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Abstract. For even moderately sized networks and a small number of actions

finding an optimal policy, i.e., determining which actions to apply to which

nodes of the network given the states of the nodes, may be computationally
infeasible. Heuristics have been developed that are applicable to the case of

multiple homogeneous actions such that each action affects exactly one entity.

For many applications, e.g., remote sensing with localization and identifica-
tion sensors, multiple disparate actions may be available, an action may affect

multiple entities, and actions may require different amounts of time to com-

plete. The present work develops a two-step heuristic to generate action plans
under these more general circumstances. Linear programming applied either

to the individual nodes of the network or to all nodes collectively but with

an average aggregate utilization constraint is used to obtain optimal policies
and reduced cost coefficients for each node. Integer programming, using the

reduced cost coefficients, is then used at each time-step to assign resources
to projects. These methodologies are applied to a simulated remote sensing

problem, and the performance of the current methods is compared with an

optimal solution where its computation is feasible and with a greedy solution.
Results show minimal degradation in comparison with an optimal policy and

substantial improvement over the greedy approach. Computation time studies

show that the method is practical for large scale real time applications.

Key Words: Markov decision process, dynamic programming, resource alloca-
tion, stochastic scheduling

1. Introduction

Markov decision processes (MDPs) have proven themselves very useful across
a broad spectrum of activities. They incorporate the richness of stochastic pro-
cesses with the prescriptive power of classical optimization. Consequently, they
enjoy wide employment in manufacturing, medicine, defense, transportation, and
communications disciplines, to name a few. Yet problem size for many applications
is combinatorially explosive for even moderate instances, which often necessitates
some mitigation of exact solution through the use of heuristics. This paper develops
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2 D. W. J. STEIN AND S. F. BAKER

one such heuristic used to assign aircraft surveillance radars to military targets in
an efficient and effective manner.

In military surveillance activities, radars and other intelligence collectors are
tasked to provide: “systematic observation of aerospace, surface or subsurface ar-
eas, places, persons, or things, by visual, aural, electronic, photographic, or other
means.” [1] (p. 2). In the case of airborne collection, an aircraft flies in or near
the surveillance region, and observes specific points and larger areas as assigned.
An observation typically improves the knowledge of the specified point and area
targets; this state change is governed by stochastic process. In the MDP lexicon,
observations take the role of actions, targets are labeled as projects, and levels of
project knowledge are defined as states. There are many targets (projects) assigned
to a collection platform, and target knowledge (state) degrades in absence of obser-
vation (action). Thus, the airborne surveillance problem is well characterized as a
multiarmed restless bandit MDP [2] (pp. 57-61), where the goal is to assign actions
to projects over time such that the reward-weighted state space of the projects is
maximized.

Practical surveillance problems involve additional complexity. Typically there
are several collection platforms to which targets can be assigned. Each platform
has multiple sensors with specialized knowledge-gathering capabilities; for example,
a traditional radar can locate and identify a target, whereas a moving-target radar
can better characterize mobility, or kinematics. In an MDP context, this example
indicates that both the action space and the state space are expanded by sensor
selection and type of knowledge required, respectively. Furthermore, targets are
often geographically clustered in a manner that allows a single radar collection to
improve knowledge of multiple targets. Finally, radar collection time may vary due
to target size, distance, and other factors, suggesting disparate resource usage by
platform location, sensor type, and target cluster.

The literature regarding MDPs, solution methods, and applications to sensor
assignment is well developed. Puterman [2] offers a broad-ranging work describing
theory and solution strategies. Gittins and Jones [3] examine the multiarmed bandit
problem, and develop the widely regarded optimal index rule for their solution.
Whittle [4] extends this work to the restless bandit problem and provides several
applications. Bertsimas and Nino-Mora [5] develop a linear programming relaxation
heuristic for this class of problems, which would otherwise become unsolvably huge
for even moderately-sized instances. Finally, Hero et al. (eds.) [6] compile the
literature regarding application of MDPs to sensor management.

