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Decentralized, cooperative control laws couple separate vehicles in order to achieve a
common objective. In this paper, the development of cooperative control laws for multi-
vehicle formations is presented. The closed-loop equations of motion for the multivehicle
system are shown to be analogous to structural systems, and the stability and performance
of the system can be investigated using frequency-response functions. The main contri-
bution of the paper is an alternate approach to evaluate string stability of cooperative
control laws using a frequency-response framework. Simulation results for four different
cooperative-control forms are presented, and the string-stability results are evaluated and
discussed.

I. Introduction

Advances in communication, navigation, and computational systems have enabled greater autonomy in
multivehicle systems. These technological advances have resulted in a paradigm shift toward decentralized,
cooperative systems where control inputs are determined at the individual vehicle level using state and
environmental information. Decentralized, cooperative control applications include autonomous spacing of
aircraft in next-generation air traffic systems1, 2 and UAV/MAV formation control.3, 4, 5

Decentralized systems refer to distributed processing across many nodes or vehicles, and this approach can
be more computationally efficient than centralized systems, wherein processing is commonly performed at a
single node. Cooperative control laws for multivehicle systems couple the otherwise separate vehicle dynamics
(or governing equations) via shared state information in order to achieve a common objective. Control-
law design is largely based on a desired communication structure that defines the information available to
each vehicle in the system. Communication structures may be constrained by sensing, communication, or
computational limitations. For example, in many applications, vehicles only communicate with their “nearest
neighbors” rather than all vehicles in the system. In the past, researchers have investigated the effects of
communication structures, or information flow, on system stability using graph theory.3, 6, 7, 8

Two stability concepts that arise in the design of decentralized, cooperative control laws for formation
control are internal stability and string stability. Internal stability investigates whether spacing errors be-
tween vehicle pairs go to zero and the multivehicle system reaches a desired formation in the absence of
disturbances.4 String stability deals with how errors are propagated through the vehicle string due to distur-
bances or the reference trajectory of the formation lead.9 A string-stable control form implies that spacing
errors between adjacent vehicles are not amplified along the vehicle string. The concept of string stability
has been extensively studied for automated highway systems where vehicle strings of infinite length are
considered.9, 10, 11, 12, 13 That research showed that the communication structure has a direct effect on string
stability. For example, it was shown that a vehicle system is string unstable if information is passed from
the immediately preceding vehicle only.9

In this paper, closed-loop equations of motion for the multivehicle system are written in a structural form,
where the form of the stiffness and damping matrices is determined by the assumed communication structure.
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Motivated by the analogy of cooperative multivehicle systems to structural systems, the disturbance-rejection
and string-stability properties of different cooperative control forms are explored using frequency-response
functions. For the vehicle model used here, disturbances act at the kinematic level. Frequency-response in-
formation is used to determine how disturbance effects impact the multivehicle system, and more specifically,
how disturbances are propagated through the formation. Steady-state solutions, derived from the frequency
response, of the disturbed system are used to determine string stability, and these results can be used to
compare different communication structures.

The main contribution of this paper is the development of a mechanics-based approach to analyze the
disturbance-rejection and string-stability properties of general cooperative control forms, which are derived
from communication structures. This approach allows the disturbance-rejection and string-stability proper-
ties of different communication structures to be evaluated using a common framework. Although the form of
the disturbances presented here is specific to how disturbances affect the chosen vehicle model, this approach
to analyzing disturbance rejection and string stability can be easily modified to fit a desired application.
Therefore, the analysis presented can be applied to other cooperative control applications that are analogous
to structural systems.

The organization of the paper is as follows. In Section II, the assumed vehicle model and the development
of the cooperative control laws are described. The structural analogy is presented in Section III. The
disturbed vehicle model, frequency-response functions for multi-degree-of-freedom (MDOF) systems, and the
steady-state solutions used to determine string stability are discussed in Section IV. In Section V, simulation
results are presented for four different communication structures. Lastly, conclusions are presented in Section
VI.

II. Development of the Cooperative Control Laws

As described previously, cooperative control laws can be designed to drive errors between vehicles to
zero to achieve a desired formation. This section describes a unifying approach to the design of cooperative
control laws using the communication-structure concept. A nonlinear model for planar vehicle motion is
discussed, the error variables and control inputs are presented, and lastly, the analogy of the closed-loop
system to structural systems is shown.

A. Vehicle Model

The development of the cooperative control laws presented here is based upon a commonly-used nonlinear
vehicle model. This model represents vehicles with negligible velocity in the direction perpendicular to the
vehicle’s heading and can be used to represent the planar motion of UAVs.

ẋ = v cos θ; ẏ = v sin θ; θ̇ = ω (1)

Here, x and y are the inertial position of the vehicle, and θ is the heading angle with respect to the x axis.
The control inputs to the vehicle are the velocity, v, and angular turn rate, ω.

