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Abstract

This paper explores the use of attestation protocols as Byzantine fail-
ure detectors. An attestation protocol enables one node in a distributed
system to obtain enough information about other nodes to detect ma-
licious compromises. By filtering network communication, channels to
Byzantine nodes are made to appear crashed. Distributed algorithms
that tolerate channel failures are thus transformed into ones that tolerate
Byzantine failures. Erlang modules to support filtering and attestation
have been written, including a partial Trusted Platform Module (TPM)
interface. A demonstration prototype for a leader election algorithm is in
progress.
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1 Introduction

1.1 Failures in Distributed Systems

Modern computing systems fail with depressing inevitability. Not only do com-
puting systems simply crash, and stop operating, but they can also be subverted
in a discouraging variety of ways. Much research has been and is being done on
possible solutions, but it still behooves us to investigate methods for mitigating
this unfortunate fact of life.

Many essential applications are implemented with a distributed system rather
than a single platform. There is a famous quote from Leslie Lamport, “A dis-
tributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable.” But a more optimistic view
of the situation is that, once it is understood how multiple computers can co-
operate to achieve a task, it becomes possible to achieve better failure resilience
through effective use of redundancy in computing capacity and coordination
protocols.

Despite its simplicity, this vision is actually quite difficult to achieve. The
universe, it seems, it stacked against global coordination of this sort. Messages
can be lost in transit. They can also be delayed an arbitrarily long time, making
it impossible to know when to stop waiting for a message that will never come.
Participants can crash at the most inopportune times, including during the
execution of some distributed task.

Our concern with malicious attacks forces us to consider not only crash
failures, but Byzantine failures as well. In this kind of failure—whether due to
subversion, an operating system bug, or physical damage—a participant begins
to run arbitrary code. Thus, a Byzantine participant can send any message to
any other participant at any time, including messages that actively subvert the
protocol; or it can simulate a crash; or it can act normally.

When viewed through the prism of previous results, Byzantine failures seem
to be qualitatively different from crash failures. Consider, for example, the
problem of distributed agreement. In its simplest form, this problem can be
stated as follows (paraphrased from that of Lynch [14]):

Suppose that all processes start with an input from some fixed
value set V where each process may start with a different input.
Then:

1. No two non-faulty processes output different values,
2. All non-faulty processes eventually output some value, and
3. If all non-Byzantine processes start with the same value v ∈ V ,

then v is the only possible output for non-Byzantine processes.

Here, a ‘faulty’ process is either a crashed process or a Byzantine
process, depending on the allowed faults.

Byzantine failures seem strictly stronger than crash failures. It is known, for
example, that if the only possible failures are crash failures and participants can
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detect crashes (though timeouts, for example) then agreement can be achieved so
long as at least two participants remain alive [14]. But even under the most op-
timistic of settings—completely synchronous processes and reliable channels—
agreement is not possible if less than two-thirds of the processes are honest
(non-Byzantine).

Furthermore, it is known that if an agreement algorithm is resilient against
Byzantine failures, then it must be time-consuming. The synchronous algo-
rithms for Byzantine agreement proceed in rounds, and it is known that such
protocols must use at least one round more than the number of Byzantine faults.
The asynchronous agreement algorithms generally emulate the synchronous al-
gorithms and proceed in rounds, but the need to simulate synchonicity in an
asynchronous setting generally increases the cost of each round.

The core of the problem is that without a two-thirds majority of honest
participants, the algorithm cannot detect inconsistent behavior on the part of
the Byzantine processes. Therefore, no honest participant can ever be sure
that it accurately knows the state of the global system– or even of any other
participant. In short: no one can know who to trust, and therefore no one can
trust anyone.

1.2 TPMs and Attestation

Recent technological advances promise to overcome our inability to test for
Byzantine faults. Intrusions or faults in a system that permit Byzantine be-
havior can, in many cases, be detected and reported by protected subsystems.
An attestation protocol is a way for a remote participant to request and obtain
such a report. Various mechanisms have been suggested for implementing a
protected subsystem capable of performing suitable local measurements.

In a setting proposed by the Trusted Computing Group (TCG), each com-
puting platform would have a Trusted Platform Module (TPM): a hardware
module that can store the ‘fingerprint’ of a platform’s boot-up sequence [4].
The TPM can also sign these fingerprints with a unique key, certified as be-
longing to a TPM. Computers manufactured by members of the TCG already
have these installed. A TPM, combined with software support, can produce
a platform capable of attestation. Attestation protocols can also invoke and
report run-time measurements made by tools such as LKIM for Linux kernel
inspection [13].

This new technology has an immediate application to distributed algorithms.
Attestation may make it possible to determine whether another participant is
actually a Byzantine process. It should be admitted that, at present, no mea-
surement and attestation technology is guaranteed to detect every Byzantine
participant. Even now, however, attestation methods offer considerable im-
provement over their absence. For now, in the theoretical result, we make the
simplifying assumption that Byzantine failures are always detectable by attes-
tation. If this comes to pass, can we use this to circumvent the above bounds
on agreement algorithms? Can we achieve agreement when more than a third
of the participants are faulty, or do so in a more efficient fashion?

2

© The MITRE Corporation. All rights reserved



1.3 A Theoretical Result

In this work, we show that when attestation is possible, Byzantine fault resilience
is actually no harder than resilience against channel failures. We do this in four
steps:

• First, we define an ‘ideal’ network model in which crash faults are possible
but Byzantine faults are not. That is, this model allows participants to
crash and recover, channels to crash and recover, and individual messages
can be dropped.1 Also, the channels of this real model are unauthenticated
(meaning that participants do not know the sender of a message beyond
what can be determined from the message itself).

• We then define a ‘real’ network model that contains all of the failures of
the ‘ideal’ model but with Byzantine failures as well. However, we also
add two novel and related auxiliary processes:

– An attestation process, representing an attestation protocol, and
– A dispatcher process, which acts as a network proxy for participants.

We encapsulate the general notion of an attestation protocol into an at-
testation process that will reliably inform one participant whether it and
another participant are executing the same program.2 Attestation proto-
cols are used by dispatchers, which ‘sit’ between the network and all honest
participants. Dispatchers use an attestation protocol to determine which
other participants are honest and which are Byzantine, and to prevent
messages from Byzantine participants from reaching honest participants.
(To this end, the dispatchers will use cryptographic keys distributed by
the attestation protocol.)

• We then show a kind of equivalence between two network models: a ‘real’
network model in which all honest participants are protected by dispatch-
ers, and an ‘ideal’ model in which channels from Byzantine participants are
permanently down. In particular, we show that every algorithm induces
exactly the same set of traces in both network models.

As a corollary, this implies that an algorithm satisfies every trace property in the
real model that it does in the ideal model. This means that the real network
with dispatchers is behaviorally indistinguishable to the original participants
from a network with possible channel crash failures but no Byzantine failures.
Thus, in settings where attestation can be performed, channel-crash-resilient
distributed algorithms can automatically become Byzantine-resilient as well.

1.4 Adding a Dispatcher to a Crash-Resilient Algorithm

With our approach, each participant uses a local ‘dispatcher’ process as a proxy
for all network communication and failure detection. Attestation failures—

1Although one typically models channel failures as simply a subtype of message loss, we
will actually use these two types of channel failures in different ways.

2Participants are state machines in our model, and so this can be rigorously defined as
having the same transition table.
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indicating Byzantine faults—are translated by the dispatchers into apparent
crash failures and handled by the participants as such. The number of faults
tolerated in the new setting (including both crashes and Byzantine failures) is
exactly the number of crash failures tolerated in the ideal setting.

This means that the benefits of the dispatcher are independent of the extent
of resilience offered by the original distributed algorithm. The dispatcher simply
protects the honest participants from Byzantine attacks, but not from crashes.
The advantage of this is that we can make effective use of existing crash-resilient
algorithms in an environment with malware and Byzantine failures.

When the dispatcher engages in an attestation protocol, there are actually
three possible results: (1) the attestation is a success and communication with
the remote node is enabled; (2) the attestation fails and the dispatcher blocks
messages from the remote node; or (3) the attestation protocol does not termi-
nate, either because of communication delay or because of noncooperation from
the remote participant.

Some distributed algorithms can distinguish between cases (2) and (3) with
a failure detector[7, 6]. A failure detector for crashes is a function that can
explicitly ”suspect” a remote participant as having crashed, so that the rest of
the algorithm can take appropriate action without waiting indefinitely. This
is sometimes implemented by imposing a time-out. There are several possible
models for the properties of a failure detector. In particular, their suspicions
are not required to be correct, although they may be expected to converge on
correctness if invoked repeatedly on the same target.

From the dispatcher’s point of view, a failure detector is part of the algo-
rithm, and its presence does not affect the attestation. However, a dispatcher
can support a failure detector by passing along the negative result in case (2)
above, so that the failure detector can report the dispatcher-induced crash as a
suspicion to the participant using it.

1.5 Comparison With Other Approaches

There has been some prior work on Byzantine failure detection applicable to
consensus algorithms. A paper by Doudou, Garbinato, and Guerraoui [9] pro-
poses a protocol that detects a limited type of Byzantine misbehavior, called a
muteness failure, in which messages to a chosen recipient may be deliberately
stopped. Malkhi and Reiter [18] previously studied ”quiet” processes, defined
similarly, and proposed a protocol based on the assumption of an abstractly
defined failure detector for them.

The work of Han, Pei, Ravindran, and Jensen [11] provides Byzantine tol-
erance for information dissemination with a gossip-based, real-time protocol.
Gossip protocols disperse information gradually by sending messages to ran-
domly selected group members, and their resiliency properties are probabilistic.
The gossip-based protocol context makes it possible to define and detect Byzan-
tine failures behaviorally.

Another example of an approach that deals with Byzantine failure in the
context of a particular algorithm is [20]. They give an agreement and leader
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election algorithm for a network in which channels may have Byzantine faults.
Our work differs from prior approaches in that it can address whatever form

of Byzantine fault is detectable by remote attestation, and it can be applied
to any higher-layer distributed algorithm. The resilience offered by the result
depends on the crash tolerance of the higher-layer algorithm; the algorithm need
not supply any Byzantine failure tolerance of its own.

1.6 Implementation Support in Erlang

To apply our theoretical result in a concrete setting, we chose Erlang as an
implementation language. This language, designed for the implementation of
distributed systems and algorithms, natively supports such high-level features
such as crash-failure detection and reliable channels. Erlang is a parallel func-
tional programming language designed for programming real-time control sys-
tems such as telephone exchanges and automated teller systems. The compiler
and runtime environment are available under an open source license and as
downloadable object code.

We implement four things in Erlang:

• A parse transform that can be applied to any Erlang code, forcing the
dispatcher to be invoked;

• Our dispatcher, which employs an attestation protocol;
• An attestation protocol, which uses a TPM interface to obtain stored boot

measurements;
• An Erlang interface to access a TPM.

The TPM interface requires an intermediate interface in C which will also be
described.

A parse transform, when applied to a piece of Erlang code, rewrites the
code so that it uses the dispatcher-filtered version of any command that causes
network communication. The parse transform has to be applied both to the
distributed system algorithm code and to Erlang libraries used by it. The
Erlang compiler can conveniently be configured to apply a user-supplied parse
transformation.

1.7 The Leader-Election Prototype

For purposes of demonstration, we added the dispatcher to a leader-election
algorithm. A leader-election algorithm is a consensus algorithm in which the
honest members of a group agree on the choice of a leader for some purpose
of group coordination. If that leader crashes, then the surviving participants
would choose a new leader from among their number to continue where the pre-
vious leader left off. Such an algorithm would guarantee a number of desirable
properties, such as:

• Some participant eventually announces itself to be the leader, and
• No two participants simultaneously believe themselves to be the leader.
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The leader does not have to be chosen by a vote. In fact, we used a known
crash-resilient algorithm, the ‘Bully’ algorithm [10, 21, 22] which orders the
group participants by priority and chooses the highest-priority non-crashed par-
ticipant as the leader. We transformed the existing Erlang implementation of
this algorithm (by Svensson and Arts [24]) into a Byzantine-resilient implemen-
tation by applying the parse transform to it.

1.8 Organization of the Paper

The rest of this paper is structured as follows. In Section 2, we formalize
our ‘ideal’ network model in which the only possible failures are crash failures
and message loss. In Section 3, we refine this model into a ‘real’ model that
includes Byzantine participants. We also formalize attestation protocols and
the dispatcher. We then formalize our main theorem in Section 4: when the
participants use dispatchers, the two models (ideal and real) are perfectly trace
equivalent. (We also comment on some possible variations of interest.) The
theorem is proved in Appendix A.

The Erlang implementation, including the parse transform, dispatcher, and
a basic attestation protocol, are summarized in Section 5. Finally, in Section 6,
we discuss the Bully algorithm. The details of the demonstration software will
be covered in a separate document.

2 A non-Byzantine Network Model

In this section, we present our ‘ideal’ network model. This network model is
‘ideal’ only in that Byzantine failures are not allowed. Participants are still al-
lowed to crash, and channels are allowed to both crash and lose messages during
normal operation. (Although it is typically unnecessary to model the first type
of channel failure if the model already contains the second, our model will con-
tain both for technical reasons that arise in the proof.) Furthermore, messages
are unauthenticated, meaning that neither messages nor channels necessarily
identify the sender of a message.

Our presentation is based heavily on that of Lynch [14], particularly her
model for asynchronous networks. For the purposes of exposition, we will build
our model in a number of steps. We begin by constructing the simplest pos-
sible network model—one with reliable authenticated channels and no faults.
After this, we extend it as needed to capture our setting. In particular, we
introduce crash failures for participants and for channels. We then allow chan-
nels to lose messages. We finish by removing the assumption that channels are
authenticated.

2.1 A Simple Network Model

In this treatment, the network is treated as a n-node directed graph, G = (V,E).
The processes of the network (also called the participants) are associated with

6
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the nodes of the graph and the edges of the graph are associated with channels
of communication. Both the processes and the channels are modeled as input-
output automata (IOA, [15, 16, 17]) over the same fixed message alphabet M .
(Looking ahead, we note that we will extend this alphabet in our ‘real’ model
of Section 3.) Each participant automaton Pi has some fixed input or output
actions (not considered in this work) with the ‘external user.’ Also, it can have
outputs of the form send(m)i,j and inputs of the form receive(m)k,i where m ∈
M , j is an outgoing neighbor of i, and k is an incoming neighbor of i. Aside from
these interface restrictions, however, participants can be any I/O automaton
the designer might like. We assume, however, that all participants are the same
automaton. While they may start in different initial states, they must have the
same state variables and transition function. In this way, we will later be able
to clearly define which participants are honest and which are Byzantine: the
honest participants are those executing the participant automaton, while the
Byzantine participants are those executing any other automaton.

This initial model will use reliable FIFO channels, meaning that these chan-
nels do not ‘lose’ or re-order messages. The reliable channel Ci,j , which holds
messages from Pi to Pj , has inputs of the form send(m)i,j and outputs of the
form receive(m)i,j for m ∈ M .3 These channels are trace-equivalent to (i.e.,
have the same traces as) the I/O automaton in Figure 1. When a message is
sent by participant Pi via the send(m)i,j event, the channel Ci,j adds the mes-
sage to the tail of an internal queue. Likewise, the channel Ci,j delivers messages
from the head of the queue to participant Pj via the receive(m)i,j event. Be-
cause these are the only ways to change the state of the message queue, it is
guaranteed that

• No message will be delivered that is not sent, and
• No message will be delivered before all prior messages are delivered.

