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ABSTRACT

Motion tracking in persistent surveillance applications enters an interesting regime when the movers are of a size
on the order of the image resolution elements or smaller. In this case, for reasonable scenes, information about the
movers is a natively sparse signal—in an observation of a scene at two closely separated time-steps, only a small
number of locations (those associated with the movers) will have changed dramatically. Thus, this particular
application is well-suited for compressive sensing techniques that attempt to efficiently measure sparse signals.
Recently, we have been investigating two different approaches to compressive measurement for this application.
The first, differential Combinatorial Group Testing (dCGT), is a natural extension of group testing ideas to
situations where signal differences are sparse. The second methodology is an `-1-minimization based recovery
approach centered on recent work in random (and designed) multiplex sensing. In this manuscript we will
discuss these methods as they apply to the motion tracking problem, discuss various performance limits, present
early simulation results, and discuss notional optical architectures for implementing a compressive measurement
scheme.
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1. INTRODUCTION

In recent years, persistent, pervasive surveillance (PPS)—that is, the ability to constantly observe a large ge-
ographical region—has emerged as an important tool in a variety of security applications. The challenge in
PPS is that applying conventional imaging approaches to these applications can result in an overwhelming data
bandwidths. Typically, systems will address this by acquiring high-resolution video-rate (or near-video-rate)
datastreams and then compressing them using various algorithms to reduce the overall bandwidth to a more
manageable level. While this approach does reduce the communications bandwidth of the system, the optics
and photodetector hardware must still operate at the native bandwidth, limiting performance and increasing
overall system cost. Thus we search for alternative sensing methods that can reduce the bandwidth burden on
the entire sensor platform.

An important foothold is provided by the fact that for many applications, the ultimate item of interest is
not the actual image of the field-of-view (FOV) but rather information about the motion of objects within the
FOV. When the system geometry is such that the moving objects of interest subtend a solid angle that is on
the order of the sampling resolution of the imaging system (i.e. in a traditional image, the movers are roughly
pixel-scale), an interesting opportunity arises. If we compare two consecutive image frames from a system in
this regime, for reasonable scenes we will notice that only a small number of the pixels will exhibit a significant
change. Thus, for reasonable scenes, a “difference image” can be considered as sparse (no detector noise) or
compressible (noise small compared to the differences associated with a mover). Further, this difference image
retains all of the important information about the movers that was present in the original scenes.

The efficient measurement of sparse/compressive signals has been a particularly active area of signal processing
in recent years and rests upon several decades of efforts in this area. The realization that difference images are
sparse and retains the relevant information needed for motion tracking applications allows us to bring to bear a
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variety of mathematical techniques designed for this sparse signal measurement/reconstruction. Our goal, then,
is to use these techniques to design a sensor system that allows us to measure and reconstruct these difference
images using fewer system resources (detectors, bandwidth, etc.) than the traditional approach. We note that a
number of other groups have explored alternative sparse-signal approaches to motion tracking.1,2

In the following sections we first formalize the signal and measurement model that we are assuming for the
problem, and then introduce several different mathematical approaches to sparse signal recovery and discuss
their relative merits. We conclude with an outline for a notional system to implement one of these approaches
and discuss our future plans.

2. SIGNAL AND MEASUREMENT MODEL

We mathematically represent the sensor operation as

m = Ts + n. (1)

Here s is a vector representation of the scene, T is a matrix that describes the measurement structure of the
sensor. For a traditional imager, T would be the identity matrix. We will be concerned with compressive,
multiplex sensors where T is rectangular (u × v with u < v) and has off-diagonal elements. The vector n
represents additive noise in the system, and thus m is a vector of the measurements that result from a single
exposure of the scene in s.

Note the scene vector s is not sparse/compressible in general. However, defining the difference of two con-
secutive measurement vectors as ∆m, we can write

∆m = m2 −m1 = T(s2 − s1) + (n2 − n1) = Td + n∆. (2)

We end with a form similar to Eq. 1, but in terms of the difference vector d = s2 − s1 between two consecutive
scenes and with a noise vector drawn from a potentially different distribution (e.g. if n is AWGN, then n∆ is as
well, but with zero mean and twice the variance). As we have noted previously, for reasonable conditions, d is
sparse/compressible, and is thus amenable to our proposed approach.

3. GROUP TESTING APPROACH

Combinatorial group testing (CGT) was first conceived during World War II as a means of providing a more
efficient method of testing servicemembers for syphilis (although the plan was never implemented).3 Since the
incidence of the disease was expected to be relatively rare, performing a blood test on every servicemember would
be highly inefficient, as the majority of the tests would be negative. The concept,3 was to combine blood samples
into groups, which were then tested. If the test on that group was negative, then a single test had replaced the
much larger number of individual tests. On the other hand, if the single test was positive, then the individual
servicemembers in that group could be tested individually to determine which members were infected. Of course,
these groups can be combined in higher-order groups to create a multi-tier approach with extraordinary efficiency
gains.