This vehicle model is differentially flat with flat outputs x and y, which allows the vehicle states and
controls to be expressed as functions of the flat outputs and their higher derivatives.5, 14

θ = tan−1

(
ẏ

ẋ

)
; v =

√
ẋ2 + ẏ2; ω =

ÿẋ− ẏẍ

v2
(2)

Second derivatives of the flat outputs are the highest derivatives that appear in ω, and a time derivative of
the velocity reveals the second derivatives of the flat outputs.

v̇ =
ẋẍ+ ẏÿ

v
(3)

Therefore, new control inputs can be defined as (ẍ, ÿ) = (u,w), and the nonlinear system in Equation (1)
can be represented as uncoupled double integrators.

The differentially-flat system enables control design in the flat-output (x, y) space, and these control
inputs are then mapped to the vehicle inputs v̇ and ω using the linear transformation.[

v̇

ω

]
=
1
v

[
ẋ ẏ

− ẏ
v

ẋ
v

][
u

w

]
= T (ẋ, ẏ)

[
u

w

]
; v =

√
ẋ2 + ẏ2 (4)
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B. Definition of Spacing Errors

The cooperative control laws developed here are functions of spacing errors between vehicles. The number
of error terms in an n-vehicle system is ne =

(∑n−1
j=1 j

)
+ 1. For example, in a three-vehicle formation as

shown in Figure 1, there are four error terms.

V1V2V3

x
3

x
2

x
1

Vr

x
r

Figure 1. Example of a three-vehicle formation.

The development is shown in the x direction only (the development in the y direction is identical).

er1 = xr − x1 − dr1; ėr1 = ẋr − ẋ1; ër1 = −u1

e12 = x1 − x2 − d12; ė12 = ẋ1 − ẋ2; ë12 = u1 − u2

e13 = x1 − x3 − d13; ė13 = ẋ1 − ẋ3; ë13 = u1 − u3

e23 = x2 − x3 − d23; ė23 = ẋ2 − ẋ3; ë23 = u2 − u3

(5)

Here, xr denotes a defined reference trajectory that the first vehicle tracks, and it is assumed that xr is
a constant-velocity trajectory. The constants, dr1, d12, d13, and d23, denote the desired distances between
vehicles. Note that there are r equations that constrain the error terms, where r = ne −n. In a three-vehicle
formation, there is one constraint equation e13 = e12 + e23, and equivalently, d13 = d12 + d23.

C. Cooperative Control Laws

Control inputs are functions of the spacing errors as defined by the selected communication structure. For
example, in a fully-connected system where all vehicles have information about all other vehicles in the
formation, the control inputs have the following form.

u1 = −k12e12 − c12ė12 − k13e13 − c13ė13 + kr1er1 + cr1ėr1

u2 = k12e12 + c12ė12 − k23e23 − c23ė23 (6)
u3 = k13e13 + c13ė13 + k23e23 + c23ė23

It is assumed that the control gain kij (cij) on the spacing error eij (ėij) is the same wherever it is used. This
assumption reduces some of the design degrees of freedom and is done for simplicity; it is not a necessary
constraint.

The closed-loop error dynamics can be written in a second-order form by substituting the control inputs
into the second derivatives of the error terms (ër1, ë12, and ë23) and using the constraint equation e13 =
e12+e23. The error dynamics are homogeneous and stable for control gains greater than zero, which indicates
that spacing errors will asymptotically converge to zero.

III. Structural Analogy

The closed-loop equations of motion for the multivehicle system are analogous to physically-connected
systems or structures, where individual mass elements are connected by springs and dampers. The closed-
loop system can be written in a structural form.

M ẍ+ Cẋ+Kx = Dur (7)
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Here, x is an n × 1 vector of vehicle positions, and M , C, and K are n × n matrices. The matrix M is
the mass matrix, which is equal to identity; C is the damping matrix; and, K is the stiffness matrix. The
term on the right-hand side of Equation (7) is a forcing term related to the reference trajectory and the
constant desired distances between vehicles. For example, the stiffness matrix and forcing terms can be
found using the control inputs in Equation (6). The damping matrix has the same form and is proportional
to the stiffness matrix.

K =


kr1 + k12 + k13 −k12 −k13

−k12 k12 + k23 −k23

−k13 −k23 k13 + k23


 (8)

D =


kr cr −kr1 k12 k13 0
0 0 0 −k12 0 k23

0 0 0 0 −k13 −k23


 ; ur =

[
xr(t) ẋr(t) dr1 d12 d13 d23

]T
(9)

The form of the stiffness matrix is related to the assumed communication structure for the system. Thus,
different communication structures will yield different stiffness matrices. Whereas all closed-loop equations
of motion can be written in the structural form in Equation (7), not all communication structures yield a
physical representation. Here, the structural analogy refers to the ability to write the closed-loop equations
of motion in the linear structural form, rather than an analogy to true physical systems.

Other researchers have noted the connection between communication structures and structural systems;
however, this relationship has been treated literally in that the closed-loop equations of motion can be
physically represented by masses connected by springs and dampers.8 In contrast, the Laplacian matrix
used by Fax and Murray is directed and therefore does not necessarily yield a physical representation;3

similar to that work, the communication structures in this research are not constrained to be physically
representative. This is further explained in Section V.