Also, these channels are implicitly authenticated. To see this, note that the only
messages which can be on the message queue of channel Ci,j are those put there
by the event send(m)i,j . And the only party which has event send(m)i,j as an
output event is participant Pi. When the event receive(m)i,j occurs, therefore,
Pj can know that message m was sent by Pi and no one else.

Much of interest can be said about this model of communication (and the
algorithms that can be executed in it) and it underlies the network models we
eventually adopt in this work. As it stands, however, it is actually too ‘ideal’ for
our purposes. In particular, it implicitly assumes that nothing ever ‘goes wrong’:
participants never crash, messages are never lost, etc. In this work, we will be
creating an equivalence of sorts between two malicious and non-malicious faults.
To that end, therefore, our ‘ideal’ model needs to contain at least non-malicious
faults. We will therefore weaken the simple model of this section in three ways:
participant failures, channel failures, and unauthenticated channels.

3We use the notation Ci,j to distinguish these channels from others we will consider in this
work under the names C id

i,j and C re
i,j .
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Signature:
Input:
send(m)i,j , m ∈ M

Output:
receive(m)i,j , m ∈ M

State Variables:
queue, a FIFO queue of messages in M , initially empty.

Transitions:
send(m)i,j :

Effect:
add m to the queue.

receive(m)i,j :
Precondition:

m is first on queue.
Effect:

remove first element of queue

Tasks:
Arbitrary.

Figure 1: Reliable FIFO channel I/O automaton Ci,j

2.2 Participant Faults

In this section, we extend the simple model of Section 2.1 so as to allow par-
ticipants to crash. A crash failure (also called a stop failure) is one in which a
participant simply stops execution. These failures are modeled by way of a spe-
cial ‘stop’ event. The external interface of participant Pi is extended to include
the input action stopi, which will have the effect of halting Pi. These events
can be thought of as happening non-deterministically, or of being ‘triggered’ by
some arbitrary external mechanism. In this work, we also consider the possibil-
ity that processes can recover from the crash (perhaps by being re-started). To
model this, each participant Pi also has the input action recover i in its external
interface. We will make no assumptions about how participants will act upon
recovery. Realistically, one possibility is that a participant resumes execution
from the state it was in when it crashed. Alternately, a participants might im-
mediately transition to a special ‘recovered’ state. Other options are possible as
well, but the issue is not of concern here. Ultimately, the decision is that of the
algorithm designer in response to the needs of the algorithm and the behavior
of the computing platform. We will simply assume that participants have some
defined behavior for recovery which can be called the ‘honest’ behavior.

In a given participant i, the sequence of stopi and recover i events can have
two events of the form stopi or the form recover i in a row. However, we assume
that if the sequence contains two or more events of a given form in a row, none
of those events other than the first have any effect.

2.3 Unauthenticated Channels

In this section, we remove the assumption that channels are authenticated. For
technical reasons, we cannot do this by ‘removing’ the sender’s identity from
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the channel automaton Ci,j . That is, channels must remain defined in terms of
actual sender and recipient, and so the actions/events of a channel must remain
in terms of those participants as well.4 To remove the authenticated-channel
assumption, therefore, we must re-examine where exactly the authenticated-
channel assumption appears in the network model of Section 2.1. In particular,
it arises from the fact that the event receive(m)i,j is:

1. common to both channel Ci,j and participant Pi, and
2. contains the identity of the sender, i.

Thus, participant Pj can determine that the sender of the message m is partic-
ipant Pi, and channels are therefore authenticated.

To remove this assumption, therefore, we need to change either of the two
facts above. As previously stated, technical considerations require that the
channel’s events be defined in terms of both sender and receiver. Therefore, we
cannot change the second fact in any essential way. To achieve unauthenticated
channels, therefore, we change the first fact: channels and participants will no
longer share a common event for message-reception. Instead, we use two new
events:

• We will use the event deliver(m)i,j to represent the delivery of message m
to Pj , sent by Pi.

• We will use the event receive(m)j to represent the reception of message
m by participant Pj .

Because channels and participants no longer share a common event for message
delivery and reception, we need to add a new component to the model. This new
anonymizer component Are

j will simply accept messages delivered by the channel
via the event deliver(m)i,j , and will then pass them through to the participant
who receives them via the event receive(m)j . Internally, the anonymizer simply
holds a queue of delivered messages.

We formalize this new architecture by providing I/O automata for channels
and anonymizers. Before we do so, however, we need to first consider our last
extension to the simple model above: channel faults.

2.4 Channel Faults

In this section, we consider the faults that might affect channels. In particu-
lar, we consider two type of faults: the dropping of individual messages and
the crash of the entire channel. Very often, these two types of misbehavior are
modeled using the same mathematical ‘machinery.’ Because one could view a
total channel failure simply as a long sequence of message drops, it is often
simpler to only include message-drops in the model. We, however, will use

4To compose multiple I/O automata into a single automaton, it must be the case that
no event can be an output event of more than one component automaton. If we redefine
channels to be in terms of apparent sender instead of actual sender, therefore, or so that they
are not defined in terms of sender at all, then some event must be an output event of multiple
participants or channels. Therefore, channels must remain defined in terms of actual senders.
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these two types of faults in different ways and so represent them using differ-
ent formalisms. Furthermore, our theorem implicitly imposes different liveness
conditions on these two faults. It is typically assumed, for example, that a lossy
channel does not lose every message. More formally, it might be assumed that
if an infinite number of messages are sent over a lossy channel, then infinitely
many messages are successfully delivered [14]. We do not consider such liveness
conditions for message loss in this work, but we do require it be possible that
channels be down permanently. Thus, a similar liveness condition for channel
failures will be impossible.

Just as participants crash and restart in response to ‘stop’ and ‘recover’
events, channels will do the same in response to ‘channel up’ and ‘channel-
down’ events. When a channel has crashed, sent messages will automatically
be lost. In terms of the I/O automaton of Figure 1, sent messages will simply
not be added to the tail of the queue when the channel is crashed. The channel
will return to normal operation, however, when instructed to do so via ‘recover’
event.

When a channel loses an individual message, on the other hand, it removes a
message that has already been placed on the queue. In particular, a channel can
delete an element of its queue by executing an internal ‘lose’ event. One still can
achieve full generality by requiring the ‘lose’ event to delete the first message of
the queue, or deleting the last. For our own convenience, however, we will allow
any message in transit to be dropped. That is, we add two ‘lose’ events: one
which deletes an arbitrary message from the channel, and one which deletes an
arbitrary message from the anonymizer. (Messages held by the anonymizer are
still in transit, only in an anonymized form.)

We can now give our new automata for channels (C id
i,j) and anonymizers

(Aid
j ) in Figures 2 and 3. Note that these automata are marked as being part of

the ideal model. For technical reasons, we will need slightly different automata
for the ‘real’ model. Also, please note that we leave the ‘tasks’ of these automata
as arbitrary. We will not use this aspect of I/O automata in this work, and so
all of our automata will leave these fields in an indeterminate state for future
results to refine.

2.5 Our ‘Ideal’ Network

In this section, we define our ‘ideal’ network model.

Definition 1 (Ideal network) Given a graph G = (V,E), let IG be the I/O
automaton created by composing the following components:

• For each node i ∈ V , a participant automaton Pi in some valid start state,
• An anonymizer Aid

i for every Pi, and
• A channel process C id

i,j for every edge (i, j) in E.

10
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Signature:
Input: Output
send(m)i,j , m ∈ M deliver(m)i,j , m ∈ M

channel downi,j

channel upi,j Internal
channel drop(n)i,j

State Variables:
stopped , a boolean value initially set to ‘false’
queue, a FIFO queue of messages in M , initially empty.

Transitions:
send(m)i,j :

Effect:
if stopped is false, add m to

the queue. Otherwise, no
effect.

deliver(m)i,j :
Precondition:

m is first on queue.
Effect:

remove first element of queue.

channel downi,j :
Effect:

set stopped to true.

channel drop(n)i,j :
Precondition:

queue has at least n elements.
Effect:

remove the nth message from
queue

channel upi,j :
Effect:

set stopped to false.

Tasks:
Arbitrary.

Figure 2: The lossy channel I/O automaton C id
i,j
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Signature:
Input: Output
deliver(m)i,j , m ∈ M receive(m)j , m ∈ M

Internal
anon drop(m)j

State Variables:
queue, a FIFO queue of messages, initially empty.

Transitions:
deliver(m)i,j :

Effect:
add m to queue.

receive(m)j :
Precondition:

m is the first element of queue.
Effect:

remove the first element of
queue

anon drop(n)j :
Precondition:

queue has at least n elements.
Effect:

remove the nth element of
queue.

Tasks:
Arbitrary.

Figure 3: The anonymizer I/O automaton Aid
j
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3 A Byzantine Network Model With Attesta-
tion

In this section, we refine the ‘ideal’ network model of Section 2 so as to al-
low malicious behavior. Participants can still crash, channels can still fail, and
messages can still be dropped. However, participants can now undergo Byzan-
tine faults, in which case they can deviate from the algorithm in arbitrary (and
therefore arbitrarily dangerous) ways.

3.1 Modeling Byzantine Faults

We model a Byzantine fault at Pi by allowing the automaton for the Pi to be any
I/O automaton with the same external interface. (Note that we will reconsider
this interface at the end of Section 3.3.) Other than this, the model imposes
no restrictions on the Byzantine participant, allowing them to deviate from the
algorithm in unrestricted ways. Note that Byzantine failures are strictly stronger
(i.e. more general) than stopping failures: one way the subverted participant
can deviate from the algorithm is to simply stop.

Implicitly, this definition makes the strong assumption that Byzantine faults
are static: participants cannot become Byzantine (or cease being Byzantine)
during execution. As opposed to crash failures—which are dynamic in that
participants can crash and recover at any time—we assume in this work that
participants are always honest or always Byzantine. Because of this, we can
regard the Byzantine participants as being a constant and unchanging subset
of participants. In the following sections, we will use Byz to refer to this set.
Note that our definition does not speak to the maliciousness of the Byzantine
participants. They may, in fact, be executing the exact same algorithm as the
honest participants—merely encoded in a different automaton. Once, however,
a specific automaton is chosen for the participants to use, the use of any other
automaton is considered to be a Byzantine fault.

3.2 Attestation Protocols

In this section, we discuss how Byzantine failures can be detected through at-
testation protocols. These protocols have been described by Coker et al. [8],
and the material of this section is drawn from their exposition.

In an attestation protocol, one principal reliably learns properties about
another principal’s internal state. In particular, an appraiser uses an attestation
protocol to evaluate some property of the target. In support of this, a third
principal, the attester, will measure the target: observe the target’s state and
build evidence about this state, which will then be delivered to the appraiser.

Such a protocol can be trustworthy only if the attester shares special rela-
tionships with the other two principals. For example, the attester must inspect
the target’s internal state, meaning that the target and attester must reside on
the same platform. On the other hand, the appraiser must trust the attester
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to correctly gather and process the evidence in question, which means (in part)
that the attester cannot be fooled or subverted by a malicious target.

To reconcile these two opposing requirements, attestation protocols must
take place in a particular attestation architecture. In this setting, both the target
and the attester are on the same physical machine, but running in different
domains. The attester’s domain would be privileged enough to inspect the
target’s domain, but the target’s domain would not have the privileges necessary
to interfere with the attester’s domain.

One instantiation of this architecture is described by Coker et al. In this
instantiation, the domains of the architecture are virtual machines (VMs) sup-
ported by a hypervisor such as Xen. The hypervisor runs on a platform equipped
with a Trusted Platform Module (TPM). Information about the system soft-
ware, including the hypervisor, is stored in the TPM when the platform is booted
or launched in a secure mode. These platform measurements can be retrieved
from the TPM with a digital signature for authentication. The target would
be a VM containing the normal OS and applications of the user. The attester,
on the other hand, would be running in a trusted VM, which has access to the
TPM.

During the attestation protocol, the attester obtains the authenticated plat-
form measurements from the TPM, and may also perform a “live” measurement
of the target VM. These measurements are sent to the appraiser to evaluate.

One specific attestation protocol for this general architecture is the CAVES
protocol, also by Coker et al. [8]. This protocol can be used to create a shared
symmetric key between the target and the appraiser, if the appraiser is satisfied
with the target platform measurements. Subsequent communication between
the appraiser and target can be authenticated using this key.

In this work, we will encapsulate attestation and attestation protocols into a
single ‘functionality’ module. This approach, inspired by the Universal Compos-
ability framework from cryptography [5] and the idea of failure detectors from
distributed algorithms [7, 6], replaces the actual protocol with a trusted third
party that implements the protocol’s functionality. This allows us to separate
our result from any particular protocol while also making it clear what it is
about the protocol that we actually require. Protocol designers, therefore, need
only show that their protocol successfully achieves the functionality encoded in
our automaton.

Our automaton, given in Figures 4 and 5, encapsulates all runs of the attes-
tation protocol where Pj (responder) measures Pi (initiator). This automaton
simply waits for Pi to initiate the measurement and provide a session identifier
for the initiated session. (This identifier allows the automaton to distinguish
the various sessions of the protocol.) The automaton then informs Pj of the
measurement and waits for Pj to agree to be measured. (These two steps rep-
resent the need for Pj to be aware of the protocol and to participate in it.) The
behavior of attestation functionality is as follows:

• If j 6∈ Byz (that is, the responder is not Byzantine), then the protocol can
succeed, fail, or return an error.
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– At any time, the attestation automaton can transition to an error
state. This might model, for example, timeouts in the underlying
protocol or that the underlying channel is down. Once in an error
state, the automaton will send an error event to each participant that
has participated in the protocol so far.

– If Pi is executing the same automaton as Pj and the protocol does not
fall into an error state, then the protocol succeeds. The functionality
executes two ‘success’ events: one for Pi and one for Pj . These events
will contain cryptographic keys which the participants can use in later
events.

– If, on the other hand, Pi is not executing the same automata as Pj

and the protocol does not return and error, then the protocol will
fail. The functionality executes two ‘failure’ events: one for Pi and
one for Pj .

• If, on the other hand, j ∈ Byz (the responder is Byzantine), the protocol
could proceed as above. However, the responder also has the option of
choosing the ultimate resolution of the protocol itself by a special ‘resolve’
action. Using this action, the responder can have the automaton return
success, failure, or error to the initiator.

We note a number of things about our attestation automaton:

• The responder can control the key distributed by the protocol to the fol-
lowing extent: it can either choose the key itself, or allow a fresh random
key to be chosen.

• No matter how the key is chosen, the attestation automaton distributed
the key to the responder before it distributes it to the initiator.

• Lastly, we note that a particular session identifier can only be used once.
After a protocol completes, that is, the attestation automaton will mark
the session identifier as ‘used’.

