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ABSTRACT  

 
This paper considers the distribution of the cross-
correlation sidelobes from intra-system GNSS 
interference after non-coherent integration. Because of the 
inherent periodic structure of the GNSS signals, the 
successive coherent integrations, while Gaussian 
distributed, are not independent. We model this 
dependence in the two separate cases of C/A and L5 
signals. We then use the theory of Gaussian quadratic 
forms to specify the non-coherent integration distribution. 
Doppler and data bit combinations are shown to have an 
impact on the form of the distribution.  Finally, we 
consider the special case of a single high-powered 
interferer. In this case, we use combinatorial reasoning to 
derive a distribution that is a mixture of all possible 
distributions for different values of the data bits. 
 
 
 

1.  INTRODUCTION  

 
The emergence of new and modernized GNSS systems 
requires useful assessments of the effects of intra- and 
inter-system interference on a GNSS receiver. Methods 
that quantify this interference are often based on typical 
receiver processing operations. Our focus is on the cross-
correlation sidelobe distributions at the output of the 
receiver prompt correlator, which offers a measure that is 
relevant during signal acquisition. These sidelobe 
distributions are created separately for each interfering 
system.  The aggregate effect on the correlator output 
from several such systems can be deduced using 
assumptions regarding system independence.   
 
Previous work [1] investigated the distribution of cross-
correlation sidelobes after coherent integration, since the 
expected value of the squared-magnitude of these 
sidelobes is directly related to the spectral separation 
coefficient (SSC). Focusing on the SSC allows, in almost 
all cases, the superposition of a set of interfering signals 
from the same system to be replaced with a single non-
repeating white noise random signal [2,3]. This 
replacement is called the long-code approximation.   
 
An exception to the long-code approximation is for C/A 
on C/A interference, where there are two complementary 
observations. The first observation is that for longer 
coherent integrations, e.g., 20 ms, the distribution of the 
correlator outputs can vary widely depending on location 
and time. This trait was both modeled and simulated in 
[1]. That model, which is verified by simulation, explains 
how the variation in the distribution depends largely on 
Doppler differences.  
 
The second observation concerns the C/A on C/A 
sidelobes after integration over a single spreading code 
period (1 ms).  In this case, the long-code approximation 
holds. However, successive sidelobe values are often 
correlated. Non-coherently combining these successive 
values could result in a sidelobe distribution that deviates 
from the straightforward Chi-square distribution that 
would be implied by the correlator output values being 
independent.  
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Our goal is to quantify the correlation between the 
successive coherent integrations and determine the 
distribution from the non-coherent integration. We begin 
in Section 2 by reviewing the distribution of the single 
period coherent integrations. We expand the discussion 
beyond C/A on C/A interference and also consider L5 
signals interfering with L5 signals.  Section 3 quantifies 
the correlation between successive correlation outputs. 
This correlation analysis is first done in the absence of 
additive thermal noise. However, we also quantify how 
considering such noise reduces the correlation between 
the combined correlator outputs.  
 
Section 4 models the distribution of sidelobes for non-
coherent integration. The main tool is to consider the 
overall integration as a Gaussian quadratic form [4-6], 
where the variables correspond to the individual coherent 
integrations between the desired signal and one of the 
interferers. This model yields a distribution that is a 
weighted sum of independent Chi-square variables. 
 
In Section 5, we apply the model to C/A intra-
interference, in particular the non-coherent integration of 
20-ms sums. As in the SSC analysis in [1], we see a 
strong dependence on Doppler difference. We also show 
how the distribution of 1-ms sums can be approximated as 
a single Chi-square random variable with a number of 
degrees of freedom determined by the number of 
interfering signals. The same techniques show how taking 
into account additive noise changes the distribution to a 
different Chi-square distribution. 
 
Finally, in Section 6 we consider the case of a single, 
high-power interfering signal, i.e., the coherent 
integrations are dominated by this single signal.  In this 
case,  the coherent integrations are restricted to just a few 
values, and the non-coherent integration will be 
approximated by a mixture of weighted sum of Chi-
square distributions with a reduced number of degrees of 
freedom.   
 
Section 7 presents our conclusions and recommendations 
for follow-on work. We include an Appendix A that gives 
a very brief overview of the GSAT simulator used to 
verify our models. 
 
2.  DISTRIBUTION OF CORRELATION 

SIDELOBES  

 
Our analysis focuses on receiver processing for 
acquisition, namely correlation of the desired signal 
against the received superposition of signals and noise. 
The fundamental building block for this analysis is the 
correlation over a single coherent period of the desired 
signal, or perhaps one component of the desired signal, 
against a single received signal component or against 

noise. The resulting correlation value can be modeled as a 
complex Gaussian random variable. 
 
This modeling technique was used in [1] for the analysis 
of SSC. In that case, we were interested in the summation 
of all correlation values, which represents a single 
coherent integration at the output of the correlator. In this 
paper, we are concerned with analyzing non-coherent 
integration, which in turn leads us to the analysis of the 
dependence of the correlator output as a function of time.  
 
General equations for non-coherent integration are 
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where in the top equation, each Cn is the nth coherent 
integration at the output of the correlator for a single 
desired signal. In the bottom of Equation (2.1), the 
separate terms represent contributions from a desired pilot 
and data components, for example what may used for L5. 
In both cases, Corr is the total sum of the magnitude 
squared output of the correlator, which includes all non-
coherent and coherent summations over time. We will use 
the term sidelobe for a value of Corr, since we do not 
consider the case where the desired signal is present in the 
received signal. 
 
The two separate scenarios of C/A and L5 correlation 
require some slight differences in the modeling based on 
Equation (2.1). For each case below, we define the 
pertinent summands nC , P

nC , and D

nC and the principal 
random variables that comprise them. In both cases, we 
use the following assumptions: 
 
 N is the number of non-coherent sums. 
 M is the number of interfering signals. 
 Unless otherwise stated, the summands do not 

include additive thermal noise. Additive noise will be 
considered separately for comparison. 

 The spreading codes are periodic, and for a given 
period, the spreading code values are modeled as 
random binary variables that are independent for 
different signals and for different code offsets within 
the same signal. 

 The spreading code values for a single signal are 
identically distributed Bernoulli trials with mean 
zero. 

 Data bit values for any signal are independent and 
identically distributed random binary variables. 

 Only one sample per spreading code chip is used. For 
clarity, the techniques, mentioned in [1], that can be 

© The MITRE Corporation. All rights reserved



used to extend to multiple samples per chip are 
omitted from this discussion.  

 The Doppler values and integration times are such 
that we can ignore issues of time dilation in the 
spreading codes.  

 φm is the random code phase of the mth interfering 
signal. 