IV. Frequency-Response Functions and String Stability

Some communication structures may demonstrate better disturbance rejection than others; i.e., some
communication structures may yield string-stable control laws, whereas others may yield string-unstable
control laws. In this section, the disturbed vehicle model is presented, and a frequency-response approach
for analyzing single-degree-of-freedom (SDOF) and MDOF systems is reviewed. The steady-state solutions
are developed for the MDOF systems, and the analogy to string stability is discussed.

A. Vehicle Model with Disturbances

The form of the disturbances in the original nonlinear vehicle model is first related to the transformation that
describes the vehicle in the double-integrator design space, which has motivated the theoretical developments
to this point. The nonlinear vehicle model in Equation (1) represents vehicles with no sideslip, and the
transformation to the double-integrator representation enforces the nonholonomic or kinematic constraint.
Disturbances to the nonlinear model, of the form shown below, can be considered disturbances to the
kinematic constraint.

ẋ = v cos θ + dx

ẏ = v sin θ + dy (10)

θ̇ = ω

The disturbed vehicle model requires some definition of terms. The velocity v is the ideal velocity, or the
commanded velocity of the vehicle, which can be measured using onboard sensors, and the angle θ is the true
heading angle of the vehicle. The v cos θ and v sin θ terms are the projections of the ideal velocities in the
x and y directions, and may be denoted as vx and vy, respectively. The sum of the projections of the ideal
velocities and the disturbance terms, ẋ and ẏ, are the true velocities in the x and y directions, respectively.

The disturbance velocity has magnitude vd and angle ψ with respect to the horizontal axis.

vd =
√

ẋ2 + ẏ2 =
√
(vx + dx)2 + (vy + dy)2 (11)
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ψ = tan−1

(
ẏ

ẋ

)
= tan−1

(
vy + dy

vx + dx

)
(12)

The sideslip angle is the difference between the angle of the disturbance velocity and the true vehicle heading:
β = ψ − θ. These quantities are illustrated in Figure 2.

x

y
θ

n

v

2

n1

v

ψ

d

β

Figure 2. Disturbed vehicle model.

The ideal velocity and the true heading angle can also be written as a function of the true velocities and
the disturbances.

v =
√
(ẋ− dx)2 + (ẏ − dy)2; θ = tan−1

(
ẏ − dy

ẋ− dx

)
(13)

The vehicle controls, v̇ and ω, are found by taking derivatives of the above expressions.

v̇ =
(ẋ− dx)(ẍ− ḋx) + (ẏ − dy)(ÿ − ḋy)

v
(14)

ω =
(ẋ− dx)(ÿ − ḋy)− (ẏ − dy)(ẍ− ḋx)

v2
(15)

If the disturbances (dx, ḋx, dy, and ḋy) are known, then the controls can be chosen as ẍ = u(x, ẋ) and
ÿ = w(y, ẏ). In other words, if one can determine the true velocities from knowledge of dx and dy, then the
controls are functions of positions and true velocities. The transformation to v̇ and ω becomes a function of
disturbance rates. [

v̇

ω

]
=
1
v

[
vx vy

− vy

v
vx

v

][
u− ḋx

w − ḋy

]
(16)

This transformation essentially cancels the effects of the disturbances by controlling the true accelerations
of the vehicle and subtracting the disturbance rates.

If the disturbances are unknown, then the controls can be chosen as v̇x = u(x, vx) and v̇y = w(y, vy).
Therefore, the controls are calculated using knowledge of the ideal velocity and true heading angle only.
In this case, the controls and transformation are not functions of the disturbances, and the transformation
looks the same as when no disturbances are present.[

v̇

ω

]
=
1
v

[
vx vy

− vy

v
vx

v

][
u

w

]
(17)

The disturbed vehicle model in Equation (10) is still expressed as double integrators that are decoupled
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in the x and y directions. The disturbances act at the kinematic level in the double-integrator form.

Known Disturbance: ẋ = vx + dx ẏ = vy + dy

ẍ = u(x, ẋ) ÿ = w(y, ẏ)
Unknown Disturbance: ẋ = vx + dx ẏ = vy + dy

v̇x = u(x, vx) v̇y = w(y, vy)

As in Section II, control inputs are designed using the double-integrator form, and the vehicle controls are
determined using the appropriate transformation. This paper deals with the case that the disturbances are
unknown and cannot be canceled by the transformation.

B. Frequency-Response Functions

Frequency-response functions (FRFs) describe the steady-state response of a system to harmonic excitation
for a given input frequency.15, 16 For SDOF systems, the FRF can be used to design controllers and select
control gains to stabilize an open-loop system. A closed-loop FRF provides information about a system’s
ability to track low-frequency signals and reject high-frequency noise. Here, the MDOF FRFs are used to
evaluate disturbance effects on the multivehicle system.