In section 2, we develop a heuristic that assigns actions to multiarmed restless
superprojects for which: 1) multiple simultaneous actions may be performed; 2)
the time to complete actions is a function of the action and the project; and 3) a
single action may affect multiple projects simultaneously. As described above, this
formulation is appropriate to remote sensing applications where disparate sensor
types are used, and target spacing is such that several can be simultaneously evalu-
ated by a given sensor. The method reduces to the heuristic developed in [5] when
applied to a multiarmed restless bandit.

In section 3, we apply the heuristic to a system of airborne radars conduct-
ing surveillance over many targets in a military context. In these representative
problems, solution time is important due to the rapidly-changing battlefield, and
solution quality ensures efficient use of scarce assets. To address the latter, we
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compare our results with a greedy approach similar to those used in operational
environments. We conclude in section 4 and address ongoing research.

2. Linear/Integer Programming Heuristic

Assume a system of N projects such that each project is modeled as an infinite
horizon discounted semi-Markov decision process with finite state and action spaces
[2] (Chapter 11). The projects are indexed by n ∈ N = {1, 2, . . . , N}. Projects are
defined by: the state space, Sn; the action space, An; state probability transition
functions, Pn(i|j, a) where i, j ∈ Sn, a ∈ An; probability distribution functions of
the time to state transition, Fn(t|j, a), and probability density Fn(dt|j, a); instan-
taneous reward functions k(i, a) where i,∈ Sn and a ∈ An; functions c(i|j, a) which
give the rate of reward accrual if the system occupies state i and at the previous
decision the system was in state j and action a was chosen; a continuous time dis-
count rate α such that one unit of reward received t time units in the future has a
present value of e−αt. A semi-Markov decision process differs from a Markov deci-
sion process in that the decision epochs are random variables. A sample path of a
semi-Markov decision process is a sequence (t0, s0, a0, t1, s1, a1, . . .) which indicates
that the system was in state si at σi =

∑i
j=0 tj and action ai is taken at time σi.

This structure allows the time at which the next decision is made to depend upon
the current selected action, as is described in detail below.

Qn(t, i|j, a) = Fn(t|j, a)Pn(i|j, a) is the probability that the next decision epoch
occurs at or before time t and that the system state at that time is i. Let a∅ denote
the null-action, i.e., that the project is not being worked on and Ãn = An ∪ {a∅}.
Assume for each bandit a passive, i.e., a null-action, transition matrix Pn(i|j, a∅)
for unit-time and assume that the passive transition over time t is

Pn(i|j, a∅, t) = exp(t log(Pn(i|j, a∅))).

2.1. Optimizing the policy of a semi-Markov decision process. A pol-
icy is a sequence of functions that identifies the current action. Generally, the
current action may be a probability distribution on the action space that de-
pends on the history of states, actions, and decision epochs [2] (pp. 22, 534).
Thus, letting P(A) denote the probability distributions on A, T = [0,∞), and
(T ×S ×A)m = T ×S ×A× · · · × T ×S ×A and suppressing the project index, a
policy is a sequence π = (d1, d2, . . . , dn, · · · ), where dm : (T × S ×A)m−1 → P(A).
The policy is Markovian if it depends only on the current state, i.e. dm : S → P(A);
it is deterministic if the action is specified exactly and not as a distribution, i.e.,
dm : (T ×S ×A)m−1 → A, and it is stationary if d1 = d2 = · · · = dn = · · · . Under
the current assumption of finite action spaces and infinite horizon discounted re-
ward, the optimal policy is Markovian, stationary and deterministic [2] (Theorem
11.3.2). The optimal policy is found by solving the optimality equations.