3.3 Dispatchers

In this section, we introduce a new type of network module: the dispatcher. In
our setting, dispatchers use attestation protocols to detect Byzantine faults in
other participants, and use that ability to keep their participant from ‘seeing’ the
activity of Byzantine participants. That is, our architecture positions dispatch-
ers so that all network activity must pass ‘through’ a participant’s dispatcher
before it reaches the participant. However, the dispatcher will only allow traffic
to pass through it if the traffic comes from a non-Byzantine participant. To en-
force this requirement, dispatchers use an attestation protocol to measure other
participants and create a shared key to authenticate subsequent traffic with the
non-Byzantine participants.

More specifically, each dispatcher maintains a number of message-queues:
one for all incoming messages, and one queue per participant for outgoing mes-
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Signature:
Input: Output
start measure(id)i,j inform measure(id)i,j

yes measure(id ;x)i,j inform init success(id , k)i,j

inform resp success(id , k)i,j

Internal: resolve protocol(id , r, x)i,j

encounter error(id)i,j inform init error(id)i,j

inform resp error(id)i,j

where id ∈ N , k is a cryptographic key, x is either a cryptographic key or ⊥,
and r is in {succeed, fail, error}.

State Variables:

• state, a mapping from values of id to a state in the set {no prot, started,
waiting, success1, success2, fail1, fail2, error2, error1, done}.

• key , a mapping from values of id to either a cryptographic key or ⊥, where
initially key(id) =⊥ for all id .

Figure 4: The attestation I/O automaton Ti,j , Part I

sages. To process these queues, the dispatcher maintains an additional three
data structures:

• For outgoing messages, the dispatcher maintains a mapping out key which
maps recipients to cryptographic keys. Recipients can also be mapped to
⊥, meaning that no key has been established for that recipient.

• For incoming messages, the dispatcher maintains a mapping in key which
maps senders to cryptographic keys. Senders can also be mapped to ⊥,
meaning that no keys has been established for that sender.

• A set in error of possible recipients. A recipient will be placed in this set
when an attestation protocol returns an error.

When the dispatcher processes an outgoing message, it will look up the recipient
in the mapping out key . If a key is returned, the dispatcher will use it to
apply a message authentication code (MAC) to the outgoing message. This
cryptographic primitive acts as a symmetric signature: anyone with the key can
create the MAC or use the MAC to verify that the message was not altered
in transit. Because no one without the key can create a valid-seeming MAC,
furthermore, the MAC can prove that the message was sent by a party that
knows the key. In this work, the actual message sent will be the message, the
MAC, and the sender’s identity all together.

If, on the other hand, the dispatcher cannot find a key for the recipient in
out key , it will hold on to the message while it initiates the attestation protocol
with the recipient. The outgoing message will remain in the relevant outgoing-
message queue until

• The protocol completes, at which time it is processed as above, or
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Transitions:
start measure(id)i,j :

Effect:
If state(id) = no prot then set

state(id) to started.

inform measure(id)i,j :
Precondition:

state(id) = started
Effect:

set state(id) to waitingyes measure(id ;x)i,j :
Effect:

if state(id) = waiting and Pi is the same automaton as Pj , then

•set state(id) to success1, and
•if x 6=⊥, set key(id) = x. Else, set key(id) to k, a
randomly-chosen cryptographic key.

if state(id) = waiting and Pi is not the same automaton as Pj , then set
state(id) to fail1.

inform resp success(id , k)i,j :
Precondition:

state(id) = success1

key(id) = k
Effect:

set state(id) to success2

inform init success(id , k)i,j :
Precondition:

state(id) = success2

key(id) = k
Effect:

set state(id) to done

inform resp fail(id)i,j :
Precondition:

state(id) = fail1
Effect:

set state(id) to fail2

inform init fail(id)i,j :
Precondition:

state(id) = fail2
Effect:

set state(id) to done

encounter error(id)i,j :
Precondition:

state(id) 6= done
Effect:

If state(id) ∈ {started
success2, fail2}, set
state(id) to error2. If
state(id) ∈ {waiting,
success1, fail1}. Else
set state(id) to error1.

inform resp error(id)i,j :
Precondition:

state(id) = error1
Effect:

set state(id) to error2
inform init error(id)i,j :

Precondition:
state(id) = error2

Effect:
set state(id) to done

resolve protocol(id , r, x)i,j :
Precondition:

state(id) = started
Effect:

If r = succeed, then set
state(id) to success1.
Also, if x 6=⊥, set
key(id) = x. If x =⊥, set
key(id) to a fresh random
key k.

If r = fail, set
state(id) = fail2.

If r = fail, set
state(id) = error2.

Tasks:
Arbitrary.

Figure 5: The attestation I/O automaton Ti,j , Part II
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• The protocol returns an error, at which time the dispatcher records the re-
cipient in the set in error . The dispatcher is also free to drop the message
in this case.

Correspondingly, a dispatcher will engage in the attestation protocol with
other dispatchers. When doing so, we note one quirk: if the dispatcher Dj

already has a key in in key(i) when Pi initiates a protocol, then Dj will instruct
the attestation module to re-distribute that same key. (This fact will be used
in the proof.) If Dj does not already have a key in in key(i), on the other
hand, it will instruct the attestation module to distribute a new, random key.
In either case, if such a protocol succeeds then Dj will set in key(i) to be the
key distributed by the protocol.

Independently, the dispatcher will process incoming messages by verifying
that they are authenticated with a key from an attestation protocol. That is, an
incoming ‘message’ should actually be a triple containing message, MAC, and
sender-identity. The dispatcher verifies that the sender-identity is on the second
list, and then looks up the relevant key for messages from that sender. It then
verifies the message’s MAC using that key, and forwards the message on to its
client-participant. Should the message’s MAC not verify with the relevant key,
the dispatcher will drop the message and initiate a new attestation protocol with
that sender. (It may then tell the sender to initiate a new run of the attestation
protocol, but we do not include that activity in this work.)

The messages between dispatchers and attesters in the case of successful
attestations are summarized in Figure 6.
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Dispatchers are assumed to crash and recover with their clients. When a dis-
patcher crashes, it loses all state: all messages in all queues, and all information
about prior attestation protocols.5

We formalize the dispatcher in Figures 7, 8, and 9. We note that dispatchers
have two events not previously described:

• The output event transmit(m)i,j represents the transmission of the mes-
sage by the dispatcher, meaning that the message is transmitted from the
dispatcher to the channel.

• The input event pre receive(m)j represents the reception of the message by
the dispatcher, meaning that the message is transmitted from the relevant
anonymizer to the dispatcher.

Both of these additions are motivated by the same underlying reason: partic-
ipants no longer directly communicate with channels or anonymizers. Thus,
message transmission and reception each need an additional event to model the
additional step imposed by the dispatcher. These additional events could ‘take
place’ between the dispatcher and the network (channel and anonymizer) or
between the dispatcher and the participant. We choose, in this work, to use the
first of these two options for the following reason. Our theorem, below, states
(roughly) that our two network models will ‘look’ the same to all algorithms.
Rephrased, every trace possible for a given algorithm in the all-honest setting
is a possible trace in the Byzantine setting and vice-versa. (This requires, of
course, that participants be protected by dispatchers in the Byzantine setting.)
For this correspondence result to be possible, participants must ‘see’ the same
communications interface in both models. Thus, we will require that partici-
pants use send(m)i,j and receive(m)j events in both of our network models and
that the new events of the Byzantine model be hidden from participants.

This requires, of course, that we redefine channels and anonymizer in terms
of our new events. We do so by way of the C re

i,j and Are
j I/O automata in

Appendix B. We note, however, that the only difference between these automata
and those of C id

m,ij and Aid
j is that the events send(m)i,j and receive(m)j have

been replaced by transmit(m)i,j and pre receive(m)j .

3.4 Our ‘Real’ Network

Before we provide our ‘real’ network, we must consider one more technical is-
sue. As said in Section 3.1, Byzantine participants are allowed to be any I/O
automata with the same external interface as honest participants. This implies
that Byzantine participants send messages with the event send(m)i,j and re-
ceive messages with the event receive(m)i. Now that honest participants have
dispatchers, however, channels and anonymizers are now defined in terms of
transmit(m)i,j and pre receive(m)i. Therefore, there is a ‘disconnect’ between

5We implicitly assume that dispatchers to not execute any transitions between stopping
and starting. Technically, this violates a central assumption of the I/O automata model—
that of being input-enabled—but it is also in keeping with the I/O automata treatment of
participant crashes.
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Signature:
Input: Output:
send(m)i,j receive(m)i

pre receive(m)i transmit(m)i,j

inform measure(id)i,j start measure(id)i,j

inform init success(id , k)i,j yes measure(id ;x)i,j

inform resp success(id , k)i,j

inform init fail(id)i,j

inform resp fail(id)i,j Internal:
stopj MAC drop(m)i

recover j error drop(m)i,j

where id ∈ N , k is a cryptographic key, and x is either a cryptographic key or ⊥.

State Variables:

• stopped , a boolean value, initially set to false
• queuein , a FIFO queue of messages, initially empty
• For every participant Pj : queuej , a FIFO queue of messages, initially

empty
• in key and out key , mappings from participant-identifiers to either cryp-

tographic keys or ⊥
• in error , a set of participant-identifiers, initially empty
• For every participant Pj , statej , a mapping from id -values to one of
{no prot, init wait, must respond, resp wait}, initially set to no prot
for all values of id .

Figure 7: The dispatcher I/O Automaton Di, Part I
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Transitions:
send(m)i,j :

Effect:
Add m to end of queuej

receive(m)i:
Precondition:

m′ is first on queuein ,

m′ = (m,M, x),

MAC ver (m;M ; in key(x)),
and

stopped is false.
Effect:

remove first element of queuein

pre receive(m)i:
Effect:

Add m to end of queuein

transmit(m)i,j :
Precondition:

m = (m′,M, j)

m′ is first on queuei,

out key(j) 6=⊥,

M =
MAC sign (m′; out key(j)),

stopped is false
Effect:

remove first element of queuej

inform measure(id)j,i

Effect:
If statej(id) = no prot, set

statej(id) to
must respond

start measure(id)j,i:
Precondition:

id is a randomly chosen identi-
fier

statej(id) = no prot
Effect:

set statej(id) = init wait.

inform init success(id , k)i,j

Effect:
if statej(id) = init wait,

then

•set
statej(id) = no prot
•if j ∈ in error ,
remove j from
in error
•set in key(i) = k.

yes measure(id ;x)j,i

Precondition:
statej(id) = must respond

x = in key(j),
Effect:

set statej(id) = resp wait

Figure 8: The dispatcher I/O Automaton Di, Part II
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Transitions, II:
inform resp success(id , k)i,j

Effect:
if statej(id) = resp wait then

•set
statej(id) = no prot
•set out key(i) = k.

error drop(m)i,j :
Precondition:

m is first on queuej , and

j ∈ in error
Effect:

remove first element of queuej

inform init fail(id)i,j

Effect:
if statej(id) = init wait,

then set
statej(id) = no prot

Set out key(j) =⊥

inform resp fail(id)j,i

Effect:
if state(id) = resp wait, set

statej(id) = no prot.

Set in key(j) =⊥

stopj

Effect:
If j = i, then

•set stopped to true,
•empty all queues,
•set in error to the
empty set,
•set in key(i) and
out key(i) to ⊥ for
all i, and
•set
statej(id) = no prot
for all id and j.

MAC drop(m)i:
Precondition:

m is first on queuein , and

either m 6= (m′,M, x), or
m = (m′,M, x) and not
MAC ver (m′;M ; in key(x))

Effect:
remove first element of queuein

recover j

Effect:
set stopped to false

inform init error(id)i,j

Effect:
add j to in error

inform resp error(id)j,i

Effect:
None

Tasks:
Arbitrary.

Figure 9: The dispatcher I/O Automaton Di, Part III
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Byzantine participants and the new network model. We can resolve this is-
sue in multiple ways. One could, for example, add ‘dummy’ dispatchers to the
model that simply proxy for Byzantine participants and transform send(m)i,j

into transmit(m)i,j and pre receive(m)i into receive(m)i. This adds an un-
necessary level of complexity, however, and so we avail ourselves of a simpler
solution: we will require that Byzantine participants use events transmit(m)i,j

and pre receive(m)i instead of send(m)i,j and receive(m)i. Also, Byzantine
participants can participant in attestation protocols directly, and so have the
following events in their interfaces:

• start measure(id)i,j

• inform measure(id)i,j

• yes measure(id ;x)i,j

• inform init success(id , k)i,j

• inform resp success(id , k)i,j

• inform init error(id)i,j

• inform resp error(id)i,j

• resolve protocol(id , r, x)i,j

Lastly, we need to resolve one technical issue. The ideal network model is defined
over a message alphabet M . We assume such messages to remain valid in the
ideal model, but must also allow authenticated messages such as those produced
by dispatchers. Thus, our real network model will be defined over a message
alphabet M re defined to include both M and (m,M, x) triples where m ∈ M ,
M is a message authentication code, and x is a participant identifier.

Given this, we can define our ‘real’ network model:

Definition 2 (Real network) Given a graph G = (V,E) where Byz ⊆ V , let
RG be the I/O automaton created by composing the following components:

• For each node i ∈ V \ Byz , the participant automaton for honest partici-
pants.

• For each i ∈ Byz , some other automaton.
• For each honest participant Pi, a dispatcher Di.
• An anonymizer Are

i for every Pi, and
• A channel process C re

i,j for every edge (i, j) in E.

We will denote the automaton for node i as Pi whether it is honest or Byzantine.

The relationship between the real and ideal network models is summarized
in Figure 10.
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4 The Trace Equivalence Theorem

In this section, we state a general theorem: if an algorithm is resilient against
crash failures in the network model of Definition 1, and attestation protocols
are possible, then it is resilient against Byzantine failures in the network model
of Definition 2. This result could be expressed as:

Attestation + crash-resilience = Byzantine-resilience

In particular, we show that two machines have the same set of traces:

• One machine for the real network model in which some participants are
Byzantine but the honest participants are protected by dispatchers, and

• One machine for the ideal network model in which all channels from
Byzantine participants to non-Byzantine participants are permanently
down.

Theorem 3 Let G = (V,E) be a graph and Byz ⊆ V be the set of Byzantine
participants.

• Let the I/O automaton AI be the automaton IG after executing the se-
quence of events

– channel downi1,j1 , channel downi2,j2 . . . channel downim,jm
for ev-

ery (ix, jx) ∈ E

(and only those events).

• Let the I/O automaton AR be the automaton RG after executing the se-
quence of events channel downi1,j1 , channel downi2,j2 . . . channel downim,jm

for every (ix, jx) ∈ E.

Furthermore, we hide in AI and AR all events except those visible to the honest
participants: those of the form

• send(m)i,j,
• receive(m)i,
• stopi, and
• recover i

where Pi 6∈ Byz .
If there are no events of the form channel upi,j for any Pi ∈ Byz , then

traces(AR) = traces(AI)

We prove this theorem in Appendix A. Before we do, however, we derive a quick
corollary and make some general comments:

Corollary 4 If an algorithm is implemented into participants P1, P2,. . .Pn.
Then any trace-based property P that it satisfies in AI it also satisfies in AR.
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Thus, Byzantine-resilience is no harder than resilience against crash failures,
channel failures and message losses—if the attestation module of Figures 4 and
5 can be implemented.

