
Towards Query Interoperability: PASSing PLUS

Uri J. Braun, Margo I. Seltzer
Harvard School of Engineering and Applied Sciences

Adriane Chapman, Barbara Blaustein, M. David Allen, Len Seligman
The MITRE Corporation

Abstract
We describe our experiences importing PASS [14] prove-
nance into PLUS [7]. Although both systems import and
export provenance that conforms to the Open Provenance
Model (OPM) [12], the two systems vary greatly with
respect to the granularity of provenance captured, how
much semantic knowledge the system contributes, and
the completeness of provenance capture. We encoun-
tered several problems reconciling provenance between
the two systems and use that experience to specify a
Common Provenance Framework, that provides a higher
degree of interoperability between provenance systems.
In each case, the problems stem from the fact that OPM
interoperability is a weaker requirement than query inter-
operability. Our goal in presenting this work is to gener-
ate discussion about differing degrees of interoperability
and the requirements thereof.

1 Introduction

The Provenance Challenges [16, 17, 18] were a set of
community exercises designed to help refine and shape
the Open Provenance Model [12]. Each of the Chal-
lenges was centered on a simple workflow. The First
Provenance Challenge [16] focused on collection and
querying of provenance information within individual
provenance systems. The Second Provenance Chal-
lenge [17] began looking at interoperability. Each par-
ticipant ran a subsection of the designated workflow and
then attempted to run designated queries over the en-
tire workflow, using provenance captured by many dif-
ferent systems. The results of this Challenge informed
the creation of the Open Provenance Model, designed
to standardize core provenance concepts. The Third
Provenance Challenge [18] again focused on interoper-
ability. Each participant ran the entire workflow and
published the results representing an OPM provenance
graph. Other participants then imported these prove-
nance graphs and executed queries over it.

The Provenance Challenges have been successful in
that they have enabled the production of a largely ac-
cepted model for representing provenance. Additionally,
they have honed that model to address the needs of many
diverse systems. Moreover, they have accomplished all
of this in an incredibly short time period while involving
dozens of groups with different agendas. However, the
nature of the experiments within the Provenance Chal-
lenges has directed the spotlight in particular areas, omit-
ting other possible issues. This work highlights a few of
those areas illustrating the problems we encountered and
leading to our recommendation of a higher level standard
to increase provenance interoperability.

We investigate the challenges involved in integrating
two systems that both export and import OPM graphs.
Our goal was to import data from the Harvard Prove-
nance Aware Storage System (PASS) [14] system into
MITRE’s PLUS system [7]. PLUS provides the ability to
visually represent and query provenance, as well as per-
form basic queries over graphs, such as “return all Word
documents within four steps of a ‘string search’ process”.
We wanted to go the next step and be able to query infor-
mation captured in a completely different system using
the visualization and query tools of our system.

Although both systems can represent their provenance
information in an OPM representation, and PASS had
successfully integrated data during the Second Prove-
nance Challenge, we found that we needed more com-
monality to perform the query and visualization tasks we
wanted, using our own workflows. Our work illuminates
the areas that fall outside of the scope of the OPM, but
are still critical to achieve semantic integration between
provenance systems. In particular, we identify the need
for systems to make common assumptions about report-
ing order, object referencing and object identification to
facilitate meaningful query across multiple provenance
systems. We call this desired goal query interoperabil-
ity.

We use our experience integrating PASS and PLUS

1

© The MITRE Corporation. All rights reserved

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 09-5309



provenance data to begin defining a richer semantic
model on top of OPM; our goal is to allow provenance
systems to share provenance and data at a sufficient level
that we can use a set of common utilities to query the data
and make both semantic and structural inferences. OPM
lays the foundation by providing a data representation in-
terchange layer. Using it, it is possible to write a parser
between systems for simple, well defined workflows and
make certain inferences about a provenance graph. Our
Common Provenance Framework dictates aspects of the
semantics and representation necessary to query prove-
nance across different systems. In particular, we propose
a set of concepts, constraints and tools that are essential
to true query interoperability between systems.

In this paper, we:

• identify the challenges encountered in importing
PASS data into PLUS, and

• recommend a Common Provenance Framework that
addresses these challenges, providing an increased
degree of interoperability for use with the OPM.