Puterman [2] (pp. 540–546) derives the optimality equations for a finite semi-
Markov decision process. Let Xn, Yn and σn be the random variables denoting the
state, action and elapsed time from onset until the nth decision, respectively. The
value of a policy π, discounted at rate α, is [2] (p. 540)

(1) νπα = Eπs

[ ∞∑
n=0

e−ασn

[
k (Xn, Yn) +

∫ σn+1

σn

e−α(t−σn)c(Wt, Xn, Yn)dt
]]
,
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Semi-Markov decision processes can change state between decision epochs, and Wt

in (1) denotes the state of the system at time t.
Define

r(s, a) = k(s, a) + Eas

(∫ σ1

σ0

e−αtc(Wt, s, a)dt
)

= k(s, a) +
∫ ∞

0

∑
j∈S

(∫ u

0

e−αtc(j, s, a)p(j|t, s, a)dt
)
F (du|s, a).(2)

If d : S → A, define rd(s) = r(s, d(s)). Denote by d∞ the stationary policy
(d, d, . . .). Then

(3) vd
∞

α (s) = rd(s) +
∑
j∈S

[∫ ∞
0

e−αtp (j|t, s, d(s))F (dt|s, d(s))
]
vd
∞

α (j).

Let

(4) md(j|s) =
∫ ∞

0

e−αtp (j|t, s, d(s))F (dt|s, d(s)) ,

and let Md be the |S| × |S| matrix such that Md(i, j) = md(j|i), then 3 may be
expressed as vd

∞
satisfies the linear equation

(5) vd
∞

α = rd +Mdv
d∞

α

Puterman [2] (pp. 542–543, Theorem 11.3.1) shows that if r is uniformly bounded
and ∀s, a ∃ε > 0 and δ > 0 such that F (δ)|s, a) < 1− ε, then for any d : S → A (3)
has the unique solution

(6) vd
∞

α = (I −Md)−1rd.

Let V be the set of bounded real valued functions on S and let D = {d : S →
A}. Define the operator:

(7) L(v) = sup
d∈D

(rd +Mdv) .

Puterman[2] shows that under certain assumptions, including finite action and
state spaces considered here, if L(v∗) = v∗ and d∗ = arg supd∈D (rd +Mdv), then
d∗∞ is the optimal policy and v∗ is the value of the SMDP.

Linear programming may be used to obtain the value function v∗, the optimal
policy d∗, and reduced cost coefficients that are subsequently used by the heuristic.
Let β : S → R such that ∀ s ∈ S, β(s) > 0 . The value function is the solution to:
[2] (pp. 223–231, 546–547)

Minimize V =
∑
j∈S

β(j)v(j)(8)

such that ∀a ∈ A and s ∈ S
v(s)−

∑
j∈S

m(j|s, a)v(j) ≥ r(s, a).

The dual of (8)is

Maximize R(x) =
∑
s∈S

∑
a∈A

r(s, a)x(s, a)(9)

such that ∀j ∈ S

© The MITRE Corporation. All rights reserved
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a∈A

x(j, a)−
∑
s∈S

∑
a∈A

m(j|s, a)x(s, a) = β(j)

and ∀j ∈ S and ∀a ∈ A
x(s, a) ≥ 0

or equivalently

Minimize−R(x) = −
∑
s∈S

∑
a∈A

r(s, a)x(s, a)(10)

such that ∀j ∈ S∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

m(j|s, a)x(s, a) = β(j)

and ∀j ∈ S and ∀a ∈ A
x(s, a) ≥ 0

The Lagrangian of (10) is

L(~x,~λ,~γ) = −
∑
s∈S

∑
a∈A

r(s, a)x(s, a)−
∑
j∈S

λj

[∑
a∈A

x(j, a)(11)

−
∑
s∈S

∑
a∈A

m(j|s, a)x(s, a)− β(j)
]
−
∑
j∈S

∑
a∈A

γj,ax(j, a).

At the solution x∗β of (10) there are Lagrange multipliers λ∗β and γ∗β such that the
Kuhn-Tucker conditions hold ([7], p. 200). Let C be the cost vector and A the
constraint matrix in 10, then

C − (λ∗β)tA− γ∗β = 0
Ax∗β = β

x(s, a) ≥ 0(12)
γ∗β(s, a) ≥ 0

xβ(s, a)γ∗β(s, a) = 0.