 δm is the Doppler difference of the mth signal relative 
to desired signal.  That is, the term reflects 
subtracting the Doppler value in the desired signal 
from the Doppler of the mth signal. 
 

Notice that we do not use the actual spreading code values 
in the model. The reason is that for Doppler differences 
not close to 0 Hz, the correlation summations using the 
spreading code and those using random codes will behave 
the same [1]. In this way, the model focuses on those 
parameters that have more impact than the spreading code 
values, such as Doppler and the data bit values. We 
emphasize that  we do use the real spreading codes in the 
simulations.   
 
2.1  Modeling C/A  

 
For the C/A signal, we have  

 
1

, , 1
1
exp( ) exp(2 / )

M nL L

n m m i i m i m

m i nL

C j d a b j i R (2.2) 

  
where 
 
 Each C/A signal has spreading period 1023 and 

chipping rate R1 = 1023000 chips/s. 
 L = K * 1023 is the length of the coherent sum, in 

terms of number of one-sample chips. 
 ai are the (periodic) values of the spreading code for 

the desired signal. The values are +1/-1. 
 bm,i are the (periodic) values of the spreading code for 

the mth interfering signal. The amplitudes for the mth 
interferer depend on the received power. However, 
we will often assume that all the values are all +1/-1 
and scale final results. This approach is justified by 
the narrow range of received power (see [1]). Of 
course, any simulation results will use the actual 
received power values. 

 dm,i are the values for the data bits of the mth 
interfering signal. These values are constant +1 or -1 
and only change possibly every 20 ms (20460 
samples).  

 
The interfering signals also have a delay offset from the 
desired replica caused by differing radial distances to the 
satellites.  We abstract this offset and assume that the ai 
and bm,i start at the same chip.  The code offset is then 
manifested in the dm,i values, since these values are tied to 
the true start of the interfering spreading.  In particular, 

when the data bit changes, this is likely to occur within a 
spreading code period.   
 
Due to the periodicities of the signals, the correlator 
equation is fundamentally composed of 1-ms sums. These 
sums have only two values (up to sign) for a given m that 
depend on whether or not there is a bit transition within 
the 1 ms.  If there is no bit transition, which happens at 
least 19 times out of every 20 ms period, we obtain (up to 
sign): 
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k
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a b j i R . (2.3) 

 
When there is a bit transition, say at some code offset tm, 
we obtain (up to sign): 
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 (2.4) 

 
The value of k depends on the index n for the coherent 
integration and at which 1-ms offset that integration 
occurs in the case of coherent integration longer than 1 
ms. For example, when K = 1, we have 

 C/A
, ,

1
exp( )exp(2 /1000) .

M

n m n m m m n

m

C c j j n X  (2.5) 

The cm,n represent the sign of the 1-ms sums for that 
interferer and integration. 
 
Equations (2.4) and (2.5) lead to the following definitions: 
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 (2.6) 
While the value of k does not appear in the summations, it 
is implicit in choosing which sum is used.  
 
The C/A

,m kX  are random variables over the ensemble of 

spreading codes and data bits.  We have C/A
,[ ] 0m kE X and

C/A 2
,[| | ] 1023m kE X , using the assumptions on the 

spreading codes and assuming unit magnitude of the 
spreading code values.  Each term of a sum like Equation 
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(2.3) is independent with zero mean but with a difference 
variance. Even so, we can use a generalization of the 
central limit theorem to conclude that C/A

,m kX  is a complex 
Gaussian random variable.  In fact, unless the Doppler 
difference is very near 0 Hz, the real and imaginary parts 
of C/A

,m kX  have variance approximately equal to 1023/2, 

which implies 
2C/A

, 0m kE X  and that C/A
,m kX  is nearly 

circularly-symmetric.  
 
2.2  Modeling L5  

 
The main difference for modeling L5 is that the non-
coherent integration could consist of two separate terms, 
respectively from the pilot channel and the data channel. 
That is, from Equation (2.1) we have essentially: 

 
2 22 P D

n n nC C C  (2.7) 
Other scenarios may be of interest, such as acquisition 
using just the 20-ms long pilot signal; in that case we just 
ignore the second term. These terms are defined by: 
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 (2.8) 
where 
 
 Each L5 signal comprises both a pilot and data 

component, with spreading period 10230 and 
chipping rate R10 = 10230000 chips/s. 

 L = K * 10230 is the length of the coherent sum in 
terms of number of one-sample chips. 

 P

ia  and D

ia are the (periodic) values of the spreading 
codes for the pilot and data components respectively  
of the desired signal. Their values are +1/-1. 

 ,
P

m ib and ,
D

m ib  are the (periodic) values of the spreading 
codes for the pilot and data components respectively  
of the mth interfering signal. Their amplitudes are 
equal and depend on receive power. As with C/A 
code, we will often use values of +1/-1 in the 
analysis. 

 ,
P

m id and ,
D

m id are the values for the pilot and data bits 
respectively for the mth interfering signal. These  
values are constant +1 or -1 and only change possibly 
every 10230 samples. 

 ip are the values for the pilot bits of the desired 
signal, i.e., the length 20 Neuman-Hoffman code. 
These values are not needed when K = 1  

As with the C/A model, the bit transitions are abstracted 
to occur at some point during the spreading code period. 
 
Equation (2.6) defines for C/A two types of variables for 
each interferer based on 1-ms sums and depending 
whether a bit transition occurred during the correlation. 
For L5, the corresponding variables are also 1-ms long, 
and there are analogously 8 possible variables (up to 
sign). These variables depend on whether the pilot or data 
component is desired, whether the pilot or data 
component of the interfering is considered, and whether 
or not there is a data (or pilot) bit transition. They are 
denoted by: 
 
 , , , ,

, , , ,, , , and ,P P P D D P D D
m k m k m k m k

X X X X  (2.9) 

where the first superscript indicates the component of the 
desired signal and the second superscript the component 
of the interferer. The two possible choices for each 
variable based on bit transitions are implicitly determined 
by k. As an example,  
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 (2.10) 
 
Similar conclusions as with the C/A variables hold for 
these variables, namely they are nearly circularly-
symmetric-complex Gaussian variables (provided the 
Doppler difference is not near 0 Hz) with: ,

,[ ] 0m kE X , 
, 2
,[| | ] 10230m kE X , and the real and imaginary parts of 

,
,m kX  have variance approximately equal to 10230/2, 

which implies 
2,

, 0m kE X  (here “ ” denotes either 

P or D). 
 
