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Abstract. Many real-world machine learning applications require a rank-
ing of cases, in addition to their classi�cation. While classi�cation rules
are not a good representation for ranking, the human comprehensibil-
ity aspect of rules makes them an attractive option for many ranking
problems where such model transparency is desired. There have been
numerous studies on ranking with decision trees, but not many on rank-
ing with decision rules. Although rules are similar to decision trees in
many respects, there are important di�erences between them when used
for ranking. In this chapter, we propose a framework for ranking with
rules. The framework extends and substantially improves on the reported
methods for ranking with decision trees. It introduces three types of rule-
based ranking methods: post analysis of rules, hybrid methods, and mul-
tiple rule set analysis. We also study the impact of rule learning bias on
the ranking performance. While traditional measures used for ranking
performance evaluation tend to focus on the entire rank ordered list, the
aim of many ranking applications is to optimize the performance on only
a small portion of the top ranked cases. Accordingly, we propose a sim-
ple method for measuring the performance of a classi�cation or ranking
algorithm that focuses on these top ranked cases. Empirical studies have
been conducted to evaluate some of the proposed methods.
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1 Introduction

Many real-world machine learning applications require a ranking of cases, in
addition to their classi�cation. Such ranking is often based on some measure of
reliability or likelihood or a numeric assessment of the quality of each classi�ca-
tion (e.g., probability value of a class membership). In other words, the decision-
making process extends the class membership prediction to include an estimate
of the reliability for this prediction. For example, in credit application processing,
the goal is to rank applicants in terms of their likelihoods of pro�tability or loan
defaults. This is signi�cantly di�erent than simply classifying them into quali-
�ed versus non-quali�ed groups. Other decision-making applications where case
ranking could be of importance include bankruptcy prediction, medical diagno-
sis, customer targeting for marketing campaigns, and customer churn prediction.
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Ranking of cases is particularly important for those decision-making applications
where it is preferable to abstain from decision making altogether in the absence
of su�cient support. Examples include medical and military applications.

While classi�cation rules are not a good representation for ranking, the hu-
man comprehensibility aspect of rules makes them an attractive option for many
ranking applications where such model transparency is desired or even an essen-
tial requirement. There have been numerous studies on ranking with decision
trees [8,9,10,1], but not many on ranking with decision rules. Although rules
are similar to decision trees in many respects, there are important di�erences
between them when used for ranking. Separate-&-conquer (covering) techniques
of rule learning algorithms may generate rules that overlap, whereas divide-&-
conquer techniques of decision trees do not result in such overlapping of decisions.
Rules may not cover some areas of a feature space, but the leaf nodes of a de-
cision tree cover the entire area of the feature space (see Figure 1). In addition,
a rule learning algorithm for a two class problem may only learn rules for one
class, but a decision tree always includes leaf nodes for both classes. Rule learn-
ing algorithms tend to generate fewer rules than leaf nodes of a decision tree.
Such di�erences bring both research challenges and opportunities for developing
methods for ranking cases with rules.

Fig. 1. Decision boundaries of a decision tree (a) vs. those of a rule-based classi�er (b).

In this chapter, we propose a framework for ranking with rules. The frame-
work extends and substantially improves on the reported methods for ranking
with decision trees. It introduces three types of rule-based ranking methods:
post analysis of rules, hybrid methods, and multiple rule set analysis (i.e., rule
ensembles and redundant rules). Methods for combining scores from overlapping
rules are also proposed and studied.

We also study the impact of rule learning bias on the ranking performance.
While traditional measures used for ranking performance evaluation tend to
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focus on the entire rank ordered list, the aim of many ranking applications is
to optimize the performance on only a small portion of the top ranked cases.
Accordingly, we propose a simple method for measuring the performance of
a classi�cation or ranking algorithm that focuses on these top ranked cases.
More speci�cally, instead of measuring the entire area under the ROC curve, the
proposed method computes only the left most part of it (i.e., the part covering
only the top n% of the ranked cases). Empirical studies have been conducted to
evaluate some of the more popular post analysis methods, methods for combining
scores of overlapping rules, and the impact of rule learning bias.

The remainder of the chapter is organized as follows. Related work is dis-
cussed in Section 2. Section 3 describes the proposed framework. Section 4 de-
scribes the empirical results of two separate studies: (1) a real-world application
in investigations of companies suspected of �nancial fraud, and (2) performance
evaluation using six of the UCI Machine Learning Repository data sets. Finally,
Section 5 concludes the chapter with future research.