The remainder of this paper is organized as follows.
We begin by describing the PASS and PLUS implemen-
tations and reviewing the OPM in Section 2, while Sec-
tion 3 describes the manner in which we attempted to
integrate the two systems. Section 4 discusses chal-
lenges we encountered in trying to import PASS data into
PLUS. In Section 5 we describe our recommendations in
the form of the Common Provenance Framework that can
be utilized with the OPM model and schema. Finally, we
discuss related work and conclude in Sections 6–7.

2 Background

In this section, we review the OPM and then highlight
those aspects of the PASS and PLUS systems needed for
later discussion.

2.1 Open Provenance Model
The Open Provenance Model (OPM) is a proposed stan-
dard for describing provenance data [12]. The standard-
ization process used a series of community challenges
[11, 16, 17, 18] to identify provenance concepts common
across disparate systems. This integration involved each
team constructing tools to import and export data to and
from other systems. The goals of the OPM are:

• Facilitate provenance information exchange be-
tween systems,

• Allow developers to build and share tools that oper-
ate on conforming provenance

• Define a precise, technology-agnostic model of
provenance,

Table 1: Object types as defined in OPM, PLUS and
PASS

OPM PLUS PASS

Artifact Data Object File
Activity Activity File (an executable)
Process Invocation Process

• Support a digital representation of provenance for
any artifact, digital or otherwise, and

• Define a core set of rules that identify valid infer-
ences over provenance graphs.

The OPM currently consists of a base model and a
schema encoding a representation of this model in XML.
OPM divides the world into entities and edges. There are
three types of entities and five types of edges. Values are
additional attributes attached to entities providing addi-
tional information about the entities they describe.

Table 1 provides the mapping between the OPM terms
for the three different entity types and their counterparts
in PASS and PLUS. While PLUS explicitly supports the
five different edge types of the OPM, PASS places virtu-
ally no restrictions on edge types; that is PASS edges are
named, but names can be arbitrarily created. In addition
to edge type, an edge may have annotations specifying
roles that describe the relationship between the entities
it connects. The OPM Schema is a direct reflection of
the model described above. The high-level elements are
the same as in the OPM model: graph, agent, process,
artifact, account, etc.

2.2 PLUS
MITRE’s PLUS system is a Java application with a
MySQL database back-end that supports the reporting,
storage, and query of provenance data. Applications
record lineage information (provenance) by explicitly re-
porting it using PLUS standard APIs. Alternately, appli-
cations can use a set of pluggable PLUS lineage report-
ing modules, allowing them to log lineage data without
application modification. A PLUS artifact can be any
object the user wishes to register, for example, strings,
files, XML messages, relational data items of arbitrary
granularity, etc. Similarly, “activities” can be logged and
can take any form, be it a web service, a representation
of a human activity like “produce analysis report”, or a
program run on an operating system. “Invocations” are
concrete instantiations of those activities. “Invocations”
are closely aligned with the OPM concept of “Process”.

PLUS can operate in two modes; either as a passive

2

© The MITRE Corporation. All rights reserved



Figure 1: The PASS-PLUS architecture.

recipient of objects that are reported by another system
or as an active observer, in the case where an application
uses one of the lineage reporting modules provided by
PLUS. Because PLUS focuses on logging lineage in dis-
tributed systems, situations can arise where capturing a
complete lineage graph is not possible. As such, the lin-
eage graphs in PLUS can be sparse, depending on the in-
formation that can be feasibly reported or observed given
the technical infrastructure.

PLUS assigns each object a unique id, which is gen-
erated by computing a time dependent random value.
PLUS identifies edges by a combination of the incident
objects and the graph in which they participate.

2.3 PASS

Harvard’s PASS system is a modified Linux kernel that
intercepts system calls, translating them into provenance
events as appropriate. Like PLUS, PASS also provides
a standard API through which applications can disclose
provenance objects and relationships. PASS represents
artifacts, activities, and processes as objects. Objects
can be either active or passive. Artifacts are passive ob-
jects corresponding to Linux files, construed broadly to
include pipes, sockets, etc. Activities are also passive ob-
jects corresponding to Linux binaries. OPM Processes
are active objects that correspond to Linux processes,
which are effectively invocations of an executable file.
As we shall see, this last mapping is actually a bit more
complex.

PASS assigns each object — both artifacts and pro-
cesses — a pnode or provenance node. As the objects
represented by these nodes change, PASS increases the
version number of the corresponding pnode to differen-
tiate the states of the object at different points in time.
Thus, at any given point of time, an object is represented
by a [pnode, version] pair. Pnodes inherit all attributes
from prior versions, and there is an implied relationship
between two consecutive versions.