We now make some general comments about this result.
Our network models are very low-level, allowing a wide variety of failures.

We note, however, that this low level could be undesirable to algorithm design-
ers who might prefer stronger guarantees such as reliable channels. We believe,
however, that such algorithm designers can still make use of our result by im-
plementing, in our network models, protocols to, for example, provide reliable
message delivery over unreliable channels. Similarly, algorithm designers that
wish for failure detection are free to implement failure-detection algorithms in
our network model. (They may need to add further assumptions, such as clocks
and timeouts.)

We note that the ‘real’ network model is inherently randomized. The attes-
tation module uses randomness to generate cryptographic keys, the dispatchers
use randomness to generate session identifiers, and the MAC algorithms might
be randomized. Thus, our result only applies in settings where randomness is
available.

This theorem has several interesting variants. One variant, for example,
could reinstate the assumption of authenticated channels by removing the anony-
mizers. This would have the nice side-effect of simplifying both the real and
ideal models, and would make the proof in Appendix A simpler. It would also
make the theorem less general, however, and so we leave the anonymizers in our
result.

Another simplification might be to remove any or all of: crash failures,
channel failures, or message drops. However, we note that not all of these
combinations are possible. Most importantly, the core of our theorem maps
attestation failures to channel failures, and so any variation will need to contain
channel failures. Also, we note that currently if the network models of the
variation contain crash failures, they must contain message loss as well. To see
why, note that we assume dispatchers must crash when participants do. We also
assume that dispatchers lose all state when they crash. If a dispatcher had any
outgoing messages in a queue when it crashed, therefore, those messages will be
lost. But said messages had already been sent by the participant, and so they
were in the ‘moral equivalent’ of a channel. Therefore, those same messages
must be ‘dropped’ in the ideal network, and the ideal network needs to model
message loss.

The above assumes, of course, that one keeps the assumptions and automata
of this work. One might be able to retain crash-failures while also eliminating
message-loss by assuming the dispatchers don’t crash, or don’t lose state when
they do.

One interesting variant is to show a mapping not between to machines on
the same network graph G, but between the real network on G and the ideal
network on a sub-graph G′ consisting only of those edges which start at a
non-Byzantine node. This variant might prove challenging to prove, however:
without knowing how participants are affected by the graph (or put another
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way, how the distributed algorithm in question uses the network topology in its
operation) such a variant might actually be false.

One last interesting variant might be to show a similar result for unordered
channels: channels which might re-order messages. We believe such a result
would be simple to show, perhaps best approached by changing the queues of
our channel automata to sets.

5 An Erlang implementation

In this section, we describe how we instantiated our results in the programming
language Erlang [1]. In many ways, Erlang seems nearly ideal for this instanti-
ation. It is designed for distributed computing, and message-passing is a core
primitive of the language. Furthermore, the semantics of Erlang (as formalized
by Svensson and Fredlund [23]) match the network models of Sections 2 and 3
quite closely:

• Erlang’s built-in message-passing mechanisms guarantee in-order message-
delivery in all circumstances. Message-passing is also guaranteed to be
reliable (that is, messages are never dropped) unless the receiving process
has died.

• Furthermore, Erlang processes have the ability to monitor other processes,
which means that the monitoring process is informed when the monitored
process terminates.

Thus, Erlang is an almost-ideal language in which to implement distributed
algorithms appropriate for our ‘ideal’ network model. However, this does not
make the application of our theorem trivial. To apply the theorem, the dis-
patcher must implemented in Erlang and algorithms must be adapted so as to
use it. We describe these in reverse order. In Section 5.1, we describe our parse
transform: an automated technique for adapting Erlang code so as to use a
dispatcher. In Section 5.2, we describe our implementation of the dispatcher in
Erlang.

5.1 Our Parse Transform

Erlang provides simple, high-level primitives for message-passing and failure-
detection as part of the language’s kernel. This is a mixed blessing. On the
one hand, the use of these primitives (and the use of Erlang in general) will
make a given implementation very clear and easy to understand. On the other
hand, it ‘hard-codes’ the implementation into the the direct-communication
model of Section 2. For example, consider the Erlang expression for message-
transmission:

E_PID ! E_V
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With this expression, the executing process evaluates the expression E_PID into
the process-identifier PID, evaluates the expression E_V into a value V, and sends
the value V to the process-identifier PID. The process PID can be any Erlang pro-
cess on any node (or any C process, for that matter). This unbounded flexibility
with regard to communication is appropriate in the standard network model,
where every participant can send messages directly to every other participant.
In the dispatcher-model, however, all communication must go to the recipient’s
dispatcher. Erlang provides no way for the dispatcher to automatically ‘inter-
cept’ messages sent to its client, however, meaning that every send-expression
in the code must be rewritten.

As another example, consider the Erlang expression for monitoring:

erlang:monitor(process, PID)

This command is one of Erlang’s built-in functions (BIFs) and, like many of
them, appears to the programmer to be in the virtual erlang modude. With this
command, the executing process invokes Erlang’s monitoring mechanism on the
process identified by the process-identifier PID. (The first argument, process,
is simply a required keyword.) However, Erlang’s built-in monitoring facilities
do not use attestation protocols and will not recognize Byzantine failures. It is
for this reason that our model assigns failure-detection to the dispatcher, who
can make Byzantine failures ‘look’ like crash-failures to the algorithm. For this
to work, however, the Erlang implementation must send monitor requests to
the dispatcher and not the underlying Erlang mechanism.

Both of these expressions are built into the Erlang language’s kernel, making
it very hard to simply redefine their semantics. Furthermore, 23 other BIFs can
fail if the some (remote) node or process has crashed. For Byzantine processes
to ‘look’ crashed, therefore, these 23 BIFs must fail in exactly the same way
when invoked on Byzantine nodes. But as with the expressions above, they
are built into the language’s kernel and cannot be simply redefined. Therefore,
all of these BIFs and expressions must be rewritten before compilation into
dispatcher-using code.

The easiest and most direct way to do this is to use a mechanism of the Erlang
compiler. In particular, the compiler can be configured to apply a user-supplied
parse transformation: a function from Erlang parse-trees to Erlang parse-trees.
This function is applied to the target source-code after parsing but before error-
checking. It is the resulting code, not the original code, that is ultimately
compiled. Therefore, we can use this mechanism to capture and rewrite the
above expressions (and the 23 other BIFs in question). As a result, we can
morph Erlang code into a dispatcher-based version in a completely automated
way and at the semantic level.

Our parse transform consists of a number of relatively local rewrite rules,
shown in Tables 1, 2, and 3. The first table contains the rewrite rules for message
transmission and reception, the second table contains rules for failure-detection,
and the third contains all other BIFs rewritten by the parse transform.

Our parse transform is conservative in that it attempts to rewrite as little
as possible. For the most part, it maps BIFs to functions by the same name
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erlang:send(Expr1, Expr2) dispatcher:send(Expr1, Expr2)

erlang:send(Expr1, Expr2, OptList) dispatcher:send(Expr1, Expr2, OptList)

erlang:send_after(Time, Expr1, Expr2) dispatcher:send_after(Time, Expr1, Expr2)

erlang:send_nosuspend(Expr1, Expr2) dispatcher:send_nosuspend(Expr1, Expr2)

erlang:send_nosuspend(Ex1, Ex2, Opts) dispatcher:send_nosuspend(Ex1, Ex2, Opts)

Expr1 ! Expr2 dispatcher:send(Expr1, Expr2)

receive

Pattern1 [when GuardSeq1] ->

Body1;

...;

PatternN [when GuardSeqN] ->

BodyN

end

GENSYM = dispatcher:get_nonce(),

receive

{from_dispatcher, GENSYM, Pattern1}

[when GuardSeq1] ->

Body1;

...;

{from_dispatcher, GENSYM, PatternN}

[when GuardSeqN] ->

BodyN

end

receive

Pattern1 [when GuardSeq1] ->

Body1;

...;

PatternN [when GuardSeqN] ->

BodyN

after

ExprT ->

BodyT

end

GENSYM = dispatcher:get_nonce(),

receive

{from_dispatcher, GENSYM, Pattern1}

[when GuardSeq1] ->

Body1;

...;

{from_dispatcher, GENSYM, PatternN}

[when GuardSeqN] ->

BodyN

after

ExprT ->

BodyT

end

Table 1: Our parse transform: send and receive

monitor_node(Node, Bool)

erlang:monitor_node(Node, Bool)

dispatcher:monitor_node(Node, Bool)

erlang:monitor(Type, Item) dispatcher:monitor(Type, Item)

erlang:monitor_node(Node, Flag, Opts) dispatcher:monitor_node(Node, Flag, Opts)

erlang:demonitor(MonitorRef) dispatcher:demonitor(MonitorRef)

erlang:demonitor(MonitorRef, OptList) dispatcher:demonitor(MonitorRef, OptList)

link(PID) dispatcher:link(PID)

unlink(PID) dispatcher:unlink(PID)

spawn_link(Node, Fun) dispatcher:spawn_link(Node, Fun)

spawn_link(Node, Modl, Func, Args) dispatcher:spawn_link(Node,Modl,Func,Args)

spawn_opt(Node, Fun, [Option]) dispatcher:spawn_opt(Node, Fun, [Option])

spawn_opt(Node, Modl, Func, Args, [Opt]) dispatcher:spawn_opt(Node, ..., [Opt])

Table 2: Our parse transform: failure-detection
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check_process_code(Pid, Module) dispatcher:check_process_code(Pid, Module)

garbage_collect(Pid) dispatcher:garbage_collect(Pid)

erlang:suspend_process(SPid, OptList) dispatcher:suspend_process(SPid, OptList)

erlang:suspend_process(Suspendee) dispatcher:suspend_process(Suspendee)

erlang:resume_process(Suspendee) dispatcher:resume_process(Suspendee)

spawn(Node, Fun) dispatcher:spawn(Node, Fun)

spawn(Node, Modl, Func, Args) dispatcher:spawn(Node, Modl, Func, Args)

Table 3: Our parse transform: miscellaneous

in the dispatcher module. By and large, a dispatcher function will pro-
duce the same effect as the corresponding BIF except that Byzantine nodes are
made to ‘look’ as if they have crashed. For example, the function spawn(Node,
Fun) should return a “useless PID” if the node Node is down. The function
dispatcher:spawn(Node, Fun) should do the same if Node is down or Byzan-
tine. (We will discuss these functions further in Section 5.2.)

Unfortunately, the last three rewrite rules in Table 1 must be more invasive.
The first of these simply rewrites the Erlang expression for message-transmission
into a call to the dispatcher. The original expression is not a function call,
however, and so cannot be simply mapped to a same-named function. The last
two rewrite-rules of that table, however, are much more invasive and deserve
further discussion.

These two rules concern the two closely-related forms of Erlang’s message-
reception expression. To explain the rewrite rule, we first need to explain the
semantics of these two expressions. Internally, every Erlang process has a mes-
sage queue which holds all messages received by that process. The queue itself
is managed by the underlying run-time system, however, and does not affect
the process itself until the process executes a receive expression. This expres-
sion can contain a number of branches, each of which is guarded by a pattern
and optional boolean tests called the guard sequence. When a receive expres-
sion is executed, the patterns of the expression are matched, in order, against
the first message in the queue. If any of the patterns match the first message
(and the associated guard-sequence returns true), then the message is removed
from the queue and that pattern’s branch is executed under the variable-binding
produced by the pattern-matching unification.

More generally, the first message in the queue that matches any pattern of
the receive expression (and satisfies the associated guard sequence) is removed
from the queue and unified with the first such pattern. Execution then pro-
ceeds along that branch of the receive expression under the resulting variable-
binding. All other messages in the queue, including those that preceded the
matching message, are left in the queue—unchanged and in their original order.

If no message in the queue satisfies any of the pattern/guard-sequence pairs,
then the default behavior is to block and wait for some message to enter its queue
which does satisfy a pattern/guard-sequence pair. If the receive expression
contains a timeout on the other hand, the process will only block for the stated
amount of time before executing the timeout-branch. (The last row of Table 1
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shows a receive expression with a timeout branch.) If the timeout branch
is guarded by a time-out value of 0, the receive expression will execute that
branch immediately upon exhausting the message queue.

Because of this non-trivial semantics for the receive expression, our parse
transform strives to preserve the original expression as much as possible. How-
ever, the parse transform must also prevent the resulting code from ever suc-
cessfully pattern-matching against a message not approved by the dispatcher.
However, the semantics of Erlang do not make this straightforward. Because
Erlang processes can send messages to any other Erlang process, an Erlang pro-
cess can receive messages from any other process. Furthermore, messages are
unauthenticated; the Erlang language does not provide any reliable mechanism
for determining the sender of a given message.

To preserve the semantics of the receive expression while simultaneously
limiting it to dispatcher-approved messages, our parse transform rewrites the
patterns of the expression. In general, the general idea is that all messages from
the dispatcher should be of a certain form, and that this form is limited to such
messages. The form we use is:

{from_dispatcher, NONCE, MSG}

This Erlang triple contains a fixed type-identifying constant from_dispatcher
as the first component,6 a nonce (large random number) as the second compo-
nent, and an arbitrary Erlang value as the third component. The third compo-
nent is the message as received by the dispatcher. A message will match this
pattern if and only if

• The original message, as received by the dispatcher, matches the original
pattern, and

• The nonce authenticates the message as having come from the dispatcher.

The security of this new pattern comes from the second component. The nonce
found there is matched against a secret value shared between the dispatcher and
the participant. If it matches, it authenticates the messages as coming from the
dispatcher. We acknowledge that this authentication mechanism is quite weak,
but we are constrained by the Erlang language itself. Because guard-sequences
must not have side-effects, the Erlang specification limits those functions which
can be in guard-sequences to a small, predefined set. Therefore, we cannot use
more complicated (and secure) cryptographic mechanisms in guard-sequences,
making it difficult for our parse transform to introduce more secure authen-
tication mechanisms without changing the semantics of the original receive
expression.

5.2 The Dispatcher

In this section, we discuss the actual implementation of the dispatcher in Er-
lang. When the code is modified with the parse transform during compilation,

6A common Erlang idiom.
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calls to message sending and receiving commands, as well as other node main-
tenance commands in the Erlang standard library, become calls to functions in
our dispatchers, which is an Erlang implementation of our network model. The
dispatcher has several services which implement this functionality - a main con-
trol thread, facilities for key and nonce management and storage, and auxiliary
functions to simulate the functionality of the main Erlang library.

In our model, the dispatcher mediates communication between different
nodes. In Erlang, this is implemented as a named process which, if it is not
already running, is launched at each node upon receipt or sending of a message.
This thread then maintains state about which node keys and message nonces
it knows, and loops to handle service requests that come from the attestation
manager and normal application threads both within a node, and outside of it.

There are several services that the dispatcher performs. The first is handling
of messages destined for local processes. If the remote sender is known to be
good (meaning that there is a key shared between the nodes), a new nonce is
generated for the local recipient, and then the message is queued to be sent.
This is done in order to ensure that message ordering is maintained between the
endpoints. Messages from local threads automatically have nonces generated
and are then forwarded. If the sender is known to be bad, the message is
dropped, and the recipient will act as if the remote node had crashed.