2 Related Work

2.1 Expert Systems and Fuzzy Logic

Ranking examples using rules is not a novel undertaking. There have been many
attempts in the past, including those by the researchers in the �elds of expert
systems, fuzzy logic, and cognitive science [2]. MYCIN [4] is a well known rule-
based expert system, in which each rule is assigned a certainty factor (CF) by
domain experts. CF of di�erent rules may be combined or propagated to produce
the CF of a decision inferred by MYCIN. In PROSPECTOR [12], an expert
system to assist geologists working in mineral exploration, rules are assigned
probability by human experts and are propagated and combined using Bayesian
inference.

Development of fuzzy rules has been studied widely in fuzzy logic, e.g. [13].
Here, a general method is developed to generate fuzzy rules from numeric data,
using linguistic variables. The degree of class membership of an example depends
on the degree of match of the example to a fuzzy rule.

2.2 Machine Learning

There are also several related rule based machine learning studies, e.g., [13].
These studies generally focus on methods for generating partial matching, whereby
the scores for individual examples are computed based on how well they match
the rules. In these approaches, examples that satisfy all conditions of a rule share
the same score.

Extensive studies have been dedicated to the incorporation of ranking capa-
bilities into the decision tree learning paradigm.

Related work generally falls into the following four groups of methods: learn-
ing probability estimation trees [10], geometric methods [1], hybrid trees includ-
ing: the Perceptron Tree [11] and NBTree [8], and ensembles of trees [3]. Other
methods have also been reported in [7] [9].
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3 Framework for Ranking with Classi�cation Rules

A rule-based classi�er, typically de�ned as a disjunctive normal form of con-
ditional rules, is a mapping function from a set of m arguments or attributes
(which can be either nominal or numeric) to a single nominal value, known as
the class. Let us represent by D the set of d classi�cation decisions, generally
labeled by numbers 0, 1, 2, . . . d − 1, and by E the set of unlabeled examples.
A classi�er is a function f : E → D. In a simpli�ed scenario, a classi�er with
ranking capability computes a number or score for every example e ∈ E and for
every class i ∈ D.

A score may be interpreted di�erently depending on the application. In statis-
tics, a score ranges from 0 to 1 and indicates the probability of an example
belonging to a given class. In expert systems, a score may be interpreted as a
certainty factor. In fuzzy logic, a score represents the degree of membership in a
class. Similarly, in cognitive science, a score could be de�ned as the typicality of
the example being a member of the class. In other applications, a score is just a
measure for ranking cases.

The framework for ranking cases with classi�cation rules presented in this
chapter consists of a grouping of methods that can be used independently or
jointly. Figure 2 depicts the taxonomy of these methods.

Fig. 2. Computational methods for rule-based ranking.

The framework extends and substantially improves on the reported methods
for ranking with decision trees. It introduces the following three groups of rule-
based ranking computation methods:

� Post analysis of rules
� Hybrid methods
� Multiple rule set analysis (i.e., rule ensembles and redundant rules)
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In addition to the three groups of rule-based ranking methods, we introduce
methods for combining the scores of overlapping rules. We also study the impact
of the inductive bias on the ranking performance.

3.1 Post Analysis of Rules

In this group of methods, ranking scores are computed using the rules gener-
ated by some rule induction algorithm plus some additional information such
as the number of positive and negative examples covered or the ranges of at-
tribute values. There are two subgroups of methods under this group: probability
estimation and geometric methods.

Probability Estimation With probability estimation, the score of the example
covered by a rule is computed as the ratio of the number of positive examples
covered and the total number of examples covered by a rule. This approach has
been explored in Probability Estimation Trees.

In the simple probability estimation method, scores assigned by two di�erent
rules are identical as long as the above mentioned ratio is the same, no matter
how many positive examples are actually covered by each rule. For example,
all rules covering no negative examples result in the same score, namely one. A
simple method for overcoming this problem is the Laplace correction, in which
the score is computed using k+1

n+C , where k and n are the numbers of positive
examples and the total number of examples covered, respectively, and C is the
number of classes. Here, the scores are the same for all the examples covered by a
given rule. This becomes a serious problem when the number of rules generated
by a rule induction algorithm is small, as many of the examples will end up with
identical scores.

