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Abstract: High-resolution, wide-field-of-view airborne imaging produces large optical systems and
data streams. Significant simplification is possible if motion detection, rather than full imaging, is
the goal. We consider a static, compressive-sensing architecture for this problem.
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1. Introduction

Recently, persistent, pervasive surveillance (PPS)—the ability to continually monitor an extended area—has become
central to a number of ongoing security efforts. The primary difficulty in PPS applications is that the use of tradi-
tional imaging architectures necessarily produces a tremendous amount of data. Direct transmission of this data would
require unrealistic communication bandwidths. As a result, the data is digitally compressed on-platform before trans-
mission or simply stored on the platform. While this reduces (or eliminates) the communication challenge, the optics,
photodetectors, and associated electronics must still operate at the underlying bandwidth. When combined with size,
weight, and power limitations of available platforms, the result is frequently limited performance and high system
cost.

However, many PPS applications do not require an actual image of the field-of-view (FOV), but rather just infor-
mation about how object move within that FOV. A particular opportunity arises when the moving objects are the same
scale as the physical sampling (i. e. in a traditional image, they are pixel-sized or smaller). In this case, the difference
between two consecutive image frames shows only a small number of significant values (corresponding to the initial
and final positions of the movers). This “difference-image” has two useful properties: a) it retains all of the important
information regarding the movers, and b) it is sparse.

The signal processing subfield of compressive sensing is concerned precisely with the efficient measurement of
sparse signals [1, 2, 3, 4, 5]. Thus, rather than acquire traditional images and algorithmically form the difference images
to extract the movers, we consider instead optical implementations where we use the concepts of compressive sensing
to directly infer the difference image from measurements on the optical field. The expectation is that such an approach
will allow determination of the difference image with greatly reduced system resources (detectors, bandwidth, optics,
etc.) when compared with the traditional approach. The particular sampling strategy must, of course, be physically
implementable (i. e. consistent with the physical laws governing electromagnetic fields). This is a central constraint
in computational sensing and determining good implementations remains more art then science at the current time.
Given this flexibility, it is unsurprising that other groups have also explored alternative sparse-signal approaches to the
motion-detection problem [6, 7].

Below, we introduce the basics of compressive sensing and its application to the motion-detection problem. We then
discuss the practical appeal of a static implementation, before proposing a general static architecture and discussing
our current status and future plans.

2. Compressive sensing

A simple mathematical model of sensor operation is:

m = Ts + n. (1)

Here s is a vector representation of the scene, T is a matrix that describes the measurement structure of the sensor, and
n represents additive noise in the system. The vector m therefore represents the full set of (noise-corrupted) measure-
ments acquired from a given scene. In traditional imaging, each element in the source is measured independently, and
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therefore T has the form of the identity matrix. Here, we are concerned with compressive, multiplex sensors where T
is rectangular in form (u× v with u < v) with significant off-diagonal elements.

In general, the scene s is not sparse, and thus cannot be reconstructed from m using compressive sensing tech-
niques. However, if we define the difference between two consecutive measurement vectors as ∆m, we find

∆m = m2 −m1 = T(s2 − s1) + (n2 − n1) = Td + n∆. (2)

This equation has the same general form as Eq. 1, but the source vector d = s2 − s1 is sparse given the limitations we
discussed above. As such, compressive sensing techniques can be used to infer the structure of d from the vector ∆m.

Compressive sensing techniques designed to infer the structure of a sparse signal often rely on `-1 minimization
methods. To understand the utility of this technique, we first point out that for row-deficient T (the form we desire) the
measurement scheme is essentially an underdetermined linear problem. Thus, there are a potentially infinite number
of solutions that are consistent with the observations. Compressive sensing techniques constrain the solution through
additional knowledge—specifically, the fact that the source is sparse. Traditional least-squares solutions (minimization
of `-2) are computationally simple, but do not preferentially find sparse solutions. Thus they do not take advantage of
the available additional knowledge. Minimization of the `-0 norm would explicitly find the sparsest solution consistent
with the measurements, but `-0 minimization is computationally challenging. However, it was recently realized that,
when the source is sufficiently sparse, the minimum `-1 solution is equivalent to the minimum `-0 solution, and that
the `-1 minimization can be efficiently found via linear programming methods.