The second service is handling messages to be delivered to the remote node.
Local sends are intercepted and added to the local queue for processing. When
the dispatcher comes to a message to be sent to a remote node, it checks to
see if a key is available for that node. If not, then an attestation is performed,
and either a new key is generated in the event of an attestation success, or
the remote node is added to the local list of bad nodes. In the former case,
the message is encrypted and sent to the dispatcher on the remote node, to be
handled there. In the latter case, the message is dropped locally, and the sender
is treated as if the recipient had crashed.

5.3 Interface to the Trusted Platform Module

The standard mechanism for using the Trusted Platform Module (TPM) today
is to go through one of the libraries implementing the TCG Software Stack (TSS)
interface[25].7 In order to access the TPM’s functionality in our distributed Er-
lang code, we created a C program that acts as an Erlang node (called ei tpm),
and an Erlang TPM interface that connects to the C node and provides a con-
venient set of functions usable by Erlang programs, called the tpm if module.
The C program utilizes the TSS internally. This had the additional advantage of
allowing us to abstract away much of the complexity of the TSS for our Erlang
use.

Our goal in creating this interface was to give Erlang programmers an easy-
to-use interface to the TPM functions essential for remote attestation. (Future
versions may include additional functionality providing access to other TPM

7We used the Linux implementation, TrouSerS.
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features.)
The Erlang interface provides access to the following functions essential to

remote attestation:

init : Launches the Erlang half of the TPM interface, which will detect the
running C node. Must be run before any other commands in the tpm if
module, and after the C node (ei tpm) has been launched.

take ownership : Allows the user to take ownership of the TPM. The TPM
must be activated and cleared. Only the TPM owner can perform certain
commands, such as creating identity keys (see below).

create ek : Allows the user to create an Endorsement Key (EK). The EK is
the uniquely identifying key of the TPM, and is used in cryptographic
protocols to prove that other keys, particularly AIKs, are associated with
a genuine TPM. Some TPMs (currently, those manufactured by Infineon)
come with pre-generated EKs, but this command can be used on initially
blank TPMs or those whose pre-generated EK has been erased.

create identity : Allows the user to create a new Attestation Identity Key
(AIK). AIKs are signature keys held by the creating TPM, and can be
used to prove that a quote (discussed later in this section) was produced
by a genuine TPM.

get pubkey : Retrieves the public half of a TPM key.

store key blob : Takes a TPM key blob provided by another command, such
as create identity, and writes it to disk. We refer to the key data
structures returned by the the TPM as “blobs” because they are not meant
to be interpreted by outside software. The secret key data in a key blob
is encrypted.

read key blob : Reads a TPM key blob from disk, for use in other commands.

get quote : Produces a record of the current values of selected Platform Con-
figuration Registers (PCRs) in the TPM, signed by an AIK. This is called
a TPM quote. The PCR values being reported are usually measurements
taken during system boot, if a trusted boot loader is used, or by certain
secure software if a dynamic measurement command such as Intel’s SINIT
or AMD’s SKINIT is called. These measurements are normally hashes of
the loaded code. Quotes allow remote parties to gain verifiable, recent
information about the boot state of a machine.

verify quote : Used to verify that a quote produced by a remote party was
signed by the expected AIK and used the expected nonce. The caller is re-
sponsible for determining whether the included PCR values are acceptable
or not, since there is no universal definition of “good” PCR values.8

8PCR values usually include hashes of the booted image of the BIOS, boot loader, hyper-
visor, and other system software.
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When designing our interface, we sought to reduce one of the user interface
difficulties present in the TSS: ambiguous types and ambiguous relationships
between functions. Many functions in the TSS use byte arrays as input or
output, without any clear instructions for creation, interpretation, or passing
of these arrays. For our Erlang interface, we tried to provide intuitive and
self-explanatory function and argument names. We also strove to make the
relationships between data types used in different functions clear, so the user
did not need to understand the composition of our data structures in order to
make use of our module.

5.3.1 Use of the TPM Interface by Dispatchers

In our demonstration, the TPM interface is used by the dispatchers. We use
TPM quotes as a simple form of Byzantine failure detector. Nodes that can
produce a fresh TPM quote describing an expected software configuration are
considered safe; all other nodes are treated as Byzantine.

The user program’s external communications are intercepted by the dis-
patcher, which may then perform a remote attestation or have a remote party
request a local attestation. When an attestation requires TPM functionality, or
the interpretation of TPM output, the tpm if module is used. The tpm if:init
command creates a new erlang process running in the same node, as pictured
below. This tpm if process communicates with the separate C node, running
the ei tpm program, whenever the dispatcher requests a TPM-related function.
ei tpm, in turn, calls the Trusted Software Stack library (in this case, using the
tcsd daemon) which actually communicates with the TPM.

C node:
 ei_tpm

Trusted Software Stack
(tcsd)

TPM

Erlang Node

DispatcherUser 
Program tpm_if

The dispatchers in our demonstration use the quote functionality provided
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by our interface in order to determine whether another node is Byzantine or not.
We assume that all dispatchers can recognize the identities of good TPMs. In
our demonstration, we provide a list of known public AIKs to each dispatcher; in
a real-world scenario, a certificate authority would provide Attestation Identity
Certificates, or AICs, testifying to the legitimacy of a given AIK, and dispatchers
would only require a list of trusted certificate authorities.

An appraising dispatcher (appraiser) requests a quote from the unknown
node, providing a set of desired registers and a fresh random number (nonce) to
ensure that the quote is recent. Upon receipt of the quote, the appraiser verifies
the quote against the expected public AIK for that node. A signature failure
indicates that the quote was not produced by the expected node, or that the
node did not have access to the TPM; in either case, the communicating party
can be assumed to be byzantine, and no session key is provided. A nonce failure
indicates that the quote is not fresh, and a replay attack may be occurring;
again, no session key is provided in this case. The appraiser then evaluates the
composite PCR values provided, to determine whether the software executing
on the machine is acceptable. If it is, a session key is provided; if not, the
communicating party is assumed to be byzantine. 9

The dispatcher who receives an attestation request is referred to as the at-
tester. Upon receiving a request, the attester calls the get quote function using
the nonce and PCR request provided by the appraiser, as well as an AIK to sign
with. The resulting quote data and signature are returned to the appraiser for
evaluation.

The exact mechanisms for transferring the TPM quote request and data
from one dispatcher to another depend on the cryptographic protocol in use, as
described in section 5.4.

5.4 EVA: A Simple Attestation Protocol

For this demonstration, we created an attestation protocol called EVA, inspired
by the more complex CAVES protocol[19]. Only two parties participate in EVA:
an Attester, who initiates the attestation protocol, receives attestation requests
and interacts with the TPM, and a Verifier, who determines whether to issue a
shared key to the Attester. The E is for our external Expert, who has previously
provided trusted information about known TPM keys and their association with
expected communication partners.

We assume for this protocol that the parties are known to each other, and
share any public keys necessary for confirming the identity of other participants.
In particular, the Verifier and Attester both know a public key for the other,
and the Verifier has a pre-established association between the Attester’s identity,
their public key, and their TPM identity key. At the end of the protocol, the
Verifier and Attester should share a session key.

Our security goals for this protocol were that the Verifier should know that
the PCR values included in the quote hash were reported by a legitimate TPM

9For the demonstration prototype, any valid PCR composite is considered acceptable.
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(owner of I−1), that those PCR values were recent, and that the shared ses-
sion key ks is known only to legitimate participants. We check these goals by
verifying the following properties:

1. The Attester and Verifier should agree on the current PCR values (p), the
PCR mask10 (m), the nonce (nv), and the session key ks. They should
also agree on the principal identifiers a and v.

2. The Verifier should freshly generate nv. nv should be cryptographically
linked to p.

3. The Attester should freshly generate ks. ks should not be retrievable by
an adversary without the cooperation of the Attester or Verifier.

For purposes of our analysis, the Verifier assumes that his own private key
and the TPM’s private key remain uncompromised. The Attester assumes that
the his own key and the Verifier’s private key remain uncompromised.

Attester Verifier

•

��

(connect request,a,v) // •

��
•

��

•

��

{|nv,v,m|}Aoo

•

��

{|ks,v,m,p,{|hash(hash(a,v,nv),m,p)|}I−1 |}V // •

��
• •

{|approved,ks|}Aoo

This protocol uses both the names for participants and unique keys for those
participants. In all cases, the lower-case letter indicates the name (v for the
verifier) and the upper-case letter indicates that participant’s public-private
key pair (V for the verifier’s public key, V −1 for its private key.)

We have verified this protocol using the tool CPSA[19] and demonstrated
that all of our desired security properties have been met.

5.4.1 EVA implemented

In our demonstration, both the Attester and Verifier role are the responsibility
of the dispatcher. When a message is received from an unrecognized party, the

10A set of requested PCR indices is called a mask.

37

© The MITRE Corporation. All rights reserved



dispatcher launches a process which will run the Verifier role of the protocol.
After receiving the third message, the Verifier will evaluate the PCR contents
contained in the hash to determine whether the reporting machine is in an
acceptable state. If so, the Verifier will store the enclosed session key ks for
future use and confirm its use of ks by responding to the Attester.

All certificates and known public keys are passed to the dispatchers, both
Verifier and Attester, through preloaded configuration files.

5.4.2 On the Use of Keys

For analysis purposes, we have assumed that each participating party has a
well-known public key in addition to their TPM identity key. This brings up
two questions: why are both keys needed, and how does the Verifier reliably
associate the Attester’s public key with the TPM identity key?

The primary reason we need two keys is that TPM identity keys can only
be used for signing messages. It is not possible to encrypt messages using an
identity key. A separate TPM storage key can be used to encrypt and decrypt
messages as described here, or a non-TPM-resident key can be used. It is
worth mentioning that the TPM is also not designed to be a fast cryptographic
processor; any cryptographic operations that can be safely performed with non-
TPM-resident keys will be significantly faster.

The association of the Attester’s public key with the TPM identity can be
made in several ways. Some examples include:

• If TPM keys are used for both, then the TPM CertifyKey command can
be used to create a certificate showing that they are both resident in the
same TPM.

• If a software-held key is used, the association can be made and certified
by the system administrator, probably during system provisioning. The
certificate is then provided to the Verifier, in advance or in response to a
query.

• The identity key can sign a locally-created certificate containing the software-
held key information. The locally created certificate does not prove any-
thing about the security properties of the key– many parties could have
access to the secret half, for example– but does prove that someone local
to the system approved the key.

We used the second option, for simplicity. When provisioning our demon-
stration nodes, each node was provided with a list of the expected TPM identity
keys, and an associated public key to be used by the associated system’s dis-
patcher. A mismatch between the two keys would cause an error.

5.4.3 Attestation Variants

This protocol was designed for single-party attestation, in which one participant
is seeking a privilege that another party controls and must prove their fitness
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and identity. (In our implementation, the Attester dispatcher is requesting
that the Verifying dispatcher forward messages from the Attester’s node to the
running software.) However, there are many scenarios in which other forms of
attestation are required.

For example, we assume in our implementation that the threat model is
byzantine nodes sending false messages to well-behaved nodes. If the well-
behaved nodes are handling sensitive information, however, we may wish to
implement mutual attestation, in which both the sending and receiving nodes
undergo attestation. One way of implementing mutual attestation would be to
execute the EVA protocol twice, establishing separate keys for each direction
of communication. More efficient mutual attestation protocols, in which no
shared key is agreed upon until both parties have a chance to assess the other,
also exist.

6 Leader Election

In this section, we instantiate our result on a particular class of algorithms
known as leader-election algorithms. We first define these algorithms in terms
of a trace property, showing that Corollary 4 applies. We then turn to a par-
ticular leadership-election algorithm and discuss how we have applied our parse
transform of Section 5.1 to a particular implementation of it for demonstration
purposes.

6.1 Leader-Election Algorithms

In this section, we instantiate Corollary 4 on a particular class of algorithms:
leadership election algorithms. A leadership-election algorithm is a distributed
algorithm in which the participants simply attempt to agree on which single
participant will become a distinguished ‘leader’. Very often, these algorithms
are used by some higher-level task to choose some single point of coordination.
There are many formulations of the leadership-election problem, and we use the
formalism by Stoller [22], which builds on the formalism by Garcia-Molina [10].
In this formalism, participants have unique process identifiers and are required
to be at all times in exactly one of the following states:

• down, meaning that the participant has crashed,
• election, meaning that it is participating in an election,
• reorganization, meaning that it believes that the election has finished

but it is not yet ready to engage in the higher-level task, and
• normal, meaning that it believes it knows the identity of the elected leader

and is engaging in the higher-level task.11

In the last two states, each participant Pi has its own internal understanding
of the leader’s identity, which we will denote as Pi.leader . Likewise, the state

11Note that unlike Garcia-Molina, we regard the higher-level task as fixed and constant.
Also, we keep the higher-level task explicit while Stoller chooses to omit it for simplicity.

39

© The MITRE Corporation. All rights reserved



of Pi will be denoted Pi.state. Given this notation, Garcia-Molina defines a
leadership-election algorithm as a distributed algorithm that satisfies the fol-
lowing properties:12

1. At any point in time, for any participants i and j, if Pi.state is normal
or reorganization, and if Pj .state is normal or reorganization, then
Pi.leader = Pj .leader .

2. For a given system, there exists a constant c such that if no events stopi

or recover i occur for any i in a period of at least c, then by the end of
that period:

• There is some participant Pi such that Pi.state = normal and Pi.leader =
i, and

• For all other participants Pj , j 6= i,

(Pi.state = down) ∨ (Pi.state = normal ∧ Pi.leader = i)

We do not consider explicit time in this work, so we replace this goal with
a weaker unbounded liveness goal: eventually either a stopi or recover i

occurs for some i, or there exists an agreed-upon leader Pi as above.

With our modification, leadership election is a trace property. Thus, Corollary 4
applies.

Also, note that despite the word ‘election’, the leader does not need to be
elected by majority vote. There are, in fact, no fairness properties regarding
the selection of the leader at all, and algorithms are free to choose leaders in
a wide variety of ways. The algorithm we consider in this paper, for example,
chooses leaders based on process identifiers and not popularity. We describe
this algorithm in Section 6.2.

6.2 The Bully Algorithm

In this section, we present the Bully algorithm for leadership election. This
algorithm was first proposed by Garcia-Molina [10], who used explicit time-
outs for failure detection. Subsequently, it has been re-cast in terms of failure-
detectors by Stoller [21], and it is his description that we reproduce here.

This algorithm regards the participants’ process-identifiers as priorities and
assumes that these priorities can be sorted. To keep consistent with the liter-
ature, lower priority-values are assumed to correspond with more urgent prior-
ities. For a given priority i, we can regard the priorities in lesser(i) as those
priorities of lesser value and the priorities in greater(i) as those priorities of
higher value. Put another way, participants with priorities in lesser(i) have
priority over Pi, and Pi has priority over those participants with priorities in
greater(i). Furthermore, all participants are assumed to know the identifiers of
all other participants.