PASS collects metadata for each pnode it records. For
artifacts this includes: the class of object — file, pipe,

Table 2: Workflows imported from PASS into PLUS

Workflow Entities Edges Size
Versioned Not

tsx 114 25 36 27KB
challenge 42,252 5,479 24,657 5.9MB
gawkpkg 152,541 21,895 83,282 50MB

socket; name and path; times for creation and version-
ing; and creator. For processes this includes: name, in-
put files, command line arguments, timestamps for cre-
ation and versioning, and parent process. Entities in-
herit the attributes of prior versions of the pnode. Thus
the provenance explicitly associated with a particular
[pnode, version] pair is a subset of the complete prove-
nance for the pnode. Although an activity might be rep-
resented as an executable file, PASS does not recognize
the executable file as different from any other input to a
process, so there is no easy way to identify activities.

3 System Integration

Our goal in integrating data from PASS and PLUS was
to demonstrate that it is possible for two rather different
systems embodying different philosophies of recording
vs. observation, collection mechanisms and focus to pro-
vide provenance query interoperability. This demonstra-
tion did not require any kind of tight coupling between
the systems, and we intentionally avoided such a cou-
pling. Figure 1 depicts our initial integration of the two
systems. Our intended integration model was to simply
have PASS export its data in a standardized XML format
(using the convert2xml utility developed for the Sec-
ond Provenance Challenge) and have PLUS import stan-
dard XML via its importer. However, we discovered
that the standard XML was not sufficiently well specified
to facilitate query interoperability.

We used the provenance from several different work-
flows to test the correctness of the integrated systems.

3

© The MITRE Corporation. All rights reserved



Our smallest workflow, tsx, was a test program that sim-
ply writes a fixed string to one file, reads that file and
writes what it read to a second file. The next small-
est workflow, challenge, consisted of the provenance we
gathered for the First Provenance Challenge. Our largest
workflow was gawkpkg. It was created by untarring
and compiling the gawk package. Table 2 contains the
breakdown of each of the three workflows in terms of
numbers of entities and edges and overall file size. We
count entities in two ways, either considering each ver-
sion as a distinct entity — under column “Versioned” —
or treating all the versions collectively as a single entity
— under column “Not”.

There are two important characteristics to note. First,
according to PASS, all the entities are versioned. Sec-
ond, our gawkpkg workflow is significantly larger than
the challenge workflow. These two characteristics made
provenance integration significantly more difficult than
previously experienced in the provenance challenges. In
the next section, we discuss those challenges, leading
into Section 5 where we propose a framework for mov-
ing forward in provenance interoperability.

4 Challenges

The challenges we encountered fell into three general
categories: provenance encoding, object identity includ-
ing issues of naming and versioning, and verification of
provenance across systems. In each case, the problems
stem from the fact that OPM interoperability is a weaker
requirement than query interoperability. Query interop-
erability requires a deeper semantic understanding of the
nodes comprising a provenance graph.

4.1 Encoding

While OPM defines specific object types, it intentionally
avoids defining representations of those objects or even
how to specify object types. However, query interoper-
ability requires understanding object types and details of
process activation such as command-line parameters and
their order. We found that unresolved and forward ref-
erences, both of which are allowed by OPM, proved dif-
ficult to handle in the large provenance graphs we were
manipulating.

4.1.1 References

When the XML representations of provenance graphs ex-
ceed memory sizes, addressing forward and unresolved
references becomes challenging.

Forward References OPM places no restrictions on
the order in which nodes are defined in an XML rep-
resentation of the provenance graph. PASS orders nodes
by pnode and version, since this is the order it uses in-
ternally. This inevitably produces an XML representa-
tion with forward references. Many systems, including
PLUS, view history and therefore provenance as static.
In such systems, provenance records are naturally im-
mutable. In PLUS, an object must be defined before
it can be used, so forward references pose a problem,
and schema verification is not sufficient to detect docu-
ments that incorporate them. Therefore, as soon as we
encounter a forward reference, we create placeholders
for the not-yet-defined nodes awaiting their resolution.
As the number of nodes grows, this becomes a resource
consumption issue.