The probability estimation method, even with the Laplace correction, ignores
the absolute number of examples covered by the rule. A rule covering 9 positive
examples and 10 negative examples receives the same score as a rule covering
90 positive examples and 100 negative examples. In real applications, however,
even when having similar precisions, rules covering more examples are generally
preferred. An alternative option would be to use the F-measure for scoring:

F-measure(r) =
β2 + 1

β2

recall(r) + 1
precision(r)

(1)

where β is a parameter for assigning relative weights to recall and precision.
When β is set to 1, recall and precision are weighted equally. F-measure favors
recall with β > 1 and favors precision with β < 1. Namely, an F-measure with a
large β value favors more general and less precise rules, while one with a small β
value favors more speci�c and more precise rules. When β = 0, F-measure score
is the same as probability estimation.
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Geometric Methods As indicated above, the probability estimation method
assigns the same score to all examples covered by the same rule. When the
number of rules generated is small, this causes a problem for applications that
need a �ne grained ranking. For example, in one of our data mining applications,
only 0.1% of the top ranked cases are selected for further investigations. If all
rules cover more than 0.1% of the examples, we have no way to accurately select
0.1% of the top ranked cases. Geometric methods can help generate such �ne
grained rankings.

Geometric methods have been used in decision trees [1] and assume that
classi�cations/rankings of the examples near the rule boundary are less certain.
In ranking with rules, there are two types of geometric methods, one for examples
covered by a rule and one for examples that are not covered by any rules. The
latter is also called partial matching. For an example covered by a rule, we can
measure the distance between the example and the rule boundary or the center
of the rule. The closer the example is to the boundary (or the farther from the
center), the smaller its score gets. The distance may also be weighted by the
estimated probability of the rule. The geometric method for covered examples
works for numeric attributes.

Partial matching also computes the distance of an uncovered example to the
boundary of a rule, but from outside of the rule. The closer to the boundary,
the larger the score is. Again, the distance could be weighted by the estimated
probability of the rule. Partial matching is di�erent from strict matching, where
an example has to satisfy all the conditions of the matched rule. Partial matching
computes a degree of match between an example and a rule. The degree of match
can vary in the range of 0 (matches no condition) to 1.0 (matches all conditions).
Partial matching works for both numeric and nominal attributes.

3.2 Hybrid Methods

Hybrid methods integrate rule induction with other learning techniques that
have ranking capabilities. These latter techniques include the Perceptron algo-
rithm, Naïve Bayes, instance-based learning, and prototype-based learning. For
example, a separate Perceptron may be learned for examples covered by each
rule. Figure 3 shows a rule with a linear classi�er in a two dimensional space.
The rectangle represents the rule and the line inside the rectangle represents
the linear classi�er. The white circles represent the positive examples, while the
gray ones represent the negative examples. The linear classi�er is used to assign
a score to each of the examples covered by the rule.

Rules and linear or Naïve Bayes models may be learned together to optimize
the performance of the hybrid method. Alternatively, rules may be learned �rst
and other models then generated for each rule. As discussed in Section 2, there
are many studies on building hybrid decision trees, e.g., Perceptron Tree and
NBTree.
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Fig. 3. A rule and the corresponding linear classi�er.

3.3 Rule Ensembles and Redundant Rules

Previous studies have shown that ensemble techniques can signi�cantly improve
the ranking performance of decision trees [3,10]. In ensemble learning, multiple
classi�ers are learned, using approaches such as bagging and boosting. Typically,
in such ensembles, a majority vote technique is used to determine the �nal
classi�cation of an example and the average score can be used as the �nal score
for each example. Although little work has been done in building ensembles of
rules, we believe such an ensemble can yield improved ranking performance.

Previous studies have also shown how redundant rules could improve classi�-
cation performance. Since redundant rules allow for �ner grained rankings, it is
worthwhile to design a rule induction algorithm for generating redundant rules
for ranking.

3.4 Combining Scores from Overlapping Rules

A rule induction algorithm usually generates a set of overlapping rules. In this
section, we discuss three simple methods: Max, Average, and Probabilistic Sum
(P-Sum), for combining the scores of an example covered by more than one rule.
The Max approach simply takes the largest score of all the rules that cover
the example. Given an example e and a set of l rules RS = {R1, . . . , Rl}, the
combined score of e using Max is computed as follows:

score(e,RS) = maxl
i=1score(e,Ri) (2)

where score(e,Ri) is the score of e assigned by Rule Ri. Similarly, the combined
score of e using Average is computed as follows:

score(e,RS) =
1
l
·

l∑
i=1

score(e,Ri) (3)

For rules that do not cover e, score(e,Ri) = 0 unless partial matching is
applied. For the P-Sum method, the formula can be de�ned recursively as follows:
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score(e, {R1}) = score(e,R1)
score(e, {R1, R2} = score(e,R1) + score(e,R2)

− score(e,R1)× score(e,R2)
score(e, {R1, . . . , Rn} = score(e, {R1, . . . , Rn−1}) + score(e,Rn)

− score(e, {R1, . . . , Rn−1})× score(e,Rn)

Both Average and P-Sum generate a �ner grained ranking than Max. These
three methods may also be used to combine the scores in a rule ensemble.