1. SDOF Systems

Consider a scalar, second-order system subject to harmonic excitation with amplitude f .

mẍ+ cẋ+ kx = f cos(σt) (18)

The system in Equation (18) has a steady-state solution of the form xss = X cos(σt − α), where X is the
output amplitude and α is the phase shift. The FRF is composed of two parts: the ratio of the steady-state
amplitude to the static response, H(σ), and the phase of the response, α.15

H(σ) =
X

xstatic
=

k√
(k2 −mσ2)2 + (cσ)2

; α = tan−1

(
cσ

k2 −mσ2

)
(19)

Equation 19 can also be written in terms of the natural frequency and damping ratio, ω2 = k/m and
2ζω = c/m, and the ratio of the excitation frequency to the natural frequency, r = σ/ω.

H(r) =
1√

(1 − r2)2 + (2ζr)2
; α = tan−1

(
2ζr
1− r2

)
(20)

Of greater interest in this case is the receptance function, which is the ratio of the steady-state amplitude
to the excitation amplitude.

X

f
=

1√
(ω2 − σ2)2 + (2ζωσ)2

(21)

In the case of a disturbance input, Equation (21) determines the amplification of the disturbance by the
system.

2. MDOF Systems

System receptance functions for MDOF systems relate steady-state amplitudes of the jth output to the
kth input. The MDOF receptance functions are determined using modal coordinates17 and appropriate
transformations to express ratios in terms of physical coordinates. The structural system in Equation (7) is
expressed in the familiar first-order form with disturbances acting at the kinematic level. The forcing terms
on the right-hand side of Equation (7) are assumed equal to zero for the frequency-response analysis.

ż =

[
0 I

−M−1K −M−1C

]
z +

[
f cos(σt)

0

]
; z =

[
x

vx

]
(22)

Note that the control, which is represented by the lower partition of Equation (22), is a function of the
position and ideal velocity because the disturbance is assumed unknown.
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Equation (22) can be decoupled using a modal-coordinate transformation, where x = Φη1 and vx = Φη2;
η1 is an n× 1 vector of modal positions, η2 is an n× 1 vector of modal velocities, and Φ is the n×n matrix
of eigenvectors of the stiffness matrix.17

żη =

[
0 I

−K̃ −C̃

]
zη +

[
f̃ cos(σt)

0

]
; zη =

[
η1

η2

]
(23)

Here, K̃ = Φ−1KΦ, C̃ = Φ−1CΦ, and f̃ = Φ−1f . To diagonalize the equations of motion in Equation (7),
and equivalently in Equation (23), the Φ matrix must have n linearly independent eigenvectors.

The ith mode can be described by the set of first-order equations.

η̇i,1 = ηi,2 + f̃i cos(σt) (24)

η̇i,2 = −K̃iηi,1 − C̃iηi,2 (25)

To be rigorous in terminology, η̇i,1 is the true modal velocity, and ηi,2 is the ideal modal velocity. A derivative
is taken of Equation (24) and appropriate substitutions are made in order to write the equations of motion
for the ith mode in a second-order form.

η̈i,1 = η̇i,2 − σf̃ sin(σt)

= −K̃iηi,1 − C̃iηi,2 − σf̃ sin(σt)

= −K̃iηi,1 − C̃i

(
η̇i,1 − f̃i cos(σt)

)
− σf̃i sin(σt) (26)

Thus, the second-order equation that describes the ith modal dynamics subject to a kinematic disturbance
has two excitation terms on the right-hand side.

η̈i,1 + C̃iη̇i,1 + K̃iηi,1 = C̃if̃i cos(σt) − σf̃i sin(σt) (27)

The steady-state solution to the above expression can be written as a sum of the steady-state solutions for
the cos(·) and sin(·) excitation terms.

ηi,ss = N I
i cos(σt − αI

i ) +N II
i sin(σt − αII

i ). (28)

The receptance functions and phases for each term in the solution are found using the same approach for
SDOF systems, where ri is the ratio of the excitation frequency to the ith natural frequency.15

N I
i

f̃i

=
C̃i

ω2
i

√
(1 − r2

i )2 + (2ζiri)2
; αI

i = tan
−1

(
2ζiωiσ

ω2
i − σ2

)
(29)

N II
i

f̃i

=
σ

ω2
i

√
(1− r2

i )2 + (2ζiri)2
; αII

i = tan−1

(−2ζiωiσ

σ2 − ω2
i

)
(30)

The steady-state amplitudes in modal coordinates are transformed to the steady-state amplitudes in
physical coordinates using the modal matrix.

X = Φ(N I +N II) (31)

The vectors of modal amplitudes are N I = DIΦ−1f and N II = DIIΦ−1f , where DI and DII are defined
below.

