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Abstract—An attestation protocol enables one node in a
distributed system to detect nodes that are Byzantine due to
a malicious intrusion. Using attestation, distributed algorithms
that tolerate channel crash failures can be transformed into
ones that also tolerate Byzantine failures. The idea is to provide
a network interface that requires a successful attestation before
permitting messages from a remote nodes to be received. Thus,
channels to Byzantine nodes are made to appear crashed.
Erlang modules to support filtering and attestation have been
written, including a partial Trusted Platform Module (TPM)
interface.

I. INTRODUCTION

Malicious intrusions in nodes of distributed systems can
be viewed as Byzantine faults. With various assumptions
about network behavior and attacker capability, distributed
algorithms can be written that tolerate some proportion
of Byzantine failures. However, the available solutions are
better when it is necessary to deal only with crash failures.
If the only possible failures are crash failures, and nodes
can detect crashes (though timeouts, for example) then
distributed agreement can be achieved so long as at least
two participants remain alive [11]. But even under the most
optimistic of settings—completely synchronous processes
and reliable channels—agreement is not possible if less than
two-thirds of the processes are honest (non-Byzantine).

Furthermore, if an agreement algorithm is resilient against
Byzantine failures, then it must be time-consuming. The
synchronous algorithms for Byzantine agreement proceed
in rounds, and such protocols must use at least one round
more than the number of Byzantine faults. The asynchronous
agreement algorithms generally emulate the synchronous
algorithms and proceed in rounds, but the need to simulate
synchronicity in an asynchronous setting generally increases
the cost of each round.

The core of the problem is the inability to test for
Byzantine faults, so that Byzantine nodes must be outvoted
without knowing which ones they are.

A. TPMs and Attestation

By taking advantage of some recent technological ad-
vances, intrusions or faults in a system that permit Byzantine

behavior can, in many cases, be detected and reported by
protected subsystems.

A protected subsystem is a service or component on
a node that is, to an adequate degree of assurance, free
from bugs and malicious intrusions. It can act as a root
of trust for measuring and reporting on the health of the
rest of the node. It can be destroyed but it cannot be made
Byzantine or successfully emulated. Various mechanisms,
usually with hardware support or dependencies, have been
suggested for implementing a protected subsystem capable
of initiating and saving suitable local measurements. An
attestation protocol is a way for a remote node to request and
obtain a measurement report from the protected subsystem
of a target node to be evaluated.

In a setting proposed by the Trusted Computing Group
(TCG), each computing platform would have a Trusted
Platform Module (TPM)—a hardware module that can store
the ‘fingerprint’ of a platform’s boot-up sequence [3].
The TPM can also sign these fingerprints with a unique
key, certified as belonging to a TPM, so that TPM reports
cannot be falsified. Computers manufactured by members
of the TCG already have these installed. A TPM, combined
with software support, can produce a platform capable of
attestation.

Attestation protocols can also invoke and report run-time
measurements made by tools such as LKIM for Linux kernel
inspection [10]. By invoking such measurements, a remote
node can detect intrusions into system software that have
occurred subsequent to boot-up.

In a system with a virtual machine monitor or hypervisor,
an attestation protocol can report on an individual virtual ma-
chine (VM) by combining the TPM report on the hypervisor
with a measurement of the kernel or other software within
a particular VM. Thus, attestation can deal with distributed
systems in which several logical nodes are actually VMs co-
located on the same physical platform. A discussion of how
attestation would work in such a system is given in [6].

At a high level, our concept is independent of the details
of how attestation is supported, but our prototype imple-
mentation work is designed to take advantage of TPM
services, and it is compatible with future support for kernel
measurements.

© The MITRE Corporation. All rights reserved

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 10-0959



In short, attestation technology may make it possible
for one node to determine whether another node is actu-
ally Byzantine. It should be admitted that, at present, no
measurement and attestation technology is guaranteed to
identify exactly the Byzantine nodes. Even now, however,
attestation methods offer considerable improvement over
their absence. For now, in the theoretical result, we look
at the consequences of the simplifying assumption that
Byzantine failures are always detectable by attestation. Even
if attestation does not detect all Byzantine nodes, however, it
can at least reduce the number of undetected ones, allowing
some systems to conform to a failure threshold that would
not otherwise be satisfied.