12Property 1 is part of ‘Assertion 1’ in Garcia-Molina [10] and property 2 is ‘Assertion 2.’
That work also contains other properties concerning the higher-level task and channel failures.
We will not consider those additional properties here.
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To quote Stoller [21] (mapping his notation into that of this work) the Bully
algorithm works as follows:

Each node i has a status, initially normal. If node i detects the
failure of its leader, then it sets its status to election1, indicating
that it is in stage 1 of organizing an election. In stage 1, node i
checks whether nodes in lesser(i) are operational. If some of them
are operational, node i waits, giving those higher-priority nodes a
chance to become leader. If none of them are operational (i.e., if
node i receives inform stopped(j)i for all j ∈ lesser(i)), then node
i sets its status to election2, indicating that it is in stage 2 of
organizing an election. In stage 2, node i prepares nodes in greater(i)
for a new leader by sending them Halt messages. When a node
receives a Halt message, it sends an Ack message and sets its status
to Wait, indicating that it is waiting for the outcome of an election.
If a node with status Wait detects the failure of the node that halted
it, then it starts an election itself.

When a node i organizing stage 2 of an election has received
an acknowledgment from or failure notification for each node in
greater(i), then it becomes the leader, setting its status to normal
and sending a Leader message to each node in greater(i) from which
it received an acknowledgment. When those nodes receive Leader
messages from node i, they accept node i as the new leader and set
their status to normal.

The full description is given in Stoller’s technical report [21]. We pause to note
two things about this algorithm:

• First, Stoller’s version of the algorithm makes use of crash failure detec-
tors, with properties characterized with two Linear Temporal Logic (LTL)
formulæ. To examine these formulæ, we must first define some predicates
on states. Given an execution fragment

s0, π1, s1, π2, s2, . . . πr, sr, . . . :

– upi holds when Pi is operational. That is, it holds for all states except
for those after a stopi event and before the next recover i event.

– monitor i(j) holds for those states that come immediately after a
monitor(j)i event,

– demonitor i(j) holds for those states that come immediately after a
demonitor(j)i event, and

– downsig i(j) holds for those states immediately after a inform stopped(j)i

event.

With these predicates, Stoller specifies the following properties of failure
detectors:13

13Technically, Stoller does not allow the possibility that a failure-detector could crash, or
how failure-detectors should act if they remain alive while their client has stopped. This is an
oversight (personal communication, 13 April 2009) which we correct here.
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– Completeness: If participant Pj is being monitored by failure detector
FD i and stops, then eventually Pj recovers, or Pi is notified, or Pi

de-monitors Pi, or Pi‘resets’ the monitor request by re-issuing it, or
FD i and Pi crash:

�(monitor i(j) =⇒ �(¬upj =⇒
♦(upj ∨ downsig i(j) ∨monitor i(j) ∨ demonitor i(j) ∨ ¬upi)))

– Accuracy: Participant Pi receives inform stopped(j)i only if Pj is
actually down after the most recent monitor(j)i:

�(monitor i(j) =⇒ ¬downsig i(j)W¬upj)

∧�(demonitor i(j) =⇒ ¬downsig i(j)Wmonitor i(j))

(Stoller also imposes a time-constraint, requiring that FD i inform Pi of
crashes within some fixed and constant amount of time. We do not con-
sider the issue of time in this work, however, and so do not impose a
similar requirement here.)

• Secondly, we note that our implementation does not follow Stoller’s de-
scription directly, but is a variation of this algorithm implemented in Er-
lang by Svensson and Arts [24]. Svensson and Arts note, correctly, that
Stoller’s version of the algorithm could result in unnecessary elections:
elections that occur despite the fact that the leader has not failed. In
the algorithm described by both Garcia-Molina and Stoller, for example,
every stopped participant immediately calls for a new election upon re-
covery. Thus, a new election will be held even though it will select the
same leader as before (who may never have crashed).

Svensson and Arts modify the algorithm so that elections will only be held
when the leader crashes. From their description [24]:

We make this change in two steps, first we changed the al-
gorithm such that no new election would be started if a process
with lower priority14 than the leader was activated. This change
is fairly straightforward, and just requires a small modification
to the behavior when a newly activated process is polled by the
elected leader. Instead of restarting the election process, the
newly activated process is informed of who the leader is. . .

In addition we wanted to do something similar when a node
with higher priority15 than the present leader is activated. This
however turned out to be much more complicated. The reason
for the complexity is the fact that a node with high priority
is likely to conclude that there are no processes active with a
higher priority and therefore initiates a new election. (Note

14‘Lower priority’ in the sense of less urgent; a higher ID value.
15Again, ‘higher priority’ in the sense of more urgent; a lower ID value.
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however that this behavior is required, otherwise an election
would never be initiated in the first place.) The basic trick here
is to make sure that a process that knows who the leader is will
not surrender to the newly activated process, instead it sends a
reply saying who (he thinks) is the leader. . .

Unfortunately, Svensson and Arts do not give any formal, high-level de-
scription of their new algorithm or prove its correctness. Instead, they
tested their implementation of their algorithm in Erlang extensively (with
both QuickCheck [3] and abstract-trace verification [2]). Taking a cue from
Knuth,16 we chose to build on the tested code rather than to implement
ourselves a proved-correct algorithm.

The Svensson-Arts implementation is described in [24]. We apply our parse
transform (described in Section 5.1) to this implementation and execute it in
conjunction with our Erlang-implemented dispatcher.

Acknowledgements
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16“Beware of bugs in the above code; I have only proved it correct, not tried it.” [12]
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A Proof of Theorem 3

We prove Theorem 3 in two steps: we first build a simulation relation RIR from
AI to AR to show that traces(AI) ⊆ traces(AR), and then we build a simulation
relation RRI from AR to AI to show that traces(AR) ⊆ traces(AI).

Before we can do this, however, we must introduce some notation:

Definition 5 If X is a participant, channel, anonymizer, or dispatcher I/O
automaton, and s is a state of AR, then by s.X we mean the state of the X
process in s.

For example, s.P3 is the state of P3 in s. Likewise, we will use s.X.v to mean
the variable v in the state of s.X. Thus, s.D3.down is the state variable down
in s.Dispatcher3.

Definition 6 If R is a relation, let R(y) = {x : (x, y) ∈ R}.

We also need to define an operation on the queues of AR:

Definition 7 Let q be a queue of messages and D be a dispatcher automaton.
Then valid(q, D) is the sub-queue of q consisting of those m in q where m =
(m′,M, x) such that MAC ver (m′;M ;D.in key(x)).

Here, MAC ver (m′;M ; k) is true if the MAC M can be verified on m′ with
the key k.

Lemma 8 traces(AI) ⊆ traces(AR)

We prove this by constructing a simulation relation RIR as follows: If sI is
a state of AI and sR is a state of AR, then (sI , sR) ∈ RIR iff:

• For all participants Pi 6∈ Byz,

– sR.Pi and sI .Pi are in the same state.
– sR.Di.queuein is the empty queue, and
– sR.Di.queuej is the empty queue for all j.

• For all Pi 6∈ Byz , Pj 6∈ Byz , sI .C id
i,j .stopped is false if and only if

– sR.C re
i,j .stopped is false, and

– sR.Di.out key(j) = sR.Dj .in key(i) or sR.Di.out key(j) =⊥.

• For all Pi 6∈ Byz , Pj 6∈ Byz , sI .C id
i,j .queue = valid

(
sR.C re

i,j .queue, sR.Dj

)
.

• For all Pj 6∈ Byz , sI .Aid
j .queue = valid

(
sR.Are

j .queue, sR.Dj

)
.

To show that this is a simulation relation, we need to show two things:

1. If sI ∈ start(AI), then RIR(sI) ∩ start(AR) 6= ∅.
jkm: has “start” been defined?
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2. If sI is a reachable state of AI , sR ∈ RIR(sI) is a reachable state of AR,
and (sI , π, s′I) is a transition of AI with event π, then there is an execution
fragment α of AR starting with sR and ending with s′R ∈ RIR(s′I) such
that traces(π) = traces(α). jkm: why “traces”? Don’t we just want to
pick out the non-hidden events from α?

To show the first of these, let sI ∈ start(I). Then for all Pi 6∈ Byz ,

• sI .Pi is in a start-state for participant Pi,
• sI .Aid

i .queue is the empty queue.
• sI .C id

i,j .queue is the empty queue for all j.

Furthermore, each channel C id
i,j is stopped. Thus, let sR ∈ RIR(sI) where

• sR.Pi = sI .Pi,
• sR.Di.queuein is the empty queue.
• sR.Di.queuej is the empty queue for all j.
• sR.C re

i,j .queue is the empty queue for all j.
• sR.Are

i .queue is the empty queue for all j.
• Every channel C re

i,j is stopped.

Thus, sR ∈ RIR(sI). Because sR ∈ start(AR), furthermore,RIR(sI)∩start(AR) 6=
∅.

Next, we demonstrate the second property by case-analysis. Let sI be a
reachable state of AI , let sR ∈ RIR(sI) is a reachable state of AR, and suppose
that (sI , π, s′I) is a transition of AI . Consider all possible transitions, categorized
by the event π:

• send(m)i,j : We begin by noting that it cannot be the case that i ∈ Byz:
those participants begin the execution of AI stopped and they never re-
cover. We also note that this event changes the state of Pi and possibly
C id

i,j . In particular, message m is added to the end of C id
i,j .queue if and

only if the channel is not stopped. Let us consider, then, two cases:

1. Suppose that channel C id
i,j is not stopped. Then this event adds m

to the tail of C id
i,j .queue. We also note that two things must be true

about sR:

– The channel C re
i,j is not stopped, and

– The key sR.Di.out key(j) is either ⊥ or sR.Di.out key(j).

Therefore, consider the state s′R which is the same as sR except that

– s′R.Pi is in the same state as s′I .Pi,
– if sR.Di.out key(j) =⊥ then s′R.Di.out key(j) = s′R.Dj .in key(i) =

k for some new cryptographic keys k, and
– The message (m,M, i) has been added the end of s′R.C re

i,j .queue
where M = MAC sign (m; s′R.Di.out key(j)).

Then sR can transition to s′R by the following sequence of events:
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– The event send(m)i,j , which adds m to the end of the previously-
empty queue Di.queuej .

– If it is the case that Di.out key(j) =⊥, then the sequence con-
tinues with the events
∗ start measure(id)i,j , starting a measurement protocol,
∗ inform measure(id)i,j ,
∗ yes measure(id ;x)i,j ,
∗ inform resp success(id , k)i,j , whereupon Dj .in key(i) = k,

and
∗ inform init success(id , k)i,j , whereupon Di.out key(j) = k.

– Lastly, the sequence ends with the second event: transmit(m)i,j .
We note that all of these events except the first are hidden in AR,
and so AR transitions from sR to s′R with trace send(m)i,j .

2. Suppose, on the other hand, that channel C id
i,j is stopped. Then the

event send(m)i,j does not change the queue C id
i,j .queue. Also, this

implies that in sR, at least one of the things are true:
– The channel C re

i,j is stopped, or
– The key sR.Di.out key(j) is neither ⊥ nor sR.Dj .in key(j).

Based on these alternatives, we consider a number of sub-cases. In
each sub-case, we will find a sequence of events by which sR can
transition to a s′R ∈ RIR(s′I) with trace send(m)i,j .
(a) Suppose that the second statement is true, and the key

sR.Di.out key(j)

is neither ⊥ nor sR.Dj .in key(j). Then consider the sequence of
events:
– send(m)i,j ,
– transmit((m,M, i))i,j where

M = MAC sign (m;Di.out key(j))

.
The first event will place m on the queue Di.queuej . The second
event will take this message off the queue. If C re

i,j is down, then
C re

i,j .queue will not be changed. But even if the channel is up, it
will not be the case that

MAC ver (m;M ;Dj .in key(i)) .

Therefore, it will not be the case that the new message m will
be on

valid
(
C re

i,j .queue, Dj

)
. Thus, the machine AR can transition by the above sequence of
events into a state s′R where s′R ∈ RIRs′I . Furthermore, the second
event in the sequence is hidden, so both AR and AI produce the
trace send(m)i,j .
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(b) If the second statement is false, on the other hand, then the first
statement must be true. Let us consider two subcases:
– Suppose sR.Di.out keyj 6=⊥. Then again consider the se-

quence of events:
∗ send(m)i,j ,
∗ transmit((m,M, i))i,j where M = MAC sign (m;Di.out key(j)).
The first event will place m on the queue Di.queuej . The sec-
ond event will take this message off the queue. Because C re

i,j

is down, however, the queue C re
i,j .queue will not be changed.

Thus, the machine AR can transition by the above sequence
of events into a state s′R where s′R ∈ RIRs′I . Furthermore, the
second event in the sequence is hidden, so both AR and AI

produce the trace send(m)i,j .
– Suppose that sR.Di.out key(j) =⊥. Then consider the se-

quence of events:
∗ send(m)i,j ,
∗ start measure(id)i,j ,
∗ inform init error(id)i,j ,
∗ error drop(m)i,j

Again, the queue C re
i,j .queue will not be changed. Thus, the

machine AR can transition by the above sequence of events
into a state s′R where s′R ∈ RIRs′I . Furthermore, the second
event in the sequence is hidden, so both AR and AI produce
the trace send(m)i,j .

• receive(m)j : This event changes the state of Pj and Aid
j . In particular, it

removes message m from the head of Aid
j .queue. By the definition of our

relation, therefore, m must also be the head of valid
(
sR.Are

j .queue, sR.Dj

)
.

In this case, consider the state s′R which is the same as sR except that s′R.Pi

is in the same state as s′I .Pi and s′R.Aid
j .queue is the same as sR.Aid

j .queue
except that all messages at the head of sR.Aid

j .queue are removed up to
and including the first message m′ = (m,M, i) where

MAC ver (m;M ;Dj .in key(i)) .

In this case, s′I and s′R agree on the state of all non-Byzantine participants,
and s′I .A

id
j .queue = valid

(
s′R.Aid

j .queue, s′R.Dj

)
. So, s′R ∈ RIR(s′I), and AR

can also transition from sR to s′R by performing the sequence of events:

– For every message x at the head of sR.Aid
j .queue which is not the

first m′ = (m,M, i) where

MAC ver (m;M ;Dj .in key(i)) ,

the following sequence of events:
∗ One event pre receive(x)j , delivering the message x to Dj , mak-

ing it the only message on Dj .queuein , and
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∗ One event MAC drop(x)i, removing it from Dj .queuein as being
malformed or incorrectly authenticated.

– For the first message m′ = (m,M, i) where

MAC ver (m;M ;Dj .in key(i), )

the sequence of messages
∗ One event pre receive(m′)j , delivering the message m′ to Dj ,

making it the only message on Dj .queuein , and
∗ One event receive(m)j , removing m′ from Dj .queuein and deliv-

ering m to Pj .

The only event in this sequence which is not hidden in AR is the last event,
meaning that AR can transition from sR to s′R with trace receive(m)j .

• deliver(m)i,j : This event changes the state of C id
i,j and Aid

j . In particu-
lar, it removes m from the head of C id

i,j .queue and adds it to the tail of
Aid

j .queue. Note that due to the definition of our relation, it must be the
case that m is also the head of valid

(
sR.C re

i,j , sR.Dj

)
. Let m′ = (m,M, i)

be the first message in sR.C id
i,j .queue where

MAC ver (m;M ;Dj .in key(i)) .

