
A Domain-Level Data Model for
Automated Network Configuration

Keith A. Weinstein
MITRE Corporation

El Segundo, CA, USA

Daniel P. Gelman
MITRE Corporation
San Diego, CA, USA

Waylon Wang, PhD
MITRE Corporation
San Diego, CA, USA

Jim Dimarogonas, PhD

MITRE Corporation
Mclean, VA, USA

Kurt M. Peters, PhD
MITRE Corporation

Colorado Springs, CO, USA

Abstract— Emerging research activities and technologies such as
NETCONF have been closing gaps in the realization of
automated network management; however they focus on
individual network devices rather than the network domain as a
whole. A robust model that maps a network domain’s aggregate
properties to device-specific NETCONF entities would allow a
service provider to abstract a network’s design from the
configuration of its devices. Furthermore, it would extend the
automation capability of a network management system by
enabling configuration operations in terms of high-level concepts
such as aggregate policies, best practices, network topology, and
service requirements. One community that would benefit from
this paradigm is a joint tactical network service provider, who
must configure networks consisting of heterogeneous subscriber
bases, network devices, and organizational policies at moment’s
notice.

Keywords- Network management; automated network
configuration; enterprise architecture; NETCONF; knowledge-
based system

I. INTRODUCTION
Automated network management is a growing research area

that has yet to be fully realized. In the context of the FCAPS
(fault, configuration, accounting, performance, security)
management model [3][4], one of the most critical and
complex functions to automate is configuration.
Configuration management is vital because in most cases, a
device’s configuration reflects the implementation of all other
functions. Configuration management is also extremely
complex; in an enterprise environment, a network device’s
configuration options and format vary according to its make,
model, operating system, and any installed software or
hardware modules. This complexity is further increased by the
fact that manual command-line interface (CLI) entry is still the
most common method of editing and applying configurations;
network administrators must become proficient in the
command-line syntax of every platform they operate [1][2].

In a commercial environment, there is little utility in
automating the configuration of network devices; thus the
business incentive to develop automated network configuration
software is not significant. This is primarily because
commercial service providers already have the means to
mitigate the complexity associated with configuring network

devices. They can choose device vendors with homogenous
operating systems and command-line syntaxes for which they
are already trained. When planning new networks, they allow
ample time for shaping their management environment, testing
and measuring service-level agreements (SLAs), employing
management software tools, and developing custom scripts that
automate recurring tasks.

However, there are some cases, such as those in a joint
tactical military environment, when these options are not
available. Tactical network service providers face the
challenge of quickly configuring networks whose components
each have different subscriber requirements, device platforms,
topologies, security policies, and IP addressing schemes that
can change at moment’s notice. The urgent nature of combat
missions suggests that network operators should implement
these configuration changes in near real-time to minimize
service disruption; yet this is not humanly possible. It is in
these environments where the need for an automated network
configuration solution truly exists.

Although an end-to-end automated configuration solution is
still considered a future concept, there are emerging
technologies that may speed up its realization. One such
example is the NETCONF protocol, defined in RFC 4741 [5].
NETCONF simplifies remote configuration operations by
employing XML messages that specify the remote procedure
call (RPC) transactions between a manager and device.
Network device vendors can then publish data models for their
configuration information as XML schema, thus ,eliminating
the need to implement complex regular expression parsers for
platform-specific command-line syntax. While NETCONF
simplifies the format and delivery of individual network device
configurations in a consistent manner, however, it does not
address the issue of aggregating them into a unified
configuration model for an entire network domain.

In order to progress towards an end-to-end automated
configuration solution, we believe that the next logical step is
to develop a robust network configuration data model that
applies to a service provider’s entire network domain and
provides a high-level means of determining configurations for
its devices. In this paper, we create a framework for modeling
an automated system that computes device configurations from

© The MITRE Corporation. All rights reserved.

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 10-1721

a set of high-level inputs such as subscriber requirements,
device topology, IP address resources, and security policies.

In the remainder of this paper, we summarize other work in
Section II that relates to our contributions. Section III describes
the methodology and provides examples that demonstrate the
concepts of a domain-level data model that can be used as the
basis for an extensible, modular framework for automating
network configuration. Section IV presents a view of the
realization of the model defining the detailed data structures
and the associated operations for computing a set of
configurations. In Section V we propose the future work for a
system implementation that automates network configuration
through the use of the proposed domain level data model.