Note that this just addresses the possibility of reconstructing the sparse source. Ultimately, whether the technique
succeeds also depends on the structure of T. The second great realization of recent years is the applicability of random
sampling to the design of T. The success of the `-1 technique relies on T having the restricted isometry property (RIP).
It has been shown that instantiations of several different classes of random matrices do indeed have the RIP—thereby
making them suitable sampling matrices for compressive sensing problems. This, combined with the `-1 technique,
then results in a complete solution to the efficient measurement of sparse signals.

3. Static implementation

As mentioned previously, although many forms for T can be considered, a smaller subset can actually be implemented.
The most fundamental constraint is that, for incoherent imaging, T may contain only non-negative values in the
domain [0, 1]. The most-famous compressive sensing implementation, the single-pixel camera uses a T with random
0/1 values [8]. This implementation, like most early compressive sensing implementations, utilizes an active element
(e. g. a micro-mirror array, LCD spatial light modulator, etc.) to create the measurements. In this type of approach, the
system cycles through the rows of T sequentially, determining the elements of m one at a time.

This approach is extremely flexible in regard to the possible forms of T. Any arbitrary pattern of values in the
domain [0, 1] can be used, and new patterns are a simple matter of reprogramming the control software. However, this
flexibility comes with a number of significant costs.

First, as the elements of m are measured sequentially, there is an inherent assumption that the source remains
unchanged as the sequence of measurements is made. As motion-detection is inherently time-sensitive, such a tech-
nique is contraindicated for this application. Second, typical architectures of this type generally operate by forming
an intermediate image plane which is made coincident with the active element. While the approach reduces the size
and complexity of the detector plane, it does so by extending the system track-length and adding additional optical
components and their associated mass—a significant drawback on airborne platforms. Finally, the active components
are themselves complex and more fragile than monolithic components.

For all these reasons, we were motivated to consider static approaches to compressive sensing in the motion-
detection problem. Thus, rather than measuring a sequence of maps from the source to a single pixel, we make a
parallel measurement that maps the source in different ways onto a small set of pixels. This reduces the available
coding strategies (i. e. forms of T), and forces us to carefully consider measurement design strategies. We find it
useful to address the issue heuristically, extracting certain key features of the random sampling strategies as goals. We
believe the following are the central features of a good sampling strategy: 1) Each element (location) in the source
contributes to many different measurements (pixels), 2) Each measurement (pixel) combines many different elements
(locations), and 3) The coding of a particular location/pixel is relatively uncorrelated with its neighbors.

In our early work [9], we considered an architecture where a detector array was placed slightly behind an image
plane containing a diffusing element. In this case, T took on a block-Toeplitz form with underlying random elements.
Work by others had shown that a T of this form could meet the RIP [10]. However, we found that for the system
parameters we considered, there was a residual correlation in the measurements that prevented accurate reconstruction.
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We are now working with a system architecture that uses one or more transmissive masks to implement a visibil-
ity function between the source and the detector array. The resulting T is truly shift-variant, eliminating the strong
correlations. With this change, the approach becomes similar to earlier work on reference structure tomography, al-
though that work did not utilize modern compressive sensing approaches or explicitly consider the motion detection
problem [11].

Early analysis and simulation validate the idea that the visibility approach yields system responses with the three
desired properties, and have led to successful compressive measurement and reconstruction in simulation. Our cur-
rent experimental efforts are focused on implementing this measurement scheme experimentally, as shown in Fig. 1.
Ongoing research is focused on improving measurement diversity, system characterization, and realization of full
compressive measurement in the experimental system.
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Fig. 1. Simulation and experimental results for measurements of point sources at two neighboring locations. The distance between locations is 1/10
the distance between pixels in the sensor plane. Shown (from left to right) are the simulated point source, simulated compressive measurement,
experimental optical PSF without masks, high-resolution PSF with masks, and compressive measurement. The experiment and simulation use
different random mask realizations and are not expected to match quantitatively.

4. Conclusions

Compressive sensing approaches can greatly increase the performance of PPS systems by dramatically reducing the
complexity of the system while retaining information related to the motion-detection problem. Despite the success of
active approaches in other compressive sensing implementations, they are poorly suited to the particular challenges
in motion detection. As such, we are investigating purely static architectures. We are currently optimizing a 2nd-
generation system architecture utilizing a visibility-function approach. Experimental proof-of-concept prototypes are
under construction. We will report on the final system design and resulting performance.
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