By the KT conditions and the Strong Duality Theorem ([8] pp. 39–40), λ∗β is the
solution of (8). The reduced cost coefficients are ([7], p. 198 eq. 9.1.10)

(13)
∂R

∂x(j, a)
= −γj,a.

The optimal policy for the SMDP is obtained from the solution{x∗β(j, a)} of
(10) using the following propositions.

Proposition 1. Let x∗β be the solution of (10). If ∀s ∈ S β(s) > 0, then
∀s ∈ S ∃! a ∈ A such that x∗β(s, a) > 0.

© The MITRE Corporation. All rights reserved
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Proof. Assume that for some s, xβ(s, a) = 0 for all a. Then, since m(j|s, a) ≥
0 for all j, s, a a contradiction is obtained from the constraints in (10):

0 =
∑
a∈A

x∗β(s, a)

= β(s) +
∑
j∈S

∑
a∈A

x(j, a)m(j|s, a)

> 0.

Therefore, for each s, there is at least one a such that x∗β(s, a) > 0. The solution
to (10) has at most |S| basic variables [7] (pp. 152–159), and therefore for each s
there is at most one a such that xaβ(s, a) > 0. Therefore, for each s there is exactly
one a such that xaβ(s, a) > 0. �

The optimal stationary policy is then

(14) d∗β(s) = arga∈Ax
∗
β(s, a) > 0

{X∗β(s, d(s))} is an optimal and feasible basis of (10).

Theorem 1. Let α : S → R satisfy α(s) ≥ 0. Then 1. {X∗β(s, d(s))} is an
optimal feasible basis of the linear programming problem:

Minimize−R(x) = −
∑
s∈S

∑
a∈A

r(s, a)x(s, a)(15)

such that ∀j ∈ S∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

m(j|s, a)x(s, a) = α(j)

and ∀j ∈ S and ∀a ∈ A
x(s, a) ≥ 0

2. λ∗α = λ∗β. 3. γ∗α = γ∗β.

Proof. (1). Let M∗ be the |S|×|S| matrix defined by M(s, j) = m(j|s, d∗(s)).
Let σ(I −M) be the largest eigenvalue of I −M . Then [2] (p. 607) 0 < σ(M) ≤∑
s∈S m(j|s) < 1. Therefore by Corollary C.4 of [2] (p. 608) (I −M)−1 exists, and

(16) (I −M)−1 =
∞∑
n=0

Mn.

Let

(17) Xα = (I −M)−1α

(18) xα(s, a) =
{

0 : a 6= d(s)
Xα(s) : s = d(s)

is the optimal feasible solution of 15. From (16)–(18) it follows that xα(s, a) ≥ 0
for all s, as m(j|s) ≥ 0 for all j, s, and by construction it follows that xα(s, a)
satisfies the equality constraints in (15) and therefore is a basic feasible solution of
the constraint equations. Optimality is then assured, as the optimality condition of
a basic feasible solution of a linear program is independent of the constraint vector
γ. This can be seen by expressing the constraint matrix in terms of basic and
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non-basic variables so that after a permutation of columns, the constraint matrix
is A = [ABAN ] and the cost vector is c = [cBcN ], where B corresponds to the
basic variables and N to the non-basic variables. The optimality condition ([7] pp.
154–155) for the basic variables is for every component cN ≥ −cNA−1

B AN . Thus
x(s, d(s)) is feasible and optimal for α = γ.

(2). The solution of the dual problem is λ∗α = cBA
−1
B ([8] p. 40 eq 2.52).

therefore λ∗α = λ∗β .
(3). The reduced cost coefficients are ([8] p. 28 eq 2.29) γ∗α = cN − cNA−1

B AN ,
and therefore γ∗α = γ∗β . �

The application of the methods above to determine the optimal policy, state-
value function, and the reduced cost coefficients requires the calculation of the
integrals in (4) and (2), which is readily achieved if

F (du, s, a) =
hs,a∑
`=1

ω`s,aδ(t− t`s,a)(19)

hs,a∑
`=1

ω`s,a = 1.

and

(20) p(j|t, s, a) =
hs,a∑
`=1

δ(t− t`s,a)p(j|`, s, a).

