridSquares. As such, we propose a further
level of abstraction above the grid square concept; that of an
interesting area (IA).

To implement the IA model and better tie together multiple
DensityGrid objects, ActivityMap class is needed. A single
ActivityMap will consist of any number of DensityGrids, and
will keep a list of all IAs in memory. Rather than sending
alerts each time a new noteworthy GridSquare is detected,
the ActivityMap will simply give the user a customized
view of this list. Figure 5 represents a single ActivityMap
instance, containing two DensityGrids. One DensityGrid has
a 2x overlap and a smaller unit size; the other is larger and
has no overlap. Based on the ActivityMap in Figure 5, two
IAs are found (see Figure 6.

Each of the GridSquares (colored red, blue and green) that
fall within the IAs (colored purple) would be processed to
determine if any recognized event types are taking place within
them. The IAs themselves, then, would be marked with those
event types. Each time a new GridSquare is determined to be
noteworthy, that GridSquare will either be added to an existing
IA (if it falls within the IA borders), or will trigger the creation
of a new IA containing only that GridSquare.

The user interface corresponding to the ActivityMap would
provide the user with a method of viewing not only all
currently active IAs, but also to browse IAs which have come
and gone. The user would also be able to direct the system
either to disregard a specific IA until a new GridSquare is
added to it, or to disregard it permanently. This system should
eliminate much of the extraneous or redundant data inherent
in the currently-implemented model.

A. Operational Exercise Data Used

The event detection services were evaluated against exercise
data. The first data set tested against was from a military field
exercise conducted in 2008. This data was replayed in a lab
and fed into the system to see where events would be detected
in a live scenario.

Fig. 5. Activity map containing two density grids.

Fig. 6. Two interesting areas derived from the ActivityMap.

The system was deployed in Empire Challenge 2009 (EC09)
[30] as part of the Army operational analysis group. The
exercise included data feeds from Virtual Surveillance Target
Attack Radar System (VSTARS) [31], Littoral Surveillance
Radar System (LSRS) [32], and King Air [33]. This allowed
informal evaluation of the event detection services in a real-
time environment. See Section V for findings from feedback
and observations.
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B. Affect on Near Real-Time Detection

In order to support near real-time event detection, the SDAF
system was modified to accommodate more complex queries
[4]. The complex queries made use of the event detection
implementation detailed in Section III when requested by the
user. Queries utilizing these algorithms must reach a level
of efficiency in order to keep pace with incoming data. The
following tests were performed with the primary objective of
comparing simple query performance with queries of increas-
ing complexity due to the processing required for event detec-
tion: DotEvent throughput, overhead in Border/Road detection,
and overlapping grid squares. These tests provide a baseline
indicating how the event detection implementation affects near
real-time analysis.

Testing was performed on the following hardware and
software:

• Intel Xeon E5345 2.33 GHz
• 4.0 GB RAM
• Microsoft Windows XP Professional x64 Service Pack 2
• Java 1.6.0 13
• JBoss AS 5.1.0.GA

Query parameters for event detection were defined as fol-
lows:

• Threshold: 6.0
• Limit: 20
• Grid Size: 1000
• Overlap: 2
• Current Window Size: 180
• Full Window Size: 7200
• Boundary Distance: 100

1) DotEvent Throughput: The test objective was to com-
pare the dot event throughput between a base query with
minimal processing to the throughput of the complex event
detection queries. A dot event represents a moving target data
point detected by radar (see [3] for details on the framework
and data ingestion). The base query includes minimal process-
ing which simply forwards all events received by the system
to the client. The complex queries include detecting starburst,
inverse starburst, fanning, and inverse fanning patterns. The
full event detection query involves simultaneous detection of
the four patterns as well as unusual border and road activity.
Each test lasted one hour with a restart of the application server
and deletion of temporary JBoss files before subsequent tests.
GMTI dots were streamed to SDAF via an in-house application
that parses GMTI input files. Data used for testing consisted of
four different simulated NatoEx files streamed simultaneously.

Note that the number of detected events for each query is
only determined by the number of dot events representing
GMTI. For example, event detection queries would produce
user alert events that signal the positive analysis for a GMTI
pattern (resulting in total number of events to be GMTI dot
events + user alert events). Approximately one thousand to
two thousand user alert events were found per event detection
query in each of the hour long tests.

Fig. 7. Query dot event throughput comparison between the base query
(blue), event detection without border activity (red), and full event detection
(green).

With the base query, 100% of dots sent through the system
were successfully processed by the system in the hour long
time span. The system easily handled dots at an average rate
of 278 dots per second with observed peaks of approximately
800 dots per second.

As expected, the complex queries had lower throughput than
the less complex queries. There is an observed 9% decrease in
throughput performance for the event detection query from the
base query and a 23% decrease in throughput performance for
the full event detection query which includes border activity.
While these numbers suggest that the algorithms are unable
to keep up with the live stream at this rate, they may just be
indicative of modifications needed within SDAF. For instance,
performance optimizations may be made in the event queue
management within SDAF to improve the throughput [4].
However, a test run at an assumed realistic rate of approxi-
mately 100-300 dots per second showed the system processing
100% of data in a 15 hour interval, analyzing over 8 million
MTI dot events and discovering over 50,000 user alert events.