3.5 Impact of the Rule Induction Algorithm

Most rule induction algorithms have been designed for maximizing the classi-
�cation accuracy. Recently, some learning algorithms have been proposed that
optimize the AUC (Area Under the Curve) of a ROC (Receiver Operating Char-
acteristics) curve [6]. The design of a rule induction algorithm for optimizing the
AUC could be an interesting future research objective.

Rule induction algorithms typically include parameter settings which allow
the users to trade generality for accuracy. When such parameters are set to favor
accuracy, more rules may be generated. On the one hand, more rules result in
a �ner grained ranking, but on the other hand, the rules themselves tend to be
over-speci�c.

4 Empirical Studies

4.1 Study 1: Detection of Public Companies Suspected of Financial

Fraud

This section focuses on a real-world data mining application to prioritize human
investigations of companies suspected of engaging in fraudulent behavior based
on their �nancial �lings.

The Problem Incidents of �nancial statement fraud have increased substan-
tially over the past two decades and a�ected individuals, especially investors
and creditors, have lost billions of dollars as a result. Financial statement fraud
involves the misstatement of a company's �nancial information with the intent
to mislead users of such information, such as investors and creditors. Typical fal-
si�cations of �nancial statements include manipulation of assets, sales, pro�ts,
liabilities, expenses, or losses. Such frauds are often di�cult to detect, because
they are typically committed by a company's top management team, who un-
derstands the limitations of an audit, with an opportunity and motive to distort
the �nancial statements.
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Prevention of �nancial statement fraud by internal or external auditors is
probably the best strategy; however, sometimes the auditors themselves are in-
volved in the fraud activity or make mistakes. Thus, in order to minimize the
potential economic impact, there is a need for early detection of �nancial state-
ment fraud by regulatory organizations. There have been several past studies to
address such a need.

This section focuses on a data mining application to prioritize a list of target
companies suspected of engaging in fraudulent behavior based on their �nancial
statements. Such prioritization of potentially large volumes of targets is particu-
larly crucial for applications such as this one where the decisions ultimately rest
with human examiners with limited resources. In other words, only companies
deemed as highly suspicious, normally a small percentage of the total population,
will eventually go through the vigorous task of in-depth examination.

The application involves building predictive models for identifying companies
that may have failed to comply with accounting principles or violated securities
laws with respect to the accuracy of public disclosure information. The raw data
used in this application contains SEC registered public organizations' �nancial
�lings (publicly available SEC EDGAR �lings), including those of companies
with materially misstated �nancial statements. Each training example corre-
sponds to a company �ling and is a vector of about 100 attribute values that
are primarily numeric. Positive examples are all �lings for companies that had
issued material restatements, while negative examples are �lings of companies
that had not issued such restatements.

As mentioned previously, the learned predictive models are intended to help
the human investigators prioritize which companies to look at more closely and to
optimize investigative resources and increase e�ciency by focusing examiners on
highly suspicious companies that warrant the most attention. The investigators
use the predictive models as a tool to generate a rank ordered list of target
companies to be examined. These predictive models will neither replace human
inspectors nor fully automate the suspicious behavior detection processes.

A Ranking Performance Metric Since only a very small percentage, typi-
cally 1 to 2 percent depending on the resources available, of top ranked companies
may be selected for detailed inspections, it is important to maximize the clas-
si�cation precision (or true positive rate) on these top ranked companies. The
classi�er's performance on lower ranked companies, as such, becomes rather ir-
relevant. This problem is similar to that of web search, in which a search engine
might return thousands of web pages for a given query, but only a small number
of which, typically the top ranked pages, is ever viewed by the user. Thus, it is
much more important for an e�ective search engine to optimize the relevance on
top ranked pages than the lower ones.

While existing research o�ers an array of machine learning algorithms that
can accommodate such ranking of classi�cation decisions, these algorithms, and
measures such as the area under the ROC curve (AUC) used to evaluate their
performance, generally tend to focus on the entire rank ordered list. Based on
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the need for our application, we propose a simple method for measuring the
performance of classi�cation/ranking algorithms that instead of measuring the
entire area under the ROC curve, it computes only the left most portion of it
(i.e., the part covering only the top n% of the ranked cases). We have named
the aforementioned area as LAUC (Left-most portion of the Area Under the
Curve). Figure 4 shows the ROC curves obtained from two di�erent learning
algorithms. With LAUC as a measure (i.e., to the left of the cuto� point), Algo-
rithm 2 achieves a better performance than Algorithm 1, whereas Algorithm 1
is preferred over Algorithm 2 with the AUC. The have been some recent studies
by machine learning researchers focusing on the notion of LAUC [9].