DI = diag

(
C̃1

ω2
1s1

,
C̃2

ω2
2s2

, ...,
C̃n

ω2
nsn

)
; DII = diag

(
σ

ω2
1s1

,
σ

ω2
2s2

, ...,
σ

ω2
nsn

)
(32)

The term si is the square root term in Equations (29) and (30): si =
√
(1 − r2

i )2 + (2ζiri)2.
The receptance functions for the MDOF system in physical coordinates are determined via appropriate

substitutions.
Hjk ≡ Xj

fk
=
[
Φ(DI +DII)Φ−1

]
jk

(33)

7 of 19

American Institute of Aeronautics and Astronautics



Here, H is an n × n matrix, and the (j, k)th element of H is the ratio of the jth output to the kth input.
More specifically for the multivehicle-control application, Hjk is the ratio of the jth vehicle’s steady-state
amplitude to the kth vehicle’s disturbance amplitude, and thus, reveals the disturbance-rejection properties
of the given cooperative-control form. The matrix H is symmetric if the eigenvector matrix Φ is symmetric,
which is guaranteed if the stiffness matrix K is symmetric.

Whereas the receptance functions show the magnitudes of the steady-state responses relative to distur-
bance inputs from each vehicle, the steady-state amplitude of the jth vehicle reveals the cumulative effects
of disturbances to all other vehicles in the formation. Steady-state amplitudes and steady-state errors are
determined using both the steady-state modal amplitudes and the phase information.

C. Steady-State Solution from Frequency-Response Functions

Whereas the receptance function, H , shows how vehicles are affected by the disturbances to other vehicles, the
steady-state solution is used to find the maximum steady-state amplitude of each vehicle as a function of σ.
The steady-state response of the ith vehicle in physical coordinates can be expressed using the superposition
of the modal-coordinate responses.

xi,ss(t) = xI
i,ss(t) + xII

i,ss(t) = Φij

[
N I

j cos(σt− αI
j ) +N II

j sin(σt− αII
j )
]

(34)

The first term in Equation (34) can be expanded and rearranged.

xI
i,ss(t) = Φi1N

I
1 cos(σt− αI

1) + Φi2N
I
2 cos(σt− αI

2) + ...+ΦinN
I
n cos(σt− αI

n)

= Φi1N
I
1

[
cos(σt) cos(αI

1) + sin(σt) sin(α
I
1)
]
+

+Φi2N
I
2

[
cos(σt) cos(αI

2) + sin(σt) sin(α
I
2)
]
+ ...

...+ΦinN
I
n

[
cos(σt) cos(αI

n) + sin(σt) sin(α
I
n)
]

= sin(σt)
[
Φi1N

I
1 sin(α

I
1) + Φi2N

I
i sin(α

I
2) + ...+ΦinN

I
n sin(α

I
n)
]
+

+ cos(σt)
[
Φi1N

I
1 cos(α

I
1) + Φi2N

I
i cos(α

I
2) + ...+ΦinN

I
n cos(α

I
n)
]

(35)

The response is written as xI
i,ss(t) = Ai sin(σt) +Bi cos(σt).

Ai = Φi1N
I
1 sin(α

I
1) + Φi2N

I
i sin(α

I
2) + ...+ΦinN

I
n sin(α

I
n) (36)

Bi = Φi1N
I
1 cos(α

I
1) + Φi2N

I
i cos(α

I
2) + ...+ΦinN

I
n cos(α

I
n) (37)

The second term in Equation (34) can be rearranged similarly.

xII
i,ss(t) = sin(σt)

[
Φi1N

II
1 cos(αII

1 ) + Φi2N
II
2 cos(αII

2 ) + ...+ΦinN
II
n cos(αII

n )
]−

− cos(σt) [Φi1N
II
1 sin(αII

1 ) + Φi2N
II
2 sin(αII

2 ) + ...+ΦinN
II
n sin(αII

n )
]

(38)

Here, xII
i,ss(t) = Ci sin(σt)−Di cos(σt).

Ci = Φi1N
II
1 cos(αII

1 ) + Φi2N
II
2 cos(αII

2 ) + ...+ΦinN
II
n cos(αII

n ) (39)

Di = Φi1N
II
1 sin(αII

1 ) + Φi2N
II
2 sin(αII

2 ) + ...+ΦinN
II
n sin(αII

n ) (40)

Therefore, the steady-state response of the ith vehicle is expressed as the sum of xI
i,ss(t) and xII

i,ss(t).

xi,ss(t) = (Ai + Ci) sin(σt) + (Bi −Di) cos(σt). (41)

The amplitude of the steady-state solution is: Xi,ss =
√
(Ai + Ci)2 + (Bi −Di)2. Vector expressions for A,

B, C, and D are calculated using the following expressions.

