
UNCLASSIFIED

UNCLASSIFIED

M I T R E T E C H N I C A L R E P O R T

 File Format Identification

 Report on MITRE Sponsored

Research

 Kent Vidrine

January 2010

© The MITRE Corporation. All rights reserved

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 10-0004

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

UNCLASSIFIED

M I T R E T E C H N I C A L R E P O R T

 File Format

Identification

 Report on MITRE

Sponsored Research

The views, opinions and/or
findings contained in this report
 are those of The MITRE Corporation
and should not be construed as an
official government position, policy, or
decision, unless designated by other
documentation.

©2010 The MITRE Corporation.
All Rights Reserved.

Kent Vidrine

December 2009

© The MITRE Corporation. All rights reserved

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

iii

UNCLASSIFIED

Abstract

Digital forensics examiners acquire large numbers of files as they carry out their
investigations. Effective exploitation of the files found on seized media depends upon
accurate file format identification. However, file format identification is a hard problem.
Existing tools and techniques fail to identify all of the files that an investigator may have
interest in. This paper describes the state of the art in file format identification, existing tools
and evaluations thereof, and some of the new techniques developed for the File Format
Identification MITRE Sponsored Research project.

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

iv

UNCLASSIFIED

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

v

UNCLASSIFIED

Table of Contents

1 Introduction 1-1

1.1 Existing File Format Identification Techniques 1-1

1.2 Magic Bytes 1-2

1.3 Filename Extension 1-2

1.4 Technique Summary 1-3

1.5 Tool Assessment 1-3

2 Research 2-4

2.1 Filereg 2-4

2.2 Mfile 2-4

2.3 Validate 2-4

2.4 File Fingerprints 2-5

2.5 Tokens 2-5

2.5.1 TokenValidation 2-5

2.5.2 Probabilistic Token Validation 2-5

2.5.3 Summary 2-6

3 Conclusion 3-7

4 Bibliography 4-7

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

vi

UNCLASSIFIED

List of Figures

Figure 1: Hex Viewer Sample ... 1-2

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

vii

UNCLASSIFIED

List of Tables

Table 1: Summary of File Format Identification Techniques.. 1-3

Table 2: Summary of Prototype Tools ... 2-6

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

viii

UNCLASSIFIED

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

1-1

UNCLASSIFIED

1 Introduction

In the news, we read stories with headlines like: “Libraries’ computers seized in Mariam
case” [thestar.com], “Official: Investigators seized computer from Markoff” [boston.com]. A
brief Internet search reveals many similar stories. What happens with the seized evidentiary
material? Engineers employ systematic processes to extract files and other data from the
media. And then analysts search for clues among the seized data.

Modern computer disks have large capacities and can contain tens of thousands of files, or
more. With so much space available to them, users consume the space with software,
documents, music, cached data from Internet activity, and other items. This means that
forensic examiners acquire lots of files, too many to manually inspect. Because of this large
volume of data, automated tools assist in the data exploitation job. These tools develop a
catalog of files and then an attempt is made to classify each file by format.

Effective and efficient discovery of meaningful information exploitation depends on file
format identification because each file format uses its own unique combination of data
structures and internal layout. Restated, to understand the information contained within a file
one must first understand its structure and then use the right data exploitation tool for that
structure. For example, to understand an image file, one must first recognize that it is an
image file and then use an image viewer (or other processing software) to view the contents
of the file. Similarly, to read an electronic document, one must first discover what kind of
document it is (Adobe Portable Document Format, Word Document, WordPerfect
Document, etc) and then use the appropriate document viewer (or text extractor) to render
the file’s contents.

Accurate file format identification is crucial for effective data exploitation. However, current
file format identification tools consistently fail to identify a substantial percentage of the files
contained on seized media. This failure manifests itself in two ways: the tool makes no
format assertion, or the format assertion is erroneous.

File format identification is a hard problem. Why? There are many reasons, including:

 There are thousands of formats, many of which are undocumented or proprietary.
 The features of a file format that can be used to identify conformant files may be

difficult to discover, describe, and detect. In fact, software vendors, who are the ones
responsible for creation of formats and the files that conform to those formats, have
no incentive to build distinguishing features into files.