Assuming that F and p have the form in (19) and (20), respectively, equations
(2) and (4) simplify to

r(s, a) = k(s, a) +
hs,a∑
`=1

e−α t`c(j, s, a)p(j|`, s, a)ω`s,a.(21)

and

md(j|s) =
hs,a∑
`=1

e−α t`ω`s,ap(j|`, s, a),(22)

respectively.

The SMDPs are restless, i.e., they are allowed to change state when not acted
upon or, equivalently, acted upon by the null action (a∅) that does not consume or
utilize resources. We denote by A the action set consisting of the non-null actions,
and let A+ = A ∪ {a∅}.

The size of the linear programming problem required to identify the optimal
policy of a network of semi-Markov decision processes is given by the following
theorem.

Theorem 2. Assume a network of N SMDPs such that each has a state space
of size |S| and the same action set of size |A|, which consists of the non-null actions.

(1) The combined state space CS is the Cartesian product of the individual state
spaces and has size

(23) |CS| = |S|N .

© The MITRE Corporation. All rights reserved



8 D. W. J. STEIN AND S. F. BAKER

(2) Let L = min(|S|, |A|) The combined number of actions is

(24) |CA| =
L∑
p=0

(
m

p

)(
N

p

)
p!

(3) The linear programming approach to finding the optimal policy for this
network has |CA||CS| variables and |CA| constraints.

Proof. (1) is immediate. The number of joint actions can be cataloged by
choosing up to L actions and then assigning the chosen actions to the SMDPs
which can be done in

(
N
p

)
p! different ways, proving (2). (3) follows from Equation

(14) and the size of the constraint matrix in (9). �

The constraint matrix for even a small network with N = 25, |S| = 5, and
|A| = 8 has dimensions 3 · 1017 × 2 · 1028. A direct solution seems impossible, and
therefore, we develop a linear/integer programming heuristic to identify policies for
such problems that generalizes the heuristic in [5] and can be used for real-time
control in which the mean time to determine actions must be less than or equal to
the mean action time.

Two versions of the heuristic’s linear programming portion are developed. The
inputs to the first version are the policies and reduced cost coefficients from Theorem
1, solved using the action set A+, where the index n is the corresponding SMDP
index.

(25) {dn, γnsn,an
|1 ≤ n ≤ N ; sn ∈ Sn; a ∈ A+

n }.

In the second version a total average resource constraint is included, and the
optimal policy and reduced cost coefficients are obtained by solving the following
LP. Let An and rn denote the constraint matrix and reward vector, respectively, for
the nth SMDP from (9). Assume that the first index of the augmented action set
is that of the null action. Arrange the indexing so that rn = ~rn(s, a) is the vector

rn = [rn(1, 1), . . . , rn(|S|, 1), rn(1, 2), . . . , rn(|S|, 2), . . . , rn(1, |A+|), . . . , rn(|S|, |A+|).

Let s0 =

|S|︷ ︸︸ ︷
[0 · · · 0], s1 =

|S|︷ ︸︸ ︷
[1 · · · 1], w = [s0

|A|︷ ︸︸ ︷
s1 · · · s1], W =

N︷ ︸︸ ︷
[w . . . w], r = [r1r2 . . . rN ],

β = [β1β2 . . . βN ], and

(26) A =


A1 0 . . . . . . 0
0 A2 0 . . . 0
. . . . . . . . . . . . .
0 . . . . . . . . . An

 .