2.3  Comments on Independence  

 
It is reasonable to assume that the above random variables 
are independent for different interferers and for different 
signal components of the same interferer. What is 
arguably not as reasonable is the independence between 
two variables that only differ in whether a bit transition 
took place, i.e., C/A

,mX and C/A
,mX . The correlation 

between such a pair of variables is a function of the code 
delay for the bit transition. Code delays near the center of 
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a spreading code period will produce variables close to 
independent, while code delays near 0 will make the 
variables almost identical (up to sign). Having noted this 
subtlety, we will regardless continue to assume all of the 
variables are independent in the analysis. While the full 
impact of this assumption is still to be assessed, the 
agreement of the model with simulation would imply that 
the impact is not appreciable.  
 
3.  THE DEPENDENCE OF SUCCESSIVE 

COHERENT INTEGRATIONS  

 
This section analyzes the correlation coefficient between 
successive coherent integrations using the 1-ms variables 
as building blocks.  These results were presented briefly 
in [1] for C/A code, e.g., the correlation between Cn and 
Cr. That discussion is extended to correlation between 
|Cn|2 and |Cr|2 and also to L5, i.e., the correlation between 

2 2
P D

n nC C and 
2 2

P D

r rC C . For both cases, we also 
discuss the whitening effect when the coherent 
integrations include additive thermal noise.  
 
In general, for real random variables Z1 and Z2 , we define 
the correlation coefficient as 

 1 2

1 2

Cov( , )
.

Var Var

Z Z

Z Z
 (3.1) 

If Z1 and Z2 represent two zero mean complex random 
variables, then the complex correlation coefficient is 
defined by  

 1 2
2 2

1 2

( )
.

(| | ) (| | )

E Z Z

E Z E Z

 (3.2) 

 
3.1  C/A Signals  

 
We first consider the case when the coherent integration 
is 1-ms, that is L = 1023. We focus on Cn as defined by 
Equation (2.2) in Section 2.1 and are interested in 
computing the correlation coefficient between Cn and Cr, 
which we denote by ,n r . Appealing to Equation (3.2), 
the denominator is easily seen to be 1023M.  For the 
numerator, we use the fact that the individual interferers 
are independent to obtain 
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There are only two possibilities (up to sign) for, e.g.,  

C/A
,m nX , which implies: 
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Putting the numerator and denominators together, we get  
 

 ( )
, ,

1

1 exp(2 ( ) /1000).
M

m

n r n r m

m

c j n r
M

 (3.5) 

 
Consider what happens when n and r are close. Then most 
of the ( )

,
m

n rc are likely equal to 1, since there will not yet be 
a bit transition for the mth interferer. The correlation 
coefficient is then the average of the Doppler-defined 
phasors. If a few of the interferers have Doppler 
difference that are similar (modulo 1000), then we expect 
that the correlation coefficient could deviate from zero.  
As n and r get further apart, the ( )

,
m

n rc will start to behave 
more randomly, which should drive the correlation 
coefficient to zero. 
 
Next consider the case for K = 20, that is the coherent 
integration is the length of a data bit period. In this case, 
we have 
 

19
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,20
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exp( )exp(2 (20 ) /1000) .
M

n m m m n k

k m

C j j n k X

 (3.6) 
(note the indexing on the variables reflect that they 
correspond to specific 1-ms long integrations). The 
numerator for ,n r can be computed as 
 

19 19
( )
20 ,20

1 0 0

( ) 1023

exp(2 (20( ) ( )) /1000).

n r

M
m

n k r m

m k

E C C

c j n r k

 (3.7) 
The denominator is similar, except we set n = r. In this 
case, the formula can be simplified in terms of 
multiplicative factor Dirichlet-like functions discussed in 
[1]. Since different 20-ms time spans will have, on 
average, half of the interferers with bit transitions, we 
expect ,n r  in the 20-ms case to be closer to zero than for 
the 1-ms coherent integration case. 
 
Figure 1 illustrates how the correlation coefficient can 
vary by computing it for various lags over a 30 second 
experiment using the GSAT simulator (see Appendix A).   
For visualization purposes, we only computed a real 
correlation coefficient based on the in-phase portion of 
the correlator output.  The figure clearly shows that the 1-
ms sums are correlated, while the 20-ms sums slightly 
less so.   
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Figure 1.  Correlation Coefficient for Various Lags for 

1-ms and 20-ms Coherent Sums 

(C/A Signal; Single 30-sec Simulation) 

 
Next, we compute the correlation coefficient sq

,n r

between |Cn|2 and |Cr|2 for the case L= 1023 using 
Equation (3.1). The properties of circular-symmetry can 
be used to show that Var(|Cn|2) =(1023M)2 and that the 
covariance between |Cn|2 and |Cr|2 is 

 
2
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,

1
1023 exp(2 ( ) /1000) .

M
m

n r m

m

c j n r  (3.8) 

(recall circular symmetry will hold unless the Doppler 
difference is near 0 Hz). 
Thus 

 
2

sq ( )
, ,2

1

1 exp(2 ( ) /1000) .
M
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n r n r m

m

c j n r
M

 (3.9) 

How does sq
,n r behave? Since each ( )

,
m

n rc is likely to be 
either +1 or -1, because a bit transition only happens at 
most once every 20 ms, we effectively are looking at the 
variance of the sum of M random phasors. That value 
should be M, and so we would expect that sq

,n r should be 
about 1/M. 
 
As an example, Figure 2 shows the same experiment as 
Figure 1, except we calculate the correlation coefficient 
for the square magnitude 1-ms sums out of the correlator. 
We see that the correlation stays a fairly flat. In this 
experiment, M = 8, and the above observation would 
predict a value of about 1/8, which is consistent with the 
figure.  
 

 
 

Figure 2.  Correlation Coefficient for Various Lags for 

Squared Magnitude of 1-ms Coherent Sums 

(C/A Signal; Single 30-sec Simulation) 

 

3.2  L5 Signals 

 
A similar correlation coefficient analysis can be done for 
L5 signals, although there are some complications due to 
the dual components. In this discussion, we focus on only 
the desired pilot signal. Consider the time series of 
coherent integrations given just by the ,

,
P P
m k

X combined 

with the ,
,

P D
m k

X variables, then the correlation coefficient 

takes the same form as Equation (3.5). The main 
difference is that the corresponding ( )

,
m

n rc variables are 
likely to be 0 more than half the time, up to 7/8ths of the 
time. The reason is that there are 8 possible combined 
values of the variables ( , ,

, ,
P P P D
m k m k

X X ); however, the 

variables are not equally from 1-ms to the next, since only 
four given values can follow any specific value. This 
variation in the values is due to the Neuman-Hoffman 
overlay code and its effect on bit transitions. As such, 
most of the terms in Equation (3.5) vanish on average, 
which will dampen the correlation coefficient.  
 
