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Abstract 

Provenance has been touted as a basis to establish 
trust in data. Intuitively, belief in a hypothesis should 
depend on how much one trusts the relevant data. 
However, current proposals to assess trust based solely 
on provenance are insufficient for rigourous decision 
making. We describe a model of provenance and belief 
that is necessary and sufficient to incorporate “trust in 
the data” in a way that supports normative inference. The 
model is based on the observation that provenance can be 
viewed as a causal structure which can be used to 
compute belief from assessments of the accuracy of 
sources and transformations that produced relevant data. 
In our model, data sources are like sensors with 
associated conditional probability tables. Provenance 
identifies dependencies among sensors. Together, this 
information allows construction of causal networks that 
can be used to compute the belief in a state of the world 
based on observation of data. This model formalizes the 
role of source accuracy, and provides a method for 
formally assessing belief that uses only information in the 
provenance store, not the contents of the data.  

1. Introduction 

The Open Provenance Model (OPM) [12] says, “We 
assume that provenance of objects (whether digital or not) 
is represented by an annotated causality graph”. While it 
is possible to argue about whether every provenance 
graph reflects true causality, this paper focuses on those 
domains in which reports about the world are collected 
and fused. In applications such as biosurveillance or 
global warming, we want to determine how much to 
believe derived data. 

Some in the provenance community assume that 
knowing the source of data and how it was manipulated, 
i.e., its provenance, is sufficient to allow a user of the data 
to make decisions based on how much they trust the data. 
Researchers are developing methods to use trust metrics 
on the assumption that they will exist. For example, Dai, 
et al. [4] assume that a measure of trust of a data item’s 
source(s) exist and propose to use it to return the most 
trustworthy results for a query.  

However, most provenance systems simply record the 
origin of data and the processes used to transform original 
data [1, 11, 15]. In these systems, a user reviews the 
provenance of a data item and arrives at her personal 
belief in the veracity of data based on subjective 
assessment of its provenance. In other words, data 
veracity or trust is based on a “gut feeling” that is derived 
externally of provenance management systems. Even 
probabilistic databases [3, 13] merely store the assigned 
probabilities and manipulate them appropriately during 
query execution. 

 
Previous works in computing trust [14] or data quality 

based on provenance [5, 7-9] require information that 
might exist in the data but is not in a typical provenance 
store. For instance, [14] require information such as the 
“reasonableness of data.” Moreover, many data quality 
metrics are based on content [7], uncertainty of the data 
[5], timeliness as calculated with data expiry age [9], or 
accuracy of the data [2], all of which are based on 
information in the data, not the provenance. Our proposed 
model is based solely upon information that uses and 
augments a provenance graph. 

Consider the following example. 
Example: While planning for a trip to Kilimanjaro, you 
notice a State Department advisory cautioning about a 
report of an outbreak of Dengue Hemorrhagic Fever 
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Figure 1: Provenance Information for Dengue 
Hemoragic Fever Symptoms Report 
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(DHF). On the other hand, your favorite adventure hiking 
blog merely reports stomach flu.   

The provenance for these reports is in Figure 1. In light 
of the blog posting, might the State Department be 
overstating the situation? Should you trust the report and 
alter your travel plans? 

With current models of provenance, our intrepid hiker 
has two options. The first is to view the provenance of the 
reports, assign a “gut feeling” about each based on the 
sources that contributed to the reports, and then fuse these 
to arrive at a belief in the final report.  The second option 
is to obtain the original reports, assess the accuracy, data 
quality, timeliness, etc. that went into creating those 
reports and use those assessments to determine if the 
reports correctly indicate existence of DHF symptoms. 
Unfortunately for our hiker, Option 1 incorrectly equates 
the (fused) accuracy of the report’s source(s) with the 
probability that DHF symptoms are present at 
Kilimanjaro and, therefore, exhibits the Base Rate Fallacy 
[16]. Option 2 requires more information than exists in 
the provenance store. Further, such information may not 
exist by the time a decision must be made. (It is 
impossible to measure the accuracy of a report on 
predicted corn consumption in 2010 until 2010 is over 
and the results have been tallied.) 

The main requirement is that the provenance system be 
extended to capture accuracy (sensitivity and specificity) 
of sources. When this is so, the computations needed to 
support decision making are straightforward and 
efficiently performed by off-the-shelf Bayesian network 
algorithms. Our model relies on information in the 
provenance store about how information is propagated 
through the graph, and how accurate each source is. This 
information is used to compute belief in derived data 
items. 

Section 2 describes the models that underlie our 
approach. The model developed to compute belief based 
upon provenance information is presented in Section 3. 
Section 4 describes our planned future work and 
conclusions. 