1.1 Existing File Format Identification Techniques

There are some existing techniques, and tools that implement those techniques, which were
created to accomplish file format identification. They generally rely either on the existence of
specific values at predictable locations within a file, or on some file naming convention, or a
combination thereof.

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

1-2

UNCLASSIFIED

The most fundamental way of determining what format a file conforms to is to simply open
the file with some kind of viewer. Using this technique, one quickly discovers that some
files, namely those that contain plain text, are viewable with a simple text editor such as
Windows Notepad. However, many files have unintelligible contents when viewed with a
text editor. The next tool, after a text editor, that a user can use for such files is a hex viewer,
which renders the file’s contents by displaying the file’s hexadecimal byte values. A hex
viewer may reveal file format clues, such as magic bytes (described below). Figure 1 shows a
sample hex viewer rendering of a Windows Portable Executable file.

Figure 1: Hex Viewer Sample

1.2 Magic Bytes

Some formats require the presence of specific byte values at specific locations within the
contents of the file. For example, the ZIP file format requires that the file begins with the
hexadecimal byte sequence 50 4B (or PK in ASCII). A file format identification tool might
examine the first few bytes of a file, discover that byte sequence, and then render the
assertion that the file is a ZIP file. Similarly, the WAV file format requires that the file
begins with the hexadecimal byte sequence 52 49 46 46 (or RIFF in ASCII). A tool might
discover those bytes at the beginning of a file and render the WAV format assertion. These
identifiable byte sequences are commonly called magic bytes or file signatures. Many file
formats have magic byte sequences. However, many of the most common formats lack such
sequences, or in some cases, a sequence of bytes within a file may match more than one
magic byte sequence, which leads to multiple format assertions for a single file. Reliance on
magic bytes also fails to identify formats that lack magic byte sequences.

1.3 Filename Extension

There is a file naming convention in use on most computers where the last few characters of
a file’s name, those that follow the last period in the name, indicate its format. For example,
PDF indicates that a file conforms to the Adobe Portable Document Format; TIF indicates
that a file conforms to the Tagged Image File Format, and so on. This portion of the file’s
name is commonly referred to as the filename extension. Many of the most commonly found
formats have a well-known filename extension. However, there are files that lack an
extension. Further, there are many extensions for which more than one candidate format is
indicated, and some files have names that incorrectly indicate their formats.

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

1-3

UNCLASSIFIED

1.4 Technique Summary

To summarize, there are two primary techniques for file format identification: placing trust in
the naming convention, and brief inspection of file contents to look for identifying
sequences. The techniques are summarized in Table 1.

Technique Advantages Disadvantages

Magic byte sequence
discovery

Fast detection

Easy to implement and extend

Some formats lack magic

Ambiguity among some formats

No comprehensive catalog

Performs poorly on text files

Filename extension
naming convention

Fast detection

Easy to implement and extend

Some filenames lack extension

Extension collisions

No comprehensive catalog

Some files are improperly named

Table 1: Summary of File Format Identification Techniques

1.5 Tool Assessment

In order to evaluate the extent to which existing tools correctly identify files’ formats, we
assessed several tools.

The first tool that we assessed was the UNIX file command and its [libmagic] API. The
results show that the tool accurately identifies about 80% of the files that we submitted to it.
However, this rate varies widely, depending on the distribution of formats contained in the
sample of files. The tool uses a large file, named “magic”, that contains a list of magic byte
sequences and the formats that the sequences indicate. The tool tries each sequence in turn,
looking for a match within a file to be identified. When a magic byte match is found within a
file, the tool asserts the associated format.

Another tool that we evaluated was Oracle [Outside In File ID]. This proprietary tool
inspects the contents of a file to discover features that can be used to identify the file’s
format. The tool rarely makes mistakes, but only identified about 60% of the files that we
submitted to it.

We also evaluated [DROID], [TrID], [mime-util], and various other tools. No tool was able
to consistently and correctly identify more than 80% of the files that we submitted to it.

With that evaluation done, we developed some prototype tools that rely on other techniques.

