

C2 Core and UCore Message Design
Capstone

Interoperable Message Structure

M. David Allen, Catherine Macheret, Mary Ann
Malloy
September 2009

MT R 0 9 03 5 7

MIT RE T E C HN IC A L R E P O R T

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 09-4364

This page intentionally left blank.

C2 Core and UCore Message Design
Capstone

Interoperable Message Structure

M. David Allen, Catherine Macheret, Mary Ann
Malloy
September 2009

MT R 0 9 03 5 7

MIT RE T E C HN IC A L R E P O R T

Sponsor: ESE Capstone
Dept. No.: E540
Contract No.: FA8721-09-C-009
Project No.: 0709ECSE-DC
Downgrade: N/A
Derived By: N/A
Declassify On: N/A
The views, opinions and/or findings
contained in this report are those of The
MITRE Corporation and should not be
construed as an official government position,
policy, or decision, unless designated by
other documentation.
Approved for public release; distribution
unlimited.

©2009 The MITRE Corporation.
All Rights Reserved.

http://info.mitre.org/trs/login

©2009 The MITRE Corporation.

Abstract

UCore allows users to create multi-layered messages pairing UCore digests with detailed
structured payloads. A MITRE Capstone was funded to explore the feasibility of a multi-layered
message including a domain specific common core layer. The Capstone Team designed a multi-
layered messaging solution where a UCore digest was paired with a notional “common core”
payload from the Command and Control (C2) domain, and further extended with a Community
of Interest (COI) payload. This approach was tested with an exchange satisfying real air
operations planning requirements. Our design goals were to minimize content duplication and to
create a message interpretable by both COI and unanticipated users from the domain. This
document shares lessons learned from this approach and provides insights about challenges to
designing and using multi-layer messages in the real world.

©2009 The MITRE Corporation.

This page intentionally left blank.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. iii

Executive Summary

Background

The C2 Core is a Command and Control (C2) data exchange specification built on top of the
extendable UCore exchange specification. The C2 Core vision and principles were developed
under the auspices of the Technical Framework Architecture and Tools Sub-Working Group
(TFTSWG) within the C2 Portfolio. Stakeholders were expected to pilot and evaluate the
baseline to determine whether the value propositions are attainable. The value propositions
sought through C2 Core are:

 Reduced developer labor from reusing C2 data constructs through a layered
interoperability design that promotes reuse

 Broader consumption and derived value from exchanges between primary partners by
communities beyond the originally intended exchange partners

MITRE undertook a Capstone effort to test the feasibility of C2 Core design principles using a
real message exchange scenario. We implemented a sample information exchange specification
(IES) using the layered interoperability approach promoted by UCore and C2 Core, applied it to
a real message exchange scenario, and then assessed whether the promised value proposition had
in fact been realized. Thus, the ultimate objective was to test the feasibility of developers
implementing new information exchanges using the Capstone implementation of the C2 Core
design principles.

Experimental Approach

Since the Capstone effort was initiated before the testable baseline was released, the Capstone
Team had to fill in some gaps in the technical framework, including developing a notional C2
Core data model sufficient to represent the content required for its use cases. This report has two
purposes:

 To document the design decisions the Team made to fill in framework gaps as part of
their experiments

 To provide lessons learned based on the exploration of the two use cases that employed
notional C2 Core IESs

The UCore, and therefore the C2 Core, promotes a layered architecture for information
exchange, as depicted in Figure ES-1. In compliance with this architecture, message content is
spread across three structural layers: UCore Digest, C2 Core Payload, and Community of Interest
(COI) Payload. However, the C2 Core Concept Document fails to specify a strategy for
distributing information across the layers and for creating linkages among them so that content
can be consumed meaningfully by at-large or specialized consumers within the C2 domain (and
potentially by non-C2 consumers as well). The Capstone Team chose to use each layer to
represent only the content appropriate for that layer. Although this introduces some semantic
dependency among the layers, it saves labor by enabling IES implementers and message
consumers focused on a given layer to reuse models for concepts already provided at any of the
higher layers. To minimize information redundancy, the team chose to use an approach called
“chaining pointers” in which objects in each layer point to their corresponding objects in the

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. iv

layers above. Rather than repeating information in each layer, the pointers are used to aggregate
all the detail for a specific real world concept or object.

Figure ES-1: Layered Architecture for Information Exchange

Next the team reviewed the Common Mission Definition (CMD) and various other C2 data
models to build a notional C2 Core data model in sufficient detail to support creating a message
exchange specification for their use cases. Since neither UCore nor C2 Core includes strong
guidance for choosing which parts of exchanged information should be represented in the
respective message layers, the Team had to develop its own heuristics. Section 8 discusses (down
to the eXtensible Markup Language [XML] code level) how the Team chose to distribute content
based on the CMD across the three layers and to link it together according to their design
decisions.

With all these pieces in place, the Team executed the use case experiments. The scenario for the
first use case involved a notional (C2 Core) consumer who needs Air Operations data to
coordinate missions for preventing conflicts and friendly fire in a given geographic area. The
scenario for the second use case involved a typical Air Operations COI consumer who needs to
gather information distributed across all three message layers to determine if there are sufficient
resources to carry out a mission. The Team used the Theatre Battle Management Command
System (TBMCS) to generate sample CMD messages as inputs for both use cases. These were
programmatically transformed into the three-layer message format. The Team noted that
substantial testing and debugging time was required ahead of time in manually checking the
transformation process as there are no automated tools to do so. Similarly, to consume the
messages, the Team had to handcraft programs using Java, Eclipse, and XMLBeans, since there
is no standardized Application Programming Interface (API) for consuming layered messages.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. v

Findings

In both use cases, the test programs were successful in correctly producing the expected outputs,
indicating that the three-layer messages were sufficiently detailed to be useful for both C2 Core
and COI consumers. At the same time, the Capstone Team documented how using messages
compliant with an IES based on the C2 Core (and UCore) approach to information exchange is
not a simple task. As indicated above, quite a bit of infrastructure needed to be built to support
even simple scenarios. While part of this is attributable to the experimental nature of the
investigation, the Team includes in this report many well-substantiated reasons why C2 Core
(and UCore) proponents need to provide additional design specification details and support tools
before value propositions can be realized.

A layered architecture for information exchange, such as that advocated by C2 Core (and
UCore), introduces special developer challenges and requires specificity to avoid introducing
interoperability break points. The Capstone Team grouped specific challenges into four areas:1

 Differences in the modeling paradigms among the three layers, plus a lack of guidance
for how to distribute information across layers, increases the risk of inconsistent content
representation and poses greater complexity to message consumers.

 The UCore Digest does not always guarantee provision of sufficient content to support

stand-alone understanding of messages by unanticipated consumers.

 Additional rules are needed to help define C2 Core and to ensure messages consistently
and accurately satisfy applicable rules.

 There is a lack of guidance to IES developers regarding how to link information across
layers.

Problems uncovered by the Capstone Team have possible solutions. For example, the C2 Core
Specification can provide formal guidance regarding information distribution across the message
layers and linking strategies among them. Standardized message access APIs would also help.
But without such provisions, it is unlikely that implementing C2 Core layered message
production and consumption software will be any less time consuming, expensive, or difficult
than non-layered options.

1 A detailed discussion of these challenges can be found in section 9.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. vi

Acknowledgements

This C2 Core UCore Capstone was led by Phil Barry. Members of the project team other than the
report authors are David Czulada, Rick Knowles, Carol Mahoney, and Scott Renner.
Technical editing of this paper was expertly performed by Patti Reynolds.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. vii

Table of Contents

1 Background .. 1

1.1 C2 Core Concept .. 1

1.2 Purpose of C2 Core Capstone .. 1

1.3 Purpose of Document ... 1

1.4 UCore and C2 Core Value Propositions... 1

1.5 Assumptions ... 2

2 Experimental Approach .. 3

3 Layered Data Interoperability .. 4

4 UCore Review ... 5

4.1 UCore Digest .. 5

4.2 UCore Extension Options ... 6

4.2.1 Adding Content to the UCore Digest ... 6

4.2.1.1 Supplementing the UCore Taxonomy ... 6

4.2.1.2 Use UCore Simple Properties .. 7

4.2.2 Adding Content using Message Layers .. 7

4.2.2.1 Type Specialization ... 7

4.2.2.2 Type Augmentation ... 8

5 Capstone Message Design.. 9

5.1 Employing Layered Message Architecture .. 9

5.2 Information Distributed Across Layers .. 10

5.3 Data Coupling Across Layers ... 12

6 The Capstone Subject Domain ... 14

7 The Capstone Notional C2 Core Model ... 16

8 Applying C2 Core UCore Message Design to Air Mission Subject Domain 18

8.1 Populating Message Layers .. 18

8.1.1 Message Content in UCore Digest Layer ... 18

8.1.2 C2 Payload Layer ... 21

8.1.3 Air Operations COI Layer .. 24

8.2 Inter-Payload Pointers and Data Referencing .. 26

8.2.1 Chaining Pointers ... 26

8.2.2 Pointer Validity .. 27

8.2.3 Pointer Processing .. 28

8.3 Message Implementation .. 28

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. viii

8.3.1 Message Production ... 28

8.3.1.1 Modeling and Content Issues .. 28

8.3.1.2 Implementation Issues ... 29

8.3.2 Message Consumption ... 29

8.3.2.1 Re-Assembling Message Content ... 29

8.3.2.2 Creating a Layered Message API .. 30

8.3.2.3 Message Consumption Use Case #1: C2 Core Consumer 31

8.3.2.4 Message Consumption Use Case #2: Air Operations COI Consumer 32

8.3.2.5 High-Level Outcome of Consumption Use Cases 33

9 Technical Findings ... 34

9.1 Data Modeling Rules for Layered Architecture is Missing 34

9.1.1 Associating Objects .. 34

9.1.2 Classifying Objects ... 35

9.1.3 Populating the Digest ... 35

9.1.4 Extending Taxonomies ... 35

9.1.5 Mapping Layered Data to One Joined Data Model .. 36

9.1.6 Translating System Level Data to Higher Levels of Abstraction 36

9.2 Uncertain Value in UCore Digest Layer .. 37

9.3 XML Schema and Taxonomies are Insufficient to Specify UCore and C2 Core 37

9.4 Cross-Layer Linking via ulexlib:SameAsDigestReference 37

9.4.1 Multi-Layered Messages Are Much More Difficult For Consumers 38

10 Conclusions ... 39

10.1 Summary of Findings ... 39

10.2 Recommendations .. 40

Appendix A Content Review ... 41

A.1 Sample C2 Core Content .. 41

A.2 MITRE COI Member Review .. 41

A.3 DoD Metadata Registry Review ... 41

Appendix B Existing UCore Consumer Software ... 43

Appendix C Source Testing Environment ... 44

C.1 Source of CMD Messages .. 44

Appendix D Sample 3-Layer Document ... 45

Appendix E Acronyms ... 56

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. ix

List of Figures and Tables

Figure 1: Data Layers... 4

Figure 2: UCore Digest Conceptual Data Model ... 5

Figure 3: Concrete example of UCore taxonomy extension .. 6

Figure 4: Layered Message Structure .. 9

Figure 5: Notional UCore Digest ... 12

Figure 6: Notional C2 Core Portion ... 12

Figure 7: Notional COI Payload .. 12

Figure 8: CMD Conceptual Model .. 14

Figure 9: Notional C2 Core Model .. 17

Figure 10: Mapping C2 Core to UCore Digest .. 20

Figure 11: C2 Mission Mapped to UCore Planned Event ... 21

Figure 12: C2 Payload Mission Model .. 22

Figure 13: C2 Layer Mission XML Element ... 23

Figure 14: C2 Route Reusing UCore Data Types .. 23

Figure 15: UCore Digest Occurs Relationship ... 24

Figure 16: C2 Layer Task Occurs Qualifier ... 24

Figure 17: Air Operations COI Payload Schema ... 25

Figure 18: AO COI Layer XML Snippet ... 25

Figure 19: AO COI Specific Route XML .. 26

Figure 20: Digest-only pointers ... 27

Figure 21: Chaining pointers ... 27

Table 1: Mission Information Distributed Across Layers ... 30

Figure 22: Mission Filter Builder .. 44

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. x

This page intentionally left blank.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 1

1 Background

1.1 C2 Core Concept

In January 2009, the Command and Control (C2) Portfolio Manager (CPM) began working on a
C2 Common Core. The intent of C2 Core was to address one of the Independent Assessment
Team’s November 2008 recommendations to the C2 CPM; namely, that the C2 CPM develop a
“set of C2-specific extensions to the UCore” to promote net-centric information sharing in the
C2 space.

The C2 Core Technical Framework Architecture and Tools Sub-Working Group (TFTSWG)
developed and delivered the C2 Core Development Concept. It articulated portions of a technical
framework based on UCore, as well as a value proposition for the C2 Core. A team of working
groups prepared a testable baseline of C2 Core, which was delivered on 30 June 2009. It includes
notional sample content, naming and design rules, and a technical framework sufficiently
complete for pilot and test implementations, although not sufficiently mature for broad
implementation in Department of Defense (DoD) programs.

1.2 Purpose of C2 Core Capstone

MITRE performed this C2 Core Capstone to evaluate the C2 Core technical framework and the
value proposition it promises to deliver. Because this effort started before the testable baseline
was delivered, some of Capstone design choices are different from those made in the 30 June
baseline. While the Capstone Team used the developmental technical framework, we had to fill
in some design and implementation gaps. The testable baseline chose different options from the
Capstone Team, demonstrating that many open questions still need to be resolved by the
TFTSWG, and that the C2 Core surely will change. In other words, at this time the testable
baseline was not expected to be the final word on technical framework choices.

When the C2 Core Capstone effort started, there were few implementations of multi-layered
UCore messages in existence. Therefore, an important goal for the Capstone Team was to
implement a sample information exchange specification (IES) using the layered interoperability
approach promoted by UCore and C2 Core, and then to assess whether the promised value
proposition had in fact been realized.

1.3 Purpose of Document

This document presents technical work performed to evaluate the feasibility of implementing a
message design standard based on principles found in the UCore and C2 Core message
specifications. The document presents the Capstone Team’s design decisions and
implementation details. Lessons learned and the successes and challenges from the
implementation approach are intended to provide input to the C2 Core TFTSWG. We hope to
contribute to the goal of improving information sharing across the C2 community.

1.4 UCore and C2 Core Value Propositions

The C2 Core Capstone message design was motivated by the UCore and C2 Core value
propositions for improving information dissemination. These value propositions are as follows:

 UCore promises to reduce labor for creating new information exchanges and to extend
the value of partner exchanges to broader communities. The premise is that popular

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 2

“universal” information concepts such as when and where should need only to be
modeled once, rather than for every new exchange agreement, and likewise software
written to consume those concepts should also only be written once and interoperate with
messages from all UCore message producers. UCore information exchanges use a few
pre-established, broadly applicable data structures in a fixed exchange framework. The
framework has the capacity to contain additional detail needed by the primary exchange
purpose but in a way that makes messages intended for specific partners partially
consumable by a larger community.

 The C2 Core concept builds on this UCore premise. The value proposition for C2 Core is
that, over time, data components needed by multiple C2 Communities of Interest (COIs)
will be designed once and reused by all. These core data components will be used in the
implementation of all new exchanges. When these new exchanges are designed, some (or
most) of the data interoperability work is already done, because the participants already
understand the core components. The result is reduced cost for the enterprise. More
importantly, the “prefabricated” data components from UCore, C2 Core, and the C2
COIs, together with the “assembly instructions” found in the C2 Core technical
specifications, permit much faster implementation of new and unanticipated information
sharing needs. 2

UCore and C2 Core both seek not only to reduce labor for exchange partners, but also to extend
the information value of those exchanges. They do this by providing a design that allows some of
the exchange to be consumed by a broader community than the primary exchange partner.