Unresolved References OPM specifies that objects
have unique identifiers, and therefore does not require
that all identifiers referenced in an OPM graph also be
defined in that graph. PASS takes advantage of this
fact and produces OPM graphs containing references to
nodes that are not defined in the XML representations of
them. Not only do these unresolved references pose a
challenge for interoperability, simply identifying which
references are unresolved is non-trivial. XML schema
validation is insufficient, so more brute-force approaches
are necessary and these become computationally expen-
sive. At present, we cannot distinguish an unresolved ref-
erence from a forward reference until we get to the end of
the XML file. Therefore we end up treating them just like
forward references, crating placeholders for them until
we get to the end of the file and realize that they are un-
resolved.

4.1.2 Entities

In addition to challenges posed by references, the targets
of those references, entities, also introduce interesting
problems. It is not clear whether all OPM documenta-
tion agrees as to how to encode entity types or identify
entities of being of a particular type. For example, it is
unclear whether activities are widely accepted as they do
not appear in the XML schema [13, 3]. Furthermore, al-
though OPM provides for the representation of process
arguments, we need additional specifications of those ar-
guments to facilitate query interoperability.

Entity type PASS versions objects to represent those
objects at different points in time. As mentioned in Sec-
tion 2.3, PASS versions are implicitly related. However,
PASS identifies entities as being either artifacts or pro-
cesses when they are first created, thus the type is as-
sociated only with the first version of an entity. There-

4

© The MITRE Corporation. All rights reserved



fore, identifying the type of an entity requires tracing the
version relationship back to the initial version. Because
there is no requirement that all versions of an entity ap-
pear in an OPM graph it may be impossible to identify
an entity’s type.

Arguments While the OPM can deal with arguments
to processes and even offers the ability, through roles,
to describe how those arguments are used, the schema
allows for too much flexibility in encoding arguments.
For instance, it is not clear how to specify command line
arguments and environment variables. Command line ar-
guments are a vector; order and repetition matter. Some
processes allow -v to be passed multiple times with each
specification raising the verbosity of the output. Other
commands support flags with opposite meanings with the
last specified taking precedence. We know of no agreed
upon ways in the provenance community to record vec-
tors in a way that preserves the semantics we have just
described. While order is an attribute that can be added
within a schema, the required repetitions, order and se-
mantics of understanding certain arguments cannot be
well defined purely through schema validation.

Activities Consider how PASS might explicitly repre-
sent activities. An activity store could be specified ei-
ther as the name of the executable or the pnode and ver-
sion corresponding to that executable. Given the OPM
model and schema, it is not clear which of the two is cor-
rect. While the difference may seem irrelevant, next con-
sider a binary file that supports several execution modes.
By reporting just the name of the file, the exact execu-
tion mode is lost. For example, in many systems grep,
egrep and fgrep invoke the same executable – the
name by which the executable is invoked dictates its be-
havior. Is grep best modeled as one common activity
or or three separate activities? The existence of a model
and schema state that an activity exists, but gives no in-
dication as to the semantics of how that activity should
be recorded and queried.

4.2 Identification
Entity identification is a fundamental attribute of prove-
nance. However, the notion of identity becomes blurred
in the presence of mutation. Systems such as PLUS that
consider only immutable entities handle mutation by cre-
ating new entities; systems such as PASS represent mu-
tation through versioning. OPM happily supports both
representations, but query interoperability requires that
we be able to translate from one to the other.

Naming PASS identifies objects by a pnode,version
pair whereas PLUS uses a randomly generated unique

id. This means that references to other nodes must be
converted from pnode version pairs to PLUS identifiers.
This requires that an importer maintain a mapping, which
consumes considerable overhead when dealing with tens
of thousands of records.

Versioning Because PASS uses versioning to represent
mutation, it can create OPM edges between consecutive
versions of objects. However, these edges have impor-
tant semantic meaning that is not captured by existing
edge types. This poses a problem as the PLUS visual-
ization tools had no idea how to deal with these implicit
relationships.

4.3 Verification
Given an XML representation of an OPM graph, the only
validation possible is schema validation. Schema val-
idation ensures only that the XML file being transmit-
ted from one system to another conforms to the given
schema in terms of elements and structure. This guaran-
tees that an edge or artifact has the appropriate attributes
populated and that edges are of appropriate types. How-
ever, it is impossible to require and check higher level
constraints, such as those discussed in the previous sec-
tions. For instance, schema validation cannot determine
that the nodes incident to an edge are all unique, i.e., that
there are no self loops. Currently, within a valid OPM
XML document, it is possible to state that an edge exists
between a node and itself, despite the fact that this is in
clear violation of the OPM model.