Let ψ be the discounted weighted average resource availability, which serves to
limit the number of simultaneous actions permitted by (in this case) the number
of sensors and their limitations. A complete development of this approximation
is given by Whittle [4]. Including this optional constraint, the LP portion of the
heuristic is given by:

Maximize R(x) = r · x(27)
such that

© The MITRE Corporation. All rights reserved
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Ax = β

Wx ≤ ψ(28)
x ≥ 0

The policies given by solutions to these LPs will generally not be simultaneously
implementable as they do not include instantaneous resource constraints. Below
we describe a heuristic using mixed integer programming which at each time step
imposes the resource constraints. Each MIP is solved assuming that the state of
the projects are known (or estimated), and thereby, the number of variables of the
MIP is reduced relative to the number of variables of the LP. To simplify notation,
the state index is dropped from the reduced cost coefficients in the context of the
MIPs, i.e., γnsn,an

is denoted by γnan
.

2.2. Resource tasking given policy determination. The LPs described
in the previous section produce a policy for action tasking. Their associated reduced
cost variables facilitate

Define c ∈ C as the elements within the set of project clusters, Ca ⊂ C as the
subset of clusters upon which action a can be conducted, andNc ⊂ N as the projects
contained in cluster c. Each resource b ∈ B can conduct a subset of actions, Ab ⊂ A,
by taking action on a cluster (uniquely assigned to each resource). Let τab denote
the total time required to conduct action a by resource b, and δb be the total time
available in the planning window for b. Note that τab may incorporate multiple visits
on the same project; this is warranted when action completion requires periodic
revisits to a project. The binary variable yac indicates that a resource capable of
action a is assigned to projects in cluster c. To preclude duplicate objective function
rewards for multiple actions on a given project, a second variable, zna indicates the
specific assignment of action a on project n.

The binary integer program formulation is thus:

(29) Maximize
∑
n∈N

∑
a∈A

(γna∅ − γ
n
an

) · zna

subject to:

(30)
∑

c∈Ca:n∈Nc

yac ≥ zna ∀ n ∈ N, a ∈ A

(31)
∑
a∈A

zna ≤ 1 ∀ n ∈ N

(32)
∑

a∈As:c∈Ca

τab · yac ≤ δb ∀ b ∈ B, a ∈ A

(33) yac ∈ {0, 1} ∀ a ∈ A, c ∈ C, 0 ≤ zna ≤ 1 ∀ n ∈ N, a ∈ A
The objective function seeks to maximize the difference between passive and

active reduced costs of activated projects, as motivated in the previous section. (See
[5] for additional development of this rationale.) The first constraint ensures that a
project cannot be activated without assignment of an action to a cluster containing
that project. The second constraint restricts a project from being activated more

© The MITRE Corporation. All rights reserved



10 D. W. J. STEIN AND S. F. BAKER

than once (multiple visits required for an action count as a single action). The last
functional constraint limits the total resource assignments in a planning window to
the length of that window. Finally, the assignment of an action to a cluster, yac,
is restricted to binary; the action-target assignment variable, zna, is not explicitly
restricted as binary, but its objective function support combined with the first
constraint will so limit it. The application discussed in the next section requires
fast solutions, a trait not generally attributable to integer programs. Though this
formulation lacks network or other polynomial time structure, the required problem
instances are moderate, and the solution times are short. A typical problem instance
for this work might have 4 resources, 24 projects, 5 actions, and 24 overlapping
clusters of projects. This example yields an integer program with approximately
200 rows, 100 columns, and 500 non-zero elements in the constraint coefficient
matrix.

3. Application: Airborne Surveillance of Military Targets

Military surveillance provides the motivation for this work. In the typical mod-
ern battlespace, several airborne platforms are tasked to observe dozens of targets
arrayed in geographical clusters using a variety of sensors. Although intelligence
needs vary, two common classes of required information are: 1) kinematic–where
the target is, and 2) identification–what the target is. Good assignments pair sen-
sors and target clusters in a manner that keeps the level of uncertainty for each
target low, recognizing that target knowledge undergoes Markov transitions.