1.5 Assumptions

This paper assumes technical familiarity with the UCore 2.0 final specification, which can be
found at https://www.ucore.gov/, though a brief review is provided in Section 4. This paper also
assumes basic familiarity with the technical details of eXtensible Markup Language (XML) and
how instance documents are formatted and represented. No formal understanding of the C2 Core
is required, since each part of the experiment infrastructure will be explained as needed to
understand the use cases.

2 C2 Core Frequently Asked Questions: “What is the problem statement and value proposition of C2 Core?” –
document version 1.2, 30 June 2009. This document is part of the June 30, 2009 testable baseline submission
package to the DoD Metadata Registry, which can be accessed here: http://metadata.dod.mil/mdr/ns/C2
CORE/C2_Core.zip

https://www.ucore.gov/
http://metadata.dod.mil/mdr/ns/C2CORE/C2_Core.zip
http://metadata.dod.mil/mdr/ns/C2CORE/C2_Core.zip

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 3

2 Experimental Approach
The goal of the project was to demonstrate UCore and C2 Core value propositions using a
layered data interoperability approach. The team chose Air Operations as the experimental COI.
More specifically, we narrowed our scope to air operations mission planning. We used Air
Operations’ Common Mission Definition (CMD) message standards to provide the detail we
needed to create a realistic C2 and COI XML schema models. We did not, however, use CMD
itself in our message design; it merely provided the requirements for such an exchange. Our
experiment scenario begins with the idea that a new IES is needed.

We abstracted notional C2 Core data components from the CMD to create an experimental C2
Core model. The purpose of our C2 Core model was to play the role of the future official C2
Core model in our layering experiment. Finally we created a model for the COI layer of the
message.

Thus having all these pieces in place, the Team was ready to execute use case experiments. The
scenario for the first use case involved a notional consumer who needs Air Operations data to
coordinate missions for preventing conflicts and friendly fire in a given geographic area. A
program was created to take as inputs a space/time box together with a series of three-layer direct
attack air missions, and to determine whether any of them were within the space/time box. The
scenario for the second use case involved a typical Air Operations COI consumer who needs to
gather information distributed across all three message layers to determine if there are sufficient
resources to carry out a mission. The Theatre Battle Management Command System (TBMCS)
was used to generate CMD messages as inputs for both use cases. These were programmatically
transformed into the three-layer message format. To consume the layered messages, we created
programs using Java, Eclipse, and XMLBeans.
Before discussing the design and implementation in more detail we explain the notion of layered
data interoperability and explain how UCore fits into that paradigm.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 4

3 Layered Data Interoperability
A typical technique for representing application data is to create one model with all the
complexities and detail needed for that specific application. All requirements are fulfilled in one
complex model. However, the information represented in that model is accessible only to
consumers who can process the complexities of the whole model. Furthermore, even one change
to a minor detail in the data model can break existing consumer software.
Layered data interoperability is an alternative concept used by UCore and further exploited in the
C2 Core Development Concept3. In this approach, information content is separated into layers,
each targeted for different consumers. Figure 1 from the C2 Core Development Concept shows
the difference in information abstraction for different layers. The layers become progressively
more specific (as the level numbers increase) and so the consumer scope similarly becomes more
specific. By supporting higher levels of understanding in a message originally intended for a
specific purpose, the potential audience is broadened. Also as the representation becomes more
abstract it becomes applicable to more domains; therefore structures used to represent the
abstracted version of the information are more reusable.

Figure 1: Data Layers

This concept of layered data interoperability is central to the experiment performed in this
Capstone task and is the basis for some UCore and C2 Core value propositions.

3 The C2 Core Development Concept document (version 1.1) is part of the June 30, 2009 testable baseline
submission package to the DoD Metadata Registry, which can be accessed here: http://metadata.dod.mil/mdr/ns/C2
CORE/C2_Core.zip

http://metadata.dod.mil/mdr/ns/C2CORE/C2_Core.zip
http://metadata.dod.mil/mdr/ns/C2CORE/C2_Core.zip

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 5

4 UCore Review
UCore specifies a data model for the abstract information layer in its layered message
architecture. The layer is called the Digest. Universal Lexical Exchange (ULEX) is the message
framework model in which the Digest sits along with message metadata and other message parts.
There are linking mechanisms in ULEX to link data across layers. The following subsections
present a brief UCore review of the Digest model and the ways in which UCore can be extended
to represent more specific information. Refer to the UCore Documentation4 for more detailed
explanations.

4.1 UCore Digest

Figure 2 is a conceptual depiction of the UCore Digest. The UCore Digest model is a high-level
representation of key concepts found in most exchanges, namely Who, What, Where and When
along with some relationship objects used to associate things to one another.

Figure 2: UCore Digest Conceptual Data Model

The UCore concepts When and Where are represented using accepted pre-existing standards and
have enough detail for consumer comprehension. The UCore What concept is divided into Event
and Entity objects. An Event occurs at a time and location. An Entity can be just about anything
left over. Special entity types exist to represent Who concepts, such as person and organization.
They have name properties and can participate in certain kinds of relationships.
Except for specialized Who objects, What objects are void of any classification by themselves.
To provide more classification detail for What objects without relying on schema structure (i.e.,
named types with special properties), What objects can be assigned taxonomy terms in a message
instance. This makes the Digest flexible without requiring any change in schema or structure.

4 Detailed documentation on the UCore conceptual model can be found at https://ucore.gov/ucore/node/20. At the
time of this writing, access to the UCore website was open to anyone with a sponsor-approved account.

https://ucore.gov/ucore/node/20

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 6

UCore has its own taxonomy that is expected to be understood by UCore consumers. What
objects can also be assigned taxonomic terms from other communities who may choose to define
their terms in a namespace UCore calls a “codespace.” Attaching community codes adds
community-specific classification to the object but they are only guaranteed to be understood by
that community.

4.2 UCore Extension Options

The UCore specification provides several choices for extending the message content beyond the
basic UCore Digest. Using one or more options, C2 Core will have to extend the UCore Digest
to represent C2 content in a UCore message. The word “extend” is used generically in the phrase
“extend the UCore,” but it has a very specific meaning in object-oriented data modeling having
to do with deriving new data types from existing data types. Note that this difference in meaning
can cause confusion. Only one of the options for extending the UCore is to use the “data type
extension” technique. This technique is discussed in section 4.2.2.1.
UCore extension possibilities fall into two categories:

1. Adding content in the Digest layer using existing digest object properties
2. Putting additional content into added message layers, namely Structured Payloads

The Capstone Team reviewed the options and chose several that met the C2 Core goals, and
rejected others that we deemed contrary to the C2 Core value propositions.

4.2.1 Adding Content to the UCore Digest

The Digest schema is fixed but flexible. Message instances can extend the meaning of Digest
objects by additional assigned domain-specific terms as discussed previously or through added
name-value pair strings.

4.2.1.1 Supplementing the UCore Taxonomy

Message producers can enrich the meaning of Digest objects by assigning taxonomic terms from
specific domains using the “What Code” property. The UCore base taxonomy will usually be too
generic to be useful for the primary business purpose of a message. Figure 3 shows an example
person instance having additional taxonomic terms defined by other domains or communities. In
this example, the UCore person is classified further in a message instance as a “Crook,” and
along with other terms meaningful to various communities.

Figure 3: Concrete example of UCore taxonomy extension

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 7

Although supplementing the UCore base taxonomy can make the Digest more useful, the
domain-specific terms are not meaningful to a basic UCore Digest parser. There is no guarantee
that consumers will recognize special code spaces, or that they will be prepared to use the
additional classifications in a meaningful way without a prior sharing agreement.

4.2.1.2 Use UCore Simple Properties

UCore Digest objects only have a few generic properties; for most types those are identifiers,
what codes, and a comment field. To supplement these, the UCore Digest object has a built in
extension technique. This is a property called a “SimpleProperty” which can be used repeatedly
to add name-value pairs as “run-time” object properties in the message instance, rather than as
part of a revised schema. A message producer can add “Eye Color” – “Blue” to the UCore Entity
representing a person.

Most of a domain’s additional required detail could be declared using “Simple Properties”.
However, adding properties in this manner does not provide the normal validation and format
predictability that comes from using schema defined properties. Additionally, using these
properties in the digest does not guarantee that UCore Digest consumers are prepared to consume
them. The Simple Property essentially annotates a UCore Object with arbitrary properties at run
time for those consumers prepared to receive them.

4.2.2 Adding Content using Message Layers

One key feature of UCore is its ability to contain additional, separate layers in a single message
that can be processed separately by consumers prepared to handle those layers. UCore does not
specify how these extra layers are populated, but users have several options. Separate payload
schemas will typically be developed to represent the extra content. A payload schema can be
designed to be completely independent of the digest and other layers or can somehow be
integrated with the digest object types or other payload object types.

There are two ways to integrate schemata in one layer with schemata in another layer for the
purpose of representing more detailed information concepts. Object type specialization is one
way. A new specialized type inherits the original type’s properties and meaning and takes on
additional properties and a more specific meaning. In XML this is done with the XML Schema
extension element5. We are calling the second way to integrate schema components type
augmentation. In this method new types are created with the intention of being linked to other
types like puzzle pieces completing a bigger picture. Each one of the pieces or data components
has a unique set of properties used to augment other pieces or data components.

Both of these methods “extend” the capability to represent information beyond the base UCore.
The UCore Digest object is meant to represent only some portion of a concept in the digest layer.
Extended objects with additional detail about a concept appear in other layers (the payloads).

4.2.2.1 Type Specialization

A consequence of deriving new types from an existing digest type is that the new type inherits its
parent properties. The result of using an extended digest type in the next payload layer is that the
digest level information gets duplicated in the payload. Now suppose the message needs a

5 See http://www.w3schools.com/schema/el_extension.asp for an example of this approach

http://www.w3schools.com/schema/el_extension.asp

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 8

second payload to contain information for an even more specific purpose. If type specialization
is used again, the third layer containing the new type will have the properties of its parent and its
parent’s parent, thus continuing to duplicate information in the prior message layers.

4.2.2.2 Type Augmentation

The term “augmentation” here means linking additional properties and/or relationships to pre-
existing data objects without changing their pre-existing structures. Pieces of a concept are
created separately and linked together with pointers. The primary utility for data coupling
described in Sections 5.3 and 8.2 is to allow a concept to be distributed into separate structures
for different audiences and also to be combined as needed to form a whole concept. The
advantage here is that the original structure is still recognizable by its original consumer while at
the same time declaring additional detail for a new consumer. This approach is one way to
achieve interoperable messages across multiple consumer groups. For this reason the Capstone
used this approach. The application of this approach to the Capstone use case is described in the
next section.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 9

5 Capstone Message Design
The message architecture chosen for the Capstone experiment aimed to demonstrate the UCore
and C2 Core value propositions. The UCore architecture separates some message content
represented in a standard generic model from the remainder of the message content represented
using domain specific models and agreed to by specific exchange partners. Both UCore and C2
Core would like to capitalize on this interoperable layered data architecture. The key premise for
this approach is each layer along with the layers above it serves a certain community. Starting
from the bottom layer going up the stack the community served becomes broader. This sort of
layering enables some portion of the message to be understood by a community broader than the
original exchange partners.
High-level architectural decisions are discussed in this section. Many lower-level design
decisions are discussed in Section 8.

5.1 Employing Layered Message Architecture

The Capstone C2 Core message design uses the ULEX containers to create a separation between
a “universal” community, a C2 community, and a COI community. Beyond the UCore Digest,
the message content is separated into content applicable to the “at large” C2 community and
content for the “specific” C2 community. A C2 Core message using UCore will have a UCore
Digest and two payload layers: a C2 layer and a separate special COI layer as illustrated in
Figure 4. The latter two layers are both implemented as ULEX structured payloads. The goal is
to produce messages that have some value to the C2 community in general while also satisfying
the messaging needs of a specific C2 COI.

Figure 4: Layered Message Structure

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 10

With this architecture, message content is spread across the various layers such that information
appropriate for UCore consumers appears in the UCore Digest, information appropriate for the
C2 Core consumers appears in both the Digest and the C2 Structured Payload, and information
appropriate for COI consumers appears in all three layers.

The C2 Core Development Concept Document (version 1.1)6 promotes a layered architecture.
Some parts of the document state that the C2 layer will mix generic C2 content and COI content
together7. A third layer is suggested only for extending the COI specification to represent unique
details beyond the scope of the COI IES.

In other parts of the document, the COI layer and the C2 Core layer are depicted separately8.
This configuration was favored by the Capstone Team because it allows unanticipated consumers
to choose as many or as few of the layers as they understand. Each layer is well separated and
documented with payload-specific metadata. That is, this configuration serves three potential
groups of consumers:

1. Those outside the C2 domain who understand only UCore
2. Those in the C2 domain who understand both UCore and C2 Core
3. COI members who understand all three layers

Separating the C2 Core layer from the COI layer follows the pattern of UCore, doing “UCore the
UCore way,” and providing maximum opportunity to demonstrate the value proposition of
“layered interoperability.”

5.2 Information Distributed Across Layers

There are several ways to promote message interoperability across multiple user groups using the
layered architecture concept. Starting with the UCore Digest and moving down the stack of
layers, information becomes more community-specific and has fewer target consumers. One way
to populate separate layers is to treat each layer as a semantically independent sub-message.
Independent sub-messages can be processed and understood without information from any of the
other layers. This design satisfies interoperability requirements for multiple user groups because
the target consumer can continue to process his own layer regardless of what appears in the other
layers.

Many applications of UCore to date have used the separate layers for semantically independent
content. This leads to one layer duplicating message details already specified by other layers
with potentially different data structures. This duplication promotes proliferation of multiple
schemas for the same concepts. The Capstone Team rejected this semantically independent layer
approach for the following reasons:

6 The C2 Core Development Concept document (version 1.1) is part of the June 30, 2009 testable baseline
submission package to the DoD Metadata Registry, which can be accessed here: http://metadata.dod.mil/mdr/ns/C2
CORE/C2_Core.zip
7 For example, section 10.1.1 (“Architectural Framework Overview”) and Figure 4 specifically within that section,
which depicts C2 Core content and COI extensions within the same StructuredPayload.
8 C2 Core Development Concept v1.1, Figure 5, “Architectural Layered Interoperability”

http://metadata.dod.mil/mdr/ns/C2CORE/C2_Core.zip
http://metadata.dod.mil/mdr/ns/C2CORE/C2_Core.zip

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 11

 It fosters redundancy: Creating independent layers can lead to repeating the same
information up to three times (i.e., one time for each layer) with varying degrees of
generality. The message size is increased, as is the potential for contradictory
information. Additionally, since each layer has an independent message, every consumer
is guaranteed to discard two of the three layers.

 It requires extraneous effort: The message producer is forced to devise message parts

that have no benefit for his primary target consumer. This is likely to impede adoption of
the standard.

 It inhibits reuse: The message designer will tend to re-create schemas for concepts

already represented in other layers. For example, the Capstone Team observed this in the
first draft version of C2 data components, where time and location structures are re-
created regardless of the existing UCore time and location representation. This apparently
was done to make consumption of the C2 layer possible without information in the
UCore Digest layer.

Rather than treating the layers as semantically independent, the Capstone effort used each layer
to represent only the content appropriate for that layer, and avoided duplicating information
already represented in another layer. The layers are semantically dependent; consumption of one
layer requires the consumption of all the layers higher in the stack. The C2 Payload contains only
the information directed to the C2 community at large and does not contain information already
represented in the UCore Digest layer. For example, the C2 Payload can use time and location
representations in the UCore Digest.