B. Adding a Dispatcher to a Distributed System

With our approach, illustrated in Fig. 1, each node has a
user process running its role in the distributed algorithm. In
addition, there is a local ‘dispatcher’ process on the same
platform acting as a proxy for all network communication.
On the first attempt at a message exchange with another
node, the dispatcher initiates an attestation protocol so that
the dispatcher of the receiving node can determine whether
the sending node is Byzantine. If not, the attestation protocol
generates and shares a session key for encrypting messages
in this direction. If so, the receiving dispatcher will refuse to
provide a session key. No messages will be received unless
they have been encrypted with a proper session key, so an
attestation failure will block messages from a Byzantine
node. The channel from that node therefore appears to
have undergone a crash failure (which may or may not
be distinguishable from a crash failure of the remote node
itself).

This means that the benefits of the dispatcher are indepen-
dent of the extent of crash tolerance offered by the original
distributed algorithm. The dispatcher simply protects the
honest nodes from Byzantine attacks, but not from crashes.

When the dispatcher engages in an attestation protocol,
there are actually three possible results: (1) the attestation
is a success and communication with the remote node is
enabled; (2) the attestation fails and the dispatcher blocks
messages from the remote node; or (3) the attestation pro-
tocol does not terminate, either because of communication
delay or because of noncooperation from the remote node.
Inability to receive a message due to nonresponse from the
sending dispatcher just looks like an asynchronous network
communication delay, which the distributed algorithm is
expected to handle somehow.

Note that a remote system may be compromised in such
a way that its own local dispatcher is also compromised.
Attestation protocols are designed so that the challenging
dispatcher will not be fooled by a malicious remote dis-
patcher. The ability to guarantee this rests on the essential
root of trust in the protected subsystem.

C. Failure Detector Support

Some distributed algorithms are designed to make use
of a failure detector[5], [4]. A failure detector for crashes
is a function that can explicitly ”suspect” a remote node
as having crashed, so that the rest of the algorithm can
take appropriate action without waiting indefinitely. This
is sometimes implemented by imposing a time-out. There
are several possible models for the properties of a failure
detector. In particular, their suspicions are not required to
be correct, although they may be expected to converge on
correctness if invoked repeatedly on the same target.

From the dispatcher’s point of view, a failure detector
is part of the algorithm, and its presence does not affect
the attestation. However, a dispatcher can support a failure
detector by passing along the negative result when it gets
one, so that the failure detector can report the dispatcher-
induced crash to the user process.

D. Implementation Support in Erlang

To demonstrate the dispatcher architecture, we chose Er-
lang as an implementation language. [2], [1] This language,
designed for the implementation of distributed systems and
algorithms, natively supports such high-level features such
as crash-failure detection and reliable channels. Erlang is
a parallel functional programming language designed for
programming real-time control systems such as telephone
exchanges and automated teller systems. The compiler and
runtime environment are available under an open source
license and as downloadable object code. For any implemen-
tation, we have to consider (1) how to cause the dispatcher to
be invoked, (2) how the dispatcher authenticates and filters
external network communication, (3) how to design, verify,
and implement an attestation protocol, and (4) how to make
use of a TPM, if we depend on it to record and report
measurements.

We implement four things in Erlang:
• A parse transform that can be applied to Erlang source

code, forcing the dispatcher to be invoked;
• Our dispatcher, which employs an attestation protocol;
• An attestation protocol, which uses a TPM interface to

obtain stored boot measurements;
• An Erlang interface to access a TPM.

The TPM interface requires an intermediate interface in C
which will also be described briefly.