Our experiments consider 12 targets that require kinematic (K) intelligence
only, and 12 targets that require both kinematic (K) and identification (ID) intelli-
gence. There are three states for kinematic-only targets: good knowledge, medium
knowledge, and bad (poor) knowledge with scores 4, 2, and 0, respectively. ID
knowledge is characterized as either “good” or “bad.” Thus there are six states
for kinematic and ID (K/ID) targets, each labeled with kinematic knowledge fol-
lowed by ID knowledge: Good/Good, Good/Bad, Medium/Good, Medium/Bad,
Bad/Good, and Bad/Bad. The scores for these states are 8, 4, 4, 2, 1, and 0, re-
spectively. An action on K/ID targets requires twice the time required for K-only
targets. The experiments attempt to maximize the sum of time-weighted knowledge
scores for the targets, and parametrically vary: 1) the sensors’ inherent intelligence-
gathering effectiveness between moderate and high, 2) the number of target clusters
between 4 and 24, and 3) the number of sensor platforms between 2 and 4.

For comparative purposes, we also score a simpler assignment strategy that is
similar to that in operational use. This greedy strategy assigns sensors to clusters
based on a “lowest-knowledge first” methodology, whereby the cluster with the
lowest knowledge is assigned the best sensor for its mix of targets, and so forth
until all of the available sensor time is exhausted.

The comparison between the MDP and the greedy (G) approaches is presented
as a percentage improvement in Table 1. In comparison to the greedy approach,
the MDP heuristic improves target knowledge scores by -1% to 77% when only
kinematic knowledge is required, and by 83% to 409% when maintaining both
kinematic and identification knowledge. The improvement is more pronounced
with greater sensor effectiveness, more targets, and more sensors. Thus, problem
complexity appears to favor the MDP heuristic.

© The MITRE Corporation. All rights reserved
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Detailed results for the high effectiveness, 12 cluster, 4 platform case are given in
Figure 1. The MDP Heuristic is able to maintain the average target in the “Good
Kinematic, Good ID” state 77% of the time, compared with the greedy method
where the average target is in the “Good Kinematic, Bad Identification” state
73% of the time. The remaining target occupancy states using the MDP heuristic
are also generally better than those of the greedy method. Other experiments
suggest a similar trend: in cases where the two methods’ scores diverge, much of
the divergence owes to the MDP heuristic’s ability to maintain a high fraction of the
best state, while the greedy heuristic maintains a similar fraction in the second-best
state.

Figure 1. The MDP heuristic maintains targets requiring both
kinematic and identification knowledge in the highest state 77%
of the time in this sample experiment. In contrast, the greedy
heuristic maintains the same targets in the second highest state
73% of the time. This result is typical of the experiments con-
ducted.

Sensor assignment and reassignment computations must occur rapidly in or-
der to accommodate a dynamic battlespace. Conceivably, sensor assignments may
change as quickly as several times each minute, indicating that the assignment
method should require at most a few seconds. Figure 2 gives the average solve
times for the integer program; all are well under two hundredths of a second. The
linear program portion of the heuristic is much quicker, requiring no more than
6x10−4 seconds. Though the solution times increase markedly in the most complex
cases, these latter experiments represent the level of complexity for the operational
scenarios in which we intend to implement this work. Moreover, we attained these
solutions on a single platform two Ghz laptop using MATLAB R©, suggesting ample
room for speedup if necessary.

© The MITRE Corporation. All rights reserved
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Sensor Target Sensor Kinematic K/ID Improvement
Effectiveness Clusters Platforms G MDP G MDP K K/ID

Moderate 4 2 .906 .897 .455 .833 -1% 83%
Moderate 4 3 .906 .955 .456 .927 5% 103%
Moderate 4 4 .911 .979 .453 .964 7% 113%
Moderate 6 2 .711 .839 .381 .775 18% 103%
Moderate 6 3 .910 .912 .455 .878 0% 93%
Moderate 6 4 .909 .952 .456 .936 5% 105%
Moderate 12 2 .502 .731 .278 .672 46% 142%
Moderate 12 3 .678 .857 .353 .809 26% 129%
Moderate 12 4 .810 .910 .408 .883 12% 116%
Moderate 24 2 .367 .650 .120 .611 77% 409%
Moderate 24 3 .513 .799 .288 .764 56% 165%
Moderate 24 4 .610 .880 .335 .849 44% 153%