Fig. 4. Example ROC curves. The LAUC cuto� point is depicted by the dashed line.

Data and Setting For these experiments, we create input records for each
company based on cases that are publicly available on the SEC EDGAR �ling
site. Each input record is a vector of attribute values that are primarily numeric.
These are a combination of original data that is contained in sources such as SEC
required �nancial �lings as well as calculated and derived attributes. These input
records are split into two datasets based on the year, one for training and one
for testing. The training set includes the data from 2003 to 2004, while the
test set contains the data from 2005. Examples in both sets are described by
130 attributes, 95 of which are numeric and the other 35 are symbolic. The
training set includes 4,932 positive and 38,792 negative examples. The test set
is composed of 836 positive and 18,780 negative examples. In our experiments,
we randomly selected 50% of the examples from the training set to learn the
rules and the process was repeated �ve times. Rules were then tested on the
test set and the results were reported using the average of the �ve runs. The
classi�cation performance has been evaluated with both the AUC as well as the
LAUC as the measure. Here, LAUC is the area under the ROC curve at the left
of the 1% false positive rate cuto� point, normalized by the total area to the left
of that point. LAUC is 0.005 for random selection.
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Fig. 5. AUC values reported for the �rst experiment.

Fig. 6. LAUC values reported for the �rst experiment.

The classi�cation task is quite challenging due to factors such as noisy data,
which is generally the result of the mechanism by which the positive and negative
examples have been labeled. Here, negative examples are not truly negative,
rather their class memberships are not known. As such, it is not quite possible to
learn rules with high recall and precision. For example, when minimum precision
and minimum recall were set to 0.6 and 0.03 respectively, no rules were generated.
Only a small number of positive examples could be covered by rules with high
precision. Since there is no well established baseline performance data for the
comparison of our results, we compared the performance of our model with
the random choice model by assuming that target class examples are drawn at
random from all the potential examples.
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Results In the �rst experiment, with minimum recall and minimum precision
parameters set to 0.01 and 0.6, respectively, we varied β from 0.001 to 0.1.
Accordingly, all the rules learned have a recall larger than 1% and a precision
larger than 60%. With β = 0.001, a set of highly speci�c and precise rules
was generated. Each increase in β resulted in more general and less precise
rules. Probability estimation with Laplace correction, using three di�erent score
combining methods: Max, Average, and P-Sum, was applied to the learned rules
to obtain the scores of all the test examples. Figure 5 shows the AUCs for
di�erent β values and di�erent score combining methods. The general trend of
the performances of all three score combining methods seems to be upward with
an increase in β until it reaches 0.07 and then the performances start to drop
sharply. When β is small, the generated rules are highly speci�c and precise, so
they cover only a small number of positive examples. Therefore, many of the
positive examples not covered by these rules are assigned a score of 0 and are
consequently ranked low. When β increases, rules become more general and cover
more positive examples and the ranks of these newly covered positive examples
move up, so the performance increases accordingly. When β becomes too large,
however, rules tend to get much more general and much less precise, so that
many negative examples are also covered. This causes the performance to drop.
The three score combining methods perform similarly. It can also be seen that
the reported AUC values barely beat the random performance. This shows the
di�culty of the problem. Many positive examples cannot be covered by any rules
with a recall larger than 1% and a precision larger than 60%.

Figure 6 shows the LAUC values. In contrast to the AUC, the best perfor-
mances are achieved with smaller β values. This is what we had initially expected
because a small β value results in highly speci�c and precise rules. As such, not
many negative examples were covered by these rules. When β gets larger, how-
ever, rules cover more negative examples because they are more general and less
precise. These covered negative examples are ranked high, so the performances
on top ranked examples degrade. The three score combining methods seem to
perform about the same for smaller β values and more speci�c rules. For larger β
values, however, P-Sum and Average are better than Max, with P-Sum working
slightly better than Average. This is because the chance of speci�c rules over-
lapping is smaller than that of general rules. Figure 7 displays the true positive
rate at the cuto� point of 1% false positive rate. They are about 5 to 7 times
better than random.