The COI Payload, the third layer in the message stack, is reserved for message details outside the
scope of the C2 Payload and UCore Digest target consumers. Separating COI information from
C2 information makes the C2 layer consumable by all C2 participants, while letting the COI
extend C2 Core in a separate layer to include COI-specific information.

Keeping the layers separate but semantically dependent is desirable for three key reasons:

 In the future, COIs need not spend time re-modeling concepts already provided for them
by UCore and C2 Core; instead they can use “prefabricated data components” as referred
to by the C2 Core value proposition.

 Consumers need not create new software to understand C2 content in a COI message,
ensuring that as much of the message is useful to as many consumers as possible.

 Message redundancy is minimized, improving performance.

Separate layers maintain interoperability for three different communities without requiring
redundant information and duplicative design and development efforts. The data coupling
described next provides the necessary information for aggregating the semantically dependent
parts of the message.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 12

5.3 Data Coupling Across Layers

ULEX “pointers” are used to connect information across the Digest, C2 Core Payload, and COI
Payload message layers. The following example consists of notional content for explanation
purposes only.

Figure 5 provides an example of a UCore Digest that specifies a male person named “John Doe.”
In Figure 6 the C2 Core layer further specifies that he is an infantry officer assigned to the 108th
Infantry Division. Figure 7 shows how a COI Payload might further specify some aspect of his
training readiness; but the COI Payload does not repeat his name, his sex, or his unit assignment.
Instead, the COI Payload contains a <ulexlib:SameAsDigestReference> element
linking his extra data (i.e., training, readiness, relationship to operation) back to his UCore
Digest data (i.e., name, sex). In some cases, <ulexlib:SameAsPayloadReference> may
also be used to link a COI Payload element to a C2 Core Payload element.

Figure 5: Notional UCore Digest

Figure 6: Notional C2 Core Portion

Figure 7: Notional COI Payload

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 13

The purpose of linking data across the layers is to support aggregation of message parts which
have each been represented in the format expected by the target consumer. This design supports
both message interoperability and flexibility.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 14

6 The Capstone Subject Domain
The technical use cases employed in the Capstone explored the capability to design, produce, and
consume a new information exchange using the message design described in this document.

The Capstone Team began with the CMD schema for providing realistic domain detail. The
CMD is used by Air Operations to describe missions requested by Air Tasking Orders (ATOs)
and sent to operational units tasked to fulfill the missions. The mission definition content
includes a mission customer, tasked unit, location and target, along with the individual tasks
making up the mission. In addition, required equipment configurations are described, as is
rudimentary route information used by the tasked unit to create flight plans. Figure 8 is a high
level CMD concept model provided by CMD documentation.9

The usefulness of CMD to the Capstone is that it represents real data requirements that are
implemented in production environments today. The information exchange for this use case was
built as if CMD did not exist – essentially building a new information exchange. CMD is useful
in that it saves modeling time by providing definitions for the COI Payload and candidate
requirements for a C2 Core model. Most importantly, it provides the complexity of a real world
operational data sharing problem.

Figure 8: CMD Conceptual Model

The Capstone Team concentrated on one type of air operations mission, the “direct air attack”
mission10. CMD covers many other air operation mission types, each having a different set of
detailed information. The timeline for the Capstone effort only allowed two use cases to be
examined, and the Team reasoned that the value proposition could be tested with a single
mission type. The specifics of these use cases are detailed in sections 8.3.2.3 and 8.3.2.4. CMD
data used for the experiment was generated from the TBMCS in the form of a CMD XML
document. The Capstone experiment included transforming that document to the three-layer

9 MITRE Technical Report (MTR080334) Common Mission Definition, Emre Gulbay, November 2008
10 Specifically, CMD messages whose primary mission type code was “ATK”.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 15

message format described earlier. Then queries were posed against the content in this new format
to determine whether it could support community needs.

After selecting and understanding the air operations mission domain, the next step was to create
the C2 Core model needed to represent some of the mission information of interest to the broader
C2 community.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 16

7 The Capstone Notional C2 Core Model
As stated earlier, the Capstone effort started before the release of the C2 Core testable baseline.
Therefore, the team fabricated a C2 Core data model with a high-level resemblance to the C2
Core testable baseline conceptual data model.

While the intent of the Capstone was not to produce high-quality content for later inclusion in the
official C2 Core, it was considered important to create highly plausible content. This meant
meeting two primary criteria:

 The data model should represent a real, joint C2 need.

 The concepts represented by the data model should be in active use by more than one
COI.

Various C2 data models were reviewed for input into the notional C2 Core data model, in
addition to CMD. More discussion of this survey of C2 content appears in Appendix A. For this
experiment, the Capstone Team only needed to create enough C2 Core data components to
represent some C2 level mission content. At the same time, the Capstone notional model had to
be sufficient for creating a message exchange specification from beginning to end and to uncover
the pros and cons of the UCore – C2 Core message architecture.

Figure 9 shows the C2 Core notional model developed for these purposes. It is composed of
concepts which are popular across the C2 community and conceivably can be understood by
consumers outside of air operations. The UCore Digest layer and C2 Payload layer were used to
declare the information depicted here. This layer approach is discussed further in later sections.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 17

Figure 9: Notional C2 Core Model

Note that many of the direct attack mission details found in the CMD did not become part of the
C2 Core model. For example, a detailed list of aircraft configuration items used to define a task
resource is critical to the air operations COI, but may not be of interest to warrant inclusion in
the C2 Core. As a result, that data appears in the COI specific payload layer using a COI-specific
payload data model. Exactly which components are suitable for C2 Core and which are not is a
judgment call that will be made over time by the C2 Core content working group; the important
principle for the purpose of this experiment is that not everything belongs in the C2 Core, and
that there will inevitably be the need for additional components in a COI-specific extension.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 18

8 Applying C2 Core UCore Message Design to Air Mission
Subject Domain

The remainder of this document describes the process and results of applying this C2 model and
the left over Air Operations Direct Attack detail to the three layer message architecture described
above.

8.1 Populating Message Layers

Because UCore Digest is generic and flexible enough to declare where and when and a little bit
of what and who for any content in Air Operations Direct Attack messages, the message
producer is left with choosing what to put in the UCore Digest and how to organize it11. To
promote consistent messages, rules are needed for deciding which content goes in the Digest and
which content goes elsewhere. One Capstone objective required that the rules take into account
reducing or eliminating redundancy. This can be done by distributing message content across the
message layers and omitting information represented in one layer from any of the other layers.

8.1.1 Message Content in UCore Digest Layer

The UCore specification does not include strong guidance for choosing which part of the
message information should be represented in the UCore Digest or how it will be used. The
Capstone Team experimented with several different guidelines for choosing Digest content.

The first approach was to create Digest objects for every piece of data from a CMD message that
can possibly fit without misrepresenting the semantics of the information. The Capstone Team
found though that the content became too vague to be meaningful, especially with respect to
relationships between objects12. Indiscriminately populating the Digest with as many objects and
relationships as possible did not seem to increase information value. This calls into question the
utility of this rule considering the cost in message size and effort to populate and re-couple the
information with data in the other message layers.

A second possible strategy was to populate the Digest with only those objects that can be located
in time or space, because those concepts are well modeled in UCore. Even this rule puts data
components into the Digest that do not appear to be useful to the UCore target consumer without
C2 or Air Operations level detail. Given the overhead to tease apart and re-assemble content,
information ought to merit elevation to the Digest.

The team ultimately decided to populate the Digest with what might be characterized as
significant information that is potentially useful to an audience broader than C2. Choosing which
content is significant and useful in its Digest format will have to be left to the judgment of the

11 UCore provides many modeling options whose consequences are not always clear. For example, imagine
modeling a UCore Digest that represents a company with three employees. One producer might model the company
as being affiliated with a collection of employees. That collection in turn would be connected to each employee.
Another producer might model the company as having direct relationships to each employee, with no intervening
collection. UCore does not provide any guidance to indicate which is right or wrong; the consumer may require a
priori knowledge to interpret such Digests.
12 Frequently, complex relationships were collapsed into simple AffiliatedWith relationships. For example, the
populated Digest might state that a PlannedEvent (in reality an attack) was AffiliatedWith an entity (in
reality a target). While true, it was unclear who could make use of generalities like that.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 19

message producer. Without a better understanding of the consumers of the UCore Digest, the
choices that ensure value to the ad hoc consumer are not clear. On the other hand, unless some
information is provided in a broadly understood way, the message is only understood by the
narrower targeted audience.

UCore relationships were used to represent, at some level of generality, associations between the
Digest objects. While avoiding redundancy was an important objective, there were cases in
which a C2 Core relationship needed to be represented both in the Digest and the C2 layer. The
UCore relationship is needed to make more sense out of the Digest for the Digest only
consumers. But because the UCore relationship is not specific enough to represent all the
meaning of the C2 Core association, the C2 layer will repeat and clarify the relationship.

Although UCore relationships can often be expected to be insufficient for the C2 consumer, there
is one C2 association in our notional data model that is sufficiently represented by UCore. In
CMD, a military organizational unit is associated with the country to which it reports. The
UCore “Controls” relationship used between the Military Organizational Unit and the Country
sufficiently represents that information so nothing further is declared in any of the other layers.

There is no standard way to show the C2 content selected for the UCore Digest other than
looking at the associated XML instance document.13 Figure 10 intends to illustrate distribution of
C2 Core information across the UCore Digest and C2 layers. The C2 Core conceptual model
shown earlier in Figure 9 is overlaid with UCore Digest objects showing how C2 content is
mapped to the UCore Digest. Each UCore box is labeled with the corresponding Digest object
name that is used to represent the information covered by the box. The objects and properties not
covered by a UCore box go into the C2 layer.

Some property data types are noted in the figure next to the property names; simple string and
integer data types are not noted. UCore time and location data types were used in the C2 layer if
they met the needs of the C2 properties. It made good sense to reuse UCore types where possible
to maximize the UCore and C2 Core value propositions. This kind of genuine reuse is labor
saving and supports interoperability.

13 The Capstone Team also developed rendering software for any UCore Digest XML instance. It presents all the
UCore Digest objects as nodes in a graph where the connections are UCore relationships. At the time of writing,
services created for the Capstone to render UCore Digests and UCore layers are accessible at
http://bombadil.dyndns.org:8080/cgi-bin/ucore.pl

http://bombadil.dyndns.org:8080/cgi-bin/ucore.pl

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 20

Figure 10: Mapping C2 Core to UCore Digest

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 21

The representation of C2 concepts in the UCore Digest is limited to high level UCore taxonomy
assignments. Without an additional C2 taxonomy, the objects were too vague, and so we added
C2 and Air Operations COI taxonomy codes. Figure 11 shows an XML snippet of the mission
event in the UCore Digest revealing the taxonomy codes we chose. There is no clear choice for
assigning classification terms beyond the term “Mission.” It is not obvious when a classification
term should instead be represented as a Mission property in the C2 layer.

Figure 11: C2 Mission Mapped to UCore Planned Event

In the end, no matter what information is selected for the UCore Digest, those choices affect
what needs to be represented in the rest of the message layers. The C2 Core Payload schema
depends on the consistency of the message producer’s choices for the Payload schema designer
to be sure the produced schema is sufficient for representing the remainder of the information
content. Although the choices made for the Digest dictate the design of the remaining layers,
they are not recorded and enforced by any particular formalism in UCore.

The Capstone Team made expedient decisions that made sense in the context of the use case, but
it is important to remember that other producers in other contexts would likely come to different
conclusions. So part of the role of the C2 Core Specification is to provide strict guidance for
populating the UCore Digest with C2 content. Without that, the Digest can be populated many
different ways, leading to difficult and incoherent information exchanges and potential
interoperability breaking points.

8.1.2 C2 Payload Layer

Once the information selection is made for the UCore Digest, the C2 Payload layer can be
modeled in XML Schema Definition (XSD). The C2 Core Payload schema is needed by the
message producer and the C2 and COI consumers for the C2 message layer. Therefore the model
need only represent that information which is not going in the Digest layer.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 22

Figure 12: C2 Payload Mission Model

As stated in the C2 Core Development Concept document14, the C2 Core model is supposed to be
a set of building blocks or data components. It is not clear how those building blocks are to be
assembled. For example, the concept document does not suggest whether an instance document
will be a flat list of C2 objects and C2 relationships much like the UCore Digest or whether they
will be hierarchically organized with a single root object. The Capstone’s C2 Payload XSD
model shown in Figure 12 exploits the hierarchical nature of XML as opposed to the UCore
Digest’s relatively flat structure. This seemed to be the typical XML modeling approach and is
most expedient given the formalism in which the model is built.15 So wherever there is a
composition relationship in the C2 Core notional Unified Modeling Language (UML) model
depicted in Figure 9, the schema uses containment to represent the association.

The XML code snippet in Figure 13 provides some idea of an instance of the C2 message layer.
It shows part of a C2 layer Mission instance. There is a pointer back to the Digest planned event
data component, a few properties indicating that the mission has been tasked (TSK) and is live
rather than simulated. The mission objective is a child component of mission. The rest of the
mission instance is not in this figure.

14 Section 7.1.2, “C2 Core specifications will be designed with the idea of reusable components in mind”
15 There is more on this topic in Section 9, Technical Findings.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 23

Figure 13: C2 Layer Mission XML Element

The C2 message layer schema reuses some UCore data types rather than re-creating those types
as shown by the XML message snippet in Figure 14. The C2 route reuses the UCore
GeoLocation data type for latitude and longitude data and UCore TimeInstance data type for the
time at route point data.

Figure 14: C2 Route Reusing UCore Data Types

The example UCore Digest declares a few relationships between objects. The XML instance
snippet in Figure 15 shows an “OccursAt” relationship stating that a mission task occurs at a
certain location and at a certain time. The CMD schema requires qualifying this time as
“Planned”, “Scheduled”, or “Actual.” The “OccursAt” relationship has no qualifier property. To

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 24

remedy this, the C2 message layer adds this qualifier to the time data with an element called
“Occurance” and a property called “TimeStatusCode.” The “Occurance” element has a link
property used to link back to the Digest “OccursAt” data component. This is shown in Figure 16.

Figure 15: UCore Digest Occurs Relationship

Figure 16: C2 Layer Task Occurs Qualifier

This distribution of information is awkward, but it does prevent a UCore Digest consumer from
encountering unexpected information and structure. There are trade-offs associated with an
interoperable layered architecture. In addition to some awkward modeling, one might question
whether the time qualifier is critical and therefore wonder if omitting it from the UCore layer is
risky. This concern is relevant to discussions about the value and expected use of the UCore
Digest to UCore-only consumers.

8.1.3 Air Operations COI Layer

The Air Operations (AO) COI specific information deemed irrelevant for the UCore and C2
layers includes the administrative state of the mission, mission identifiers used by AO systems,
specifics about sorties such as aircraft call signs assigned for a route, references to specific
ATOs, and so on.
The AO COI layer schema in Figure 17 shows the top level set of XML tags defined in the AO
COI XSD. Most of the tags in this example have the same name (but different namespace) as
those in the C2 layer, but the contents underneath are those things not declared in the UCore
Digest and C2 layer. Having a similar containment structure also happens to imply relationships
that are also implied in the C2 containment hierarchy. This duplication is necessary but possibly
problematic for the consumer software having to deal with duplicative associations, implied or
explicit.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 25

Figure 17: Air Operations COI Payload Schema

As with the C2 layer data components, AO COI data components may link back to the UCore
Digest. Alternatively they may link to the C2 layer. The XML instance snippet in Figure 18
shows that the AO Aircraft Sortie links back to the C2 layer Sortie and the AO Aircraft links
back to the UCore Digest layer Aircraft Entity.