2. Provenance Foundations 

The choice of a model for lineage information is 
completely independent from the base systems’ data 
models and except for a linking identifier, has no 
communication with the actual base data. We follow the 
OPM convention and represent artifact and process 
entities as nodes [12].  A lineage graph, then, is a triple, 
consisting of a graph identifier G, a set of nodes, N, and a 
set of edges, E. Provenance information forms a Directed 
Acyclic Graph (DAG). This paper is not concerned with 
the implementation of the graphs, which could be 
relational, RDF, XML, etc.  

3. Belief, Evidence, and Causality 

We are interested in using provenance to support 
decision making. For instance, should you go to 
Kilimanjaro, not go, or acquire additional data that might 
clarify your travel decision? If we are to use provenance 
to make such decisions in a rigorous manner, we must 
augment it with probabilities [10].  

In order to formalize our derivations, we employ 
propositional semantics. A proposition is a sentence 
expressing something true or false. Belief in a proposition 
is one’s subjective probability that the proposition is true. 
Notationally, belief in proposition C that there are 
symptoms of DHF at Kilimanjaro is written p(C).  

3.1. The influence of evidence on belief 
Belief often is not static; rather, it is influenced by 

evidence. In the example, it stands to reason that one’s 
prior belief in the presence of DHF symptoms at 
Kilimanjaro, p(C), might increase in light of one or both 
of the reports. Belief in proposition C in light of 
proposition E is written p(C|E) and called the conditional 
probability of C given E. The definition of conditional 
probability is: 

         (1)  

In words, the probability C is true (e.g., DHF 
symptoms are present at Kilimanjaro) given E (the State 
Department or blog report) is the proportion of the times 
one expects C and E to co-occur when E occurs. By 
division, p(C⋀E) = p(E|C) * p(C). Substituting this 
identity in (1) yields Bayes’ rule: 

 
    (2) 

Where p(E) = p(E|C) * p(C) + p(E| ¬C) * p(¬C). 

3.2. Source accuracy and weight of evidence 
Accuracy is the proportion of true results – both 

positive and negative – in all the results produced by a 
source. Thus, both components of accuracy, – a source’s 
true positive rate p(E|C) and a source’s true negative rate 
p(¬ E| ¬C) [equal to 1-p(E| ¬C)] are required to calculate 
belief in proposition C given evidence E. Note that p(C|E) 
is not equal to the accuracy of the source or the sources 
true positive rate p(E|C) or p(E).  

3.3. Causal chains 
In this exposition we denote evidence by E and the 

state of the world by C in part to evoke the idea that 
evidence (i.e., data) is an effect caused by a state of the 
world. In our example, E is either the State Department 
advisory or the blog report, and C is the disease symptom 
that engendered that report.  
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The occurrence of a symptom DHF is likely not the 
primary concern of our hiker, but rather it is the 
possibility of the presence of DHF that is the ultimate 
concern. An advantage of causal models is that they can 
be extended to represent a chain of causes and effects that 
allows us to address sequences where the effects 
represented by data can be traced back to the original 
source.  

Let us denote the presence of DHF at Kilimanjaro by 
S. The causal network that captures the knowledge that S 
may have caused the symptom C that engendered report E 
is: S  C  E. 

Without going into details, note that Bayes’ rule is the 
normative way to compute p(S|C) and that using a chain 
of conditional probabilities it is straightforward to 
compute the belief p(S|E).1 

This means that provenance graphs such as depicted in 
Figure 1 can be translated into causal Bayesian networks 
that support inference about evidence provided by data.2  

3.4. Integrating causal reasoning with 
provenance 

One issue of significance is that causal networks begin 
someplace and that someone must provide the a priori 
probability of each node that has no parent. In our 
example, there are four such nodes. But notice that these 
nodes represent data and not what caused the data to be 
observed (possibly incorrectly). In reality, the state of 
interest to our hiker is DHF which may have caused the 
reports at the head of the provenance graph but is not 
represented in the graph. Without knowing the probability 
of DHF at Kilimanjaro before any evidence was acquired, 
it is impossible to compute p(DHF|reports). This 
illustrates that a provenance graph is not sufficient for 
inference; an external domain model must augment it.   

From the exposition above, it should be clear that for a 
single source of a single piece of data (about a single 
external cause) we require the probability the source will 
report the data when the causing state is true and the 
probability the source might report the data when the 
causing state is not true (i.e., the probability the source 
issues an incorrect report). But our exposition was only 
about a single source and a single data item. There are 
only two other cases: 

Figure 2(a) depicts single cause C, or multiple 
independent sources of data. This graph structure means 
that p(C | E1 & … & En) = p(C|E1) * … * p(C|En). 
Therefore, to support inference we need only the 

                                                           
1 In practice these computations are performed using 

algorithms that implement Bayesian belief networks and 
are available in a number of off-the-shelf systems. 