Figure 8 shows the ROC curves for β = 0.001 and β = 0.07 for the Max
method. It can be seen that the performance on top ranked cases is better when
β = 0.001, while the performance on all ranked cases is better when β = 0.07.
The results of this study tend to suggest that smaller β values are better for
achieving a high performance on top ranked cases.

In the second experiment, we varied the minimum recall parameter value
from 0.005 to 0.04 with β = 0.001 and minimum precision = 0.4. Figure 9 shows
the reported AUC values, which tend to go down with an increase in minimum
recall. Since the rule induction algorithm is forced to generate rules with a high
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Fig. 7. True positive rates at cuto� point of 1% false positive rate reported for the �rst
experiment.

Fig. 8. ROC curves for β = 0.001 and β = 0.07 plotted for the �rst experiment.

recall and a low precision, many negative examples are covered by these rules
and correspondingly ranked higher. When both minimum recall and minimum
precision are low, the rule induction algorithm is able to generate more rules so
that more positive examples are covered. Figure 10 reports the LAUC values.
Again, following the same reasoning, an increase in minimum recall results in a
decrease in performance. Here, P-Sum and Max tend to do better than Average
for lower minimum recall values.

In the third experiment, we varied the minimum recall parameter value from
0.005 to 0.04 with β = 0.001 and minimum precision = 0.7. Figure 11 shows
the reported AUC values, which tend to go down with an increase in minimum
recall for reasons similar to those discussed above for the second experiment.
The di�erence is that when the minimum recall is increased, the number of
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Fig. 9. AUC values reported for the second experiment.

Fig. 10. LAUC values reported for the second experiment.

rules generated goes down quickly. Actually, when the minimum recall is larger
than 0.03, no rule is generated, so the reported AUC values are the same as
those of a random selection. Figure 12 reports the LAUC values. Here, the same
reason causes the performance to decrease quickly when the minimum recall is
increased.

In the fourth experiment, we varied the minimum precision parameter value
from 0.2 to 0.9 with β = 0.001 and minimum recall = 0.01. Figure 13 shows
the reported AUC values, which seem to go down with an increase in minimum
precision. When the minimum precision is increased, fewer rules are generated
and so fewer positive examples are covered and the performance goes down as
a result. When the minimum precision is kept low, the performance is better
than those in all previous experiments. Figure 14 reports the LAUC values.
While the three score combining methods perform similarly for larger values of
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Fig. 11. AUC values reported for the third experiment.

Fig. 12. LAUC values reported for the third experiment.

minimum precision, the performances are quite varied when minimum precision
is smaller. In the latter case, P-Sum seems to do the best. This is because when
the minimum precision is small, many rules are generated and as such may
overlap more often. So P-Sum improves the performance. When the minimum
precision is large, fewer rules are generated and they are also more speci�c. So
rules overlap less often and P-Sum and Average cannot improve the performance.

Summary The experimental results clearly show that the performance mea-
sured by LAUC does not necessarily correlate with that measured by the AUC.
They also show that the inductive bias impacts LAUC and AUC di�erently. More
speci�c and more precise rules work better with LAUC as the measure, while
more general rules work better with AUC. The three score combining methods
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Fig. 13. AUC values reported for the fourth experiment.

Fig. 14. LAUC values reported for the fourth experiment.

achieved about the same performance with AUC, while P-Sum generally did
better than the other two methods with LAUC. The experimental results sug-
gest that a smaller β, minimum recall and minimum precision values together
with P-Sum should be used to achieve the optimal performance as measured by
LAUC.

4.2 Study 2: Public Data Sets

We conducted experiments on six of the publicly available UCI Machine Learn-
ing Repository data sets. These are D1: Breast Cancer, D2: Chess (two class
scenario), D3: German Credit, D4: Japanese Credit, D5: Magic, and D6: Yeast.
The sample sets present a wide range of domains and cover a comprehensive
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suite of data characteristics. To generate rules, we used the RIPPER algorithm
[5] that induces classi�cation rules from a set of pre-classi�ed cases.

The reported AUC values for each data set were calculated using a 10-fold
cross validation. Experiments were conducted with three groups of rules repre-
senting varying levels of simpli�cations for the generated rule sets (i.e., a larger
number of more speci�c and precise rules or a smaller number of more general
and overlapping rules). These variations were achieved by changing the RIPPER
parameter settings. The training and test data sets were kept the same among
these three groups of rule sets.

Six di�erent scoring methods were used. The �rst three use probability esti-
mation with three di�erent methods, Max, Average, and P-Sum, for combining
the scores of an example covered by multiple rules as describe in Section 3.4.
These three methods are denoted as follows.