In the case of 20-ms coherent integrations using just the 
L5 pilot as the desired, note that the 20-ms pilot signal 
repeats. Thus we have a situation with a periodic length 
20*10230 code with no additional overlaid data bits. 
Correlating the desired pilot against the interfering pilot 
should have correlation in the 20-ms sums comparable to 
the 1-ms C/A code. Of course, the additional interfering 
data component will vary more due to the random data 
bits, which serves to dampen the correlation in the 20-ms 
sums. Figure 3 Illustrates these observations for the L5 
pilot for the 1 ms and 20 ms case.  
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Figure 3.  Correlation Coefficient for Various Lags for 

1-ms  and 20-ms Coherent Sums 

(L5 Pilot; Single 30-sec Simulation) 

 

 
Finally, consider the case of squared magnitude for the L5 
signals, where again we only consider the contribution of 

the pilot signal 
2

P

nC  for K = 1. The formula in Equation 

(3.9) for sq
,n r  is relevant, though again what changes is 

the nature of ( )
,
m

n rc . Since on average more than half of 
these values are zero, it is as if we are adding less than 
half as many random phasors. Thus we expect sq

,n r  to be 
below 1/(2M), i.e., half of the value in the C/A case, and 
perhaps as low as 1/(8M). As an example, Figure 4 shows 
a plot of the squared magnitude correlation coefficient for 
the same experiment as Figure 2. For this scenario, we 
have again M = 8, which would predict a correlation 
coefficient around between 1% to 6%. 
 
3.3  The Effect of Noise  

 
In reality, the correlations that we are modeling do not 
appear in isolation, but as a part of the sum total noise and 
interference. Since thermal noise can dominate received 
interfering power, it is reasonable to ask whether thermal 
noise would serve to whiten the successive correlator 
outputs.  
 
 

 
 

Figure 4.  Correlation Coefficient for Various Lags for 

Squared Magnitude of 1-ms Coherent Sums 

(L5 Pilot; Single 30-sec Simulation) 

 
In general, suppose we have two zero mean random 
variables Y1 and Y2 with correlation coefficient defined 
as in Equation (3.2).  Consider the new variables Y1 + Z1 
and Y2 + Z2, where Z1 and Z2 are zero mean, have 
respective variances 2

1 and 2
2 , and are mutually 

independent and independent of Y1 and Y2. Then the new 
correlation coefficient between the new variables is   

 new
2 2 2 2
1 1 2 2

.
1 | | 1 | |E Y E Y

(3.10) 

In particular, if Y1 and Y2 both have variance 2 and Z1 

and Z2 both have variance 2 , then new (1 )q , 

where 2 2q . Thus, for example, if the noise power 
equals the signal power, we expect the correlation 
coefficient to be cut in half.  
 
For example, using the same 30 second simulation 
experiments as in Figure 1, we compare the results with 
thermal noise of -201.5 dBW/Hz, which gave a value for 
q of about 3.2. We see that indeed the correlation 
coefficient is dampened in the presence of noise by about 
a factor of 4 (= 1 + 3.2).  
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Figure 5.  Correlation Coefficient of In-phase 1-ms 

Sums with Noise Added 

 

4.  NON-COHERENT INTEGRATION MODELING: 

THEORY  

 
In a non-coherent integration such as Equation (2.1), if 
the summands were the square magnitudes of independent 
Gaussian variables, we would be able to specify the 
distribution of the total integration as a Chi-square 
distribution. However, the correlation coefficient results 
in the previous section indicate that the distribution of 
sidelobes from non-coherent integration will likely 
deviate in some cases from the Chi-square distribution.  
The goal in this section is to develop tools to quantify this 
deviation. We will adapt the theory of Gaussian quadratic 
forms [4-6].  
 
We generalize the derivations in Sections 2 and 3 to give 

 
1

0
,

J

n j j

j

C X  (4.1) 

where the Xj are independent complex Gaussian random 
variables and the j complex constants. In practice, there 
are a limited number (up to sign) of Xj , e.g., only two per 
interferer in the case of C/A code. That means that the 
total integration depends only on 2M independent 
complex variables, or 4M real variables in the case of C/A 
code. Intuitively we expect that the underlying Chi-square 
distribution to only have at most 4M degrees of freedom, 
which may be much less than N, the number of non-
coherent integrations. Of course, if we also consider 
summands that include additive thermal noise, then in fact 
we have possibly 2N + 4M variables, since each noise 
summand produces an independent variable. We discuss 
the ramifications of noise plus interference at the end of 
the section. 
 
Let X be the row vector of all real variables from the 
interferers. For C/A code, X has dimension 4M: 

 C/A C/A C/A C/A
1, 1, 1, 1,Re ,Im ,Re ,Im , .X X X XX (4.2) 

Using the appropriate j values, e.g., the Doppler and 
sign terms such as in Equation (2.2), we can write 
 2 † ,n nC AX X  (4.3) 
where the matrix A is an outer product of the real 
coefficients derived from the j and “ † ” denotes 
conjugate transpose. Finally, we have  

 
1 1

2 †

0 0
Corr , where .

N N

n n

n n

C A A AX X  (4.4) 

A similar analysis works for L5, where X has length 16M. 
Notice, by the way, that we have made no assumption as 
to the coherent integration length 
 
The matrix A encapsulates all of the Doppler and sign 
information implicit in Equation (2.2). As such, the 
distribution implied by Equation (4.4) when all of the 
variables are considered to be Gaussian variables is 
essentially a snapshot distribution depending on those 
Doppler and sign values. As those values change, the 
distribution changes. In Section 5, we show how the 
distribution depends on these parameters. We also discuss 
how one could average these distributions over, say, data 
bit values. We obtain a probability mixture distribution 
that would more accurately portray the overall 
distribution. 
 
Another potential problem with this approach is that we 
are modeling the 1-ms sums as Gaussian variables even 
though they can only take on two possible values given 
the spreading codes and data bit values.  To obtain a 
distribution, we can imagine conceptually re-running the 
calculation using many different sets of spreading codes 
and random data.  In practice, the mixing of the variables 
due to the weights in Equation (4.1) serves to make the 
distribution a reasonable approximation, as confirmed by 
simulation results.  
 
Once we specify the quadratic form in Equation (4.4), we 
can apply standard techniques to obtain 
 
 †Corr Y Y  (4.5) 
 
where Y is a vector of independent Gaussian random 
variables and is a diagonal matrix.  This shows that 
Corr is distributed as a weighted sum of Chi-square 
random variables each with 1 degree of freedom.  When 
the underlying complex variables are circularly 
symmetric, which happens approximately when the 
Doppler difference is not close to 0 Hz, then two of the Yj 
variables will have equal weights. That means they can be 
combined into a single Chi-square variable with 2 degrees 
of freedom. In general, though, there can be a wide 
discrepancy between the weights, perhaps by several 
orders of magnitude. 
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5.  NON-COHERENT INTERGRATION 

MODELING: EXAMPLES   

 
We apply the techniques in Section 4 to various examples 
using C/A code. These examples will serve to show the 
usefulness of the quadratic form technique and the 
insights it can produce. 
 