2 The translation from a provenance graph to a causal 
Bayesian network is direct since provenance forms a 
directed acyclic graph. 

individual conditional probabilities associated with each 
source (E nodes).  

Figure 2(b) shows data derived from multiple sources. 
In this case, the conditional probabilities for E must 
specify the probability of each state of E for every 
possible combination of states of C1-Cn.  

3.4.1. Generating conditional probability tables 
There are three possible ways to enumerate such a 

conditional probability table. The least desirable is to ask 
an expert on the sources. This can be an onerous task 
prone to cognitive biases.  

A second way is to use a learning algorithm. For each 
combination of values of the C nodes, one would initially 
assign equal probability to each possible value of E. 
These probabilities would be updated as one obtained 
verification of the accuracy of the sources. The problem 
with this approach is that it requires knowledge of results 
which may be in short supply for rare events (e.g., how 
many times have you assessed the accuracy of health 
alerts by the US embassy in Tanzania?). 

A third way to produce such tables, which we are 
investigating in our research, is to create a set of models 
that are parameterized according to what is immediately 
“upstream” in the causal graph from C1-Cn. For example, 
if all predecessors of E have a common ancestor in the 
provenance graph, that means they are not conditionally 
independent from node E’s point of view. In such a case 
p(E | C1), …, p(E | Cn), and p(E | C1 & … & C2) might 
be assumed to be approximately the same when C1-Cn 
are of the same class having members with approximately 
the same accuracy in repeating what the common source 
says. If C1-Cn draw from independent sources we can use 
what is called a “noisy or” in Bayesian network 
terminology. 

3.4.2. Independence and the Single Source Problem 
Utilizing the causal reasoning described above, a large 

problem in the provenance world is solved automatically: 
the single source problem. For example, knowing that an 
assertion that Iraq was developing weapons of mass 
destruction was based on a single source code-named 
“Curveball”, as opposed to four independent sources, 
might have influenced belief in the WMD assertion. 
Meanwhile, four independent sources should create a 
higher belief in the resulting report [6]. Because 
provenance is a DAG, this can be accounted for with 
conditional probabilities. Moreover, partial dependencies 
in the graph, such as the one that exists in Figure 1, are 

E

C1

Cn

C

E1

En

… …

a) b)

 
Figure 2: Sample Causal Graphs (a) single cause, 
(b) multiple sources 
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also automatically comprehended by the use of causal 
reasoning. 

3.4.3. Impact of Processes 
Processes have a large impact on the belief of their 

derived data. Consider in our example, the process 
“Embassy Forward”. Suppose this was done via a 
disenchanted intern, whose selection of what material to 
copy and forward was done haphazardly. The final Travel 
Advisory could look very different from one created by 
the bright, excited intern who fully read and understood 
the Tanzanian Ministry of Health’s report. Initially, all 
processes can use a default conditional probability table. 
However, these could be altered if some information is 
known about a specific process; e.g. the good intern’s 
conditional probability table would be the identity matrix 
while the bad intern’s table would give less credence to 
the information produced. Figure 3 contains samples of 
all three conditional probability tables for the “Embassy 
Forward” process. 

Default  Good Intern  Bad Intern 
E1\E2 T F  E1\E2 T F  E1/E2 T F 

T .9 .1  T 1 0  T .8 .2 
F .1 .9  F 0 1  F .4 .6 

Figure 3: Conditional Probability Tables for Default 
processes, and modifications when better background 
knowledge exists for the “Embassy Forward” process. 
E1 is the Tanzanian Report, E2 is the intern output. 

4. Conclusions and Future Work 

In this work, we highlight the need to formally model 
and compute trust utilizing provenance information. 
Unlike previous works, we rely purely upon the graphical 
structure contained in the provenance store to provide a 
base assessment of the belief in the final resulting data 
item. If the user has any extra knowledge about the 
quality of the processes utilized during transformations, 
this can be incorporated for a better calculation of belief, 
but is not required for a basic calculation. This approach 
has two major benefits. First, it decouples the assessment 
of belief from any information that is not directly stored 
in the provenance graph. Second, it gracefully accounts 
for independent, shared source and single-source reports. 

We intend to explore further areas of research. First, 
we wish to build on this work to refine the model for 
computing belief based on initial assessments of source 
quality (separate from the data produced by that source) 
as well as better automatic computation of process effect 
on transformed evidence. Second, we will apply these 
belief models to inform users of the likelihood of different 
hypothesis. For instance, we could use the belief in the 
reports, as discussed herein, to propose a hypothesis that 
better explains the evidence. Finally, we will utilize the 
belief computed here, along with different disease models 

to direct an investigator’s search for better evidence. For 
instance, based on the belief calculated for the US 
Warning of DHF, it would be better for our hiker to 
search out an additional, independent report, such as one 
from the World Health Organization.  
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