II. RELATED WORK
A semi-automated tool called GeNUAdmin[8] system

extracts network configuration information into a centralized
database, performing updates on that database which are
checked for consistency, and pushing the changes back into
their respective configuration files. Simple consistency checks
are performed to assure that added values are valid and that key
values are unique.

A. V. Konstantinou, Y. Yemini and D. Florissi introduced a
novel method for autonomic management organization,
element instrumentation, and policy maintenance [7] and [9].
Management functions are organized in a two-layer
architecture. The bottom layer organizes management
information in a unified object-relationship model that is
instantiated in a distributed transactional object modeler
repository. The top layer unifies the traditional roles of
managers and elements into a single management layer.
Network devices use the modeler as a primary management
repository, and effect autonomic behavior in terms of
transactions over the shared model state. A language called
JSpoon was introduced as a mechanism for extending element
objects at design-time with management attributes and data
modeling layer access primitives. JSpoon elements may be
extended with additional autonomic functions at runtime using
model schema plug-in extensions. They have further
introduced an autonomic policy model and language in the
form of acyclic spreadsheet change propagation rules, and
declarative constraints. An Object Spreadsheet Language
(OSL) was used to express autonomic behavior as dynamic
computation of element configuration over the object-
relationship graph model. The proposed organization has been
implemented in a prototype system called NESTOR and
demonstrated to various customers and sponsors including
DARPA.

Our work focuses on domain-level modeling of the
requirements, resources, policies and best practices that can be
mapped to device-specific NETCONF statements, aiming at
automating the entire network configuration process.

III. METHODOLOGY
In developing a network configuration data model, we

consider an ontology-driven framework that defines a network
domain from the service provider’s perspective that enables the
user to define the network resources and constraints without
intimate knowledge of the underlying configurations of the

individual devices We also define a system level perspective
that implements a knowledge-based system consisting of facts,
rules and variables that can be used in an inference engine to
compute device configuration solutions .

A. Scope
When designing a system that automates a complex task

such as configuring all devices within a network domain, it is
critical to first clearly define the system’s goals and the scope
in which it operates. Given the requirements outlined in the
introduction, we first define the following terms that form the
context of the system:

• Service Provider. The service provider is the entity
responsible for managing a network. In the context of
network configuration, a service provider is
responsible for configuring a set of network devices in
a known topology that satisfy both the subscriber’s
information exchange requirements (IERs) and any
network policies mandated by the service provider’s
organization.

• Network Domain. We define a network domain as the
scope of responsibility for a service provider. This
includes all subscribers, hardware resources (such as
network devices and their physical links), logical
resources (such as IP addresses, autonomous system
numbers and domain namespace), and network
boundaries (such as peering and transit points with
external service providers).

• Configuration State. The configuration state of a
network domain is the set of device configuration
settings for a service providers network domain.. This
is effectively the solution computed by the automated
network configuration system. When inputs such as
subscriber requirements, policies, or topology data
change, the data model must transition to a new
configuration state.

In this context, we define the user of our automated
network configuration system as the service provider, and the
purpose of the system is to compute a configuration state for
the network domain. Figure 1 depicts the context of this
perspective.

© The MITRE Corporation. All rights reserved.

Figure 1. Context of the Domain-Level Data Model

B. Modeling Approach
In developing the data model, we provide two perspectives

of the system’s input. The first perspective represents a user
view of the network domain. Because the service provider is
the primary user of this system, the structure of all inputs must
be presented in a manner that appears rational and practical for
input by a service provider. The second perspective provides a
system view of the data. In this view, we represent the data as
a knowledge base of facts and rules that satisfy a set of goals.
Under this perspective, the complex relationships between all
entities become a set of constraints for which the system must
find a solution. The solution itself then becomes the set of
device configuration settings represented as literal values.

From the service provider’s perspective, the configuration
state of the network can be defined by domain level
abstractions such as the network topology, service
requirements, logical resources, and policies, supplemented
with a set of best practices and domain knowledge applicable to
network configuration. Figure 2 demonstrates the relationship
between these entities.