5 Common Provenance Framework

Our experience merging data from two systems suggests
that mere conformance to OPM is insufficient to facili-
tate the integration that we needed. We suggest that there
are a collection of concepts, constraints, and tools that
are crucial to manipulating provenance from heteroge-
neous systems.

We begin by introducing dictionaries and collections
as abstract concepts essential to reasoning about prove-
nance across systems. Then we introduce a number
of constraints that we want to impose on the prove-
nance documents we exchange. Finally, we introduce
the Schematron [4] to validate that a document conforms
to both the OPM and our constraints.

5.1 Concepts
Naming is repeatedly identified as one of the challenging
aspects of provenance integration. We introduce dictio-
naries to address that problem. A second challenge arises
out of the fact that different provenance systems capture

5

© The MITRE Corporation. All rights reserved



data at different semantic levels and different granulari-
ties. We propose collections to manage this complexity.

Dictionaries While we might be able to impose con-
straints to create a consistent naming system among dif-
ferent systems, for example, we can require that all ar-
tifacts begin with “Artifact”, the same object on two
different systems may still be referenced using differ-
ent names [17], which creates problems. We propose
source identifiers and explicit naming dictionaries to ad-
dress this problem. Source identifiers specify the system
from which the data is being imported; naming dictio-
naries map names on one system to names on another
system.

Let’s consider the use of dictionaries in the
PASS/PLUS scenario. Imagine that we have an object
represented in a PASS file by the pnode 42 and the ver-
sion 7. We will refer to the PASS name by the tuple
[42, 7]. PLUS wants to use the unique ID 123456789
to reference the object. Let’s assume that the PASS
source identifier is PASS-v2.0-140.247.60.118, which
identifies that this is a PASS export from version 2.0 of
the PASS system, generated by the machine with the IP
address 140.247.60.118. The PASS exported file must
contain a dictionary entry that maps [42, 7] to PASS-
v2.0-140.247.60.118[42, 7]. When PLUS imports this
object, it creates a dictionary entry mapping 123456789
to PASS-v2.0-140.247.60.118[42, 7]. Now, one can con-
struct tools that translate between the different names of
the object.

We can take this example one step further. Let’s imag-
ine that PLUS now wants to export this object to a third
system. The PLUS export dictionary must contain a
mapping for the object, but it has two ways of expressing
that mapping. It can either export it as an object with its
own source ID or it can export the originating reference
– correct behavior is a function of the access controls
on the object. That is, it can export a dictionary map-
ping: 123456789 to either PLUS-123456789 (the local
name) or PASS-v2.0-140.247.60.118[42, 7] (the origina-
tor’s mapping).

Together source identifiers and naming dictionaries
provide the ability to translate names in one provenance
system to names in another system and transfer such ref-
erences among arbitrary systems.

Collections Dictionaries solve a naming problem
when objects map 1:1 between systems. However, when
mappings are many:1 or 1:many, a simple dictionary is
insufficient. Consider the interoperability that arises be-
tween two systems one of which tracks provenance on
lines (records) in a file, while the other tracks provenance
on the file in its entirety. The file is composed of a col-
lection of lines; it is useful to explicitly represent that re-

lationship in a way that facilitates assigning provenance
attributes to the correct object (a particular line or the
entire file).

We propose an encoding for collections that is flexible
enough to support multiple uses. Combining collections
encode multiple objects (e.g., lines of a file) as a single
object (e.g., the file), including any edges relating the
members of the collection. This provides a way to assign
a unique identity to the collection itself. A Version col-
lection is a special form of a combining collection that
encodes object mutability as expressed via versioning,
as is done in PASS. In a version collection, the relation
expressed by the edges of the members of the collection
is the versioning relationship. Splitting collections han-
dle the inverse of combining collections. In this case, we
encode a single object as multiple constituent objects. It
splits the one object into several component objects and
edges, creating explicit edges in the provenance graph
expressing how those components comprise the original
object.

In the PASS to PLUS conversion, we use Version com-
binations to coalesce all versions of an entity to a sin-
gle entity for manipulation in PLUS. While the split col-
lection is not used in this effort, if we were going from
PLUS to PASS, it could prove useful.

5.2 Constraints
Dictionaries and collections provide key concepts to fa-
cilitate provenance exchange, but we can go further if we
are willing to constrain how we represent provenance.
The constraints serve two purposes: model-integrity and
query interoperability. Model-integrity ensures that the
graph represented in an XML document is conformant
to the OPM Model. Query interoperability formally de-
fines the semantics of entities and activities in a manner
that ensures the ability to execute provenance queries on
provenance data assimilated from more than one system.