5.1  Model versus Simulation  

 
Figure 6 shows how well the model can approach real 
distributions. By „real distributions” we mean 
distributions of the correlator outputs using the GSAT 
simulator.  The two plots in the Figure show two different 
scenarios using the non-coherent integration of ten 20-ms 
coherent sums, for a total integration time of 200 ms.   
The two different plots illustrate the variation that can be 
seen out of the correlator, which is indicative of the 
variation for 20-ms CA-SSC [1].  In both cases, the model 
distribution based on the Gaussian quadratic form is a 
good fit to the experimental distributions.  This shows 
how, the distribution generated by the weighted Chi-
square sum can be very close to that achieved 
experimentally.   
 
5.2  Model Variation  

 
To investigate how the model distributions vary based on 
parameters, we consider the weights given by the 
diagonal matrix , which are necessarily non-negative 
real numbers. For example, for the examples in Figure 6, 
one possible set of weights is given in Figure 7. For 
example 1 (the top plot of Figure 6), M = 9, so the matrix 
of the quadratic form is 36 x 36. For the second example, 
M = 8. Notice how many of the weights are essentially 
inconsequential; indeed these terms are usually ignored 
when calculating the actual weight sum of Chi-square 
distribution, as in Figure 6. Also, we see the tendency of 
the weights to come in pairs. In these experiments, and in 
what follows, we assume equal amplitude in the 
interfering signals in order to isolate the other parameter 
effects. 
 
Figure 7 also demonstrates an interesting relationship 
between the weights and the shape of the distribution. If 
the weights are fairly close in size, then the distribution is 
very narrow, such as example 1 in Figures 6 and 7. The 
reason is that equal weights would imply a single 
dominate Chi-square with a low order number of degrees 
of freedom. On the other hand, if there are only a few 
very large weights, such as in example 2, then the 
distribution is very flat. The reason is that we have a 
single Chi-square with, say, 2 degrees of freedom that is 
convolved with another weighted sum of Chi-squares 
with much lower weights. This large size of the first term 
results in a large range of the overall distribution. 
 

 
 

Figure 6.  Experimental versus Model Distributions of 

Correlator Output for 200-ms Non-Coherent 

Integration of 20-ms Sums 

Example 1 (top); Example 2 (bottom) 

 

 
 

Figure 7.  Weights for Diaganolized Quadratic Form 

for the Examples in Figure 6 

 
The weights used in Figure 7 are one possible set of 
weights, because while the bit transition and Doppler 
values were held fixed, we necessarily had to choose bit 
values randomly. To show the variation that could occur 
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in the model based on bit values, consider Figure 8. Here 
we re-ran the model for the two examples used in Figures 
6 and 7, except the actual bit values varied. We show 10 
different instantiations for each example. While there is 
variation with the set of ten curves, the overall 
distributions stay fairly consistent. Thus we can conclude 
that the modeling technique has some robustness with 
regard to the bit values. 
 

 
Figure 8.  Several Instantiations for Examples in 

Figure 6 

Solid (Example 1); Dashed (Example 2) 

 
Finally, we want to consider the effect of Doppler 
differences on the case of non-coherently integrating 20-
ms coherent sums.  Motivated by the analysis in [1], we 
expect that having many Doppler differences near 0 Hz 
modulo 1000 Hz should cause the distributions to be 
much flatter. The reason is that having such numbers 
implies a large SSC, which in implies a large variance.  
 
Figure 9 supports this observation. Here we ran several 
experiments where the bit transitions and bit values were 
held fixed but Doppler was varied. We color code the 
curves based on how many signals were within +50/-50 
modulo 1000 Hz.  
 
The examples in this section used non-coherent 
integration of 20-ms coherent sums. If we consider non-
coherently summing 1-ms sums, we find that in fact the 
overall distributions look similar for different scenarios. 
The reason is that even though the successive sums may 
be correlated, there is not the variation in magnitude that 
we see due to longer coherent integrations. Of course, the 
techniques can still be used to yield the non-coherent 
distributions. 
 

 
 

Figure 9.  The Effect of Doppler on Non-Coherent 

Integration Distributions 

 
5.2  Simplifying the Model  

 
The analysis in Section 5.1 offers a simplification for the 
non-coherent distribution. Because the number of 
variables in the underlying quadratic forms does not 
depend on N, we should focus on M to determine a 
number of degrees of freedom for a given Chi-square. 
Furthermore, because 19 out of 20 times we use the 
variable C/A

,mX  instead of C/A
,mX , we would expect only 2M 

degrees of freedom. 
 
As an illustration, Figure 10 shows the same scenario 
used in Section 3. The blue curve shows the distribution 
of non-coherent integration of 1-ms sums for N = 20. The 
approximation to the blue curve is given by 
 

 2
2

2 1 102320 ,
3 2 MP t

M
 (5.1) 

 
where df denotes a real Chi-square random variable 
with df degrees of freedom. The factor 2/3 compensates 
for multiple samples per chip in the simulation,  t  is the 
length of time for a spreading code chip, and P is total 
interference power, that is we replace all the signal 
powers with their average.  Similarly, the red curve shows 
the same distribution only additive thermal noise is also 
considered. In this case, since we have more variables 
than the dimension of the quadratic form, we expect a full 
number of degrees equal to 2N = 40. Indeed, the 
approximation to the red curve is given as in Equation 
(5.1) only with df = 40. 
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Figure 10.  A Simple Chi-Square Approximation to 

Experiment using 20-ms Non-Coherent Integration of 

1-ms Sums 

Interference Only (blue); Interference plus Noise (red) 

 
6.  NON-COHERENT INTEGRATION WITH 

SINGLE HIGH POWER INTERFERER  

 
All of the results until now have investigated the impact 
from several interfering signals. There are times, on the 
other hand, when considering just a single interferer is 
useful, e.g., when a single interferer has much higher 
received power than the other signals. In this case, 
formulas like Equation (2.5) for Cn reduce to just a single 
term. While we could apply the quadratic form method to 
this case, it turns out that it is effective to calculate more 
directly. The reason is that there is a very limited number 
of values for Cn, and so the overall distribution is 
determined combinatorially from the number of each such 
value. 
 