Figure 2. Service Provider's Perspective

1) User (Service Provider) Perspective

As any software development effort typically begins by
defining user requirements, it logically follows that the initial
data should be characterized as the user’s input. Because the
intent of our system is to allow a service provider to abstract
the high-level network properties from the details of the
configuration state, the inputs should be characterized
accordingly. Figure 2 shows the logical model of the elements

and relationships within a network domain. Based on this we
identify five main entities: service requirements, network
topologies, logical resources, network policies, and domain
knowledge.

a) Service Requirements
The root of all network design can be traced to the set of

requirements imposed by the network’s subscribers. At a very
high level, these are often referred to as IERs. IERs define the
content of data that must be exchanged between actors of a
domain. In the context of network configuration, however, we
are only concerned with the information needed by the network
to implement a specific IER. We use the term service
requirements to describe this information. Service
requirements would likely comprise the following data:

• Subscriber communities: the grouping of end hosts
represented as source and destination pairs (or in
multicast or broadcast instances, a source may have
multiple destinations). Hosts within a subscriber
community should also be described by their physical
location, such as the nearest network device and
interface from which they connect.

• Communication protocols. These are the protocols
required to support circuit-switched or packet-switched
service between members of a subscriber community.
In the context of TCP/IP communications, this may
include the transport protocol (TCP or UDP), and the
source/destination ports.

• Service quality. Service requirements may be further
refined to include qualitative characteristics such as
data rates, priority, guaranteed service, or availability
rates.

b) Network Topology
We define the network topology as the set of information

that describes all network devices, their interfaces, and the
physical links that connect them. This information is
necessary to determine which devices will require
configurations and how they will be utilized to support service
requirements. The primary entities of a network topology
include:

• Devices. All network devices to be configured by the
system must be declared. The devices should also be
described by their capabilities and the set of
configuration options they can hold.

• Interfaces. In this context, we refer to the physical
interfaces of a network device (such as an Ethernet
interface). A physical interface typically supports a set
of link-layer and physical-layer protocols; this
knowledge must be available to the system.

• Links. Here we define the physical connections
between devices (further specified by the exact
interfaces) and their characteristics. These
characteristics may include protocols, data rates, and
transmission media.

• Sites. We define a site as a geographically local
grouping of devices (and internal links) from which a

© The MITRE Corporation. All rights reserved.

set of subscriber hosts obtain their service. Typically,
a site’s boundaries are its Wide Area Network (WAN)
links.

c) Logical Resources
Most telecommunication protocols require a set of logical

identifiers in order to function properly. These include IP
addresses, autonomous system numbers (ASNs), virtual circuit
identifiers (in the case of ATM or Frame Relay), DNS
namespaces, and any other resource that can be logically
assigned to hosts, circuits, or interfaces. An effective
configuration system should be able to dynamically allocate
these resources in accordance with the constraints of the
service provider’s network policies.

d) Network Policies
Network policies are constraints imposed by the service

provider (or the service provider’s parent organization). They
further restrict the set of available configuration options.
Examples include:

• Security policies. These include any restrictions on
device protocols, subscriber communications, or even
topology. For example, a policy dictating that all
subscriber hosts must reside behind a firewall is a
topology restriction.

• Best practices. These are policies that may not be
explicitly required but can further constrain the
configuration options if multiple solutions are
available. One example of a best practice is to
allocate an additional 20% of IP addressing space for
a user LAN to anticipate growth. Another best
practice may require that the site name be appended
to the host name of a device.

e) Domain Knowledge

An automated configuration system must be able to apply
intrinsic rules that reflect the domain business logic. In the
context of network configuration, this includes all basic
knowledge of concepts such as routing protocols, device
capabilities, IP addressing rules, and anything dictated as a
standard. Any network standards defined in a Request for
Comments (RFC) would be represented as part of the system’s
domain knowledge. The sum of all these facts and rules within
the network is the domain knowledge.

While domain knowledge may not be explicitly entered as
direct input from the user, it must be an item that can be
accessed, edited, and updated as a means of increasing the
system’s knowledge base.

2) System Perspective

A system perspective model is important because it
provides a means in which the data can be processed by an
inference engine. While the service provider’s view is
hierarchically structured and simple for a network planner to
understand and specify, the system view represents the
relationships between all individual entities as facts, rules, and
variables. This representation is useful for applying logical

processing algorithms such as unification and constraint logic
programming (CLP). Additionally, design features such as
navigability and composability can help optimize both the
performance and scalability of the inference engine which must
process this data solve for a set of device configuration
settings.

Figure 3. System Perspective Model

a) Declarative Logic
A knowledge-based (expert) system typically consists of a

user interface, knowledge base, and inference engine [10]. In
this context, the system perspective provides a data model for
the knowledge base as a declarative set of fact, rules, and
variables:

Facts are statements that are unconditionally true without
dependency on other relationships. For example, network
topology data is a set of facts that declare what devices are in
the network and what links exist between them.