Figure 18: AO COI Layer XML Snippet

There is additional information in the AO COI layer, for example, the air operations specific
route information. Figure 19 shows parts of the AO route point data and the route point’s link
back to the C2 layer route point. Call signs and frequencies are considered air operations
specific.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 26

Figure 19: AO COI Specific Route XML

The following two subsections discuss message instance production and consumption issues.

8.2 Inter-Payload Pointers and Data Referencing

To minimize redundancy in messages, pointers must be used extensively. The nature and
structure of these pointers is a substantial complicating factor in how multi-layered messages are
produced and consumed. There is a straightforward trade-off at work here; to reap the benefits of
component reusability and redundancy minimization, the complexity of these pointers must be
addressed.

8.2.1 Chaining Pointers

With three layers in a message though, a second question comes up. Should all subsequent layers
point back to the UCore Digest? Or should each layer point to the layer immediately above it?
These chaining options – referred to as “Digest-only” and “chaining” pointers, respectively – are
pictorially illustrated in Figure 20 and Figure 21.

The Capstone Team chose to use chaining pointers. For one thing, chaining pointers provide the
ability to link the next level of detail upward: the COI Payload links to the C2 Core Payload, and
the C2 Core Payload links to the UCore Digest. Another reason for choosing chaining is that it
may not be possible to represent everything in a detailed message with a corresponding entry in
the UCore Digest. If linkage to the Digest is required, and there were no Digest entry for a
particular entity, then it would not be possible to represent linkage between the COI Payload and
the C2 Core Payload to connect two objects describing the same thing.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 27

Figure 20: Digest-only pointers

Figure 21: Chaining pointers

In the experimental instance messages there was only one exception to this rule:
MissionTaskLocation elements in the COI layer pointed directly to the UCore Digest, and not to
the intervening C2 Core Payload. The reason for this was that the UCore Digest had already
represented most of what was needed, to the point that there were no additional value-added C2-
specific data elements that the C2 Core Payload could represent. As a result,
MissionTaskLocation elements did not occur in the C2 Core Payload, and the COI layer was
forced to link back to the UCore Digest.

This raises an important point about pointer strategies. In many exchanges, it may not be
possible to adopt one strategy or the other. Based on modeling requirements, multiple strategies
may be needed concurrently and/or at different times, which complicate message production and
consumption.

8.2.2 Pointer Validity

One of the important considerations when using pointers is that the referrers and referents be of
the same type. For example, if a message uses a ulexlib:SameAsDigestReference
pointer from a C2 Core AttackMission element, the referent must be a UCore “Event” of
type PlannedEvent. Such constraints placed on referrers and referents help ensure the
semantic consistency of the message. Should a message have a “same as” link from a type of
organization in the C2 Core layer to a UCore Person, the interpretation of the message would be
undefined. The testable baseline for C2 Core includes a discussion of the need for this kind of
“binding validation.” The testable baseline additionally includes a sample binding document to
aid this validation, but leaves undefined exactly how or when this validation will be performed.

Although this is thought to be an important constraint on message design, due to the scope of the
C2 Core Capstone such constraints were not implemented. Such constraints are likely only able
to be expressed in terms of advanced validation languages, such as Schematron16. These

16 Schematron (http://www.schematron.com/) is a language separate from XML schema that allows for assertions to
be made against patterns in XML instance documents.

http://www.schematron.com/

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 28

observations point to the fact that specifying sufficient rules to make C2 Core messages
meaningful and useful will likely fall outside of the bounds of what XML schema is capable of
expressing.

The primary advantage of this approach is that software processing the message can build a
complete picture of the data object John Doe while avoiding redundancy in the message. The
major disadvantage is that this requires refactoring of the COI schema to remove extra data (like
name, sex, unit assignment) that would otherwise be redundant. As a result, this approach would
appear more suitable for implementing new information exchanges with C2 Core, such as in
situations where there is not an already existing schema, or where it is only in a developmental
stage. Indeed, this is in line with the C2 Core value proposition, which focuses on the
implementation of new exchanges; C2 Core does not make any specific claim with respect to the
ease or value of refactoring/changing existing exchanges.

8.2.3 Pointer Processing

One other potential drawback may apply to this extensively interlinked message structure. In
cases where ULEX messages grow quite large, it may be necessary to alter the message
processing approach to resolve all “same as” pointers properly. Because the application may not
know ahead of time where all the pointers resolve, doing such processing in a single pass may
require a message that is small enough to fit into main memory. Cases in which a message is too
large for main memory may require either multi-pass processing or intermediate storage (e.g., in
a relational database), complicating message processing for consumers.

8.3 Message Implementation

8.3.1 Message Production

8.3.1.1 Modeling and Content Issues

Sample CMD messages were transformed into three-layer ULEX/C2 Core/COI messages
through the use of an Extensible Stylesheet Language Transfornations (XSLT) program.
Message production proceeded by setting up a default ULEX wrapper for the target message,
and by processing most elements in the source CMD message three times: the first pass
generated the corresponding UCore Digest elements; the second pass generated corresponding
C2 Core elements; and finally the third pass output the remaining message details into the COI
layer.
Translating information from the perspective of the COI into that of the C2 Core is not always
straightforward. “Widening conversions” such as needing to represent an F15 aircraft as a more
general item of “equipment” are common and relatively straightforward. But frequently the COI
representation of relationships differs from those that will be found in the C2 Core layer. This
difference necessitates very idiosyncratic processing of some structures to output the
corresponding C2 Core structures.
For example, while it is generally true that each element in the document was processed three
times (i.e., once for each layer), some elements in the source documents still will not contain
sufficient information for their C2 Core counterparts owing to differing representations and
modeling choices. This in turn requires “jumping around” in the source document to assemble
enough information to output the correct C2 Core structure. It is unlikely that a straight event-

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 29

driven Simple API for XML (SAX) parsing of the document would be sufficient to translate a
COI message into a three layer structure.

8.3.1.2 Implementation Issues

Generating the requisite pointer structure for three layer messages was very challenging. Much
of the testing and debugging time that went into the message producer was spent validating
pointers by hand and writing custom scripts to do the same automatically. As described in the
section on pointing strategy (section 8.2), while the general approach was always for one layer to
point to the layer immediately above it, there were exceptions and it was a challenge to validate
that these were done properly.
Another difficultly dealt with message validation. The ULEX specification is written in such a
way that payloads are not required to be valid. As a result, XML software did not check the
validity of the C2 Core and COI layers even when schemas were independently specified for
those layers. During testing, a very small change in the ULEX specification was required simply
to force the XML software to validate all the layers in one pass, to confirm that message
production was proceeding correctly. 17

8.3.2 Message Consumption

8.3.2.1 Re-Assembling Message Content

The primary task of message consumption is to re-assemble the three layers of information into a
single coherent structure with a complete account of a necessary data object. While the
information is broken up into those three layers to provide for “layered interoperability” benefits
in the form of selective layer consumption, any consumer who understands more than one layer
will have to re-assemble the layers into a comprehensive picture.
Table 1 provides an example of how this looks for the “Mission” data object, which occurs in all
three layers of the message. (A full technical example of a message can be found in the
appendices of this document.) Each layer provides additional details about the same Mission
object. The task of the consumer is to create a single Application Programming Interface (API)
object that encapsulates all this detail.
In the interoperability literature, there is considerable discussion about “understanding.” It is
assumed that if a consumer is aware of a standardized schema, the consumer can “understand”
data formatted according to that schema. When processing messages, however, a more detailed
definition of “understanding” is needed to account for the gap between strategic discussions of
data management, and the programming that is necessary to implement actual information
systems.
To the programmer, “understanding” the message usually means either having a standardized
and documented API which presents the information to the programmer in a convenient way, or
a detailed enough set of specifications to write that API. In the case of multi-layered messages,
having the schemas is insufficient to “understand” the message. The programmer needs
additional detail, such as modeling decisions and the pointing strategy employed. While
processing XML documents, the programmer must understand where the pointers will be, where

17 The ULEX Payload has as its main property a wild card meant for any payload content. In UCore 2.0, the wild
card element means “skip content validation even if a schema for the content is provided.” The Capstone Team
changed the wild card property to mean “if a schema for the content is provided, use it for content validation;
otherwise skip content validation.” This was a one word change in the ULEX schema.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 30

they will point, and why; the programmer also needs to understand the subtle differences
between modeling decisions made at the C2 Core and COI layers, so that the information can be
reassembled in a meaningful way.

Table 1: Mission Information Distributed Across Layers

UCore
Digest

 A PlannedEvent

 Identified by MissionKey, TBMCS ABP
Mission Alias, and TBMCS-WWID
Mission Alias

 Attack mission (external taxonomy reference)

 Air mission (external taxonomy reference)

 Live mission, i.e. not a test (external taxonomy
reference)

C2 Core
Payload

 Mission Owner contact
 Execution status code
 Authenticity code
 Objective (destroy target)

COI
Payload Administrative state

An API will likely be necessary due to the complexity of reconciling the links in the XML and
assembling the overall picture. Additionally, since almost all consumers will need to do this task,
it makes sense to do it once (correctly) in a standard API, rather than requiring that every
consumer independently writes code to do the same assembly process.
Once the data is “understood” via this API, that overall model has to be filtered through the
context of what the programmer is trying to accomplish. The API which he or she uses to
consume the message must be capable of adapting to the information need the programmer is
trying to satisfy.
To explore the complexity of consuming these messages, the Capstone Team constructed two
distinct use cases: one case for a C2 Core only user who has no understanding of the COI
Payload; and a second case for a COI participant.

8.3.2.2 Creating a Layered Message API

To process multi-layered messages, most of the work went into writing a Java API18 which a
consumer could use to access the content irrespective of layer. The consumption program used

18 Programming code for this API is available through MITRE’s internal source forge website, under the project
name “C2 Core Capstone FY09” -- http://developer.mitre.org/scm/?group_id=1228. As discussed earlier, this code
primarily focuses on re-assembly of the message, without providing many specifics on what to do with the data.
Sample programs that use this API to implement the test cases are included in that project.

http://developer.mitre.org/scm/?group_id=1228

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 31

Java, Eclipse, and XMLBeans19 to process raw XML messages and to provide the data in
accordance with a Java API that mimicked the three source schemas (i.e., UCore Digest, C2
Core, and the Air Operations [AOP] schema which represented COI Payload contents).
XMLBeans allowed the source schemas to be “compiled” into native Java APIs, which greatly
accelerated the processing of raw XML messages. Unfortunately, XMLBeans API objects are
not capable of processing or resolving “pointing” structures, such as the ULEX “same as”
pointers discussed earlier. What the XMLBeans API does do is to present the three-layer
message as a set of object APIs that conform to the relevant schemas. This means that if the
application programmer is familiar with the structure of the various schemas (ULEX, UCore, C2
Core, AOP, etc.) then the programmer will be able to write the next layer of API.
This additional layer of API was placed over the XMLBeans API objects to resolve the pointer
structure, and to produce a single object which can be used to access necessary data. The result
was that a consuming application could process an incoming XML message and receive a single
“LayeredMessage” object, which could be interrogated for any aspect of the message (such as
the latitude/longitude of a given mission route point).
This additional API layer was required to abstract the considerable complexity of message
processing away from the code which implements the consumer’s business logic. There is quite a
bit of complication that goes into handling the technical artifacts of XML that has nothing to do
with the high-level objective of the consumer. Such complication should be “hidden” from the
consumers in an API which provides the necessary functionality without requiring detailed
knowledge of the message.
This additional API layer indeed did make the creation of consumption use cases much easier,
but it also implied a “joined meta-model” of the information in the message. By connecting all
three layers into a single picture, the API made assumptions about how that single picture would
be structured, i.e., what the elements would mean, and how relationships would be specified.
While this joined model was suitable for air operations planning, it would not be suitable for
other consumption use cases. Each message design using a different COI Payload schema will
need its own joined meta-model for the whole message. Whether the meta-model does or does
not exist explicitly, it has been conceived by the message designer to understand how the
message content will be distributed across layers and which content remains for the COI Payload
schema to represent.
The fact that different messages require different joined meta-models raises questions about
whether it is possible to develop a single C2 Core consumption API that can be used across
widely varying contexts. Even if it is possible to develop a single API, this “joined model” would
need to be made explicit, and deemed “acceptable enough” by the C2 Core community for them
to use it.

8.3.2.3 Message Consumption Use Case #1: C2 Core Consumer

To assess whether an unanticipated user could derive value from the UCore and C2 Core layers
alone, the Capstone Team devised a use case for exactly such a user. This use case involves a
notional user who needs to consume air operations data from the AO COI to coordinate missions
in a given geographical area, and to prevent conflicts and friendly fire.

19 http://xmlbeans.apache.org/

http://xmlbeans.apache.org/

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 32

The task in this use case was to process a three-layered message and to determine which air
missions occurred within a given space/time box. The test program was given the following
inputs:

 A space/time box consisting of a bounded geographic box (i.e., two latitude and
longitude points representing the upper left and bottom right of the box) and a time
interval. An example of such a space/time box might be “upper left corner (10.07, -
8.14), bottom right corner (4.993, 1.06)20 between 8:00AM and 10:00PM on October
1, 2006”

 A series of six layered messages, each representing a direct attack air mission.
With this information, a notional, unanticipated user could determine whether there were planned
direct attack air missions in a given area and time. Such information could help a commander
avoid placing blue forces in that same space/time box, and/or help the commander coordinate
with the units tasked with the direct attacks.
The test program was successful in producing the desired output, which was an indication of
which of the sample layered messages represented missions that occurred within the space/time
box of interest. Additionally, due to the program’s ability to understand C2 Core RoutePoint
objects, the program could output exactly which route points within which missions occurred in
the desired range.

8.3.2.4 Message Consumption Use Case #2: Air Operations COI Consumer

COI participants typically use air mission documents for planning and execution purposes. The
test messages produced for the experiment were comprised of data that came out of the high-
level TBMCS planning system, destined for subordinate organizations who would do more
detailed-level planning. For example, the test messages might indicate only the location of the
target, and that the mission should fly from the source base, to the target, and subsequently
return.
The organization tasked with executing the mission is required to do the next level of planning;
for example, which specific aircraft (and tail number) will fly the mission? Which specific route
will be taken to avoid en route obstacles, threats, and observed weather? Which configuration
and armaments will the aircraft carry?
The COI consumer of these messages needs to understand all aspects of the entire message. For
this use case, the Capstone Team focused on a set of data objects distributed across all three
layers. The intent was to gather enough information from the message for the COI participant to
determine whether they had the resources necessary to carry out the mission. This test case
included consuming information about:

 The specified mission

 The tasked organization
 The aircraft assigned
 The routes involved, including all required route points
 The planned configuration of the aircraft tasked to fly the mission
 The target location, and desired effect (e.g., “destroy target”)

20 This geographic bounding box refers to most of the Ivory Coast, and portions of Ghana in western Africa

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 33

The test program was successful in producing the desired output, which was a complete account
of all these data objects, suitable for input to a detailed mission planning system.