II. MODELING APPROACH

We can show that when attestation is perfect, Byzantine
fault tolerance is actually no harder than tolerance against
channel failures. The result is only sketched here; the
details are in [9]. Our modeling style is based on that of
Lynch [11], using I/O-Automata (IOA). An IOA model has
concurrent processes that communicate instantaneously by
sharing events that are outputs of one process and inputs to
any other process capable of receiving them.
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Figure 1. Dispatcher Architecture

Asynchronous network delays are modeled by adding
channel processes that maintain message queues between
pairs of communicating processes, so that sending a message
is a separate event from receiving that message. This model
assumes that order is preserved among messages from one
node to another. The model also includes an “anonymizer”
process that collects inputs to a given node from all the chan-
nels it receives from. The anonymizer merges the messages it
receives into a single queue, thus losing source information,
before passing them on to the user process. This makes it
possible to model attempts by Byzantine processes to falsify
the source of a message.

There are three steps to the result:
• First, we define an ‘ideal’ network model with the

components just described, in which crash faults are
possible but Byzantine faults are not. That is, this model
allows nodes to crash and recover, channels to crash
and recover, and individual messages can be dropped.
These events are caused by external inputs to nodes and
channels, representing spontaneous faults.

• We then define a ‘real’ network model that contains
all of the failures of the ‘ideal’ model but with node
Byzantine failures as well. More details of the ‘real’
network model are given below.

• We then show trace equivalence between the two net-
work models. That is, we show that every distributed
algorithm induces exactly the same set of possible
traces in both network models. A trace is defined to
include only “visible” events, which are those incident
to honest user processes.

This means that the real network with dispatchers is be-
haviorally indistinguishable to the honest nodes from a
network with possible channel crash failures but no Byzan-
tine failures. Thus, in settings where attestation can be
performed, channel-crash-resilient distributed algorithms can
automatically become Byzantine-resilient as well.

A. The ‘Real’ Network Model

In the ‘real’ network model, some user process nodes
are identified as Byzantine. Byzantine nodes do not fail
and recover; they are permanently Byzantine, at least over

the time scale in which the distributed algorithm operates.
The real network has some additional processes beyond
the ideal one. Each node is augmented with a dispatcher
process, which acts as a network proxy. Dispatchers use an
attester process to determine which other nodes are honest
and which are Byzantine, so that the dispatcher can prevent
messages from Byzantine processes from reaching honest
nodes. Each dispatcher has state information recording the
known status of other nodes.

In the model, the behavior of a Byzantine user process,
and of its dispatcher, turns out to be irrelevant; no assump-
tions are made about it. The important assumption is that
the dispatcher of an honest process, using an appropriate
attester, never makes an incorrect assessment of a remote
node. The model has enough detail to represent the use
of shared session keys in each direction between honest
user processes, thereby detecting messages from Byzantine
processes. The ‘real’ network model also provides for an
‘apparent sender’ of a message so that a Byzantine process
can attempt to fool a dispatcher with messages that appear
to come from an honest process. Such attempts are shown
to be defeated.

B. Comparison With Other Approaches

There has been some prior work on Byzantine failure
detection applicable to agreement algorithms. A paper by
Doudou, Garbinato, and Guerraoui [7] proposes a protocol
that detects a limited type of Byzantine misbehavior, called
a muteness failure, in which messages to a chosen recip-
ient may be deliberately stopped. Malkhi and Reiter [12]
previously studied ”quiet” processes, defined similarly, and
proposed a protocol based on the assumption of an abstractly
defined failure detector for them.

The work of Han, Pei, Ravindran, and Jensen [8] provides
Byzantine tolerance for information dissemination with a
gossip-based, real-time protocol. Gossip protocols disperse
information gradually by sending messages to randomly
selected group members, and their resiliency properties are
probabilistic. The gossip-based protocol context makes it
possible to define and detect Byzantine failures behaviorally.

Another example of an approach that deals with Byzantine
failure in the context of a particular algorithm is [14].
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They give an agreement and leader election algorithm for
a network in which channels may have Byzantine faults.

Our work differs from prior approaches in that it can
address whatever form of Byzantine fault is detectable by
remote attestation, and it can be applied to any higher-layer
distributed algorithm. The failure tolerance offered by the
result depends on the crash tolerance of the higher-layer
algorithm. And if some Byzantine faults slip through, and
the higher-layer algorithm must deal with them, there are
fewer to deal with.