Rules declare the chain of conditions and dependencies that
map goals (the network’s configuration solution) to the
instantiation of variables (device configuration settings). The
statement that network routability between a source and
destination requires a both a physical path and a static or
dynamic route configured on the devices between them can be
represented as a rule.

Variables in the context of this system are the configuration
settings for all devices in the domain. The domain of each
variable is the range of atomic values that each configuration
setting may hold. The domain of a configuration variable may
be a Boolean (such as whether or not a protocol should be
enabled on a device), constrained enumeration (such as an
Ethernet interface setting of {full-duplex, half-duplex, or auto-
negotiation}), a numerical value (such as an IP address or
process identification number), or a string (such as a
hostname). Because an inference engine performs unification
algorithms to solve for a matching instantiation of all variables,

Requirement

ServiceRequirement

Host

Service

Quality

Policy

Security BestPractice

DomainRule

Rule

SubscriberCommunity

CommunicationProtocol

KnowledgeBase

Fact

1
*

1
*

Site

Location*

*

© The MITRE Corporation. All rights reserved.

it is important for the rules and facts to constrain the variable
domains as much as possible.

b) Navigability
It is important to link data structures in a way that allows

efficient lookup on both ends of an entity relationship when
applicable. For example, the data structure for a subscriber
(host) on the network would likely have an association with its
default gateway (device) in order to facilitate routing
configurations. At the same time, however, if a device were to
be configured with DHCP service to provide IP addresses for
its local subscribers, its data structure may also need a
navigable association with its connected hosts in order to
determine the configuration of its addressing scope.

c) Composability
Network design is a very dynamic field in which new

capabilities are constantly developed and deployed throughout
the lifecycle of a network. As a result, it is expected that
network device vendors will update their operating systems to
accommodate them, and their configuration models (such as
those specified in a NETCONF XML schema) will likely
change.

An automated network configuration system risks
obsoleteness if it does not easily employ these updates in a
modular fashion. The knowledge base itself should be
composable by allowing the external import of new capability
models, and the system’s domain knowledge should map any
new capabilities to its existing rules.

In order to achieve a truly composable design, the internal
domain knowledge of the system should have an external
interface in which a system administrator can develop and
import these new capabilities without “hard-coding” them into
the knowledge base.

IV. IMPLEMENTATION
In this section, we illustrate a few of the concepts put

forward in the previous section with example
implementations. We first explore the overall mapping of data
from the user perspective model to the system perspective
model. We then provide an example of the computation
operations an inference engine might take to satisfy rules in
the knowledge base. Finally, we present an example device
configuration model that facilitates the generation of device
configuration files.

A. Mapping the User Perspective to the System Perspective
Figure 4 illustrates an example in how one might describe

the relationships between user-provided data (such as
subscriber requirements and network topology) to the rules
needed for processing device configurations. The user would
provide an instantiation of a Requirement relationship
class that maps two or more SubscriberCommunity
objects as sources and destinations, each consisting of one or
more hosts. The requirement itself then includes the set of
services (such as web, e-mail applications, etc) that depend on
underlying protocols. These protocols are the boundary

between the user and system perspective, and we employ the
OSI model to represent the dependency chain from the
application layer down to the link layer. An inference engine
processing these relationships would eventually determine
which devices need to be configured for routing and/or
switching, and certain configuration variables (such as routing
parameters and access control lists) could be instantiated with
literal values to satisfy the top-level subscriber requirements.

Figure 4. Relationships Between User and System Perspectives

B. Operations/Methods
While Figure 4 presents an object-oriented example of the

data model used to determine the required capability of a
network-layer route between subscribers, an inference engine
must be able to process its objects as facts, rules, and
variables. Programming languages such as Prolog or Lisp are
well-suited for this task. Figure 5 provides an example (albeit
incomplete) rule set in Prolog notation used to configure a
static route on a router. For simplicity we use the Cisco IOS
output notation “ip route <Network/Mask> <Next
Hop>” rather than NETCONF in the example.

Figure 5. Rule Set for a Static Route

1: l3Routable(Host,Net) :- l3Connected(Host,Gateway), hasL3Route(Gateway,Net).

2: hasL3Route(Gateway,Net) :- staticRoute(Gateway,Net,NextHop), l3Connected(Gateway,NextHop).