8.3.2.5 High-Level Outcome of Consumption Use Cases

The experiment determined that the three-layer messages produced had sufficient detail to be
useful for a hypothetical C2 Core only consumer. Additionally, the messages preserved all
necessary information from the source CMD instances, indicating that they are sufficiently
detailed and correctly modeled to be useful to the original COI consumers.
While successful, message consumption involved a good deal of programming that was focused
on overcoming the technical challenges of the layered format. Before code could be written that
performed the use case, an API was needed to allow the programmer to access the three-layered
message in a convenient way that abstracted away the complications of the underlying XML.
Until a standardized API is available to assist this task, each consumer is likely to re-implement
this type of software, tailored to his specific needs.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 34

9 Technical Findings
Based on our experience using the proposed UCore - C2 Core message architecture for the Air
Operations Direct Attack message, the Capstone Team discovered some issues needing further
attention. First, using UCore for C2 Core messaging standardization is not a simple task. Second,
UCore and C2 Core need to establish additional design specification details and support tools
before their respective value propositions can be realized. The following paragraphs discuss the
team’s technical findings in more detail.

9.1 Data Modeling Rules for Layered Architecture is Missing

Differences in the modeling paradigm between the UCore Digest and the Payloads cause
difficulty in declaring information consistently and cleanly across the message layers. There is
no rule set yet for distributing information across layers. Additionally, the UCore Digest model
by itself is intentionally flexible, leaving many decisions up to the UCore message producer.
Without guidance and business rule enforcement for the C2 community, this flexibility will lead
to inconsistent content representation.

9.1.1 Associating Objects

Structurally, the UCore Digest is flat and contains only explicit relationships; whereas the C2
Core Model is hierarchical with implicit relationships expressed via containment. In addition, the
level of relationship abstraction is different between the Digest and the Payload: UCore Digest
relationships are mostly vague – as in AffiliatedWith – whereas C2 Core relationships tend
to be either specific – such as “PerformsTask” – or implied through containment. The
composition or aggregation relationships implicitly declared by containment in C2 Core seem
more intentionally meaningful than they would be without the domain context in which they are
used.

The C2 Core or COI layers will sometimes need to “extend” the vague Digest layer relationships,
either by giving the relationship a more meaningful name, by adding properties, or by association
via proximity in the parent-child hierarchy. To “extend” the Digest relationship in the Payload
requires expressing it as a separate object; i.e., it cannot be expressed implicitly through
containment.

In this experiment, the Capstone Team expressed many associations using containment. For
example, MissionTask executes a Mission, which in the Digest is expressed as an
AffiliatedWith object and in the C2 Payload as a parent-child containment association.
There is no place to attach the SameAsDigest pointer property in the implied relationship to
indicate it is the same as or an extension of the AffiliatedWith relation.

There was one situation in which the UCore Digest “OccursAt” relationship needed to be
qualified in the C2 layer to indicate whether the time interval was planned, actual, or scheduled
(see section 10.1.2). An explicit C2 relationship object was created with a same-as link back to
the Digest relationship and a Time Status Code property.

This relationship modeling dichotomy puts the C2 Core schema designer in a dilemma. The
schema designer could anticipate the need to link and extend UCore relationships by creating
separate C2 relationship objects and eliminating the use of containment. It seems appropriate to

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 35

use the same modeling paradigm for the C2 layer as is used by the UCore layer on which it is
built. Doing so means that relationships can be disambiguated with the same-as pointers.

On the other hand, use of explicit relationships will be awkward because XML is a hierarchical
model and containment is an expedient way to represent composition-like relationships. XSD
can easily declare whether the association is optional or mandatory and other cardinality
constraints. Techniques such as XPath21 for locating data in an XML document rely on
containment to disambiguate data.

9.1.2 Classifying Objects

Class information in the UCore Digest is not declared using schema structure as is typically done
with XSD. UCore schema components are generic and unclassified until a message instance is
created, thereby giving UCore a lot of flexibility. The message instance contains taxonomy codes
known as “what-codes;” these are assigned to the generic objects22 providing classification at
“run time.” On the other hand, C2 Core and COIs rely on schemas (i.e., tag names declared as
simple or complex data types) to ascribe meaning and structure to data. Although these are
different approaches to classification, it is still necessary that an object in the Payload that is said
to be the same as an object in the Digest agree semantically. This means that the taxonomy codes
assigned in the Digest should agree with the element names used in the Payload for objects that
are said to represent parts of the same real world object.

The C2 Core testable baseline uses a binding file to specify the correlation between the Digest
object class and a Payload object class. For this to work, the binding specification must be able
to disambiguate “like” Digest objects. For example, it must be able to distinguish one UCore
Planned Event representing Mission from another UCore Planned Event representing Mission
Task. This can be done only by assigning additional what-codes from a C2 taxonomy and
including those as part of the binding specification. While this might take care of the one-to-one
mapping disambiguation, it does not take care of the situation in which a Digest object is
sufficient for a given C2 concept and therefore needs no additional representation in the C2
Payload. The requirement for the Digest object to exist cannot be expressed with a mapping.
This problem is discussed below in section 9.1.5.

9.1.3 Populating the Digest

There is little guidance regarding which part of the message content should be declared in the
UCore Digest to create a valuable Digest. The Capstone Team grappled with this as discussed
previously. Should only “important” content be expressed? Or only content with time and space
values? Or only content meeting some other criteria? When should relationships be expressed
and when is doing so merely adding noise because of the abstract nature of many UCore
relationships? Could putting some data in the Digest adversely affect comprehension, as in the
use case where mission task time could not be qualified as planned versus actual?

9.1.4 Extending Taxonomies

UCore’s “what code” design is underspecified for promoting consistent message production
within a community. Although UCore comes with basic what-code taxonomies, C2 Core and

21 XPath is a query language for selecting nodes from an XML document and that also may be used to compute
values from XML content. For more information, see http://www.w3.org/TR/xpath
22 Oddly, UCore does not have this capability for location or relationship objects.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 36

COI groups need additional taxonomies to implement useful Digest instances. Creating and
using community taxonomies in an interoperable fashion requires more specification. Here are
some of the questions to consider:

 Are what-code classification terms only those that declare something intrinsic about the
object or can they be any sort of keywords that help in filtering and discovering relevant
data?

 Does the taxonomy need to be an “is-a” hierarchy or can it be any sort of category and
sub-category hierarchy?

 What is the difference between a taxonomic term used as a Digest what-code and other
category codes or status codes that can be declared as object property values in the
Payload? For example, in this experiment should the Mission Category Code appear as a
what-code in the C2 Core or COI codespace? Or should it appear as a property of the
Mission in the C2 Core or COI Payload layers? Or both?

 How will changes in the UCore taxonomy affect both the C2 Core taxonomies and the C2
Core Schema?

 Can / should there be enforceable business rules that apply to the use of C2 Core
codespace what-codes in the Digest? So for example, if the C2 message producer
declares a mission object in the UCore Digest, then should there be a way to require and
validate the use of a Mission Category Code in the what-code list?

9.1.5 Mapping Layered Data to One Joined Data Model

Once Digest content selection has been decided, those rules will need to be enforced by means
external to those inherent in XSD schemas. As it is, the dependency between the C2 layer
schema and the choices made by a message producer for a particular message instance is
intangible. For example, the UCore “Controls” relationship in the example Digest is used for the
relationship between a military unit and the country to which it belongs. An organization object
is used to represent the country. No further specification for these two objects is needed in the
Payload as long as the message producer populates the Digest with these objects. If one can
depend on this information being present in the Digest then it need not be modeled in the C2
Core layer schema. Expressing this requirement is outside the capability of an XSD schema.
A method is needed for expressing the C2 logical model and how its representation is distributed
across the UCore layer and C2 Core layer. Once expressed, a tool is needed to ensure instances
have subscribed to that representation plan.

9.1.6 Translating System Level Data to Higher Levels of Abstraction

During this Capstone work, the team discussed the issue of abstraction quite a bit. C2 Core is
likely to be an abstraction of many specific C2 COIs, i.e., providing reusable data components
common to multiple COIs. Mapping from the specifics in CMD to the abstractions in C2 Core is
an issue and subject to many subtle reasons and judgment calls on the part of the message
producer.

For example, CMD declares a specific airplane type and its configuration, but never specifically
declares a qualitative capability for that piece of equipment. In C2 Core, the model might declare
something explicitly about those capability implications such as “long range aerial bombing

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 37

support,” as opposed to declaring an F15 aircraft with extra large fuel tank and ordinance
carriers.

Translating back and forth among abstractions and implications and COI specifics is an exercise
left to the C2 Core user.

9.2 Uncertain Value in UCore Digest Layer

Early on in the Capstone effort, considerable effort was spent trying to create a UCore Digest of
a CMD message that would provide a comprehensive, cohesive, stand-alone understanding of the
air mission represented by CMD. For numerous reasons, the Capstone found this to be an elusive
goal.
UCore relationships often are not sufficiently detailed to provide an accurate understanding of
the real underlying relationship. For example, while it might be accurate to say that an aircraft is
AffiliatedWith a sortie, it is vague to the point of being potentially misleading, and serves
only to duplicate a relationship likely asserted at a different level of the same message. Likewise,
C2 concepts such as Mission and Mission Task are merely Planned Events at the Digest layer.
Adding C2 what-codes add semantics, but what-codes are not guaranteed to be understood by
Digest-only consumers.
The Capstone Team concluded that UCore Digests do not provide any guarantee of a
comprehensive summary understanding of the message. UCore Digests may consist of little
more than the specification of a number of physical entities, along with their locations in space
and time. The overarching relationships that tie all those entities together into a common mission
or purpose may be missing, requiring unanticipated consumers to have enough sophistication to
read other layers of the message for certain purposes.

9.3 XML Schema and Taxonomies are Insufficient to Specify UCore and
C2 Core

Additional rules are needed to help define C2 Core and constrain messages to meet the rules of
that definition consistently and accurately. UCore examples include specifying multiple
conflicting taxonomy references, backwards time intervals, or open-ended time intervals. C2
Core examples include complex relationships, and referential integrity with respect to the linking
strategy and missing data. Other examples have been discussed elsewhere in this paper.

9.4 Cross-Layer Linking via ulexlib:SameAsDigestReference

Creating proper ID references between layers was difficult. One of the issues encountered was
the lack of guidance regarding how to do it properly. Message designers are faced with many
options on how to design the linking structure, with no indication of which way is considered
“best practice” or what is easiest for the consumer. It is safe to assume that different IES
implementers will make different, potentially incompatible, choices.
It is desirable to choose a general principle to follow for a cross-linking strategy. This makes the
message structure predictable and easy for the consumer. For example:

 Entities in the COI Payload should always link to the appropriate entity in the C2 Core
Payload.

– OR –

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 38

 Entities in the COI Payload should always link to the appropriate entity in the UCore
Digest.

The issue with these general principles is that due to modeling necessities, neither principle holds
in all cases. Sometimes, the COI Payload mentions an entity that is not C2 related; and so it
cannot be related to the C2 Core Payload, only to the Digest. In other situations, an entity exists
in the C2 Core Payload and not the Digest, so that linking to the Digest is not an option. The
team’s experience indicates that the linking structure is in many ways designed on a case-by-case
basis out of necessity driven by higher-level modeling decisions. This is very likely to
complicate message consumption.
Finally, once a complex linking structure is chosen and implemented, there are currently no
debugging tools available to help verify that instance messages use appropriate links and
pointers. For message producers, it is cumbersome to verify manually that the pointer strategy in
instance documents is correct.

9.4.1 Multi-Layered Messages Are Much More Difficult For Consumers

Through the experience of implementing a message consumer, the Capstone Team discovered a
number of specific “pain points” that will make implementing C2 Core message consumers more
difficult than implementing consumption software for a standard COI schema. Many of the
specific issues have been discussed earlier in this paper so, rather than reiterating detailed
explanations, the ones that bear on message consumption are simply enumerated here.

1. Developers have the fundamental task of re-assembling a multi-layered message.
a. The “linking strategy” within multi-layered documents is not formally

documented within a C2 Core IES.
b. There is currently no standard API for performing this task.

2. Developers must understand and be conversant with many more standards and
specifications. When consuming a COI Payload, the consumer need only understand the
COI schema. When consuming a multi-layered message, the consumer must at a
minimum understand UCore, ULEX, DDMS, IC-ISM, C2 Core, and the COI schema.

3. At present, C2 Core is insufficiently specified regarding how to validate instance
messages. Consumers may not be able to sort out invalid/meaningless messages from
valid messages before processing even begins.

In many cases, there are remedies available to address these challenges. For example, much
complexity could be hidden through the use of a standardized message consumption API, and
with the issuance of additional best practices guidance for message consumption. But without
such products, it is likely that implementing C2 Core message consumption software will be
slower, more expensive, and more difficult than traditional development options.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 39

10 Conclusions

10.1 Summary of Findings

In both use cases, the test programs were successful in correctly producing the expected outputs,
indicating that the three-layer messages were sufficiently detailed to be useful for both C2 Core
and COI consumers. At the same time, the Capstone Team documented how using messages
compliant with an IES based on the layered message design demonstrated in this Capstone is not
a simple task. Quite a bit of infrastructure needed to be built to support even simple scenarios.
Part of this is attributable to the experimental, “leading edge” nature of the investigation.
However, the Team includes in this report many well-substantiated reasons why C2 Core and
UCore proponents need to provide additional design specification details and support tools
before value propositions can be realized from layered messages.

A layered architecture for information exchange, such as that advocated by C2 Core (and
UCore), introduces special developer challenges and requires specificity to avoid introducing
interoperability break points. The Capstone Team grouped specific challenges to the way ahead
into four areas:

 Guidance for how and what information to distribute across all three layers is needed.
Layered messaging presents a complex set of issues. There are differences in the
modeling paradigms among the three layers23, plus few clear requirements to help
anticipate the content needs of the broader community of consumers. Without more
guidance the risk of inconsistent content representation increases thereby reducing the
potential for interoperability. Also needed are standardized interfaces to hide the
underlying complexity of representation choices to reduce effort and increase consistency
for message producers and consumers.

 Additional formalisms are needed to express domain core models which need to be

distributed across the UCore Digest and Domain Core Payload layers. The formalisms
must take into account that the UCore Digest layer by itself has no means to enforce
adherence to the domain core model. Not only should these formalisms express the
conceptual intent of the distributed domain core model, but they are also the basis for
validating the content of layered message instances. Traditional XML data models are not
burdened with these extra requirements.

 Additional design constraints for domain IES developers are needed regarding how to

link information across layers24. Not having these design constraints may result in
inconsistent implementations across the domain. This problem is exacerbated by a lack of
debugging tools to verify that instance messages use links and pointers per any design
constraints selected.

 A decision across the domain is needed on how to utilize the UCore Digest. The UCore

Digest without extensions does not guarantee provision of sufficient content to support

23 UCore Digest model is a flat list of objects, while typical XML such as that which would appear in a payload, is a
hierarchical model.
24 There are several different ULEX linking options using “same-as” pointers. In addition, to date, there are not
sufficient ways to express the linking business rules needed to ensure coherent layered messages.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 40

stand-alone understanding of messages by unanticipated consumers. Adding extensions
in the Digest25 provides more content but not necessarily content interpretable by the
unanticipated UCore consumer.

Without responses to these findings, it is unlikely that the current technical framework is
sufficient to achieve the multi-layered, data interoperability promise it seeks.

10.2 Recommendations

The C2 Core Specification can provide formal guidance to help mitigate the risk to
interoperability by facilitating consistent information distribution across the message layers and
determining the optimal linking strategy. Additionally, standardized message APIs for
production, validation, and consumption could be developed.
Should the goal of C2 Core be to provide multi-community, non-redundant layered
interoperability, then the following recommendations already suggested in the findings above
should be considered:

 Decide how the UCore Digest shall be utilized by the domain participants and to what
value and for whom.

 Develop formalisms for expressing and enforcing data models that span digest and
payload layers.

 Provide implementation rules to IES developers regarding how to link information across
layers.

 Develop extensions to standard XML tools for supporting consistent production,
consumption and validation of layered messages.