A = Φ diag(N I) sin(αI) (42)

B = Φ diag(N I) cos(αI) (43)

C = Φ diag(N II) cos(αII) (44)

D = Φ diag(N II) sin(αII) (45)
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The steady-state error between adjacent vehicles is easily found using the steady-state solutions.

e(i−1,i),ss(t) = (Ai−1 + Ci−1 −Ai − Ci) sin(σt) + (Bi−1 −Di−1 −Bi +Di) cos(σt) (46)

Therefore, the amplitude of the steady-state error is:

E(i−1,i),ss =
√
(Ai−1 + Ci−1 −Ai − Ci)2 + (Bi−1 −Di−1 −Bi +Di)2. (47)

D. Interpretation of the Frequency-Response Analysis

Frequency-response analysis is typically used to investigate the natural frequencies and modes of structural
systems, as well as to estimate structural system parameters.16 The frequency-response analysis presented
here has been reinterpreted to evaluate disturbance rejection for the cooperative multivehicle-control appli-
cation. The extension of the frequency-response results to steady-state solutions enables the string-stability
analysis for general cooperative control laws that are derived from communication structures. A primary
difference in this frequency-response analysis versus the traditional analysis is the inclusion of non-physically
representative systems, or non-symmetric stiffness matrices, which does not come without consequences as
discussed in the next section.

V. Simulation Results

Simulation results for four different communication structures are presented. The receptance functions
and the plots of the steady-state amplitudes and errors are shown to determine the string stability of the
cooperative control laws derived from the communication structures. Simulations of ten-vehicle formations
are used to verify the frequency-response results, and control-gain design considerations are briefly discussed.

A. Communication Structures

2 13

1.  Fully Connected

2 13

2.  Singly Connected to Platoon Lead
     with Bidirectional Communication 
     between Trailing Vehicles

2 13

3.  Singly Connected Leader-Follower

2 13

4.  Bidirectional Leader-Follower

Figure 3. Four possible communication structures for multi-
vehicle formation control.

Figure 3 shows the four communication struc-
tures that are investigated in this paper. In
the figure, vehicle 1 is the platoon lead, which
tracks a reference trajectory, and vehicles 2
and 3 are trailing vehicles. These communi-
cation structures can be extended to an n-
vehicle formation based upon the descriptions
in the figure. A fully-connected communica-
tion structure means that all vehicles in the
formation have information about all of the
other vehicles. In communication structure 2,
the second through nth vehicles have informa-
tion about the platoon lead, and the trailing
vehicles communicate as described in Figure
3. Communication structures 3 and 4 use a
“nearest neighbors” communication approach
where vehicles only communicate with adja-
cent vehicles. The stiffness and forcing matri-
ces for each communication structure are listed
in the Appendix. As a result of the control-law
development in Section II, the damping matrices are proportional to the stiffness matrices: C = βK.

B. Receptance Functions and Steady-State Errors

The receptance functions and steady-state amplitudes and errors for the communication structures shown in
Figure 3 are determined for a ten-vehicle formation. The gains in the stiffness matrices are assumed equal to
one; however, communication structure 3 does not yield an invertible Φ matrix for unity gains. The stiffness
matrix for communication structure 3 is a lower-diagonal matrix; therefore, the eigenvalues are equal to the
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gains along the diagonal. In order to yield n distinct eigenvalues, which guarantees n linearly-independent
eigenvectors, the diagonal gains are perturbed. Here, the kj,j+1 gains, for j = 1, ..., n− 1, are perturbed by
0.25 to get kj,j+1 = 1 + 0.25j. Perturbing the control gains to yield an invertible eigenvector matrix is a
consequence of using non-physically representative communication structures. As previously described, the
damping matrices are assumed proportional to the stiffness matrices with β = 1.
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Figure 4. Receptance functions for communication structure 1.

Figure 4 shows the receptance func-
tions for the tenth vehicle for the
fully-connected communication struc-
ture, where H10,k for k = 1, ..., 10 is the
ratio of the tenth vehicle’s output am-
plitude to the kth vehicle’s disturbance
amplitude. The receptance functions for
communication structure 1 are symmet-
ric due to the symmetry of the stiffness
matrix, i.e., Hj,k = Hk,j . Because the
control gains in the stiffness matrix are
equal, the disturbance effects from vehi-
cles 2 through 10 equally affect vehicle
1. The receptance functions only exhibit
one resonant frequency at the first mode,
which has a damping ratio of 0.26; the
other modes have damping ratios closer
to one. Figure 5 shows the steady-state
amplitudes (a) and errors (b) for com-
munication structure 1. The plot of the
steady-state amplitudes shows that vehicles 2 through 10 have the same steady-state amplitude, and the
steady-state errors between vehicles do not grow along the string. Thus, communication structure 1 yields
a string-stable cooperative control law.
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Figure 5. Steady-state amplitudes (a) and steady-state errors (b) for communication structure 1.