3: staticRoute(_,Net,NextHop) :- write(‘ip route ’), write(Net), tab(1), write(NextHop).

4: l3Connected(Host,Gateway) :- hasInterface(Gateway,X), addressAssigned(X,IP),

sameSubnet(IP,Host), l2Routable(IP,Host).

5: l2Routable(A,B) :- l2Connected(A,switch), l2Routable(switch,B).

6: l2Connected(X,Y) :- link(X,Y).

© The MITRE Corporation. All rights reserved.

C. Device Configuration Model
While the user perspective and system perspective models

facilitate both a top-down and middle-out design approach,
respectively, we also consider the need for a bottom-up design
approach in determining the ultimate output of our system:
device configurations. Within the system perspective, a robust
device configuration model can describe the capabilities of a
network device and the means in which they are implemented.

Figure 6 depicts the high-level relationship between a
device and the capabilities it supports, such as routing protocols
and security features, but also illustrates the underlying
mechanism to implement those features. We model a device as
an object that contains both an operating system and a set of
modules, which can represent any hardware or software
components that enhance its capabilities (such as blades
containing additional interfaces or software enhancement
packages). The ConfigModel object depends on the
operating system and modules to determine the set of
configuration items available for the device. In essence, the
modules tell the configuration model what can be configured,
and the operating system tells it how to configure them. The
configuration model then provides the Device object with the
set of configuration capabilities which can be queried from the
inference engine. When instantiated, these configuration
capabilities are implemented as ConfigItem objects and can
then be aggregated into a configuration file using the
toNetconf() method.

Figure 6. Device Configuration Model

V. FUTURE WORK
It is envisioned that a model employing the concepts in this

paper can be used as a component in an enterprise automated
network configuration system. By dynamically automating
the configuration of networks, the need for detailed network
configuration planning can be drastically reduced. When
combined with a dynamic discovery and remote delivery
component, it may be possible to realize a modular “plug-and-
play” concept in which a network can be initialized and re-
configured in near real-time.

REFERENCES
[1] M. Lopes, A. Costa and B. Dias, “Automated Network Services

Configuration Management,” IFIP/IEEE Intl. Symposium on Integrated
Network Management— Workshops, 2009.

[2] P. Szegedi, S. Figuerola, M. Campanella, V. Maglaris, and C. Cervelló-
Pastor, “With Evolution for Revolution: Managing FEDERICA for
Future Internet Research,” IEEE Communications Magazine, July 2009.

[3] Telecommunicatons Information Networking Architecture Consotium
(TINA-C) Specifications, www.tinac.com, 2000

[4] A. Clemm, “Network Management Fundamentals”, CiscoPress, 2006
[5] Network Configuration (NETCONF) Protocol, IETF RFCs 4741-4744,

2006
[6] T. Eilam, M.H. Kalantar, A.V. Konstantinou, G. Pacifici, J. Pershing, A.

Agrawal, “Managing the configuration complexity of distributed
applications in Internet data centers”, IEEE Communications Magazine,
March 2006

[7] A. V. Konstantinou, Y. Yemini, D. Florissi, Towards Self-Configuring
Networks, DARPA Active Networks Conference and Exposition, IEEE
Press, San Francisco, CA, May 2002

[8] M. Harlander, "Central system administration in a
heterogeneous unix environment," presented at 8th USENIX
System Administration Conference (Lisa VIII), 1994.

[9] Y. Yemini, A. V. Konstantinou, and D. Florissi, “NESTOR: An
Architecture for Network Self-Management and Organization”, IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 5,
MAY 2000

[10] Ivan Bratko, “PROLOG Programming for Artificial Intteligence”, 3rd
Ed., 2001

Device

+enable(in parameters)

«interface»
Capability

Module InterfaceOperatingSystem

ConfigItem

+toNetconf()
ConfigModel

1

*

1 *

1

*

-supports

1
*

*

1

1

1

© The MITRE Corporation. All rights reserved.

	I. Introduction
	II. Related Work
	III. Methodology
	A. Scope
	B. Modeling Approach
	1) User (Service Provider) Perspective
	a) Service Requirements
	b) Network Topology
	c) Logical Resources
	d) Network Policies
	e) Domain Knowledge

	2) System Perspective
	a) Declarative Logic
	b) Navigability
	c) Composability

	IV. Implementation
	A. Mapping the User Perspective to the System Perspective
	B. Operations/Methods
	C. Device Configuration Model

	V. Future Work
	References