Reference Requirements As discussed in Section 4,
forward and dangling references posed problems for
PLUS when ingesting PASS data. We address dan-
gling references via the dictionary and forward refer-
ences through ordering.

It is infeasible to remove dangling references entirely.
Consider a computational scientific experiment where
years of research and provenance describe an experimen-
tal result. We would like to be able to exchange the
output data with colleagues and provide provenance so
they can continue working with the data and produce fu-
ture results. However, we do not wish to require that the
provenance captured explicitly contain the entire several-
year history of the data. Thus, at some point, we want the
provenance transmitted to be sufficient permit queries on

6

© The MITRE Corporation. All rights reserved



the original system when necessary. In lieu of removing
dangling references, we require that all entities not ex-
plicitly defined in the exported provenance contain dic-
tionary references that can be used to query about that
entity.

In the case of our research result above, it may be
sufficient to simply transmit the data object itself with
nothing more than a single dictionary entry that tells the
receiving entry the source identifier and local name of
the object. Thus the OPM graph would contain a single
node representing the entity. In PASS this node would
be named with a pnode,version tuple and the dictionary
entry would be: [pnode, version] maps to PASS-v2.0-
140.247.60.118[pnode, version]. The exporting system
might choose to export more data such as the graph de-
scribing the last transformation that produced the result
with dictionary entries for every input to that result.

Forward references are, in some sense, simpler – we
just require that we define nodes before we reference
them. This suggests that we need to either perform a
topological sort on all the nodes in the exported prove-
nance graph, or that we output ancestors before their de-
scendants. In practice, this proves potentially challeng-
ing. It is significantly easier to maintain ancestry links
from children to parents, because at the time a child is
created, it knows the identity of its ancestors, while the
set of children of a node may be constantly growing.
Nonetheless, we believe that the burden of sorting should
rest with the exporting system, not the importing system,
so we require that entities be topologically sorted in the
export file.

Acyclic Constraints While the OPM and every other
formal model of provenance of which we are aware de-
scribe provenance as forming a directed acyclic graph
(DAG), it is possible to create schema-conforming XML
representations of an OPM graph that are cyclic. Clearly,
we need to make this invalid, thus we impose the con-
straint that the XML not represent cyclic graphs.

Entity Constraints Entity types are fundamental to
OPM and to other provenance models and representa-
tions. Regardless as to whether an entity is an artifact,
process or even a collection we argue that its type must be
known. As we mentioned earlier, it is not clear whether
or not this is a hard requirement considering the dif-
ferences between the various OPM documents and the
XML schema. We argue for keeping the type informa-
tion outside the dictionary because we are transferring
the type information with the individual nodes and main-
taining this binding should simplify collections and as-
sure there is one location for type information — there-
fore no disagreement. Note that a collection that repre-
sents a process, might contain artifacts. This mapping

and its complexities should be encoded in the system not
a dictionary. Without types, it is difficult, if not impos-
sible, to make inferences over the graph, thus we further
constrain provenance graphs to contain only typed refer-
ences. Since it is not clear how a receiving system should
handle a reference to an invalid or untyped reference, we
propose only allowing subclassing of an agreed upon set
of entity types.

Constraint Summary We have outlined four con-
straints we wish to impose on provenance to better facil-
itate interoperability. We believe there are other worth-
while constraints and encourage the community to agree
upon a common set. We summarize our constraints here.

• All references not defined in an exported file must
appear in the dictionary.

• Entities should appear in topological order in the ex-
port file.

• The exported graph must not contain cycles.
• Every entity must specify its type.

5.3 Verification

Many of the constraints described above are implicit in
the OPM model. The trouble arises because schema val-
idation is insufficient to verify that all the constraints are
observed.

XML schema validation makes guarantees about the
structure of an XML document and the values it can con-
tain. While schema validation can check the schema
to ensure that the appropriate element types are used,
schema verification can not enforce ancestor-descendent
relationships. Schema validation can check to ensure that
a subset of values are used in the XML document for
an attribute, as defined in the schema. Schema verifi-
cation can go a step further, restricting values across at-
tributes based on the values of other attributes [3]. The
Schematron [4] is a post-Schema “rule-based verifica-
tion for making assertions about the presence or absence
of patterns in XML trees,” [5]. We propose the use of
a Schematron to ensure that documents conform to the
OPM and strictly adhere both to the OPM and additional
constraints of the Common Provenance Framework.