Given this, consider the state s′R which is the same as sR except that
all message on the head of sR.C id

i,j .queue up to and including m′ have
been removed and added (in order) to the tail of sR.Are

j .queue. Thus,
s′R ∈ RIR(s′I), and AR can also transition from sR to s′R by performing a
single deliver(x)i,j event for every message x on the head of sR.C id

i,j .queue
up to and including m′. We note that the event deliver(x)i,j is hidden in
both AR and AI , and so both automata make their transitions with an
empty trace.

• stopi: This event affects only Pi, and only if it is not stopped. If Pi is not
stopped in sI , it will be stopped in s′I . Consider, then, the effect that the
event stopi has on the state sR. This event will affect Di in many ways,
and will stop Pi if it is not stopped already. Thus, sR will transition to a
state s′R such that s′R ∈ RIR(s′I) and also produce a trace with the single
event stopi.

• recover i: Analogous to stopi, above.
• channel downi,j : This event affects only C id

i,j , and only if it is not stopped.
If this is the case, C id

i,j is stopped in s′I . Consider, then, the effect that the
event channel downi,j has on the state sR. This event will stop C id

i,j if it is
not stopped already. Thus, sR will transition to a state s′R such that s′R ∈
RIR(s′I) and also produce a trace with the single event channel downi,j .

• channel upi,j : We note that this event is hidden in AI , and so produces
the empty trace. Secondly we note that this event only matters if i 6∈ Byz ;
otherwise, it is irrelevant to our relation. We then consider two cases:
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1. If C id
i,j is not stopped in sI , then this event has no effect on AI and

s′I = sI . Therefore, it is already the case that sR ∈ RIR(s′I), and so
AR can transition to a state in RIR(s′I) via the empty trace.

2. If, on the other hand, C id
i,j is stopped in sI , then it will be started in

s′I . But consider the states sR and s′R. Since C id
i,j is stopped in sI , it

must be the case that
(a) C re

i,j is stopped, or
(b) Di.out key(j) is neither ⊥ nor Dj .in key(i).
If the first of these statements is true and the second is false, then
consider the effect of the event channel upi,j on automata AR in sR.
This will cause AR to transition to a state in which C re

i,j is up, and
Di and Dj agree on an actual key for communication. Therefore, AR

is in a state s′R ∈ RIR(s′I) and transitioned there via the empty trace.
Now suppose, on the other hand, that the second statement is true.
(The first statement may or may not also be true.) Then, consider
the effect of the following sequence of events on AR:

– channel upi,j ,
– start measure(id)i,j ,
– inform measure(id)i,j ,
– yes measure(id ;x)i,j ,
– inform resp success(id , k)i,j ,
– inform init success(id , k)i,j ,

where id is some new identifier and x = sR.Dj .out key(i). We note
that this sequence of events is possible due to (1) the definition of the
attestation and dispatcher automata and (2) the assumption that the
event channel upi,j only occurs inAI when i 6∈ Byz . If this is the case
then the protocol must be able to succeed when i 6∈ Byz (because Pi

must both then be running the honest-participant automaton) and
can succeed when j ∈ Byz.
Let s′R be the state of AR after this sequence of events. We note that
in s′R, C re

i,j cannot be stopped. (If it was stopped before the sequence,
the first event brings it back up. Otherwise, the first event has no
effect.) Furthermore, it will be the case that in s′R, Di.out key(j) 6=⊥
and Di.out key(j) = Dj .in key(i). Thus, s′R satisfies the portion of
the relation RIR concerning the channel being stopped.
However, we must also consider that part of the relation concerning
the channel’s message queue. And for that, we need to consider two
cases:
(a) If sR.Dj .in key(i) =⊥, then valid

(
sR.C re

i,j .queue, sR.Dj

)
is the

empty queue. Thus, C id
i,j .queue is empty as well in sI , and is in

s′I as well. But because s′R.Dj .in key(j) is a new cryptographic
key not used by any messages in C re

i,j .queue, it will be that

valid
(
stateReal′.C re

i,j .queue, s′R.Dj

)
will be empty as well.
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(b) If sR.Dj .in key(i) 6=⊥, on the other hand, then s′R.Dj .in key(i) =
sR.Dj .in key(i). (Recall from Section 3.3 that if the responder
already has a key when an attestation protocol is initiated, then
the key will re-distribute that key.) Thus,

valid
(
stateReal′.C re

i,j .queue, s′R.Dj

)
= valid

(
stateReal.C re

i,j .queue, sR.Dj

)
,

and so
valid

(
stateReal′.C re

i,j .queue, s′R.Dj

)
= s′I .C

id
i,j .queue.

In either case, stateReal′ and stateIdeal′ also satisfy the queue-
correspondence portion of RRI , and s′R ∈ RRI(s′I). Furthermore,
the above sequence of events are all hidden in AR, and so both AR

and AI produce the same (empty) trace.

• anon drop(n)i: This event changes the state of Aid
j . In particular, the nth

element of queue Aid
j .queue, is removed from that queue.

Due to the definition of the relation RIR, it must be the case that in sR,
the queue valid

(
sR.Are

j .queue, sR.Dj

)
that at least n elements. Thus, let

m′ = (m,M, i) be the nth message in sR.Are
j .queue where

MAC ver (m;M ;Dj .in key(i)) .

Given this, consider the state s′R which is the same as sR except that the
message m′ has been removed from Are

j .queue. Thus, s′R ∈ RIR(s′I), and
AR can also transition from sR to s′R by performing a single anon drop(x)i

event where x is the index of m′ in sR.Are
j .queue.

We note that the event anon drop(x)i is hidden in both AR and AI , and
so both automata make their transitions with an empty trace.

• channel drop(n)i,j : This case is analogous to anon drop(n)i j, above. In
particular, this event changes the state of C id

i,j by removing the nth element
from the queue C id

i,j .queuei. Due to the definition of the relationRIR, then,
it must be the case that in sR, the queue valid

(
sR.C id

i,j .queue, sR.Dj

)
must

also have at least n elements. Thus, let m′ = (m,M, i) be the nth message
in sR.C id

i,j .queue where MAC ver (m;M ;Dj .in key(i)). Given this, con-
sider the state s′R which is the same as sR except that the message m′ has
been removed from sR.C id

i,j .queue. Thus, s′R ∈ RIR(s′I), and AR can also
transition from sR to s′R by performing a single channel drop(x)i,j event
where x is the index of m′ in sR.C id

i,j .queue.
We note that the event channel drop(x)i,j is hidden in both AR and AI ,
and so both automata make their transitions with an empty trace.

Before we an define the simulation relation from AR to AI , we need one
operation on queues:

Definition 9 We use the notation || to mean queue-concatenation. If queue1

and queue2 are queues, then queue1||queue2 is the queue where the head of
queue1 is appended to the tail of queue2.
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Lemma 10 traces(AR) ⊆ traces(AI)

We prove this by defining a simulation relation RRI as follows: If sR is a
state of AR and sI is a state of AI , then (sR, sI) ∈ RRI iff:

• For all participants Pi 6∈ Byz, sR.Pi and sI .Pi are in the same state.
• For all Pi 6∈ Byz , Pj 6∈ Byz , sI .C id

i,j .stopped is false if and only if:

– sR.C re
i,j .stopped is false, and

– sR.Di.out key(j) = sR.Dj .in key(j) or sR.Di.out key(j) =⊥.

• For all Pi 6∈ Byz and Pj 6∈ Byz ,

sI .C id
i,j .queue = sR.Di.queuej ||valid

(
sR.C re

i,j .queue, Dj

)
• For all Pj 6∈ Byz ,

sI .Aid
j .queue = valid

(
sR.Are

j .queue||sR.Dj .queuein , Dj

)
To show that this is a simulation relation from AR to AI , we must demon-

strate the following two properties:

1. If sR ∈ start(AR), then RRI(sR) ∩ start(AI) 6= ∅.

2. If sR is a reachable state of AR, sI ∈ RRI(sR) is a reachable state of AI ,
and (sR, π, s′R), then there is an execution fragment α of AI starting with
sI and ending with s′I ∈ R(s′R) such that traces(π) = traces(α).

To show the first two of these properties, let sR ∈ start(AR). Then we note
that for all Pi 6∈ Byz :

• sR.Pi is in a start-state for participant-automaton Pi,
• sR.Di.queuein is empty,
• sR.Di.queuej is empty (for all j), and
• sR.Are

i .queue is empty.

Furthermore, C re
i,j is stopped and sR.C id

i,j .queue is empty for all i and j. Thus,
sIRRI(sR) where for all i 6∈ Byz ,

• sI .Pi = sR.Pi,
• sI .Aid

i .queue is empty,
• sI .C id

i,j .queue is empty,
• sI .C id

i,j is stopped.

Furthermore, sI ∈ start(AI).
Next, we demonstrate the second property by case-analysis. Let sR be a

reachable state of AR, let sI ∈ RRI(sR) is a reachable state of AI , and sup-
pose that (sR, π, s′R) is a transition of AR. Consider all possible transitions,
categorized by the event π:

54

© The MITRE Corporation. All rights reserved



• send(m)i,j : This event will change the state of Pi and Di. In particu-
lar, Pi will transition to some other state, and m will be added to the
end of Di.queuej . Consider, then the state s′I which is exactly like sI
except that s′I .Pi is the same as s′R.Pi and s′I .C

id
i,j .queue is the same as

s′I .C
id
i,j .queue with m added to the end. Then AI can transition from sI to

s′I by a send(m)i,j event, producing the trace send(m)i,j . Furthermore,
s′I ∈ R(s′R).

• transmit(m)i,j : We consider two cases:

– If i ∈ Byz , then this event changes the state of Pi and C re
i,j . However,

both of these automata are irrelevant to the relation RRI . Therefore,
it is already the case that sI ∈ RRI(s′R). And because the event
transmit(m)i,j is hidden in AR, both AR and AI produce the empty
trace.

– If i 6∈ Byz , on the other hand, this event will affect Di and possibly
C re

i,j . We note that it will be the case that m = (m′,M, i) where
MAC sign (m;Di.out key(j)) and m′ is at the head of sR.Di.queuej .
This event removes message m′ from Di.queuej . The effect it has on
C re

i,j , on the other hand, depends on two factors: whether sR.C re
i,j is

stopped, and whether sR.Di.out key(j) = sR.Dj .in key(i).
∗ If sR.C re

i,j is stopped, then the message m is not added to the
tail of C re

i,j .queue. In this case, consider the state s′I which is
exactly like s′I except that the message m′ has been removed from
sI .C id

i,j .queue. Then AI can transition from sI to s′I by the event
channel drop(a− b + 1)i,j where a is the number of elements in
sI .C id

i,j .queue and b is the number of elements in sR.Di.queuej .
∗ If stateReal.C re

i,j is not stopped, however, but sR.Di.out key(j) 6=
sR.Dj .in key(i), then the message m is added to the tail of C re

i,j .
However, it will not be the case that

MAC ver (m′;M ;Dj .in key(i)) ,

and so m′ will not be part of the queue valid
(
C re

i,j .queue, Dj

)
.

Thus AI can again transition from sI to s′I by the event

channel drop(a− b + 1)i,j

where a is the number of elements in sI .C id
i,j .queue and b is the

number of elements in sR.Di.queuej .
∗ If stateReal.C re

i,j is not stopped and but sR.Di.out key(j) =
sR.Dj .in key(i), then the message m is added to the tail of C re

i,j .
Furthermore, it will now be the case that

MAC ver (m′;M ;Dj .in key(i)) ,

and so m′ will be part of the queue valid
(
C re

i,j .queue, Dj

)
. Thus,

sI = s′I .
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In all three of these cases, sI can transition to a state s′I such that
s′I ∈ RRI(s′R). Furthermore, the transitions will produce the empty
trace, as does the original event transmit(m)i,j .

• deliver(m)i,j : This event will change the state of C re
i,j and Are

j . In partic-
ular, m will be removed from the front of C re

i,j .queue and added to the end
of Are

j . There are two cases:

1. m = (m′,M, x) where MAC ver (m;M ;Dj .in key(j)). In this case,
we note that m′ must be at the head of the queue valid

(
C re

i,j .queue, Dj

)
and thus at the head of stateIdeal.C id

i,j .queue. Consider the state s′I
which is identical to sI except that m′ has been removed from the
head of sI .C id

i,j .queue and added to the tail of sI .Aid
j .queue. Then

AI can transition from s′I to s′I by the event deliver(m′)i,j . But be-
cause the ‘deliver’ event is hidden in both AR and AI , both machines
produce only the empty trace when they make their transitions.

2. m 6= (m′,M, x) or not MAC ver (m;M ;Dj .in keyj). In this case,
we note that neither m nor m′ will be at the head of the queue
valid

(
C re

i,j .queue, Dj

)
. Thus, this event is irrelevant to the relation

RRI . Thus, sI is already in RRI(s′R), and AI does not need to make
a transition at all. But because the ‘deliver’ event is hidden in both
AR, the machine AR also produces the empty trace when it makes
its transition.

• pre receive(m)i: This event changes both Are
j and Dj . In particular,

the message m is removed from the head of Are
j and added to the tail of

Dj .queuein . This change is ‘invisible’ to our relation, and so sI ∈ RRI(s′R).
Furthermore, this event is hidden in AR, and both it an the non-transition
of AI produce the empty trace.

• receive(m)i: Again, this event will change the state of Pj and Dj . In
particular, Pj will transition to some other state, and (m,M, i) (for some i,
and where MAC ver (m;M ;Dj .in key(i))) will be removed from the front
of Dj .queue. But in this case, m will be the head of valid(Dj .queuein , Dj),
and so will be the head of Aid

j .queue in sI . Consider, then the state s′I which
is exactly like sI except that s′I .Pi is the same as s′R.Pi and s′I .A

id
j .queue

is the same as s′I .A
id
j .queue with m removed from the head. Then AI

can transition from sI to s′I by a receive(m)i event, producing the trace
receive(m)i j, and s′I ∈ R(s′R).

• stopj : If j ∈ Byz , then this event affects only Pj . However, the state of Pj

is irrelevant to the relation RRI , and therefore sI is already in RRI(s′R).
Again, AI does not need to make a transition and so produces the empty
trace. But the event stopj is hidden in AR, and so AR produces the empty
trace as well.
If j 6∈ Byz , on the other hand, the effects of this event are

– To stop Pj and Dj ,
– To empty Dj .queuein and Dj .queuei for all i,
– To empty all sets in Dj , and
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– To set Dj .in key(i) and D.out key(i) to ⊥ for all i.

Thus, consider the state s′I which is the same as sI except that

– Participant Pj is stopped,
– The queue Aid

j .queue is empty,
– For all i:

1. The queue C id
i,j .queue is empty,

2. The channel C id
i,j is stopped, and

3. C id
j,i .queue = valid

(
C re

j,i .queue, Di

)
.