� AUC-FR0: Max
� AUC-FR1: Average
� AUC-FR2: P-Sum

The remaining group of methods utilizes the Laplace corrections, also with the
three score combining methods. They are denoted as:

� AUC-LC0: Max
� AUC-LC1: Average
� AUC-LC2: P-Sum

We also use a measure that represents the average number of scores per example.
It takes a value from 0 to 1 and is computed by dividing the number of unique
scores divided by the number of test examples. For �ner grained rankings, this
number is generally closer to 1. In many applications, a �ner grained ranking is
preferred. This ranking-grain measure is used for the six di�erent score computa-
tion methods as described above (RankGrain-FR0, RankGrain-FR1, RankGrain-
FR2, RankGrain-LC0, RankGrain-LC1, and RankGrain-LC2 ).

Figure 15 depicts the summary of the reported AUC values for the six dif-
ferent methods. The reported values are the average on all six datasets. In the
�gure, Series 1 is the rule set with the most general rules, Series 2 is the rule
set with less general rules, and Series 3 is the rule set with the most speci�c
rules. Except for FR0, rules of Series 2 and Series 3 outperformed rules of Se-
ries 1. Namely, speci�c rules outperformed general rules. It means speci�c rules
are better for ranking than general rules, because speci�c rules are able to pro-
duce �ner grained rankings than general rules. However, rules of Series 2 and
Series 3 performed about the same. This suggests that highly speci�c rules may
help with ranking. Highly speci�c rules tend to include more perfect rules, which
could be better for ranking. It is also shown in the �gure that P-Sum performed
better than Average, which in turn did better than Max. P-Sum and Average
produce �ner grained rankings than Max and assume that examples covered by
multiple rules should be ranked higher. Laplace correction achieved about the
same performance as the simple probability estimation.

© The MITRE Corporation. All rights reserved



176 Zhang, Bala, Hadjarian & Han

Table 1. Reported AUC values.

Dataset
AUC-
FR0

AUC-
RF1

AUC-
FR2

AUC-
LC0

AUC-
LC1

AUC-
LC2

Series 1 R = 0.19

D1 0.98 0.98 0.98 0.98 0.98 0.98

D2 0.77 0.79 0.79 0.77 0.78 0.79

D3 0.92 0.92 0.92 0.92 0.92 0.92

D4 0.82 0.84 0.84 0.82 0.84 0.84

D5 1.00 1.00 1.00 1.00 1.00 1.00

D6 0.91 0.91 0.91 0.91 0.91 0.91

Averages 0.90 0.91 0.91 0.90 0.91 0.91

Series 2 R = 0.25

D1 0.99 0.99 0.99 0.99 0.99 0.99

D2 0.84 0.85 0.88 0.83 0.85 0.87

D3 0.95 0.95 0.96 0.95 0.95 0.96

D4 0.85 0.88 0.89 0.84 0.87 0.89

D5 1.00 1.00 1.00 1.00 1.00 1.00

D6 0.92 0.93 0.93 0.92 0.93 0.93

Averages 0.92 0.93 0.94 0.92 0.93 0.94

Series 3 R = 0.28

D1 0.92 0.99 0.99 0.95 0.99 1.00

D2 0.84 0.85 0.87 0.83 0.85 0.87

D3 0.96 0.96 0.96 0.95 0.95 0.96

D4 0.85 0.88 0.89 0.84 0.87 0.89

D5 0.90 1.00 1.00 1.00 1.00 1.00

D6 0.93 0.93 0.93 0.93 0.93 0.93

Averages 0.90 0.93 0.94 0.92 0.93 0.94

Table 1 reports the detailed AUC values for each of the six data sets. The
R measurement represents the ratio of the number of perfect rules (rules that
do not cover negative examples) to the total number of rules in a given rule
set. Here the average value of R is depicted (for each of the three runs on the
six data sets). The R measurement is a�ected by using RIPPER's s parameter
which simpli�es or specializes the generated rule set (i.e., trading o� generality
for accuracy by the degree of hypothesis simpli�cation). When the parameter is
set to favor the generation of more speci�c rules, then more accurate results can
be achieved.

Figure 16 shows the summary of the RankGrain values graphically. Table 2
reports the RankGrain values. As seen in the �gure, it seems that more speci�c
rules result in �ner grained rankings. The di�erence between Series 2 and Series 3
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Table 2. The reported RankGrain values.