Problems uncovered by the Capstone Team can be addressed specifically for the C2 domain
rather than waiting for the UCore Specification to provide all the answers. In turn, the C2 domain
can influence best practices and tools across the whole UCore community and help to mold
future releases of the UCore Specification.

25 Digest extension mechanisms include Simple Properties and community specific code spaces.

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 41

Appendix A Content Review

A.1 Sample C2 Core Content

The appendix describes how the Capstone Team arrived at sample C2 Core content for the
experiments described in this paper.

While the intent of the Capstone was not to produce high-quality content for later inclusion in the
official C2 Core, it was considered important to create highly plausible content. This meant
meeting two primary criteria:

 The content should represent a real, joint C2 need.
 The concepts represented by the content should be in active use by more than one COI.

A.2 MITRE COI Member Review

The Capstone Team sent out a message to roughly twelve MITRE COI participants soliciting
COI exchange schemas that are actively being used. Some of the products that came back
included:

 Common Route Definition (CRD) version 2.0.2
 Aircraft Collection Tasking Message (ACTM) schema
 Mission Task Request (MTR) schemas
 Air Force (AF) Global Cyberspace Integration Center (GCIC) Analysis presented to the

Joint Command and Control (JC2) CPM (18-20 March 2008) containing a crosswalk of
vocabularies and schemas as part of a survey for candidate concepts.

 Publish and Subscribe Services (PASS) overlay
 Shared Situational Awareness Tracks Framework (SSATF) – Net Enabled Command

Capability (NECC) schemas.
 XML-Message Text Format (MTF) schemas (XML representations of standard US-MTF

messages)

A.3 DoD Metadata Registry Review

The Capstone Team conducted a search of the DoD Metadata Registry (see metadata.dod.mil)
for C2 and related topics in an attempt to discover schemas that could be useful for building
defensible sample content. The results of that search are summarized below. For the most part,
this survey did not yield usable schemas for consideration, but they are documented here to
record due diligence. The schemas that were discovered showed a reasonable amount of overlap
between the concepts in the experimental C2 Core data model and those found in operational C2
schemas. Thus the team concluded its C2 Core data model sufficiently represents real and cross-
C2 data sharing needs.

 Command and Control Namespace

(https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=C2)
o Joint C2 Core Version 1.0

http://www.metadata.dod.mil/
https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=C2

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 42

 Air Defense Namespace
(https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=AD)
70 schema documents; most from 2004, and all marked “deprecated” or “retired.”

 Combat Support Namespace
(https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=CSS)
3 DTD documents; all date to 2001 with no users identified.

 Coalition Namespace
(https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=COAL)
103 Schemas; few from 2002 relating to GHD data, and a few that might be applicable:

o (JC3IEDM-3.1d-WSOO-EntityElements-20081211.xsd) XML Schema Definition
for all entity elements contained in the JC3IEDM 3.1d specification

 Airspace Operations
(https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=AOP)
68 schema documents, including a few things possibly useful. Most were not sufficiently
described to discern usefulness or intent. Several were earmarked as potentially useful:

o (CoT_track.xsd) CoT track subschema (2005)
o (CBOVer2.0.xsd) Common Battle Object v2.0
o TBMCS Target Management Service Schemas

 C2 Shared Situational Awareness (SSA) COI
(https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=C2_SSA)
314 schema documents

o IMOM 4.2.0.1 schemas
 Chemical, Biological, Radiological, Nuclear (CBRN) COI

(https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=CBRN)
13 schemas available; all that appeared relevant were marked “retired.”

https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=AD
https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=CSS
https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=COAL
https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=AOP
https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=C2_SSA
https://metadata.dod.mil/mdr/viewByNamespace.htm?selectedNamespace=CBRN

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 43

Appendix B Existing UCore Consumer Software

Paul Franklin wrote a package that consumes UCore and National Information Exchange Model
(NIEM)26 Suspicious Activity Reporting (SAR) messages as part of UCore experimentation in
200827. Franklin’s software used UCore 2.0 alpha, and while his consumer software was geared
towards SAR and based on an older version of the UCore schema and taxonomy, it was
nonetheless very helpful in generating ideas for implementing UCore consumer software, most
notably his use of the XMLBeans API.

The XMLBeans API allows compilation of an XML schema into a set of Java classes which can
automatically read and validate document instances conforming to that schema. It also provides
easy programmatic access to the data within those messages without the need to use Document
Object Model (DOM)28 or SAX29 parsers to access the raw XML30.

26 See http://www.niem.gov.
27 His software and report are available through MITRE.
28 DOM is a way of representing an XML document internally as a large tree. DOM is typically used to keep a
model of the entire document in memory at a given time. See also http://www.w3schools.com/dom/default.asp
29 SAX is the “Simple API for XML”, a method of processing XML documents that generates a stream of events
that the programmer can handle. SAX is very helpful when the entire document is too large to be handled in
memory as a single DOM tree. For more information see http://en.wikipedia.org/wiki/Simple_API_for_XML.
30 Apache’s XMLBeans API: http://xmlbeans.apache.org/

http://www.niem.gov/

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 44

Appendix C Source Testing Environment

C.1 Source of CMD Messages

CMD messages were taken from a MITRE instance of the TBMCS development test bed.
Messages were downloaded via an RSS feed, which when given proper authentication
credentials and a set of search terms, would return a Rich Site Summary (RSS) formatted list of
URLs containing CMD messages matching the desired criteria. The TBMCS development test
bed additionally provided a filtering tool (the “Mission Filter Builder”) that permitted the user to
construct an RSS filter of only CMD messages matching sets of criteria. Those criteria in turn
were searches against certain required fields within the source CMD messages.

The project used the RSS feed and the filtering tools to obtain a list of DirectAttack CMD
messages, which were then used as the basis for the three-layer messages described in this report.

Figure 22: Mission Filter Builder is a screenshot of the mission filter builder.

Figure 22: Mission Filter Builder

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 45

Appendix D Sample 3-Layer Document

<?xml version="1.0" encoding="UTF-8"?>

<ulexpd:doPublish xmlns:aop="http://xml.dod.mil/aop/cmdpayload/0.1"

xmlns:c2c="http://us.jfcom.mil/C2 Core/0.4" xmlns:ddms="http://metadata.dod.mil/mdr/ns/DDMS/2.0/"

xmlns:fn="http://www.w3.org/2005/xpath-functions" xmlns:gml="http://www.opengis.net/gml/3.2"

xmlns:icism="urn:us:gov:ic:ism:v2" xmlns:lxslt="http://xml.apache.org/xslt"

xmlns:ucore="http://ucore.gov/ucore/2.0" xmlns:ulex="ulex:message:structure:1.0"

xmlns:ulexcodes="ulex:message:codes:1.0" xmlns:ulexlib="ulex:message:library:1.0"

xmlns:ulexpd="ulex:message:pd:1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ulex:message:pd:1.0

../Schemas/UCore/2.0/ucore-message.xsd">

 <ulex:PublishMessageContainer>

 <ulex:PublishMessage>

 <ulex:PDMessageMetadata>

 <ulex:ULEXFramework>1.0</ulex:ULEXFramework>

 <ulex:ULEXImplementation>

 <ulex:ULEXImplementationVersion>2.0</ulex:ULEXImplementationVersion>

 <ulex:ULEXImplementationName>ucore-message</ulex:ULEXImplementationName>

 </ulex:ULEXImplementation>

 <ulex:MessageDateTime>2009-05-14T12:20:57-04:00</ulex:MessageDateTime>

 <ulex:MessageSequenceNumber>1</ulex:MessageSequenceNumber>

 <ucore:MessageClassification icism:classification="U" icism:ownerProducer="USA"/>

 </ulex:PDMessageMetadata>

 <ulex:DataSubmitterMetadata>

 <ucore:SystemIdentifier>Some meaningless default</ucore:SystemIdentifier>

 <ucore:SystemContact>

 <ddms:Organization>

 <ddms:name>MITRE Corporation</ddms:name>

 </ddms:Organization>

 </ucore:SystemContact>

 </ulex:DataSubmitterMetadata>

 <ulex:DataItemPackage>

 <ulex:PackageMetadata>

 <ulex:DataItemID>MzYyaTAxMDM5MHAwMDh2NDE4MDFnaGlq</ulex:DataItemID>

 <ulex:DataItemReferenceID>MzYyaTAxMDM5MHAwMDh2NDE4MDFnaGlq</ulex:DataItemReferenceID>

 <ucore:DataItemStatus ucore:label="Test"/>

 <ulex:DataOwnerMetadata>

 <ucore:DataOwnerIdentifier>

 <ddms:Organization>

 <ddms:name>MITRE Corporation</ddms:name>

 </ddms:Organization>

 </ucore:DataOwnerIdentifier>

 <ucore:DataOwnerContact>

 <ddms:Organization>

 <ddms:name>MITRE Corporation</ddms:name>

 </ddms:Organization>

 </ucore:DataOwnerContact>

 </ulex:DataOwnerMetadata>

 <ucore:DisseminationCriteria icism:classification="U" icism:classifiedBy="USA"/>

 </ulex:PackageMetadata>

 <ucore:Digest>

 <ucore:Event id="Mission_idroot_2_0">

 <ucore:Identifier ucore:code="MissionKey" ucore:label="Mission Key"

ucore:codespace="http://xml.dod.mil/aop/cmd/">MzYyaTAxMDM5MHAwMDh2NDE4MDFnaGlq</ucore:Identifier>

 <ucore:Identifier ucore:label="TBMCS-ABP Mission Alias">ACM2/1801</ucore:Identifier>

 <ucore:Identifier ucore:label="TBMCS-WWID Mission

Alias">362i010390u009V</ucore:Identifier>

 <ucore:What ucore:code="PlannedEvent"

ucore:codespace="http://ucore.gov/ucore/2.0/codespace/"/>

 <ucore:What ucore:code="Mission" ucore:codespace="http://xml.dod.mil/aop/cmd/"/>

 <ucore:What ucore:code="ATK"

ucore:codespace="http://xml.dod.mil/aop/cmd#ATOMissionTypeCodes/PrimaryMissionTypeCode"/>

 <ucore:What ucore:code="AIR"

ucore:codespace="http://xml.dod.mil/aop/cmd/#MissionCategoryCode"/>

 <ucore:What ucore:code="LIVE"

ucore:codespace="http://xml.dod.mil/aop/cmd/#Authenticity"/>

 </ucore:Event>

 <ucore:Organization id="Country_US">

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 46

 <ucore:Identifier ucore:code="ISO 3166-1-alpha-2" ucore:label="Country Code"

ucore:codespace="http://www.iso.org/iso/english_country_names_and_code_elements/">US

</ucore:Identifier>

 <ucore:What ucore:code="Organization"

ucore:codespace="http://ucore.gov/ucore/2.0/codespace/"/>

 <ucore:What ucore:code="Country" ucore:codespace="http://us.jfcom.mil/C2

Core/codespace/"/>

 <ucore:Name>

 <ucore:Value>US</ucore:Value>

 </ucore:Name>

 </ucore:Organization>

 <ucore:Organization id="Unit_idTaskedUnit_2_40">

 <ucore:Identifier ucore:code="UnitId" ucore:label="Unit Id"

ucore:codespace="http://xml.dod.mil/aop/cmd/"></ucore:Identifier>

 <ucore:Identifier ucore:code="UnitName" ucore:label="Unit Name"

ucore:codespace="http://xml.dod.mil/aop/cmd/">213SFS</ucore:Identifier>

 <ucore:What ucore:code="Organization"

ucore:codespace="http://ucore.gov/ucore/2.0/codespace/"/>

 <ucore:What ucore:code="TaskedUnit" ucore:codespace="http://xml.dod.mil/aop/cmd/"/>

 <ucore:Name>

 <ucore:Value>213SFS</ucore:Value>

 </ucore:Name>

 </ucore:Organization>

 <ucore:Location id="Tasked_Unit_LocationidTaskedUnit_2_40">

 <ucore:Identifier ucore:code="LocationId" ucore:label="Operating Location Id"

ucore:codespace="http://xml.dod.mil/aop/cmd/">NENWNjVlZmdoaWprbG1ub3BxcnN0dXZ3</ucore:Identifier>

 <ucore:Identifier ucore:code="LocationName" ucore:label="Operating Location Name"

ucore:codespace="http://xml.dod.mil/aop/cmd/">CV65</ucore:Identifier>

 </ucore:Location>

 <ucore:LocatedAt id="Unit_336FS_LocatedAt">

 <ucore:EntityRef ref="Unit_idTaskedUnit_2_40"/>

 <ucore:LocationRef ref="Tasked_Unit_LocationidTaskedUnit_2_40"/>

 </ucore:LocatedAt>

 <ucore:Controls id="Country_Unit_Control">

 <ucore:AgentRef ref="Country_US"/>

 <ucore:EntityRef ref="Unit_idTaskedUnit_2_40"/>

 </ucore:Controls>

 <ucore:Event id="MissionTask_idDirectAttack_2_493">

 <ucore:Identifier ucore:code="TaskId" ucore:label="Task Id"

ucore:codespace="http://xml.dod.mil/aop/cmd/codespace/">1</ucore:Identifier>

 <ucore:What ucore:code="PlannedEvent"

ucore:codespace="http://ucore.gov/ucore/2.0/codespace/"/>

 <ucore:What ucore:code="DirectAttack" ucore:codespace="http://us.jfcom.mil/C2

Core/codespace/"/>

 <ucore:What ucore:code="ATK"

ucore:codespace="http://xml.dod.mil/aop/cmd#MissionTypeCode"/>

 </ucore:Event>

 <ucore:InvolvedIn id="MissionTask_idDirectAttack_2_493_Unit_idTaskedUnit_2_40">

 <ucore:AgentRef ref="Unit_idTaskedUnit_2_40"/>

 <ucore:EventRef ref="MissionTask_idDirectAttack_2_493"/>

 </ucore:InvolvedIn>

 <ucore:Location id="MissionTaskLocation_idDirectAttack_2_493">

 <ucore:Identifier ucore:code="LocationId" ucore:label="ID"

ucore:codespace="http://xml.dod.mil/aop/cmd/">TC1</ucore:Identifier>

 <ucore:Identifier ucore:code="LocationName" ucore:label="Name"

ucore:codespace="http://xml.dod.mil/aop/cmd/">TRAINING CAMP</ucore:Identifier>

 <ucore:GeoLocation>

 <ucore:Point>

 <gml:Point gml:id="gmlMissionTaskLocation_idDirectAttack_2_493"

srsName="http://metadata.dod.mil/mdr/ns/GSIP/crs/WGS84E_2D">

 <gml:pos>7.561527777777776 -10.87086111111111</gml:pos>

 </gml:Point>

 </ucore:Point>

 </ucore:GeoLocation>

 </ucore:Location>

 <ucore:OccursAt id="MissionTask_OccursAt_idDirectAttack_2_493">

 <ucore:Time>

 <ucore:TimeInterval>

 <ucore:StartTime>

 <ucore:Value>2009-02-26T10:20:00.000Z</ucore:Value>

 </ucore:StartTime>

 <ucore:EndTime>

 <ucore:Value>2009-02-26T10:20:00.000Z</ucore:Value>

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 47

 </ucore:EndTime>

 </ucore:TimeInterval>

 </ucore:Time>

 <ucore:EventRef ref="MissionTask_idDirectAttack_2_493"/>

 <ucore:LocationRef ref="MissionTaskLocation_idDirectAttack_2_493"/>

 </ucore:OccursAt>

 <ucore:AffiliatedWith id="Mission_MissionTask_idDirectAttack_2_493_Affiliation">

 <ucore:ThingRef ref="Mission_idroot_2_0"/>

 <ucore:ThingRef ref="MissionTask_idDirectAttack_2_493"/>

 </ucore:AffiliatedWith>

 <ucore:Entity id="Target_idTarget_2_573">

 <ucore:Identifier ucore:code="TargetId" ucore:label="ID"

ucore:codespace="http://xml.dod.mil/aop/cmd/">TC1</ucore:Identifier>

 <ucore:Identifier ucore:code="TargetName" ucore:label="Name"

ucore:codespace="http://xml.dod.mil/aop/cmd/">TRAINING CAMP</ucore:Identifier>

 <ucore:Identifier ucore:code="ComponentTargetId" ucore:label="System Component Target