In this case, s′I ∈ RRI(s′R), and AI can transition from sI to s′I by the
sequence of events:

1. stopj ,
2. One event of the form anon drop(1)j for each element of sI .Aid

j .queue,
3. For all i:

(a) One event of the form channel drop(1)i,j for each element of
sI .C id

i,j .queue,
(b) One event of the form channel downi,j ,
(c) One event of the form channel downj,i,
(d) One event of the form channel drop(a− b + 1)j,i for each ele-

ment of sR.Dj .queuei (where a is the number of elements in
sI .C id

j,i .queue and b is the number of elements in sR.Dj .queuei).

Because all events other than the first one are hidden in AI , AI can also
transition from sI to stateIdeal′ by way of trace stopj .

• recover j : This event starts (or re-starts) Pj and Dj . Therefore, consider
the state s′I which is identical to sI except that s′I .Pj = stateReal′.Pj .
Then AI can transition from sI to s′I by way of the event recover j .

• channel downi,j : This event affects only C re
i,j , and only by stopping it if it

not already stopped. Consider the state s′I which is exactly like s′I except
that C id

i,j is stopped if not already. Then AI can transition from sI to s′I
by way of the event channel downi,j , and s′I ∈ RRI(s′R).

• channel upi,j : This event affects only C re
i,j , and only by starting it if it is

stopped. To find the state s′I of interest, we consider two cases:

1. If Di.out key(j) 6= Dj .in key(i) and Di.out key(j) 6=⊥, then let s′I =
s′I .

2. If, on the other hand, Di.out key(j) = Dj .in key(i)
or Di.out key(j) =⊥, then let s′I be the state of AI after executing
event channel upi,j .

In both of these cases, s′I ∈ RRI(s′R). Also, we note that the event
channel upi,j is hidden in both AI and AR. Thus, AI can transition
from sI to s′I by way of the empty trace, the same trace by which AR

transitions from sR to s′R.
• channel drop(n)i,j : This event removes the n element of C re

i,j .queue. We
first note that this event is hidden in AR, and so produces no trace. We
next consider two cases:
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– If the nth element of C re
i,j is m = (m′,M, x) and

MAC ver (m′;M ;Dj .in key(i)) ,

then consider the state s′I which is exactly like sI except that the
message m′ is removed from C id

i,j .queue. (If there is more than one
instance of m′ on that queue, we remove the instance associated to m
by the mapping valid

(
C re

i,j .queue, Dj

)
.) Then s′I ∈ RRI(s′R) and AI

can transition from sI to s′I by way of the event channel drop(n)i,j

(where n is the index of m′ in sI .C id
i,j .queue) producing the empty

trace.
– Otherwise, we note that sI ∈ RRI(s′R) already, and so AI can transi-

tion from sI to sI by the empty trace.

• anon drop(n)j : similar to channel drop(n)i,j above, except considering
the queue Are

j .queue instead of C re
i,j .queue.

• MAC drop(m)j : This event affects only Dj , and only by deleting the head
of Dj .queuein because either m 6= (m′,M, x) or not

MAC ver (m′;M ;D.in key(x)) .

But in this case, the message m′ is not at the head of sI .Aid
j .queue,

and so deleting this message from Dj .queuein is ignored by the relation
RRI . Thus, it is the case that sI ∈ RRI(s′R) already. Because the event
MAC drop(m)j is hidden in AR, furthermore, the empty trace of AI as it
transitions from sI to sI is the same as the empty trace produced by AR

as it transitions from sR to s′R.
• error drop(m)i,j : This event affects only Di, and only be removing m

from the head of Di.queuej . Thus, consider the state s′I which is just like
sI except that m has been removed from C id

i,j . Then AI can transition
from sI to s′I by way of the event channel drop(a− b + 1)i,j (where a is
the number of messages in sI .C id

i,j .queue and b is the number of messages
in sR.Di.queuej). Because the event error drop(m)i,j is hidden in AR

and the event channel drop(a− b + 1)i,j is hidden in AI , both automata
produce the empty trace when they make their transitions.

• start measure(id)i,j , inform measure(id)i,j , yes measure(id ;x)i,j ,
inform init fail(id)i,j , inform resp fail(id)i,j , inform init error(id)i,j ,
inform resp error(id)i,j : These events change only the states of Di, Dj

and the attestation automaton. However, none of these changes are rele-
vant to the relation RRI , and all of these events are hidden in AR. Thus,
sI is already in RRI(s′R), and AI does not need to make any transitions
at all to produce the same trace as AR.

• inform init success(id , k)i,j : This event changes the state of Di, and in
particular sets Di.out key(j) to be k, which cannot be ⊥. We consider
two cases:

1. If s′R.Di.out key(j) = s′R.Dj .in key(i) and C re
i,j is not stopped, then

consider the state s′I which is just like sI except that if C id
i,j is stopped
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in sI it is not stopped in s′I . Then s′I ∈ RRI(s′R), and AI can transi-
tion from sI to s′I via the event channel upi,j . Because both the event
inform init success(id , k)i,j and the event channel upi,j are hidden,
both AI and AR produce the empty trace as they make their transi-
tions.

2. Otherwise, we note that sI is already in RRI(s′R) and the event
inform init success(id , k)i,j is hidden in AR. Thus, AR produces
the empty trace as it makes its transition, and AI can produce the
same trace as it remains in sI .

• inform resp success(id , k)i,j : This event changes the state of Dj , and in
particular sets Dj .in key(i) to be k, which cannot be ⊥. Before we con-
tinue, we make an observation: If s′R.C re

i,j .queue or s′R.Aid
j contains a mes-

sage m = (m′,M, x) such that MAC ver (m′;M ; k), then it must also be
the case that MAC ver (m′;M ;Dj .in key(i)) as well. That is, if a mes-
sage’s MAC can be verified with the ‘new’ key, then it can be verified with
the ‘old’ key as well. This can be seen by examining two cases:

– If s′R.Dj .in key(i) = sR.Dj .in key(i), then the above observation triv-
ially follows.

– If s′R.Dj .in key(i) 6= sR.Dj .in key(i), on the other hand, then we note
that in the attestation protocol, the ‘responder’ (j) receives the key
before the ‘initiator’ (i). Thus, there cannot be any messages in the
channel or anonymizer that can be verified with the new key. The
above observation trivially follows.

We note that the converse does not necessarily follow: there could ex-
ist messages that can be verified with the old key but not the new key.
Consider two cases:

1. If s′R.Dj .in key(i) = sR.Dj .in key(i), then we note that sI is already
in RRI(s′R). Therefore, AI does not need to make a transition, and
does not produce any trace. But the event inform resp success(id , k)i,j

is already hidden in AR, and so AR also produces the empty trace.
2. If s′R.Dj .in key(i) 6= sR.Dj .in key(i) on the other hand, consider the

sequence of events for AI :
– One channel drop(n)i,j for each message m in C re

i,j .queue such
that m = (m′,M, x) and MAC ver (m′;M ; sR.Dj .in key(i)) (from
the highest value of n to the lowest), and

– One anon drop(n)i for each message m in Are
j .queue such that

m = (m′,M, x) and MAC ver (m′;M ; sR.Dj .in key(i)), and
– One anon drop(n)i for each message m in Dj .queuein such that

m = (m′,M, x) and MAC ver (m′;M ; sR.Dj .in key(i)).
Then s′I ∈ RRI(s′R), and AI can transition from sI to s′I via the
sequence above. Because both the event inform resp success(id , k)i,j

and the events above are hidden, both AI and AR produce the empty
trace as they make their transitions.
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B I/O Automata for C re
i,j and Are

i

Signature:
Input: Output
transmit(m)i,j , m ∈ M deliver(m)i,j , m ∈ M

channel downi,j

channel upi,j Internal
channel drop(m)i,j

State Variables:
stopped , a boolean value initially set to ‘false’
queue, a FIFO queue of messages in M , initially empty.

Transitions:
transmit(m)i,j :

Effect:
if stopped is false, add m to

the queue. Otherwise, no
effect.

deliver(m)i,j :
Precondition:

m is first on queue.
Effect:

remove first element of queue.

channel downi,j :
Effect:

set stopped to true.

channel drop(m)i,j :
Precondition:

m is last on queue.
Effect:

remove last element of queue

channel upi,j :
Effect:

set stopped to false.

Tasks:
Arbitrary.

Figure 11: The lossy channel I/O automaton C re
i,j
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Signature:
Input: Output
deliver(m)i,j , m ∈ M pre receive(m)j , m ∈ M

Internal
anon drop(m)j

State Variables:
queue, a FIFO queue of messages, initially empty.

Transitions:
deliver(m)i,j :

Effect:
add m to queue.

pre receive(m)j :
Precondition:

m is the first element of queue.
Effect:

remove the first element of
queue

anon drop(n)j :
Precondition:

queue has at least n elements.
Effect:

remove the nth element of
queue.

Tasks:
Arbitrary.

Figure 12: The anonymizer I/O automaton Are
j
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C TPM Interface Module Documentation

The Erlang tpm if module is designed to run in conjunction with the C-to-Erlang
TPM interface module ei tpm.

C.1 Module Description

The Erlang tpm if module is designed to run in conjunction with the C-to-
Erlang TPM interface module ei tpm. The tpm if module should be run from
an erlang process with the short name e1 and the shared cookie ”secret”. (For
a shell, $ erl -sname e1 -setcookie secret) The ei tpm program should be run
first, on machine Hostname, and provided with an identification Number. (By
default, the identification number is 99.) Initialize the communication between
the C node and the erlang shell by calling tpm if:init(Nodename), where Node-
name is cNumber@Hostname. (The default nodename on host foobar would be
c99@foobar.) If the interface is successfully initialized, other TPM commands
can then be run.

In order for tpm if and ei tpm to function properly, both the Trousers dae-
mon tcsd and the Erlang port mapper daemon epmd must be running.

C.2 Function Index

take ownership/1 This function is used to take ownership of the TPM.

create ek/0 This function creates an endorsement key.

create identity/2 This function creates an identity key with minimal user
input.

create identity/4 This function creates an identity key with maximal user
flexibility.

get pubkey/1 This function retrieves the public half of a TPM RSA key.

get quote/3

init/1 This function initializes the TPM interface, connecting the Erlang in-
terface to the C back end.

read key blob/1 Utility function for easily reading key blobs from files.

store key blob/2 Utility function for easily storing key blobs.

verify quote/5 This function determines whether a TPM Quote is legitimate
(contains the correct PCR information and nonce, signed by the correct
key).

62

© The MITRE Corporation. All rights reserved



C.3 Function Details

C.3.1 take ownership/1

take_ownership(Authstring::string()) -> Result::int()

This function is used to take ownership of the TPM.

Input An string that will be used as the TPM’s owner authorization.

Output An integer representing success or failure. Positive values are success,
negative are failure.

C.3.2 create ek/0

create_ek() -> Result::int()

This function creates an endorsement key.

Input None.

Output Result is an integer. Result value of 1 indicates successful creation of an
Endorsement Key. A negative Result value indicates failure.

C.3.3 create identity/2

create_identity(IdentLabel::binary(), Auth::atom()) -> Result

This function creates an identity key with minimal user input.

Input IdentLabel is a binary label that will identify the created identity in iden-
tity certificates and certificate requests. Authstring is the owner autho-
rization atom.

Output Result contains a key handle for this Identity, or an error.

C.3.4 create identity/4

create_identity(Flaglist::list(), Algorithm::atom(), Identlabel::binary(),
Authstring::atom()) -> Result

This function creates an identity key with maximal user flexibility.

Input Flaglist is a list of key flags from the following set:

tss_key_no_authorization, tss_key_authorization,
tss_key_authorization_priv_use_only, tss_key_non_volatile,
tss_key_volatile, tss_key_not_migratable, tss_key_migratable,
tss_key_type_default, tss_key_type_signing, tss_key_type_storage,
tss_key_type_identity, tss_key_type_authchange, tss_key_type_bind,
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tss_key_type_legacy, tss_key_type_migrate, tss_key_size_default,
tss_key_size_512, tss_key_size_1024, tss_key_size_2048,
tss_key_size_4096, tss_key_size_8192, tss_key_size_16384,
tss_key_not_certified_migratable, tss_key_certified_migratable,
tss_key_struct_default, tss_key_struct_key, tss_key_struct_key12,
tss_key_empty_key, tss_key_tsp_srk

Including a tss key type flag of a type other than identity will produce an
error. Algorithm is an atom matching one of the following:

TSS_ALG_RSA, TSS_ALG_DES, TSS_ALG_3DES, TSS_ALG_SHA,
TSS_ALG_SHA256, TSS_ALG_HMAC, TSS_ALG_AES128, TSS_ALG_MGF1
TSS_ALG_AES192, TSS_ALG_AES256, TSS_ALG_XOR, TSS_ALG_AES

IdentLabel is a binary label that will identify the created identity. Auth-
string is the owner authorization atom.

Output Result contains a key handle for this Identity, or an error.

C.3.5 get pubkey/1

get_pubkey(KeyBlob::binary()) -> {Exponent::binary(),Modulus::binary()}

This function retrieves the public half of a TPM RSA key.

Input An integer handle of a loaded TPM key or a binary TPM wrap key blob.

Output Two binaries representing the modulus and exponent of the key, or a string
with an error message.

C.3.6 get quote/3

get_quote(AIKBlob::binary(), PCRMask::list(), Nonce::binary())
-> tuple()

This function generates a fresh TPM Quote, as well as the current values of
individual PCRs in order to make later verification more useful.

Input PCRMask is a list of integers representing the registers to be quoted.
Nonce is data used for freshness checking; it should be 20 bytes long.
AIKBlob is the binary key blob of an identity key created on this TPM.

Output A tuple QuoteInfoData, SignatureData, PCRValues of the TPM quote, its
signature, and the current PCR values from the selected registers.
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C.3.7 init/1

init(Nodename::atom()) -> none()

This function initializes the TPM interface, connecting the Erlang interface
to the C back end. This process should be spawned, not run, as it creates a
long-lived server for accessing the TPM that other tpm if commands will use.

Input A nodename of the form ’Nodename@Hostname’, where Nodename is the
nodename of the ei tpm process (by default, c99) and Hostname is the
short or long name of the machine on which the ei tpm program is running.

Output None.

C.3.8 read key blob/1

read_key_blob(Filename::string()) -> Result

Utility function for easily reading key blobs from files.

Input Filename is the name of a file containing a stored key blob (see store key blob
command).

Output Result is either the binary key blob, usable in all commands calling for a
KeyBlob, or an error.

C.3.9 store key blob/2

store_key_blob(KeyBlob::binary(), Filename::string()) -> none()

Utility function for easily storing key blobs.

Input KeyBlob is a binary key blob, such as that produced by the create identity
command. Filename is the name of the file in which to store the key blob.

Output None

C.3.10 verify quote/5

verify_quote(QuoteData::binary(), QuoteSig::binary(), Nonce::binary(),
AIKPubMod::binary(), AIKPubExp::binary()) -> atom()

This function determines whether a TPM quote is legitimate; in other words,
whether it contains the correct PCR information and nonce, signed by the cor-
rect key.

Input A TPM Quote blob. A list of expected PCR values. The expected input
nonce. The public key of an Identity key that is presumed to have signed
the nonce.

Output True if the Quote contains the input PCR vector and nonce, and is signed
by the private key associated with AIKPub. False otherwise.
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