The receptance functions and steady-state amplitudes and errors for communication structure 2 are shown
in Figures 6 and 7, respectively. In this case, disturbances to vehicles 2 through 9 have unequal effects on
the tenth vehicle. The first vehicle has the greatest influence on the tenth vehicle due to its connection to
the tenth vehicle as defined by the communication structure. Vehicles 2 through 8 still have an effect on the
tenth vehicle even though they are not connected; this shows how disturbance effects can propagate through
a vehicle string. The steady-state amplitudes and errors in Figure 7 are similar to those from communication
structure 1; therefore, communication structure 2 also yields a string-stable control law.
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Figure 6. Receptance functions for communication structure 2.
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Figure 7. Steady-state amplitudes (a) and steady-state errors (b) for communication structure 2.
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The receptance functions for communication structure 3 are shown in Figure 8. For this communication
structure, vehicle 10 is connected to vehicle 9 only. However, the peak magnitude of H10,9 < H10,8 <
... < H10,1, which indicates that the disturbance to vehicle 1 has a greater effect on the tenth vehicle than
disturbances to vehicle 9. The trends shown in the plot of the receptance functions combined with a priori
knowledge of the communication structure indicate that disturbances are amplified along the vehicle string.
The plot of steady-state amplitudes and errors in Figure 9 confirm that communication structure 3 is in fact
string unstable.
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Figure 8. Receptance functions for communication structure 3.
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Figure 9. Steady-state amplitudes (a) and steady-state errors (b) for communication structure 3.

Figures 10 and 11 show the receptance functions and steady-state amplitudes and errors for communica-
tion structure 4, respectively. Here, disturbances to vehicle 9 have the greatest effect on the tenth vehicle;
thus, the behavior of the receptance functions does not indicate string instabilities. A notable difference in
behavior compared to communication structures 1 and 2 is evident in the plot of the steady-state amplitudes
in Figure 11(a), which shows that the amplitudes increase along the string; however, the steady-state errors
in Figure 11(b) indicate that this communication structure does yield string-stable control laws. The growth
of amplitudes along the string may be undesirable, but this should be not be confused with string stability,
which is defined as the propagation of errors through the string.
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Figure 10. Receptance function for communication structure 4.
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Figure 11. Steady-state amplitudes (a) and steady-state errors (b) for communication structure 4.
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C. Formation Simulations

Ten-vehicle formations are simulated for each of the communication structures in Figure 3. The first vehicle
in the formation is tracking a constant-velocity reference trajectory in the x direction with ẋr = 1 distance
unit (DU) per time unit (TU). Desired separation between vehicles is 1 DU in the x direction and 0 DU
in the y direction. Disturbances to each vehicle have the form dx,y = cos(σt), where σ is equal to the first
natural frequency of the system, i.e., the resonant frequency.

Figure 12 shows the simulation results for communication structure 1: spacing errors in the formation in
the x direction (a) and control inputs to the vehicle, v̇ (b) and ω (c). As predicted by the frequency-response
results, the spacing errors in the formation go to zero along the string. In addition, the control inputs to
vehicles 2 through 9 are equal. Thus, the simulation results demonstrate that this communication structure
yields a string-stable control law with bounded control inputs along the string.
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Figure 12. Simulation results for communication structure 1: spacing errors in the x direction (a) and control
inputs v̇ (b) and ω (c).

Simulation results for communication structure 2 shown in Figure 13 are similar to the results for com-
munication structure 1. Here, the notable difference is the magnitude of the spacing errors, but the control
magnitudes are similar.

The frequency-response analysis for communication structure 3 indicates that this communication struc-
ture yields string-unstable control laws for the chosen control gains. Simulation results in Figure 14(a) confirm
that the spacing errors between vehicle pairs grow along the string as predicted. Figure 14(b) and (c) show
the vehicle control inputs necessary to maintain the formation. With the growth of spacing errors along the
string, the required control inputs also increase along the string. If these control inputs were bounded, some
vehicles in the formation may not be able to maintain their position. Therefore, communication structure 3
would not be feasible for an infinite string of vehicles.

Figure 15(a) shows the spacing errors for communication structure 4. Here, string stability is evident as
the spacing errors decrease along the vehicle string. However, the control inputs increase along the string, as
shown in Figure 15(b) and (c), which is a result of the increasing steady-state amplitudes along the vehicle
string. Compared to communication structure 3, the control inputs are smaller in magnitude, but strings
with an infinite number of vehicles would be unable to maintain the formation.
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Figure 13. Simulation results for communication structure 2: spacing errors in the x direction (a) and control
inputs v̇ (b) and ω (c).
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Figure 14. Simulation results for communication structure 3: spacing errors in the x direction (a) and control
inputs v̇ (b) and ω (c).
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Figure 15. Simulation results for communication structure 4: spacing errors in the x direction (a) and control
inputs v̇ (b) and ω (c).

D. Design Considerations

The steady-state amplitudes and errors for each communication structure reveal how the multivehicle system
will behave when subjected to disturbances. In the simulation cases presented, the nominal gains in the
stiffness matrix were equal to one, and the damping matrices were equal to the stiffness matrix. The values
of these gains can be changed in order to achieve a more desirable system response.

In the previous section, communication structure 3 was shown to be string unstable for the nominal
gain of one. Changing the nominal gain to two, which will be denoted as k = 2, decreases the steady-state
amplitudes and errors as shown in Figure 16. Figure 16(b) still indicates that the cooperative control laws
are not string stable; however, a simulation of the ten-vehicle system shows that the required control efforts
to maintain the formation are approximately halved for this gain choice.