Dataset
RankGrain

-FR0
RankGrain

-FR1
RankGrain

-FR2
RankGrain

-LC0
RankGrain

-LC1
RankGrain

-LC2

Series 1 R = 0.19

D1 0.11 0.31 0.24 0.11 0.31 0.31

D2 0.02 0.13 0.05 0.07 0.6 0.19

D3 0.13 0.29 0.29 0.13 0.29 0.29

D4 0.11 0.18 0.18 0.11 0.18 0.18

D5 0.03 0.37 0.24 0.03 0.37 0.25

D6 0.09 0.21 0.21 0.09 0.21 0.21

Averages 0.08 0.25 0.20 0.09 0.27 0.24

Series 2 R = 0.25

D1 0.15 0.36 0.26 0.13 0.39 0.36

D2 0.02 0.13 0.05 0.07 0.27 0.19

D3 0.22 0.65 0.64 0.21 0.65 0.65

D4 0.19 0.45 0.44 0.18 0.45 0.45

D5 0.06 0.63 0.35 0.06 0.63 0.36

D6 0.15 0.49 0.44 0.14 0.49 0.45

Averages 0.13 0.45 0.36 0.13 0.48 0.41

Series 3 R = 0.28

D1 0.14 0.40 0.28 0.13 0.42 0.37

D2 0.02 0.13 0.05 0.07 0.27 0.19

D3 0.23 0.68 0.66 0.23 0.68 0.68

D4 0.20 0.48 0.48 0.19 0.48 0.48

D5 0.06 0.63 0.35 0.06 0.63 0.35

D6 0.14 0.50 0.46 0.14 0.50 0.47

Averages 0.13 0.47 0.38 0.14 0.50 0.42

is small. Average and P-Sum produce more scores than Max. The number of
di�erent scores for Max cannot be larger than the number of rules and the
number of scores for Average and P-Sum can never be smaller than Max. When
there are many overlapping rules, Average and P-Sum may generate many more
scores. It is interesting to see that Average produces more scores than P-Sum,
which may be due to the number of perfect rules. As long as an example is
covered by a perfect rule, P-Sum can assign it a perfect score of 1, no matter
how many rules it is covered by. On the other hand, Average may give a di�erent
score to examples covered by some perfect rules. If all rules are perfect rules,
both Max and P-Sum produce only two scores 0 and 1, but Average is still able
to produce more scores. Laplace correction is able to produce slightly more scores
than the simple probability estimation method because of the perfect rules. With
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Fig. 15. Graphical summary of the reported AUC values.

Laplace correction, perfect rules may produce di�erent scores depending on the
number of examples covered.

The following are some of the conclusions drawn from the results:

� Speci�c rules produce higher AUC values than general rules.
� P-Sum generates the best AUC results in comparison with Average andMax.
� Simple probability estimation method performs about the same as Laplace
correction.

� Speci�c rules produce more scores than general rules.
� Average generates the best RankGrain results, while Max generates the
worst RankGrain results.

� RankGrain values computed using the Laplace correction (RankGrain-LCn)
are slightly better than the ones computed using class frequencies (RankGrain-
FRn)

� The AUC value correlates with and increases with the number of scores.

5 Conclusions

In this chapter, we proposed a framework for ranking with rules. The framework
introduces three types of rule-based ranking methods: post analysis of rules, hy-
brid methods, and multiple rule set analysis. We also proposed three methods:
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Fig. 16. Graphical summary of the reported RankGrain values.

Max, Average, and Probabilistic Sum, for combining the scores of an example
covered by multiple rules. A successfully deployed data mining application in
�nancial fraud detection was also discussed. The application aims at prioritizing
human investigations of public companies suspected of engaging in fraudulent
behavior based on their �nancial �lings. Additional empirical studies were con-
ducted using six of the UCI Machine Learning Repository data sets to evaluate
the two simplest rule-based ranking methods: probability estimation with and
without Laplace correction, as well as the three rule score combining methods.
We investigated the impact of the inductive bias on the ranking performance.
Experimental results clearly suggest that the inductive bias has an impact on
the ranking performance. It is also shown that Probabilistic Sum and Average
generally perform better than Max. It seems that a method that produces more
scores usually outperforms a method that produces fewer scores. More experi-
ments need to be conducted to verify this.

Future research will include an empirical validation of some of the other
methods in the framework, speci�cally the ones that use geometric measures.
Since with geometric methods more scores could be produced, it would be in-
teresting to see whether such methods could improve the ranking performance.
Also considered is a study comparing the performance of rule-based and decision
tree-based ranking approaches.
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