For example, consider the case of a GNSS signal where 
the overlay data bit matches the spreading code period. 
Examples include the L1C pilot and data components and 
L2C data signal. If we consider just a single such 
interfering signal, then Cn takes on only two possible 
values for given Doppler and delay, say X+ and X-. The 
choice of value is random, based on the overlaid data (or 
pilot) bits. Thus we have  

 
1

2 2 2

0
Corr ( ) .

N

n

n

C w X N w X  (6.1) 

Here w is binomial distributed with success probability 
50%, based on the random data bit values. A reasonable 
probability model for Corr is then a mixture of Chi-square 
distributions  
 1 2( ) ,c wY N w Y  (6.2) 
where each Y1 and Y2 are independent and identically 
distributed as 2 (using the notation of Equation (5.1)) 
and c is a scale factor that depends on the variance of the 

Gaussian variables. The mixture probabilities are derived 
from the binomial distribution. 
 
This section focuses on the effect of N on this mixture 
distribution. In practice, one is most interested in the 
extreme values of the distribution, so the metric used is 
the tail probabilities as a function of N. We discuss three 
scenarios: the random noise case, which serves as a 
benchmark, C/A, L5.  To ease the comparisons between 
the scenarios, we normalize the sidelobe values by the 
autocorrelation peak of the desired signal.   
 
6.1  Random Noise 

 
In the case of (complex) random noise, each Cn is 
independent and identically distributed, so that 
normalized Corr is a scaled version of a Chi-square 
distribution with 2N degrees of freedom: 
 2Corr / Peak ~ (2 ),N LN  (6.3) 
where L is the integration length for the coherent 
integration. This equation follows from the fact that |Cn|2 
is distributed as 2( / 2)L , and the peak is L2

N. 
 
Figure 11 shows how this normalized sidelobe in dB 
varies in terms of N for L = 10230. Two curves are 
plotted, one for the 90% cutoff and one for the 99.9% 
cutoff. Observe that the sidelobe cutoffs decrease with N, 
albeit slowly. 
 

 
 

Figure 11.  Probability Cutoffs for Non-Coherent 

Sidelobe Distribution for Random Noise 

 
6.2  C/A Signals 

 
Recall from the discussion of the C/A signal that |Cn|2 will 
have only two possible values for a single interferer, and 
that furthermore, one of these values will occur at least 19 
out of every 20 times. That means if we let P be 
floor(N/20), then N – P summands are necessarily 
identical while the other P summands will be one of the 
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two types with a 50/50 probability. Thus we get P + 1 
possible distributions, each of the form 
 1 2( ) / (2 ),wY N P w Y L N  (6.4) 
where w = 0, … , P, L = 1023, and we use the notation of 
Equation (6.2).  
 
Figure 12 shows the sidelobe cutoff curves as in Figure 
11. Here, though, we see that the cutoffs do not decrease 
with N. This leveling is to be expected, since Equation 
(6.4) implies little deviation in the distribution even as N 
gets large, since one of the two Chi-square terms 
dominates. 

 
 

Figure 12.  Probability Cutoffs for Non-Coherent 

Sidelobe for C/A Signal 

 
6.3  L5 Signal 

 
The situation for L5 is more complicated, because there 
are more possible values for the single summands in the 

non-coherent sum.  Consider 
2 22 P D

n n nC C C , and 

look at the possible values for 
2

P

nC . There are eight 
possible values, based on the bit transitions for the 
interfering pilot and data component and the actual bit 
values: 

 
2, , .P P P DX X  (6.5) 

The same holds true for 
2

D

nC  , except the choice of bit 
transitions and bit values is the same as for the pilot terms 
(because they both are correlating against the same 
interfering signal).  That means the distribution of the 
normalized Corr is determined by the pattern of these 8 
pilot terms and corresponding 8 data terms over the N 
summands. Observe that for specific bit choices, the 

distribution of 
2

nC is a Chi-square distribution with 4 
degrees of freedom (since the pilot and data values are 
independent). 
 

A subtlety that should be considered is that the 8 terms 
cannot be chosen independently. For example, if the bits 
one the data component are + and +, then the next pair is 
either +, + or +, -. In this way, any given term can only be 
followed by four possible terms. We call this situation the 
true bit transition case. When possible, we will adhere to 
its restrictions; otherwise, we will treat the terms as 
independent. Also, we will assume the pilot bits are 
random, even though they are defined by the length 20 
Neuman-Hoffman code. 
 
To mimic the results n Figures 11 and 12 for L5, we need 
to be able to compute the mixture of the probability 
distributions based on the patterns of the pilot terms (as 
we‟ve seen, we only need to focus on the pilot terms). We 
consider three separate regions based on values of N: 

1. For 10,N  we compute combinatorially the 
exact distribution of all patterns of terms using 
the true bit transition case and all possible bit 
values. Each pattern occurs with a given 
probability determined by its combinatorial 
strcucture. This probability is used to weight the 
specific weighted sum of 4 in the overall 
mixture distribution. 

2. For 10 100,N  we compute some number of 
random patterns of terms. Each pattern occurs 
with a given probability, which is used to weight 
the specific weighted sum of 4 in the overall 
mixture distribution. The number of such 
random patterns is based on achieving a 
sufficient number of distributions in the mixture 
calculation. For N = 16, we achieve 90% of the 
weights without difficulty, but for N = 100, the 
threshold is 10%. Even so, the latter case seems 
to give a reasonable representation of the overall 
mixture. In this region, we assume the terms are 
independent. 

3. For 100,N  we basically assume that all of the 
possible terms occur the same amount (and thus 
implicitly are treated as independent). That is, if 
N = 8B, each term occurs B times. In this case, 
after normalization we approximate the 
distribution as 32 (16 )L . Notice that this 
approximation does not depend on N. 

We mention that one can also calculate a good 
approximation to the distributions for region 1 without 
needing to derive the patterns from all possible bit values. 
This approximation assumes the terms are independent 
and uses the set partition formula associated, e.g., with the 
Faà di Bruno formula [7].  This formula yields an explicit 
calculation that in turn gives the necessary probabilities of 
the various types of patterns.  
 
Figure 13 shows the corresponding curves for the L5 case. 
For each cutoff probability, we plot the results of the three 
regions. Notice that the flat-line approximation of region  
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3 appears to be a consistent and reasonable continuation 
of the other curves. 
 
It is useful to compare Figures 11 and 13. Non-coherent 
integration is more effective versus random noise due to 
the fact that successive summands are independent. In the 
L5 case (as in the C/A case), the limited number of 
summands implies that the non-coherent sidelobe level 
off, so that increasing N does not affect the integration. 

 
 

Figure 13.  Probability Cutoffs for Non-Coherent 

Sidelobe for L5 Signal 

 
7.  CONCLUSIONS  

 
This paper shows the effectiveness in using simple 
models of the single signal coherent sums to derive results 
for non-coherent integration. Some of the insights that can 
be gained from the model are 
 The correlation coefficient of successive 1-ms sums 

for C/A intra-interference can deviate from zero for 
small lags. Even when the coherent sums are 
uncorrelated, the correlation coefficient for the 
squared magnitudes follows a plateau that depends on 
the number of interferers. 