Figure 17 shows the steady-state amplitudes and errors for a nominal gain of k = 1 with a damping
constant β = 2. Figure 17(b) indicates that this choice of gains leads to a string-stable cooperative control
law. Whereas the steady-state errors do not grow along the vehicle string, the steady-state amplitudes still
increase along the string. This behavior can be contrasted to the steady-state amplitudes in Figures 5 and
7 for communication structures 1 and 2, respectively. In those cases, the steady-state amplitudes of vehicles
2 through 10 are equal and do not grow along the vehicle string. Communication structures 3 and 4 exhibit
similar behavior, which indicates that a connection to the first vehicle in the formation can help to prevent
amplitude growth along the string.

The results presented here appear to contradict the string-stability results presented by Swaroop and
Hedrick for a preceding-vehicle-tracking control form.11 Their analysis indicates that a control law using
position and velocity errors from the preceding vehicle only is string unstable for all position and velocity
control gains greater than zero; in that analysis, all vehicles used control laws with equal gains. However,
in the analysis presented here, the perturbations in the gains to permit invertibility of the Φ matrix lead
to a string-stable control form. The perturbations were implemented such that the gains increase along the
string; and therefore, the trailing vehicles are more aggressive in their control. If the gains are perturbed
such that the vehicles are less aggressive along the string, then the string-instabilities remain.

For each design application, the performance objectives and system constraints will help to determine the
appropriate control form. String-unstable control forms may be acceptable for a finite number of vehicles in
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Figure 16. Steady-state amp0itudes of the vehicle positions (a) and steady-state errors (b) for communication
structure 5 (k = 2, β = 1).
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Figure 17. Steady-state amplitudes of the vehicle positions (a) and steady-state errors (b) for communication
structure 5 (k = 1, β = 2).

the formation or string, where control inputs fall within some bounds. As was shown, there is design freedom
in the choice of gains. Increasing the gains does not always lead to greater control inputs because the gains
may significantly change the way that the system moves as a whole. An obvious drawback to the approach
is the need for the Φ matrix to be invertible. Therefore, some communication structures with equal gains
cannot be evaluated using this approach.

VI. Conclusions

This paper presents a mechanics-based approach to analyze the string stability of decentralized, coop-
erative control laws for multivehicle systems. The closed-loop cooperative control laws can be written in
a form analogous to structural systems, where the form of the stiffness matrix is derived from an assumed
communication structure. Frequency-response functions, interpreted for the multivehicle-control application,
are used to evaluate the effect of kinematic-level disturbances on the multivehicle system. The steady-state
response of the system is derived from the frequency-response information and is used to determine whether
a given control form is string stable. This approach to analyzing disturbances is applicable to general coop-
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erative control forms where the closed-loop system can be written in a structural form. One drawback to the
approach is the requirement that the matrix of eigenvectors from the stiffness matrix is invertible. Therefore,
some stiffness matrices may need to be perturbed in order to yield a full-rank eigenvector matrix; however,
it should be noted that perturbations to the control gains do not change the communication structure and
trends in the results are consistent as the perturbations go to zero.

The frequency-response analysis was applied to four different communication structures. Whereas the
communication structures that include information from the formation lead were shown to be string stable,
the communication structure that assumes information from the immediately preceding vehicle only was
shown to be string unstable for certain control gains, which was a result shown in the literature. However,
this control form was string stable for larger damping gains, which can be attributed to the unequal gains
in the stiffness matrix that yield a full-rank eigenvector matrix.

A. Stiffness and Forcing Matrices

The stiffness and forcing matrices are listed for the four defined communication structures in Figure 3.
The D matrix acts on the vector ur = [xr(t) ẋr(t) dr1 d12 d13 d23]T . It is assumed that the first vehicle in
the formation tracks a constant-velocity reference trajectory (ẍr = 0).

1. Fully Connected:

K =


kr + k12 + k13 −k12 −k13

−k12 k12 + k23 −k23

−k13 −k23 k13 + k23


 ; D =


kr cr −kr k12 k13 0
0 0 0 −k12 0 k23

0 0 0 0 −k13 −k23




2. Singly Connected to Platoon Lead with Bidirectional Communication between Trailing Vehicles:

K =


kr + k12 −k12 0

−k12 k12 + k23 −k23

−k13 −k23 k13 + k23


 ; D =


kr cr −kr k12 0 0
0 0 0 −k12 0 k23

0 0 0 0 −k13 −k23




3. Singly-Connected Leader-Follower

K =


 kr 0 0
−k12 k12 0
0 −k23 k23


 ; D =


kr cr −kr 0 0 0
0 0 0 −k12 0 0
0 0 0 0 0 −k23




4. Bidirectional Leader-Follower

K =


kr + k12 −k12 0

−k12 k12 + k23 −k23

0 −k23 k23


 ; D =


kr cr −kr k12 0 0
0 0 0 −k12 0 k23

0 0 0 0 0 −k23



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