III. THE COMPONENTS OF THE ERLANG
IMPLEMENTATION

A. The Parse Transform
Erlang provides simple, high-level primitives for

message-passing and failure-detection as part of the lan-
guage’s core functionality. While the use of these primitives
(and of Erlang in general) make Erlang programs clear and
easy to understand, it ‘hard-codes’ the implementation into
the the direct-communication model.

For example, consider the Erlang expression for sending
a message with content V to the process (either local or
remote) with ID PID:

erlang:send(PID,V) (or simply PID ! V)
In the dispatcher model, all communication must be re-
routed through the recipient’s dispatcher. Erlang provides no
way for the dispatcher to automatically ‘intercept’ messages
sent to its client, so every send expression in the code must
be rewritten. The Erlang compiler provides functionality for
rewriting code by using a parse transform, an Erlang module
which provides functions to map Erlang parse-trees to Erlang
parse-trees. The parse tree which is output is then compiled
normally. As a result, we can automate morphing Erlang
code into code that uses a dispatcher.

The parse transform does as little rewriting as possible.
For the most part, it translates calls to functions in the
erlang module which potentially involve other nodes to
calls to modified functions in the dispatcher module.
For example, the message-send syntax becomes

dispatcher:send(PID,V).
The functions in the dispatcher module produce the
same effect as their built-in forms, except that Byzantine
nodes will be made to look crashed.

The rest of the translation involves message receipt. Mes-
sages should only be recieved directly from the dispatcher,
and only be of a certain form. The simplest form of a receive
statement in Erlang is:

receive
Pattern -> Body

end

where the Pattern specifies a structure or schema for
an acceptable message, and the Body has the code executed
when such a message is received.

The transformed statement is:

NONCE = dispatcher:get_nonce(),
receive
{from_dispatcher,NONCE,Pattern} -> Body

end

The new pattern contains a fixed constant
from_dispatcher as the first component, a nonce
(large random number) as the second component, and the
original message as the third component. A message will
match the new pattern if and only if the original message
would match, and the nonce authenticates that the message
came from the dispatcher. The second component provides
the security – the nonce is matched against a previously
established secret value shared between the dispatcher
and the node. This mechanism is weak, but we are also
constrained by the Erlang language, which does not allow
side-effects which may be caused by more sophisticated
cryptographic mechanisms in guard sequences.

B. The Dispatcher

When the code is modified with the parse transform
during compilation, calls to message sending and receiving
commands, as well as other node maintenance commands
in the Erlang standard library, become calls to functions in
our dispatcher.

The dispatcher is implemented as a named process
which, if it is not already running, is launched at each
user node upon receipt or sending of a message. Thus,
dispatcher:send actually sends the local dispatcher
process a message. The dispatcher maintains state about
which node keys it knows, and it loops to handle service
request messages and incoming messages.

When the dispatcher is requested to send or receive a
message to or from a remote node, the first thing it does
is check if an attestation needs to be initiated. If so, the
attestation protocol described in Section refsec:protocol must
be invoked. If the message is to be sent, a successful
attestation results in an outkey, to be used on any outgoing
message to that remote node. If the request is to receive a
message, the attestation should result in an inkey, which is
applied to any incoming message from that remote node. If
an inkey is not present, incoming messages are dropped.

C. EVA: A Simple Attestation Protocol

For our prototype, we created an attestation protocol
called EVA, inspired by the more complex CAVES proto-
col [13]. Only two parties participate in EVA: an Attester,
which initiates the attestation protocol, receives attestation
requests and interacts with the TPM, and a Verifier, which
determines whether to issue a shared key to the Attester.
These are roles handled by the dispatchers at the responder
and the requester end, respectively. The attestation protocol
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is oriented so that the dispatcher of the node that wishes
to send a message runs the Attester role and the one that
wishes to receive it runs the Verifier role.

We assume for this protocol that the parties are known to
each other, and share any public keys necessary for confirm-
ing the identity of other participants. Each party has a unique
name, a public key associated with it, and TPM identity key
associated with the same user name. These associations may
be pre-loaded or established through an exchange of public-
key certificates. At the end of the protocol, if the Verifier
is satisfied with the reported measurement, the Verifier and
Attester should share a session key.