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

2-4

UNCLASSIFIED

2 Research

It is unlikely that any single tool or technique will ever be able to identify file formats with
100% accuracy. However, a combination of tools, each of which can be tuned for low error
rates, can be used to positively identify far more files than any single tool in existence today.
What follows is a description of some prototype tools that were developed for the File
Format Identification research project.

2.1 Filereg

The first new tool that we developed was filereg. This tool is based on the fact that
individual personal computers running Windows function properly by simply relying on
filename associations. The Windows Operating System stores its registry entries in a series
of files. The Software hive resides in a file named "Software". In a disk image (dd, Encase,
FTK, etc), the registry files are readily accessible for data extraction. We used the PERL
CPAN Parse::Win32Registry module to acquire the filename associations. Once these
associations are mined, we then acquire a list of filenames from the same disk image and we
assert formats accordingly. The bottom line for this tool: it rarely makes a mistake (error rate
less than 1%), but there are many filename extensions for which there is no mapping in the
registry. Also, the tool cannot assert a format for filenames that have no extension. The real
value of this tool is that its list of filename extensions, and the formats that they indicate, is
context-sensitive. Each computer has its own set of installed software and filename
associations. This tool disambiguates this kind of collision.

2.2 Mfile

Another tool that we developed was mfile. This tool uses a painstakingly-compiled rule set
to arbitrate tool output. Many format identification tools consistently get some formats right
and some formats wrong. So for a given file, if tool A says X and tool B says Y, then those
behaviors are consistent enough to have an arbitrator assert the actual format, based on the
combination of those tool inputs. Mfile is based primarily on libmagic output, filename
extension, and directory location, and it can easily be extended to include input from Oracle
Outside In File ID or any other tool. When run on ground truth, the tool asserts with high
accuracy, which makes sense given the fact that it was tuned using that very same ground
truth. When run on files from the research corpus, the assertion rate is in the low 90% range.

2.3 Validate

Yet another tool is validate. The theory with this tool is that many files can be validated by
attempting to parse each file with a library that knows how to handle that file. So we have a
library for parsing XML, another for HTML, another for Windows INI files, another for
images, etc. While developing this tool we found that the best results are obtained when first
determining whether a file is composed of text, then attempting either text parsing or binary
parsing, but not both. This tool’s best use case is for the purpose of easily identifying the
most common files and removing the files and formats from the set of files left to be

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

2-5

UNCLASSIFIED

identified. For example, consider an arbitrary file. We use the validate tool to determine
whether it is an image file (JPG, GIF, BMP, etc). If we identify the file as an image, then the
job is done. If the file does not conform to one of those formats, then we continue to try to
identify the file, but we no longer consider any of those image formats as a possibility.
Consequently, this tool either tells you what a file is, or it tells you what it is not.

2.4 File Fingerprints

[Mason McDaniel] described several file format identification techniques in his Masters
degree thesis. The techniques are based on statistical analysis of the files’ contents and
derivation of a file format fingerprint. The most valuable tool from among the McDaniel
techniques is one that can quickly identify magic byte sequences, if they exist. The value of
this technique is that, when investigators encounter a set of files that are clearly of the same
format, but for which no previous experience exists, then the magic byte sequence can be
identified and cataloged for future use.

2.5 Tokens

Early in Computer Science curricula, students learn about text processing. Specifically, the
technique of handling strings of text and chopping the strings into individual words, or
tokens, is learned. Based on the theory that one method of identifying files is to look for
expected tokens that are present in all of the files of a given format, we experimented with
that technique. We expect this technique to be especially useful for identifying source code
files because most programming languages require the use of a well-defined set of keywords.
If we find those keywords in a file, then we can assert that the file contains the appropriate
kind of source code. Just as importantly, if a given text file lacks the keywords that a
programming language requires, then we can exclude that programming language from
further consideration. We used the Natural Language Toolkit (NLTK) to parse text files into
tokens and then wrote two tools to explore this technique.

2.5.1 TokenValidation

We gathered text files from ground truth that were of a known format and used a script called
intersection to discover the tokens that were common to all of the files in that training set.
Using that list of tokens, we then used another script called tokenvalidation to check for the
presence of those tokens in the test set. This technique works well for text-based formats that
always require the presence of a core set of tokens.