Id" ucore:codespace="http://xml.dod.mil/aop/cmd/">TC1</ucore:Identifier>

 <ucore:Identifier ucore:code="Facility" ucore:label="Facility"

ucore:codespace="http://xml.dod.mil/aop/cmd/">TRAINING CAMP</ucore:Identifier>

 <ucore:What ucore:code="Infrastructure"

ucore:codespace="http://ucore.gov/ucore/2.0/codespace/"/>

 <ucore:What ucore:code="Target" ucore:codespace="http://xml.dod.mil/aop/cmd/"/>

 </ucore:Entity>

 <ucore:Location id="Target_idTarget_2_573_Location">

 <ucore:Identifier ucore:code="LocationId" ucore:label="ID"

ucore:codespace="http://xml.dod.mil/aop/cmd/">TC1</ucore:Identifier>

 <ucore:Identifier ucore:code="LocationName" ucore:label="Name"

ucore:codespace="http://xml.dod.mil/aop/cmd/">TRAINING CAMP</ucore:Identifier>

 <ucore:GeoLocation>

 <ucore:Point>

 <gml:Point gml:id="gmlTarget_idTarget_2_573_Location"

srsName="http://metadata.dod.mil/mdr/ns/GSIP/crs/WGS84E_2D">

 <gml:pos>7.561527777777776 -10.87086111111111</gml:pos>

 </gml:Point>

 </ucore:Point>

 </ucore:GeoLocation>

 </ucore:Location>

 <ucore:LocatedAt id="Target_idTarget_2_573_LocatedAt">

 <ucore:EntityRef ref="Target_idTarget_2_573"/>

 <ucore:LocationRef ref="Target_idTarget_2_573_Location"/>

 </ucore:LocatedAt>

 <ucore:AffiliatedWith id="MissionTask_1_Target_SH3_Affiliation">

 <ucore:ThingRef ref="MissionTask_idDirectAttack_2_493"/>

 <ucore:ThingRef ref="Target_idTarget_2_573"/>

 </ucore:AffiliatedWith>

 <ucore:Entity id="Aircraft_idAircraftSortie_2_54">

 <ucore:What ucore:code="Aircraft"

ucore:codespace="http://ucore.gov/ucore/2.0/codespace/"/>

 <ucore:What ucore:code="FA18A"

ucore:codespace="http://xml.dod.mil/aop/cmd/#AircraftModelCode"/>

 </ucore:Entity>

 <ucore:Entity id="Aircraft_idAircraftSortie_2_273">

 <ucore:What ucore:code="Aircraft"

ucore:codespace="http://ucore.gov/ucore/2.0/codespace/"/>

 <ucore:What ucore:code="FA18A"

ucore:codespace="http://xml.dod.mil/aop/cmd/#AircraftModelCode"/>

 </ucore:Entity>

 <ucore:Collection id="Equipment_Collection_1">

 <ucore:What ucore:code="Equipment"

ucore:codespace="http://ucore.gov/ucore/2.0/codespace/"/>

 <ucore:ThingRef ref="Aircraft_idAircraftSortie_2_54"/>

 <ucore:ThingRef ref="Aircraft_idAircraftSortie_2_273"/>

 </ucore:Collection>

 <ucore:AffiliatedWith id="MissionTask_idMission_2_2_Equipment">

 <ucore:ThingRef ref="Mission_idroot_2_0"/>

 <ucore:ThingRef ref="Equipment_Collection_1"/>

 </ucore:AffiliatedWith>

 </ucore:Digest>

 <ulex:StructuredPayload ulexlib:id="C2 CorePayload">

 <ulex:StructuredPayloadMetadata>

 <ulex:CommunityURI>https://us.jfcom.mil/C2 Core</ulex:CommunityURI>

 <ulex:CommunityDescription>C2 Core</ulex:CommunityDescription>

 <ulex:CommunityVersion>1.0</ulex:CommunityVersion>

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 48

 </ulex:StructuredPayloadMetadata>

 <c2c:C2 CoreMessage xsi:schemaLocation="http://us.jfcom.mil/C2 Core/0.4 ../Schemas/C2

Core/C2 Core_Candidate_Schema.xsd">

 <c2c:Missions ulexlib:id="idroot_2_0-missions_C2 Core">

 <c2c:Mission ulexlib:id="Mission_idroot_2_0_C2 Core">

 <ulexlib:SameAsDigestReference ulexlib:nvref="Mission_idroot_2_0"/>

 <c2c:MissionOwnerContact/>

 <c2c:MissionExecutionStatusCode>CHG</c2c:MissionExecutionStatusCode>

 <c2c:AuthenticityCode>LIVE</c2c:AuthenticityCode>

 <c2c:MissionObjective ulexlib:id="MissionObjective_idroot_2_0_C2 Core">

<c2c:MissionObjectiveCategoryCode>DestroyTarget</c2c:MissionObjectiveCategoryCode>

 <c2c:MissionOjectiveDescription>

 Increase security in the region by distroying suspected enemy control

center.

 </c2c:MissionOjectiveDescription>

 </c2c:MissionObjective>

 <c2c:Sorties>

 <c2c:Sortie ulexlib:id="idSortie_2_53">

 <c2c:Equipment ulexlib:id="Equipment_idAircraft_2_66_C2 Core">

 <ulexlib:SameAsDigestReference

ulexlib:nvref="Aircraft_idAircraftSortie_2_54"/>

 </c2c:Equipment>

 <c2c:Route ulexlib:id="Route_idRoute_2_72_C2 Core">

 <c2c:RoutePoints ulexlib:id="RoutePoints_idRoute_2_72_C2 Core">

 <c2c:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_74_C2 Core">

 <c2c:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_74_C2 Core">

 <c2c:LocationName>USS ENTERPRISE</c2c:LocationName>

 <ucore:GeoLocation>

 <ucore:Point>

 <gml:Point gml:id="RoutePointLocation_gml_idRoutePoint_2_74_C2

Core" srsName="http://metadata.dod.mil/mdr/ns/GSIP/crs/WGS84E_2D">

 <gml:pos>5.285555555555556 -17.50611111111111</gml:pos>

 </gml:Point>

 </ucore:Point>

 </ucore:GeoLocation>

 </c2c:RoutePointLocation>

 <c2c:TimeAtPoint>

 <c2c:TimeStatusCode>Planned</c2c:TimeStatusCode>

 <ucore:TimeInstant>

 <ucore:Value>2009-02-26T09:15:00.000Z</ucore:Value>

 </ucore:TimeInstant>

 </c2c:TimeAtPoint>

 </c2c:RoutePoint>

 <c2c:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_135_C2 Core">

 <c2c:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_135_C2 Core">

 <c2c:LocationName>TC1</c2c:LocationName>

 <ucore:GeoLocation>

 <ucore:Point>

 <gml:Point gml:id="RoutePointLocation_gml_idRoutePoint_2_135_C2

Core" srsName="http://metadata.dod.mil/mdr/ns/GSIP/crs/WGS84E_2D">

 <gml:pos>7.561527777777776 -10.87086111111111</gml:pos>

 </gml:Point>

 </ucore:Point>

 </ucore:GeoLocation>

 </c2c:RoutePointLocation>

 <c2c:TimeAtPoint>

 <c2c:TimeStatusCode>Planned</c2c:TimeStatusCode>

 <ucore:TimeInstant>

 <ucore:Value>2009-02-26T10:20:00.000Z</ucore:Value>

 </ucore:TimeInstant>

 </c2c:TimeAtPoint>

 </c2c:RoutePoint>

 <c2c:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_204_C2 Core">

 <c2c:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_204_C2 Core">

 <c2c:LocationName>USS ENTERPRISE</c2c:LocationName>

 <ucore:GeoLocation>

 <ucore:Point>

 <gml:Point gml:id="RoutePointLocation_gml_idRoutePoint_2_204_C2

Core" srsName="http://metadata.dod.mil/mdr/ns/GSIP/crs/WGS84E_2D">

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 49

 <gml:pos>5.285555555555556 -17.50611111111111</gml:pos>

 </gml:Point>

 </ucore:Point>

 </ucore:GeoLocation>

 </c2c:RoutePointLocation>

 <c2c:TimeAtPoint>

 <c2c:TimeStatusCode>Planned</c2c:TimeStatusCode>

 <ucore:TimeInstant>

 <ucore:Value>2009-02-26T11:18:00.000Z</ucore:Value>

 </ucore:TimeInstant>

 </c2c:TimeAtPoint>

 </c2c:RoutePoint>

 </c2c:RoutePoints>

 </c2c:Route>

 <c2c:TasksPerformed>

 <c2c:MissionTaskRef ulexlib:vref="MissionTask_idDirectAttack_2_493_C2

Core"/>

 </c2c:TasksPerformed>

 </c2c:Sortie>

 <c2c:Sortie ulexlib:id="idSortie_2_272">

 <c2c:Equipment ulexlib:id="Equipment_idAircraft_2_285_C2 Core">

 <ulexlib:SameAsDigestReference

ulexlib:nvref="Aircraft_idAircraftSortie_2_273"/>

 </c2c:Equipment>

 <c2c:Route ulexlib:id="Route_idRoute_2_291_C2 Core">

 <c2c:RoutePoints ulexlib:id="RoutePoints_idRoute_2_291_C2 Core">

 <c2c:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_293_C2 Core">

 <c2c:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_293_C2 Core">

 <c2c:LocationName>USS ENTERPRISE</c2c:LocationName>

 <ucore:GeoLocation>

 <ucore:Point>

 <gml:Point gml:id="RoutePointLocation_gml_idRoutePoint_2_293_C2

Core" srsName="http://metadata.dod.mil/mdr/ns/GSIP/crs/WGS84E_2D">

 <gml:pos>5.285555555555556 -17.50611111111111</gml:pos>

 </gml:Point>

 </ucore:Point>

 </ucore:GeoLocation>

 </c2c:RoutePointLocation>

 <c2c:TimeAtPoint>

 <c2c:TimeStatusCode>Planned</c2c:TimeStatusCode>

 <ucore:TimeInstant>

 <ucore:Value>2009-02-26T09:15:00.000Z</ucore:Value>

 </ucore:TimeInstant>

 </c2c:TimeAtPoint>

 </c2c:RoutePoint>

 <c2c:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_354_C2 Core">

 <c2c:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_354_C2 Core">

 <c2c:LocationName>TC1</c2c:LocationName>

 <ucore:GeoLocation>

 <ucore:Point>

 <gml:Point gml:id="RoutePointLocation_gml_idRoutePoint_2_354_C2

Core" srsName="http://metadata.dod.mil/mdr/ns/GSIP/crs/WGS84E_2D">

 <gml:pos>7.561527777777776 -10.87086111111111</gml:pos>

 </gml:Point>

 </ucore:Point>

 </ucore:GeoLocation>

 </c2c:RoutePointLocation>

 <c2c:TimeAtPoint>

 <c2c:TimeStatusCode>Planned</c2c:TimeStatusCode>

 <ucore:TimeInstant>

 <ucore:Value>2009-02-26T10:20:00.000Z</ucore:Value>

 </ucore:TimeInstant>

 </c2c:TimeAtPoint>

 </c2c:RoutePoint>

 <c2c:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_423_C2 Core">

 <c2c:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_423_C2 Core">

 <c2c:LocationName>USS ENTERPRISE</c2c:LocationName>

 <ucore:GeoLocation>

 <ucore:Point>

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 50

 <gml:Point gml:id="RoutePointLocation_gml_idRoutePoint_2_423_C2

Core" srsName="http://metadata.dod.mil/mdr/ns/GSIP/crs/WGS84E_2D">

 <gml:pos>5.285555555555556 -17.50611111111111</gml:pos>

 </gml:Point>

 </ucore:Point>

 </ucore:GeoLocation>

 </c2c:RoutePointLocation>

 <c2c:TimeAtPoint>

 <c2c:TimeStatusCode>Planned</c2c:TimeStatusCode>

 <ucore:TimeInstant>

 <ucore:Value>2009-02-26T11:18:00.000Z</ucore:Value>

 </ucore:TimeInstant>

 </c2c:TimeAtPoint>

 </c2c:RoutePoint>

 </c2c:RoutePoints>

 </c2c:Route>

 <c2c:TasksPerformed>

 <c2c:MissionTaskRef ulexlib:vref="MissionTask_idDirectAttack_2_493_C2

Core"/>

 </c2c:TasksPerformed>

 </c2c:Sortie>

 </c2c:Sorties>

 <c2c:MissionTasks ulexlib:id="MissionTasks_idMissionTasks_2_491_C2 Core">

 <c2c:MissionTask ulexlib:id="MissionTask_idDirectAttack_2_493_C2 Core">

 <ulexlib:SameAsDigestReference

ulexlib:nvref="MissionTask_idDirectAttack_2_493"/>

 <c2c:AreaOfResponsibilityCode>DAVIS MONTHAN</c2c:AreaOfResponsibilityCode>

 <c2c:TaskExecutionStatusCode>Z</c2c:TaskExecutionStatusCode>

 <c2c:Occurance ulexlib:id="Occurance_idDirectAttack_2_493_C2 Core">

 <ulexlib:SameAsDigestReference

ulexlib:nvref="MissionTask_OccursAt_idDirectAttack_2_493"/>

 <c2c:TimeStatusCode>Planned</c2c:TimeStatusCode>

 </c2c:Occurance>

 <c2c:TaskedUnit ulexlib:id="Unit_idTaskedUnit_2_40_C2 Core">

 <ulexlib:SameAsDigestReference ulexlib:nvref="Unit_idTaskedUnit_2_40"/>

 </c2c:TaskedUnit>

 <c2c:Target ulexlib:id="Target_idTarget_2_573_C2 Core">

 <ulexlib:SameAsDigestReference ulexlib:nvref="Target_idTarget_2_573"/>

 <c2c:TargetPriorityCode>2</c2c:TargetPriorityCode>

 <c2c:TargetEffectCode></c2c:TargetEffectCode>

 </c2c:Target>

 </c2c:MissionTask>

 </c2c:MissionTasks>

 </c2c:Mission>

 </c2c:Missions>

 </c2c:C2 CoreMessage>

 </ulex:StructuredPayload>

 <ulex:StructuredPayload ulexlib:id="AO-COI-Payload">

 <ulex:StructuredPayloadMetadata>

 <ulex:CommunityURI>http://xml.dod.mil/aop/cmd</ulex:CommunityURI>

 <ulex:CommunityDescription>Air Operations Common Mission

Definition</ulex:CommunityDescription>

 <ulex:CommunityVersion>1.0</ulex:CommunityVersion>

 </ulex:StructuredPayloadMetadata>

 <aop:AO_COI_UCore_C2 Core_Payload

xsi:schemaLocation="http://xml.dod.mil/aop/cmdpayload/0.1

../Schemas/AOP/AOP_CMD_Payload_Candidate_Schema.xsd">

 <aop:Missions ulexlib:id="Missions_1_p2">

 <aop:Mission ulexlib:id="Mission_1_p2">

 <ulexlib:SameAsPayloadReference ulexlib:nvref="Mission_idroot_2_0_C2 Core"

ulexlib:pnvref="C2 CorePayload"/>

 <aop:AdministrativeState>

 <aop:AdministrativeStateCode>T</aop:AdministrativeStateCode>

 <aop:ATOIncludeState>

 <aop:ATOKey>

 <aop:MsgId>ACM2</aop:MsgId>

 <aop:MsgChangeNumber>1</aop:MsgChangeNumber>

 </aop:ATOKey>

 </aop:ATOIncludeState>

 </aop:AdministrativeState>

 <aop:MissionAliases>

 <aop:MissionAlias>

 <aop:MissionNumber>ACM2/1801</aop:MissionNumber>

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 51

 <aop:SourceSystem>TBMCS-ABP</aop:SourceSystem>

 <aop:SourceNode>DAVIS MONTHAN</aop:SourceNode>

 </aop:MissionAlias>

 <aop:MissionAlias>

 <aop:MissionNumber>362i010390u009V</aop:MissionNumber>

 <aop:SourceSystem>TBMCS-WWID</aop:SourceSystem>

 <aop:SourceNode>DAVIS MONTHAN</aop:SourceNode>

 </aop:MissionAlias>

 </aop:MissionAliases>

 <aop:Sorties ulexlib:id="Sorties_idroot_2_0">

 <aop:AircraftSortie ulexlib:id="AircraftSortie_idAircraftSortie_2_54_aop">

 <aop:Aircraft ulexlib:id="Aircraft_idAircraft_2_66_aop">

 <ulexlib:SameAsPayloadReference ulexlib:nvref="Equipment_idAircraft_2_66_C2

Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:PlannedPrimaryConfiguration>BEST</aop:PlannedPrimaryConfiguration>