 The framework of Gaussian quadratic forms can be 
used to derive distributions of the non-coherent 
sidelobes. Such analysis leads to simple Chi-square 
models for situations when a long-code 
approximation does not hold, for example non-
coherently integrating 20-ms sums for C/A intra-
interference. 

 A combinatorial analysis can be used with the same 
model building blocks to derive non-coherent 
sidelobe distributions when only a single interferer is 
considered. Such results show how the sidelobe 
values level off for increasing integration length. 

While the techniques in this paper were demonstrated for 
C/A and L5, their application is straightforward to other 
GNSS signals, such as L1C. 
 

A.  APPENDIX: SIMULATION OVERVIEW  

 
We use a numerical simulation that models both a GPS 
constellation and a simple GNSS receiver at a point on the 
earth‟s surface.  This simulation is known as GSAT 
(GNSS Signal Assessment Tool) and was developed by 
Christopher Hegarty and Michael Tran from the Center 
for Advanced Aviation System Development (CAASD) at 
The MITRE Corporation.  The GSAT code used in this 
paper is an updated version of the simulator described in 
[8]. 
 
GSAT consists of an orbital propagator and a simple 
receiver model.  The orbital propagator updates the 
locations of the satellites in the constellation every 1 ms, 
which in turn determine the code phase, Doppler, and 
received power at the receiver location.  The receiver 
model consists of early, late, and prompt correlators 
(early-late spacing of ½ a chip), which are used by the 
carrier and code tracking loops to track one of the 
satellites in view.  The prompt correlator output is 
accumulated and dumped every 1 ms to an output file.  
The signals are sampled at 4 MHz, although there is no 
additional front-end filtering. Further details, including 
specific parameters used, can be found in our previous 
paper [1]. 
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Overview

• We have developed modeling techniques that quantify 
dependencies between successive coherent integrations in a 
GNSS receiver
– Specifically for intra-system interference
– The model uses real parameters (Doppler, etc.) 

» Using a time-domain approach that handles bit transitions
– The model provides insights and allows quick “what-ifs”
– Results applied to C/A and L5 intra-system interference

• We use the model to
– Computing the correlation coefficient between coherent integrations
– Computing the distribution of sidelobes after non-coherent integration

» When all interferers are considered
» For the case of a single interferer

© The MITRE Corporation. All rights reserved
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Outline 

• Model basics

• Correlation coefficient

• Analysis via Gaussian quadratic forms

• The single interferer case

• Conclusions
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Background

• Our model extends previous work for C/A on C/A interference 
and the behavior of the spectral separation coefficient

• There are two main observations from that work
– When the coherent integration time is 20 ms

» The CA-SSC varies widely by location and time
» But successive receiver outputs are uncorrelated

– When the coherent integration time is 1 ms
» CA-SSC follows a long-code approximation
» But successive receiver outputs are correlated in time
» Thus, distributions of non-coherent integration outputs do not follow the 

expected distributions

• This talk addresses the second observation

© The MITRE Corporation. All rights reserved
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Main Correlation Equation

• Our model is based on this main equation (written for C/A)
– N = number of non-coherent summands (indexed by n)
– L = coherent integration time = K x 1023 (one sample per chip)
– M = number of interfering signals (index by m)
– R = 1.023 Mchips/s

• A similar equation is used for L5
– Modified to account for both the desired and interfering signals havinhg

independent pilot and data components

21 1 1
2

, ,
0 0 1

Corr exp( ) exp(2 / )
N N M nL L

n m m i i m i m

n n m i nL

C j d a b j i R  
   

   

   

mth interferer phase, data values, chip values, and Doppler difference
Random code offset is implicit  

Replica signal
chip values
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Model Equation in Pictures
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I2 + Q2

+ Output Corr

I2 + Q2
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M
 I
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te
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C
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ig
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Data Bit
Transition

Non-coherent
SummationCoherent

Integration

21 1

, ,
0 1

Corr exp( ) exp(2 / )
N M nL L

m m i i m i m

n m i nL

j d a b j i R  
  

  

 

• The model is constructed via 1-ms correlator sums 
– Combined coherently and non-coherently

K = 5

C/A Interfering Signals with Data
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• Break up the 1-ms sums by interferer
• Assuming random chips

– The real and imaginary parts are Gaussian 
• These variables are independent for different interferers
• For a single interferer, there are two distinct real/imaginary pairs

– Based on bit transitions
– Circularly symmetric for Doppler ≠ 0 Hz
– Independence depends on where the bit transition occurs

• For L5, there are 8 variables for each desired pilot and data
– Based on the bit transitions on the interfering pilot and data

» Due to overlay Neuman-Hoffman codes and data bits
» Not equally likely, nor independent in time

The Building Blocks:

1-ms Correlator Sums

The values for these variables stay the same through the whole integration
(up to sign) 

and

, etc.
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Revisiting the Correlation Equation

• Using the 1-ms sums we can re-write the correlation equation
• Here it is for 1-ms coherent integration for C/A

• For longer coherent integration, we see the impact of Doppler 
differences near 0 modulo 1000 Hz

• The sn are constant for 19 out of 20 ms
– Which shows why successive coherent integrations are correlated 

• For L5, the similar equations have sign terms that vary each 
integration
– Because of NH codes and data bits

( ) C/A
,

1
exp( )exp(2 /1000)

M
m

n n m m m n

m

C s j j n X  



1-ms sums

sign
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Outline 

• Model basics

• Correlation coefficient

• Analysis via Gaussian quadratic forms

• The single interferer case

• Conclusions
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Correlation Coefficient

• For the complex correlation coefficient between Cn and Cr

• The variables are either equal (up to sign) or independent, yielding

• The cn,r are
– 0  if the 1-ms sums are independent
– +1/-1 if the 1-ms sums are equal or opposite in sign

• For C/A code, the weights are only zero possibly 1 out of 20 times
• For L5, we expect similarly the weights to be zero more than half the 

time
– Up to 7/8ths of the time, if the variables were independent

C/A C/A
, ,

1
( ) exp(2 ( ) /1000) ( )

M

n r m m n m r

m

E C C j n r E X X 


   

( )
, ,

1

1 exp(2 ( ) /1000)
M

m

n r n r m

m

c j n r
M

  


 
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Correlation Coefficient Example

• Thus we expect that the correlation coefficient can be large, 
depending on Doppler values

• Plots show correlation coefficient measured using GSAT
– Only measuring correlation between in-phase (real) terms

* GSAT was originally developed by Chris Hegarty and Michael Tran of The MITRE Corp.
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Correlation Coefficient I2 + Q2

• The same techniques can be applied to the correlation coefficient 
between successive square magnitudes out of the correlator
– E.g., correlation of |Cn|2