2) Overhead in Border/Road Detection: The objective of
this test was to understand the change in throughput when
performing border/road activity detection, in addition to the
four patterns. Detecting border or road activity was imple-
mented as a service within SDAF that utilized shapefiles to
calculate dot proximity from borders and roads. This was an
event option for users to select when querying activity in an
AOI. Although the border/road detection is not the focus of
this paper, understanding the throughput changes when this
filter is used in addition to the event detection reveals how
performance is affected when event detection is combined with
another filter.

The “full” query includes the event detection plus border
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Fig. 8. Dot event throughput for three tests comparing overlap parameter
values of three (blue) and four (red).

and road activity. The overhead of calculating whether or not
a grid square crosses a road or border occurs towards the
beginning of runtime since the calculation is only performed
once per grid square creation. Since a grid square is only
created if a dot event appears in a new location, it would be
wise to use border/road activity queries with a spatial operator;
i.e., in a spatial query blocking off an area of interest. After this
initial overhead, performance becomes marginally slower than
that of the event detection query without border/road activity.
Thus, while there is a significant throughput difference from
the full event detection query from the base query, a longer
testing time would close the performance gap and come closer
to the reasonable 9% throughput decrease. A Java profiler was
used to monitor the CPU usage of the JBoss services with
results in parallel to this trend. The Border Activity service
consumed 36.9% of the CPU time at the beginning of query
runtime; this decreased to 13.4% after the initial overhead.

3) Overlapping Grid Squares: The objective of this test was
to observe the performance effects of increasing the number
of overlapping grid squares used for analysis. An interesting
parameter in the event detection analysis is the number of
overlapping grids. This gives the operator some ability to
specify the granularity of the event analysis. The ideal value
for the overlapping grid parameter was empirically defined to
equal 3. The event detection query with no border or road
activity was used with an overlapping grid parameter of 3 and
4. Tests were performed with the same data sources and hour
long runtime as before.

From the observed results, there is indeed a large drop
in throughput with more overlapping grids. Compared to
the average results of the queries previously performed at
2 overlapping grids, the average throughput drops 22% with
3 overlapping grids and 27% with 4 overlapping grids (see
Figure 8).

V. FINDINGS FROM INFORMAL USER FEEDBACK AND
OBSERVATION

The SDAF system, with event detection, was deployed in
the Danville combined air operations center (CAOC) along

with Distributed Common Ground System-Army (DCGS-A)
operators at Empire Challenge 2009. The analysts provided
feedback throughout the four week exercise. All analysts
expressed interest in the event detection algorithms and stated
that they could see utility in using the automated alerting
mechanism to help them identify locations where interesting
activity may be occurring.

The analysts suggested several additional types of activity
that would be useful for alerting. For instance, the demon-
strated event detection alerted users when levels of activity
increased to unusual levels. Analysts commented that it was
also useful to know if there was a sudden decrease of activity
in an area as well. The analysts also stated an interest in
detecting certain correlations between friendly-force activity
and the GMTI patterns.

A recurring theme was the fact that analysts would have far
more trust for services which were trying to detect simple
events (e.g. starburst pattern) then complex events (e.g.
explicit human behaviors). If the analyst could understand
what the algorithm was trying to do, they would more easily
trust the results of the algorithm.

Analysts also noted that the current system sent out too
many alerts using a single modality. For instance, each
detection of border activity would generate an alert. This
meant that a single vehicle traveling across a border could
generate dozens of alerts. This deluge of alerts made the
alerting system unmanageable, and prevented analysts from
following up on individual areas of interest.

The EC09 exercise provided an opportunity to observe how
the event detection methods worked on GMTI data streaming
directly off the sensor. It was noted that cloud formations and
sand storms can create pockets of false detects which interfere
with the event detection services, creating a significant number
of false event detections. Within the clean GMTI, several false
positives of starburst activity were noted. Further evaluation on
data with ground truth is needed to understand accuracy.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes the implementation of a heuristic-
based stream mining approach for alerting the analyst user on
patterns in near real-time, designed to aid analysts in detecting
noteworthy events scattered within the overabundance of data,
a problem which is well-documented and recognized [1], [2].
The implementation involves two-phases: the isolation of areas
of unusual activity using density grids, followed by event
detection within those areas. Four events (aka. patterns) -
starburst, inverse starburst, fanning, and inverse fanning - were
identified for automated detection using these techniques. The
event detection method was employed as a service within
the Sensor Data & Analysis Framework (SDAF). SDAF, an
event-driven SOA designed to handle streaming and historical
data, managed the user queries including event detection,
data sources, and client applications for viewing results. The
following tests were performed with the primary objective of
comparing simple query performance with queries of increas-
ing complexity due to the processing required for event detec-
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tion: DotEvent throughput, overhead in Border/Road detection,
and overlapping grid squares. These tests provide a baseline
indicating how the event detection implementation affects near
real-time analysis. In addition, the system was deployed at
the 2009 Empire Challenge exercise. Informal user feedback
provided early support for continued efforts to advance this
needed event detection capability.

The directions for future work are driven by the results,
findings and informal feedback presented in this paper. First,
we will further examine the efficacy of the event detection
implementation through testing with recently collected data
sets that include ground truth. This will help increase the
confidence in using event detections methods. Second, analysts
have identified additional patterns of interest. It would be
useful to grow the event detection service for MTI. Third,
we will explore other options for event detection on MTI data
such as machine learning and pattern recognition.

The authors of [1] encourage contributions in near real-
time event detection through the following finding: “there is
insufficient investment in software to more effectively process
data as opposed to hardware to both collect and store data”(p.
3). We will continue this work in an effort to move towards
an accepted, automated data analysis.
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