2.5.2 Probabilistic Token Validation

The problem with the token intersection technique is that it relies on there being at least one
token in common for all files of a given text-based format. For example, the only tokens that
MUST be present in a Java source code file are the curly braces {}. Additionally, one of two
keywords, either class or interface must be present. So the token intersection problem
becomes one of finding some tokens from a set. But unlike the previous
intersection/validation technique, this approach does not require any specific token to be

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

2-6

UNCLASSIFIED

present in order to make a format assertion. For example, revisiting the Java source code
identification problem, if we find either class or interface in the contents of the file, along
with other Java keywords, then we may have enough confidence to assert that the file does in
fact contain Java source code. To test this theory and supplement the token intersection
technique, we developed a set of scripts called nnn_sc, where nnn is the name of a source
code language such as Java or PERL. These contain lists of programming language-specific
reserved words and other tokens that appear frequently in those files. A score is computed for
each candidate source code file. While the scores' magnitudes are not necessarily
meaningful, the numbers at the extremes, both small and large numbers, indicate files that
are either very unlikely or very likely (respectively) to be source code of the target language.

2.5.3 Summary

The following table summarizes the tools, their techniques, pros, and cons.

Tool Description Pros Cons

Filereg Registry mining Low error rate,
context-sensitive

Fails to identify files
that lack filename
extensions or
associations

Mfile Tool output
arbitration

Low error rate, uses
input from many
tools for better
results

Tedious to tune

Validate Sequential parsing
with special-purpose
libraries

Low error rate Limited library
availability

Fingerprint Statistical analysis Finds magic byte
signatures

Relies on other tools
to use the discovered
magic bytes

Token intersection Finds required
keywords

Usually asserts
correctly when
keywords are
involved

Depends on
standardized text
encoding

Probabilistic token
validation

Finds probable
keywords

Usually asserts
correctly when
keywords are
involved

Depends on
standardized text
encoding

Table 2: Summary of Prototype Tools

© The MITRE Corporation. All rights reserved

UNCLASSIFIED

4-7

UNCLASSIFIED

3 Conclusion

This paper describes the file format identification problem, its context, existing identification
techniques, tools that use those techniques, and our research prototype tools. No single tool
or collection of tools will ever be able to identify every file that a forensic examiner or search
engine indexer may encounter. However, these prototype tools do illustrate the value of
several techniques that enable identification of many files that would otherwise go
unidentified and unexploited.

4 Bibliography

thestar.com. http://www.thestar.com/news/gta/article/716761--libraries-computers-seized-in-
mariam-case, retrieved on December 1, 2009.

boston.com. http://www.boston.com/news/local/breaking_news/2009/04/official_invest.html,
retrieved on December 1, 2009.

libmagic. I.F. Darwin, ftp://ftp.astron.com/pub/file, 2008.

Outside In File ID. http://www.oracle.com/us/technologies/embedded/025613.htm, retrieved
on December 1, 2009.

DROID. http://www.nationalarchives.gov.uk/aboutapps/pronom, retrieved on January 4,
2010.

TrID. Marco Pontello, http://mark0.net/soft-trid-e.html, retrieved on December 1, 2009.

mime-util. http://www.medsea.eu/mime-util, retrieved on January 4, 2010.

Mason McDaniel. An Algorithm for Content-Based Automated File Type Recognition,
2001, Master Thesis submitted to James Madison University.

© The MITRE Corporation. All rights reserved

http://www.thestar.com/news/gta/article/716761--libraries-computers-seized-in-mariam-case
http://www.thestar.com/news/gta/article/716761--libraries-computers-seized-in-mariam-case
http://www.boston.com/news/local/breaking_news/2009/04/official_invest.html
ftp://ftp.astron.com/pub/file
http://www.oracle.com/us/technologies/embedded/025613.htm
http://www.nationalarchives.gov.uk/aboutapps/pronom
http://mark0.net/soft-trid-e.html
http://www.medsea.eu/mime-util