Schematrons provide the power to create rules across
elements and attributes (and their values). However,
Schematron rules must be crafted carefully to be sure that
the appropriate rules fire in the appropriate order. For in-
stance, consider the constraint that all red cars must have
grey interiors. If an XML document contains a brick red
car, the rule does not fire, and the document will pass ver-
ification even if the interior is not grey. Thus, in adopting
a Schematron, we must take care in specifying rules and

7

© The MITRE Corporation. All rights reserved



constraints in sufficient precision and generality to facil-
itate the development of the other tools.

6 Related Work

The First Provenance Challenge [16] compared query re-
sults on a common workload, whereas the second and
third challenges sought to test interoperability by forc-
ing groups to import and query data from other groups.
Over the course of the first two challenges the work-
load and queries remained the same, while the third chal-
lenge introduced a more complex workflow and set of
queries [18]. Very diverse groups participated in the
challenge, each with their own ideology on what prove-
nance information to capture, from the grid [15], to
workflow executions [8] to higher-level workflow modi-
fications [19]; and unique storage mechanisms, from re-
lational [9], to RDF triples [6]. The diversity of systems
and experiences produced agreement on a few notewor-
thy aspects of provenance. Everyone now agrees that
provenance forms a directed acyclic graph (DAG). There
is also agreement that objects can be artifacts or pro-
cesses. Some also distinguish activities, where processes
are instances of activities[13].

To cope with a higher degree of interoperability, we
propose a set of constraints, concepts, and tools. These
concepts and tools are not unique to provenance. For
example, dictionaries are widely utilized to map con-
cepts or objects between systems. MiMI [10] utilizes a
set of dictionaries provided by the National Center for
Biotechnology Information (NCBI) to relate and inte-
grate proteins that are reported in disparate systems un-
der disparate names. Additionally, the idea of having
constraints over an XML schema is not new; nor is the
use of a Schematron [4]. In fact, production systems ex-
ist that actively rely upon the use of the Schematron to
further constrain and check XML documents between
systems. One of the most famous systems is in use by
Health Information Technology Standards (HITSP) to al-
low sharing of medical records between medical institu-
tions. US law requires that all electronic health records
are exchanged in the C32 format, which has an XML rep-
resentation. NIST’s Schematron [2] and Laika [1] per-
form XML verification of valid C32 documents before
they are exchanged between medical institutions.

7 Conclusions

In this work, we utilize the OPM model [12] and
schema to exchange provenance information between the
PASS [14] and PLUS [7] provenance systems. Our goal
was to achieve query interoperability. In other words,
we wished to use the visualization and graph query ca-

pabilities of PLUS over provenance collected and stored
by a completely different system, PASS. While the OPM
model and schema provided a good starting point, OPM
interoperability is not query interoperability. After en-
countering and working through a series of challenges
during the integration, we arrived at set of recommen-
dations for a Common Provenance Framework that in-
cludes additional concepts, constraints and tools The
Common Provenance Framework builds on the OPM for
tighter and easier query interoperability.

We have recommended a series of constraints to fa-
cilitate the transfer of richer semantics when transferring
provenance between systems. Enforcing a topological
order, defining unresolved references and forcing all en-
tities to make their entity-type explicit greatly simplify
importing provenance into other systems. We also sug-
gest other specific constraints to enrich the semantics.
Dictionaries provide a mechanism for bridging identity
between the exporting and importing systems. Collec-
tions bridge the granularity divides that occur when an
entity on the exporting system maps to either several or
part of an entity on the receiving system. Version collec-
tions provide a way of handling versioning constraints.
We recommend the use of vectors to encode entities —
such as command line arguments — where the number
and order of the arguments is semantically meaningful.
We recommend the use of Schematron to enforce these
constraints.

A Common Provenance Framework built on top of
OPM should allow systems to share a common sense of
object identity and provide the ability to share query and
visualization tools. The scheme should allow for main-
taining identity in distributed environments. It should
also allow visualizations to realize more than just a com-
mon sense of entity-type and relationship-type. Given a
richer encoding for parameters, it should be possible to
cross domains and still preserve the semantic meaning of
the parameters from other systems. Collections should
enable systems to relate low level observations with
coarser views. Similarly granularity over time should
also be bridgeable. While we have not slain all semantic
dragons possible, we believe that this approach is a good
and extensible approach that takes a step in the right di-
rection.