Our security goals for this protocol were that the Verifier
should know that the report is fresh, it comes from a legit-
imate TPM on the platform where the Attester is running,
and that the shared session key ks is known only to the two
legitimate participants.

Attester

��

(connect request,a,v) // Verifier

��
•

��

•

��

{|nv,v,m|}Aoo

•

��

{|ks,v,m,p,{|hash(hash(a,v,nv),m,p)|}I−1 |}V // •

��
• •

{|approved,ks|}Aoo

In this protocol, a is the name of the Attester and v the
name of the Verifier. Their public keys are A and V , re-
spectively. The Attester’s TPM identity key is I . Encryption
of x by k is symbolized by {|x|}k, and digital signature is
represented as an encryption with the inverse key. Freshness
is guaranteed through the use of a nonce nv generated by the
Verifier. The session key ks is generated by the Attester. The
report from the TPM is a vector p of Platform Configuration
Register (PCR) values; the particular registers requested are
specified in the mask m. The hash of a, v, nv is passed
from the attester process to the TPM, which binds the PCR
values to it in the signed report. The Verifier is assumed to
recognize the binding of a to I through prior exchange of
a certificate, and it will approve the measurements p before
confirming the session key. The expression signed by the
TPM key, incidentally, is called a “TPM Quote”.

We have verified this protocol using the tool CPSA [13]
and demonstrated that all of our desired security properties
have been met. One of the objectives of the formal verifica-
tion is to check that the protocol is not subject to network
attacks, such as a man-in-the-middle attack, which might
allow a Byzantine node to “borrow” a good measurement
report from another, honest node.

D. Interface to the Trusted Platform Module

The standard mechanism for using the Trusted Platform
Module (TPM) today is to go through one of the libraries

implementing the TCG Software Stack (TSS) interface[16].
We used the open-source Linux implementation, TrouSerS.
In order to access the TPM’s functionality in our distributed
Erlang code, we needed two additional levels of interface:
• an Erlang TPM server process with functions required

by the attestation protocol, and
• a C node accessible via an Erlang port.

The TPM server process accepts TPM command request
messages from any dispatcher on the platform; it is essen-
tially a proxy for the TPM. The server is implemented as
an Erlang script that translates Erlang messages and data
structures into bit-string inputs for the C node, which makes
direct calls on TrouSerS.

The Erlang interface provides access to the following
functions essential to remote attestation:

load: Takes a TPM identity key pair (in encrypted
“blob” form) and loads the secret key into the TPM for
use in subsequent quote commands.

quote: Takes a bit mask specifying PCR choices and a
user-supplied value referred to as a “nonce”, and causes the
TPM to return a TPM Quote with an identity-key signature.
The quote includes a composite hash of the requested PCR
values and the nonce.

verify: Takes a public identity key and a quote result
(both from a remote node) that can be validated by that
identity key, and returns the composite hash of the PCR
contents and the nonce encapsulated in the quote, provided
that the signature is valid.

There is additional supporting function in a separate
program for creating an identity key through TSS.

IV. ONGOING ACTIVITIES

For purposes of demonstration, we are implementing a
prototype distributed system that exercises the dispatcher
architecture as described. To do so, we had to select a
crash-tolerant algorithm as an example. Our initial demon-
stration used a leader-election algorithm that was already
implemented in Erlang and distributed with the Erlang
package [15]. However, we plan to move to a different
algorithm in order to coordinate with other research projects
at our company. Our objective is to implement an algorithm
that provides Byzantine tolerance, in order to show how
it benefits from a reduction in the number of undetected
Byzantine nodes. We also want to design and analyze a
dispatcher that does not assume that a successful attestation
is permanent, so that subsequent re-attestation is performed
according to a suitable risk-reduction policy.

We have found that the C interface to the TCG software
has engendered interest from other projects that found the
full TSS interface difficult to use. We intend to create
demonstrations for other distributed algorithms and also to
find ways to implement the dispatcher concept in other lan-
guages and architectures, and with additions and alternatives
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for the kinds of measurements and protected subsystems
employed.
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