High 4 2 .957 .947 .479 .909 -1% 90%
High 4 3 .957 .989 .478 .974 3% 104%
High 4 4 .954 1.00 .478 1.00 5% 109%
High 6 2 .780 .900 .402 .847 15% 111%
High 6 3 .956 .950 .479 .927 -1% 94%
High 6 4 .957 .980 .478 .972 2% 103%
High 12 2 .534 .808 .290 .758 51% 161%
High 12 3 .651 .898 .391 .858 38% 119%
High 12 4 .829 .936 .432 .911 13% 111%
High 24 2 .434 .702 .235 .690 62% 194%
High 24 3 .514 .843 .299 .807 64% 170%
High 24 4 .624 .900 .366 .874 44% 139%

Table 1. Comparative results between the greedy (G) and
Markov decision process (MDP) heuristics indicate that signifi-
cantly improved kinematic (K) and identification (ID) knowledge
is maintained by the latter method, particularly in cases of greater
complexity (i.e., high sensor effectiveness, more target clusters,
and more sensor platforms). The first three columns list the sen-
sor, cluster, and platform parameters; the Kinematic and K/ID
columns indicate the fraction of target score (for each heuristic)
against “perfect knowledge”, where full K and/or ID information is
maintained on all targets. The Improvement columns indicate per-
centage improvement of the MDP method over the greedy method.
For instance, in the “High Effectiveness, 24 Cluster, 4 Platform”
case (last row), the MDP target knowledge score averages 44% bet-
ter when only kinematic knowledge is required, and 139% better
when both K and ID knowledge is required.

4. Summary

This work develops a method for real-time control of restless bandits using a
heuristic based on semi-Markov decision processes. It generalizes previous work[5]
to allow for diverse actions on clusters of bandits using multiple actors. The
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Figure 2. The mean time required to perform the integer pro-
gramming portion of the MDP heuristic varies between 4 and 15
thousandths of a second; the linear programming portion (not de-
picted) solve times are an order of magnitude shorter. As expected,
this time increases with number of sensor platforms and number
of target clusters.

variable-length actions are assigned within a specified time window, and can be
both periodic and sequential. The method remains tractable by: 1) approximat-
ing the Markov decision space by reducing it to one characterized by the states of
the individual bandits, and 2) incorporating a compact integer program using dual
information from the resulting MDP.

Initial experiments using the combined LP/MIP heuristic indicate that this
method is both practical and beneficial for a military sensing application. The
problem sizes tested were moderate, involving several sensors and dozens of targets,
and solved in fractions of a second on a laptop computer. These tests yielded
performance improvements of up to 400% over a greedy method, and reached 60
to 100% of the maximum attainable score. Hence, the technique shows promise
for similar problems, as well as larger ones where more more time and computing
power are available.

Several challenges remain. Once assigned, individual sensors must be scheduled
quickly, and in a manner that preserves action length and target revisit rate. The
state rewards used in our work are arbitrary; rigorous reconciliation of these re-
wards with inherent knowledge value remains key to successful application. Sensor
location is also not addressed: motion of the sensor platforms, as well as optimal
placement of these platforms remains a promising area to improve target knowl-
edge. Finally, real world applications are subject to communications delays and
other phenomena that reduce the interactive ability of the sensors; this clouding of
knowledge state could be addressed with partially observable Markov processes.

MDPs provide a prescriptive method for decision-making under uncertainty,
but must be applied in a manner that accommodates the myriad probabilistic com-
binations without precluding timely solution. The development of heuristics backed
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by strong theory appears central to this compromise. The combined linear/integer
program method described in this paper offers such a strategy, and shows promise
for application to a contemporary military problem.
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