References
[1] LAIKA. http://laika.sourceforge.net/.

[2] NIST Schematron. http://xreg2.nist.gov/
cda-validation/archives.html/.

[3] Open Provenance Model XML Schema.

[4] Schematron. http://www.schematron.com.

[5] Schematron. http://en.wikipedia.org/wiki/
Schematron.

8

© The MITRE Corporation. All rights reserved

http://laika.sourceforge.net/
http://xreg2.nist.gov/cda-validation/archives.html/
http://xreg2.nist.gov/cda-validation/archives.html/
http://www.schematron.com
http://en.wikipedia.org/wiki/Schematron
http://en.wikipedia.org/wiki/Schematron


[6] Tupelo. http://tupeloproject.ncsa.uiuc.edu/.

[7] BLAUSTEIN, B. T., SELIGMAN, L., MORSE, M., ALLEN,
M. D., AND ROSENTHAL, A. Plus: Synthesizing privacy,
lineage, uncertainty and security. In ICDE Workshops (2008),
pp. 242–245.

[8] BOWERS, S., MCPHILLIPS, T., WU, M., AND LUDSCHER, B.
Project histories: Managing data provenance across collection-
oriented scientific workflow runs. In DILS (2007), pp. 27–29.

[9] COHEN-BOULAKIA, S., BITON, O., COHEN, S., AND DAVID-
SON, S. Addressing the provenance challenge using zoom. Con-
curr. Comput. : Pract. Exper. 20, 5 (2008), 497–506.

[10] JAYAPANDIAN, M., CHAPMAN, A., ET AL. Michigan Molecular
Interactions (MiMI): Putting the jigsaw puzzle together. Nucleic
Acid Research (Jan 2007), D566–D571.

[11] MOREAU, L., ET AL. The First Provenance Challenge. Con-
currency and Computation: Practice and Experience. Published
online. DOI 10.1002/cpe.1233, April 2008.

[12] MOREAU, L., FREIRE, J., FUTRELLE, J., MCGRATH, R., MY-
ERS, J., AND PAULSON, P. The open provenance model, Decem-
ber 2007.

[13] MOREAU, L., KWASNIKOWSKA, N., AND DEN BUSSCHE, J. V.
The foundations of the open provenance model. April 2009.

[14] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. In Pro-
ceedings of the 2006 USENIX Annual Technical Conference (June
2006).

[15] Provenance aware service oriented architecture. http:
//twiki.pasoa.ecs.soton.ac.uk/bin/view/
PASOA/WebHome.

[16] The First Provenance Challenge. http://
twiki.ipaw.info/bin/view/Challenge/
FirstProvenanceChallenge.

[17] The Second Provenance Challenge. http://
twiki.ipaw.info/bin/view/Challenge/
SecondProvenanceChallenge.

[18] The Third Provenance Challenge. http://
twiki.ipaw.info/bin/view/Challenge/
ThirdProvenanceChallenge.

[19] SCHEIDEGGER, C., KOOP, D., SANTOS, E., VO, H., CALLA-
HAN, S., FREIRE, J., AND SILVA, C. Tackling the Provenance
Challenge one layer at a time. Concurrency and Computation:
Practice and Experience 20 (April 2008), 473–483.

9

© The MITRE Corporation. All rights reserved

http://tupeloproject.ncsa.uiuc.edu/
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome
http://twiki.ipaw.info/bin/view/Challenge/FirstProvenanceChallenge
http://twiki.ipaw.info/bin/view/Challenge/FirstProvenanceChallenge
http://twiki.ipaw.info/bin/view/Challenge/FirstProvenanceChallenge
http://twiki.ipaw.info/bin/view/Challenge/SecondProvenanceChallenge
http://twiki.ipaw.info/bin/view/Challenge/SecondProvenanceChallenge
http://twiki.ipaw.info/bin/view/Challenge/SecondProvenanceChallenge
http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenanceChallenge
http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenanceChallenge
http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenanceChallenge

	1 Introduction
	2 Background
	2.1 Open Provenance Model
	2.2 PLUS
	2.3 PASS

	3 System Integration
	4 Challenges
	4.1 Encoding
	4.1.1 References
	4.1.2 Entities

	4.2 Identification
	4.3 Verification

	5 Common Provenance Framework
	5.1 Concepts
	5.2 Constraints
	5.3 Verification

	6 Related Work
	7 Conclusions