• For C/A code, we are essentially computing the average variance of a 
sum of M “random” phasors
– So the correlation coefficient behaves like 1/M

• For L5, since the weights are zero more than half the time
– Expect the correlation coefficient to be between  1/(2M)  and  1/(8M)

2
sq ( )
, ,2

1

1 exp(2 ( ) /1000)
M

m

n r n r m

m

c j n r
M

  


 
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Correlation Coefficient I2 + Q2

Example

• Same experiments, looking just at 1-ms sums
– M = 8 interferers, so heuristic is

about 0.125 and 0.015 to 0.06, respectively

C/A L5
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Additive Thermal Noise

• Consider two cases
– Correlation coefficient of just C/A desired versus C/A interference
– Correlation coefficient of C/A desired versus noise plus C/A interference

• Let Q be the ratio:    noise power  /   (C/A interference power)

• Then the correlation coefficient changes as

• Thus, if Q is unity, the correlation coefficient is halved

ALL C/A
1

1 Q
 

 
  

 
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Correlation Coefficient Example

Additive Noise

• Same experiment, except noise added (-201.5 dB)
– Q ~ 3.2, so new coefficient about one fourth of old coefficient
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Observations

• The periodicity of the GNSS signals results in some correlation in 
successive correlator outputs
– Even when all interferers are considered

• The correlation is diminished when noise is considered

• This correlation impacts the non-coherent sidelobe distributions

• It also effects any averaging of the correlator outputs, e.g., for 
example to experimentally measure SSC
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Outline 

• Model basics

• Correlation coefficient

• Analysis via Gaussian quadratic forms

• The single interferer case

• Conclusions
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• A non-coherent integration can be expressed as a quadratic form in 
the 1-ms (real) Gaussian variables

• An is a matrix that captures Doppler and sign information
• X is a vector of the real variables (+/- = (no bit)/(bit) transition) 

• Diagonalize the form to yield
– Each Yk is an independent Chi-square variable with 1 degree of freedom

The Gaussian Quadratic Form

The form automatically handles correlation of the 1-ms sums

Corr ~ k k

k

w Y

1 1
2 2* *

0 0
Corr , where and

N N

n n n n

n n

C A A A C A
 

 

    X X X X

       C/A C/A C/A C/A
1, 1, 1, 1,Re ,Im ,Re ,Im ,X X X X   

 
 

X
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• Two experiments for C/A,  L = 20 ms, N = 10 non-coherent sums
– Created the quadratic form using the Doppler values and bit transitions from the 

experiment, but with just a single instance of random bit values

Example

Example 1

Example 2
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Model Variation

• The quadratic form depends on the specific parameters
– Bit transition locations, bit values, Doppler

• Changing the bit values varies the distribution somewhat but keeps 
the same shape
– So the true distribution is a mixture distribution over all possible bit values
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Model and Doppler

• The form can vary widely based on Doppler values
– This is the same effect that gives the variation in CA-SSC

• For example, these are distributions obtained based on number 
of Doppler values near 0 Hz modulo 1000 Hz

0 0.5 1 1.5 2

x 10
6

0

1

2

3

4

5
x 10

-6

0 in +/- 50 Hz modulo 1000
1 in +/- 50 Hz modulo 1000
2 in +/- 50 Hz modulo 1000
3 in +/- 50 Hz modulo 1000
4 in +/- 50 Hz modulo 1000

Non-Coherent  20-ms Integration

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

© The MITRE Corporation. All rights reserved



22MITRE

Even Simpler Models

• Consider C/A, 20-ms non-coherent integration of 1-ms sums
• Random interference implies Chi-square with 40 degrees of freedom
• But in practice, we only see 2 M degrees of freedom

– Left is interference only; degrees of freedom = 2 x 8 = 16
– Right is interference plus noise with 40 degrees of freedom
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Single Interferer

• We next consider the distribution of sidelobes for non-coherent 
integration with only a single interferer

• The quadratic form would only have a few variables
– Only four for C/A code; sixteen for L5

• The actual form depends on the combinatorics of the bit 
transitions
– We can reason directly from first principles

• We look at three cases
– A random long-code, C/A, and L5

© The MITRE Corporation. All rights reserved
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Long-Code Sidelobe Distribution

• The distribution of the sidelobes normalized to the 
autocorrelation peak is        Y / (2 L N)   
– Y is Chi-square with 2 N degrees of freedom

• The tail cutoffs decrease with N, albeit slowly
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C/A Sidelobe

• Because of the 20 repetitions per data bit, integration for N ms 
would results in about  N – P summands being identical
– Where P = floor(N/ 20)

• The remaining P summands will be equal or different based on a 
possible data transition

• In practice,  get  a mixture of P + 1 distributions (w = 0, . . . , P) 

– Each variable is a Chi-square with 2 degrees of freedom
• For large N, we expect the distribution to become flat 

(independent of N)
– This quantifies how non-coherent integration helps against noise, but not 

a strong intra-system interferer

 1 2( ) / (2 )wY N P w Y L N  
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C/A Sidelobe Distribution

• The tail cutoffs become flat
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L5 Sidelobe

• The types of variables depend on the bit transitions in the 
interfering pilot and data components

• We get 8 flavors of variables, each is a Chi-square with 4 
degrees of freedom (assuming desired pilot and data sums)
– Because each interferer effects the desired pilot and data components 

the same
• The distribution is a mixture based on the patterns of flavors 

distributed over the N summands
– Note that the flavors are not independent in time

• This leads to a combinatorial explosion 
– We use approximation methods to get close to the model distribution
– We ignore the structure in the NH codes
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• Suppose this is the set of overlay signs for the interfering pilot and 
data components (N = 24 summands total)
– Eight possible flavors, up to sign (labeled 0, 1, . . ., 7)

• Grouping these patterns by type yields the normalized distribution

– Each Yk is modeled as an independent Chi-square with 2 degrees of 
freedom

• Next, “just” do this for all possible patterns

A Pattern Example

7     0    2    5     1    0    2    1    6    4    3     5     3    5    5    3    7    0    6    4     5    5    7    2

 0 1 2 3 4 5 6 73 2 3 3 2 6 2 3 / (2 24)Y Y Y Y Y Y Y Y L        
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L5 Sidelobe Results

• Region 1 is exhaustive over all possible patterns
• Region 2 is a mixture over likely patterns
• Region 3 is  χ2

32 / (2 * 8 L)  (assumes each flavor equally likely)
• Tails eventually also become flat
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Going Further

• The modeling techniques can be readily applied to other GNSS 
systems
– L1C, L2C, etc.

• Further work is needed to quantify the accuracy of the model
– For example, how much independence matters

• Even so, its simplicity should be of value as a first order 
approximation
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