 </aop:Aircraft>

 <aop:Routes ulexlib:id="Routes_idAircraftSortie_2_54_aop">

 <aop:Route ulexlib:id="idRoute_2_72">

 <ulexlib:SameAsPayloadReference ulexlib:nvref="Route_idRoute_2_72_C2

Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:RoutePoints ulexlib:id="RoutePoints_idRoutePoints_2_73_aop">

 <aop:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_74_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePoint_idRoutePoint_2_74_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:RoutePointTypeCode>TKF</aop:RoutePointTypeCode>

 <aop:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_74_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePointLocation_idRoutePoint_2_74_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:LocationTypeCode>BASE</aop:LocationTypeCode>

 <aop:LocationId>NENWNjVlZmdoaWprbG1ub3BxcnN0dXZ3</aop:LocationId>

 <aop:SourceSystem>TBMCS</aop:SourceSystem>

 <aop:SourceNode>DAVIS MONTHAN</aop:SourceNode>

 <aop:ICAO>CV65</aop:ICAO>

 </aop:RoutePointLocation>

 <aop:Callsigns>

 <aop:Callsign>

 <aop:CallWord>LION</aop:CallWord>

 <aop:CallNumber>01</aop:CallNumber>

 <aop:AOR>DAVIS MONTHAN</aop:AOR>

 <aop:ABPId>ACM2</aop:ABPId>

 <aop:ATOMissionNumber>1801</aop:ATOMissionNumber>

 <aop:IFFSIFs>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>1</aop:Mode>

 <aop:Code>00</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>2</aop:Mode>

 <aop:Code>2121</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>3</aop:Mode>

 <aop:Code>2121</aop:Code>

 </aop:IFFSIFModeAndCode>

 </aop:IFFSIFs>

 </aop:Callsign>

 </aop:Callsigns>

 </aop:RoutePoint>

 <aop:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_135_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePoint_idRoutePoint_2_135_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:RoutePointTypeCode>TGT</aop:RoutePointTypeCode>

 <aop:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_135_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePointLocation_idRoutePoint_2_135_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:LocationTypeCode>GEOGRAPHICAREA</aop:LocationTypeCode>

 <aop:LocationId>TRAINING CAMP</aop:LocationId>

 <aop:SourceSystem>TBMCS</aop:SourceSystem>

 <aop:SourceNode>DAVIS MONTHAN</aop:SourceNode>

 <aop:ICAO></aop:ICAO>

 </aop:RoutePointLocation>

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 52

 <aop:Callsigns>

 <aop:Callsign>

 <aop:CallWord>LION</aop:CallWord>

 <aop:CallNumber>01</aop:CallNumber>

 <aop:AOR>DAVIS MONTHAN</aop:AOR>

 <aop:ABPId>ACM2</aop:ABPId>

 <aop:ATOMissionNumber>1801</aop:ATOMissionNumber>

 <aop:IFFSIFs>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>1</aop:Mode>

 <aop:Code>00</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>2</aop:Mode>

 <aop:Code>2121</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>3</aop:Mode>

 <aop:Code>2121</aop:Code>

 </aop:IFFSIFModeAndCode>

 </aop:IFFSIFs>

 </aop:Callsign>

 </aop:Callsigns>

 </aop:RoutePoint>

 <aop:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_204_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePoint_idRoutePoint_2_204_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:RoutePointTypeCode>LND</aop:RoutePointTypeCode>

 <aop:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_204_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePointLocation_idRoutePoint_2_204_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:LocationTypeCode>BASE</aop:LocationTypeCode>

 <aop:LocationId>NENWNjVlZmdoaWprbG1ub3BxcnN0dXZ3</aop:LocationId>

 <aop:SourceSystem>TBMCS</aop:SourceSystem>

 <aop:SourceNode>DAVIS MONTHAN</aop:SourceNode>

 <aop:ICAO>CV65</aop:ICAO>

 </aop:RoutePointLocation>

 <aop:Callsigns>

 <aop:Callsign>

 <aop:CallWord>LION</aop:CallWord>

 <aop:CallNumber>01</aop:CallNumber>

 <aop:AOR>DAVIS MONTHAN</aop:AOR>

 <aop:ABPId>ACM2</aop:ABPId>

 <aop:ATOMissionNumber>1801</aop:ATOMissionNumber>

 <aop:IFFSIFs>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>1</aop:Mode>

 <aop:Code>00</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>2</aop:Mode>

 <aop:Code>2121</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>3</aop:Mode>

 <aop:Code>2121</aop:Code>

 </aop:IFFSIFModeAndCode>

 </aop:IFFSIFs>

 </aop:Callsign>

 </aop:Callsigns>

 </aop:RoutePoint>

 </aop:RoutePoints>

 <aop:RouteLastModified>

 <aop:SourceSystem>TBMCS</aop:SourceSystem>

 <aop:SourceNode>DAVIS MONTHAN</aop:SourceNode>

 <ucore:TimeInstant>

 <ucore:Value>2009-02-25T16:06:04.000Z</ucore:Value>

 </ucore:TimeInstant>

 </aop:RouteLastModified>

 </aop:Route>

 </aop:Routes>

 </aop:AircraftSortie>

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 53

 <aop:AircraftSortie ulexlib:id="AircraftSortie_idAircraftSortie_2_273_aop">

 <aop:Aircraft ulexlib:id="Aircraft_idAircraft_2_285_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="Equipment_idAircraft_2_285_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:PlannedPrimaryConfiguration>BEST</aop:PlannedPrimaryConfiguration>

 </aop:Aircraft>

 <aop:Routes ulexlib:id="Routes_idAircraftSortie_2_273_aop">

 <aop:Route ulexlib:id="idRoute_2_291">

 <ulexlib:SameAsPayloadReference ulexlib:nvref="Route_idRoute_2_291_C2

Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:RoutePoints ulexlib:id="RoutePoints_idRoutePoints_2_292_aop">

 <aop:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_293_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePoint_idRoutePoint_2_293_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:RoutePointTypeCode>TKF</aop:RoutePointTypeCode>

 <aop:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_293_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePointLocation_idRoutePoint_2_293_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:LocationTypeCode>BASE</aop:LocationTypeCode>

 <aop:LocationId>NENWNjVlZmdoaWprbG1ub3BxcnN0dXZ3</aop:LocationId>

 <aop:SourceSystem>TBMCS</aop:SourceSystem>

 <aop:SourceNode>DAVIS MONTHAN</aop:SourceNode>

 <aop:ICAO>CV65</aop:ICAO>

 </aop:RoutePointLocation>

 <aop:Callsigns>

 <aop:Callsign>

 <aop:CallWord>LION</aop:CallWord>

 <aop:CallNumber>02</aop:CallNumber>

 <aop:AOR>DAVIS MONTHAN</aop:AOR>

 <aop:ABPId>ACM2</aop:ABPId>

 <aop:ATOMissionNumber>1801</aop:ATOMissionNumber>

 <aop:IFFSIFs>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>1</aop:Mode>

 <aop:Code>00</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>2</aop:Mode>

 <aop:Code>2122</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>3</aop:Mode>

 <aop:Code>2122</aop:Code>

 </aop:IFFSIFModeAndCode>

 </aop:IFFSIFs>

 </aop:Callsign>

 </aop:Callsigns>

 </aop:RoutePoint>

 <aop:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_354_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePoint_idRoutePoint_2_354_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:RoutePointTypeCode>TGT</aop:RoutePointTypeCode>

 <aop:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_354_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePointLocation_idRoutePoint_2_354_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:LocationTypeCode>GEOGRAPHICAREA</aop:LocationTypeCode>

 <aop:LocationId>TRAINING CAMP</aop:LocationId>

 <aop:SourceSystem>TBMCS</aop:SourceSystem>

 <aop:SourceNode>DAVIS MONTHAN</aop:SourceNode>

 <aop:ICAO></aop:ICAO>

 </aop:RoutePointLocation>

 <aop:Callsigns>

 <aop:Callsign>

 <aop:CallWord>LION</aop:CallWord>

 <aop:CallNumber>02</aop:CallNumber>

 <aop:AOR>DAVIS MONTHAN</aop:AOR>

 <aop:ABPId>ACM2</aop:ABPId>

 <aop:ATOMissionNumber>1801</aop:ATOMissionNumber>

 <aop:IFFSIFs>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>1</aop:Mode>

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 54

 <aop:Code>00</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>2</aop:Mode>

 <aop:Code>2122</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>3</aop:Mode>

 <aop:Code>2122</aop:Code>

 </aop:IFFSIFModeAndCode>

 </aop:IFFSIFs>

 </aop:Callsign>

 </aop:Callsigns>

 </aop:RoutePoint>

 <aop:RoutePoint ulexlib:id="RoutePoint_idRoutePoint_2_423_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePoint_idRoutePoint_2_423_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:RoutePointTypeCode>LND</aop:RoutePointTypeCode>

 <aop:RoutePointLocation

ulexlib:id="RoutePointLocation_idRoutePoint_2_423_aop">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="RoutePointLocation_idRoutePoint_2_423_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:LocationTypeCode>BASE</aop:LocationTypeCode>

 <aop:LocationId>NENWNjVlZmdoaWprbG1ub3BxcnN0dXZ3</aop:LocationId>

 <aop:SourceSystem>TBMCS</aop:SourceSystem>

 <aop:SourceNode>DAVIS MONTHAN</aop:SourceNode>

 <aop:ICAO>CV65</aop:ICAO>

 </aop:RoutePointLocation>

 <aop:Callsigns>

 <aop:Callsign>

 <aop:CallWord>LION</aop:CallWord>

 <aop:CallNumber>02</aop:CallNumber>

 <aop:AOR>DAVIS MONTHAN</aop:AOR>

 <aop:ABPId>ACM2</aop:ABPId>

 <aop:ATOMissionNumber>1801</aop:ATOMissionNumber>

 <aop:IFFSIFs>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>1</aop:Mode>

 <aop:Code>00</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>2</aop:Mode>

 <aop:Code>2122</aop:Code>

 </aop:IFFSIFModeAndCode>

 <aop:IFFSIFModeAndCode>

 <aop:Mode>3</aop:Mode>

 <aop:Code>2122</aop:Code>

 </aop:IFFSIFModeAndCode>

 </aop:IFFSIFs>

 </aop:Callsign>

 </aop:Callsigns>

 </aop:RoutePoint>

 </aop:RoutePoints>

 <aop:RouteLastModified>

 <aop:SourceSystem>TBMCS</aop:SourceSystem>

 <aop:SourceNode>DAVIS MONTHAN</aop:SourceNode>

 <ucore:TimeInstant>

 <ucore:Value>2009-02-25T16:06:04.000Z</ucore:Value>

 </ucore:TimeInstant>

 </aop:RouteLastModified>

 </aop:Route>

 </aop:Routes>

 </aop:AircraftSortie>

 </aop:Sorties>

 <aop:MissionTasks ulexlib:id="idMissionTasks_2_491">

 <aop:MissionTask ulexlib:id="idMissionTask_2_492">

 <ulexlib:SameAsPayloadReference

ulexlib:nvref="MissionTask_idDirectAttack_2_493_C2 Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:AssignedPriority>2</aop:AssignedPriority>

 <aop:RequestIds>

 <aop:RequestId>REQ4</aop:RequestId>

 </aop:RequestIds>

 <aop:MissionTaskLocation ulexlib:id="idLocation_2_516">

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 55

 <ulexlib:SameAsDigestReference

ulexlib:nvref="MissionTaskLocation_idDirectAttack_2_493"/>

 <aop:LocationSourceSystem>TBMCS</aop:LocationSourceSystem>

 <aop:LocationSourceNode>DAVIS MONTHAN</aop:LocationSourceNode>

 </aop:MissionTaskLocation>

 <aop:Target ulexlib:id="idTarget_2_573">

 <ulexlib:SameAsPayloadReference ulexlib:nvref="Target_idTarget_2_573_C2

Core" ulexlib:pnvref="C2 CorePayload"/>

 <aop:JDPI>TC1</aop:JDPI>

 <aop:JDPIName>TRAINING CAMP</aop:JDPIName>

 <aop:ComponentTargetId>TC1</aop:ComponentTargetId>

 <aop:Facility>TRAINING CAMP</aop:Facility>

 </aop:Target>

 </aop:MissionTask>

 </aop:MissionTasks>

 </aop:Mission>

 </aop:Missions>

 </aop:AO_COI_UCore_C2 Core_Payload>

 </ulex:StructuredPayload>

 <ucore:Narrative>A message translated from CMD to C2 Core</ucore:Narrative>

 </ulex:DataItemPackage>

 </ulex:PublishMessage>

 </ulex:PublishMessageContainer>

</ulexpd:doPublish>

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 56

Appendix E Acronyms

ACTM Aircraft Collection Tasking Message

AF Air Force

AO Air Operations

AOP Air Operations

API Application Programming Interface

ATO Air Tasking Order

C2 Command and Control

CBRN Chemical. Biological, Radiological, Nuclear

CMD Common Mission Definition

COI Community of Interest

CPM C2 Portfolio Manager

CRD Common Route Definition

DDMS DoD Discovery Metadata Specification

DoD Department of Defense

DOM Document Object Model

GCIC Global Cyberspace Integration Center

IES information exchange specification

JC2 Joint Command and Control

MTF Message Text Format

MTR Mission Task Request

NECC Net Enabled Command Capability

NIEM National Information Exchange Model

PASS Publish and Subscribe Services

RSS Rich Source Summary

SAR Suspicious Activity Reporting

C2 Core and UCore Message Design Capstone

©2009 The MITRE Corporation. 57

SAX Simple API for XML

SSA Shared Situational Awareness

SSATF Shared Situational Awareness Tracks Framework

TBMCS Theatre Battle Management Command System

TFTSWG Technical Framework Architecture and Tools Sub-Working Group

ULEX Universal Lexical Exchange

UML Unified Modeling Language

XML eXtensible Markup Language

XSD XML Schema Definition

XSLT Extensible Stylesheet Language Transformations