The current formulation of CGT refers to the detection of a small number of positive members of a much
larger population (the remainder of which are termed negative). A proposed set of tests is known as a design.
The group assignments in a design can be either deterministic or random. The canonical problem of identifying
exactly p positives in a population of n members is known as the (p, n)-problem. A related problem, that of
identifying up to p positives in a population of n members is known as the (p̄, n)-problem. Another way of
considering these problems is to realize that they correspond to finding the single system configuration that
corresponds to the true configuration out of the N possible system configurations. For the (p, n) problem we
have

Np =
(
n
p

)
=

n!
(n− p)! p!

, (3)
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and for the (p̄, n)-problem we have

Np̄ =
p∑

k=0

(
n
k

)
=

p∑
k=0

n!
(n− k)! k!

. (4)

It is this combinatorial growth in the size of potential system configurations that gives the field its name.

As a simple example, we consider the (1, 8)-problem. That is, locating the single positive member out of a
population of 8 (for the purposes of this example, we will number them as 0-7). Without using group testing,
we could individually test all 8 members of the population. A slightly smarter approach (if the testing need not
occur simultaneously) would be to consider a sequential test, where we are free to stop after we discover the
positive member. On average, this would require 4.5 tests.

Creating a deterministic, CGT design for this problem is actually quite simple. The positive member can be
unambiguously identified after 3 tests. In test one, we test the group {4,5,6,7}. In test two, we test the group
{2,3,6,7}. Finally, in test three, we test the group {1,3,5,7}. The validity of this design is easy to understand:
Each test takes the population (or sub-population) known to contain the positive member, and divides it in
half and determines which half contains the positive member. This approach is known as the binary-division
algorithm.

An important question is: What is the minimum number of tests required for a (p, n)-problem? Based on
the binary ideas described above, we are lead to what is known as the information-theoretic bound. Given that
there are Np (Eq.3) possible system configurations, we require at least as many tests as it takes to allow us
to numerically represent any of the possible configurations. Since the outcome of the tests are either positive
or negative the test result can be represented as a binary digit (note that for continuous-valued quantities, we
essentially compare the test result to some threshold to determine if the result is positive or negative). Thus we
are led to the conclusion that we must have at least as many tests as there are digits in the binary representation
of Np. In other words, the information-theoretic lower bound B(p, n) for the (p, n)-problem is

B(p, n) = d log2Np e, (5)

where d·e is the ceiling operator. Note that for the (1, 8)-problem considered above, we find B(p, n) = log2 8 = 3,
showing that the proposed design is optimal (as any shorter design would violate the information-theoretic
bound).

Note that the information-theoretic bound is not an actual prediction of the smallest valid design. Many (if
not most) (p, n)-problems do not have solutions of size B(p, n). For this reason, we will define the true minimum
number of tests required as M(p, n), with

B(p, n) ≤M(p, n). (6)

No closed-form expression for M(p, n) is known; however evidence seems to indicate that M(p, n) is often on
the close order of B(p, n). Further note that these results only describe the minimal size of the smallest possible
design, they do not provide guidance in actually constructing the design of this size. This will be discussed
further below. Finally, what of the (p̄, n)-problem? In fact, it has been shown4 that M(p̄, n) is at most one more
than M(p, n).

3.1 DIFFERENTIAL COMBINATORIAL GROUP TESTING (dCGT)
Unfortunately, a straightforward application of CGT will not meet our needs. The subtraction in Eq. 2 introduces
a fundamental bipolarity to the measurement vector ∆m. We thus implement a bipolar threshold that leaves
the results of the individual tests ∈ {−1, 0, 1}, corresponding to tests that decreased, remained the same, or
increased respectively between the two exposures. The result of any measurement is then a string in balanced
ternary representation. We can map this string to traditional ternary by adding a ‘1’ to each digit of the string.
We call this approach (CGT with bipolar thresholding after subtraction) differential combinatorial group testing
(dCGT).

In the same way that the binary representation of measurement vectors in CGT drives the logarithm base-2
formulation of the information-theoretic lower bound, the ternary representation in dCGT results in the lower
bound

B(p, n) = dlog3Ne, (7)
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with N again the total number of possible configurations that the sensor must be able to distinguish. In dCGT,
the calculation of N is more involved—the states we are attempting to enumerate are the states of a change
map, that is, the scene locations (FOV elements) that have changed between the two exposures.

Consider a scene with n FOV elements and up to p movers. There are several complications that result
from motion: First, movers may enter/leave the FOV. This situation is acceptable as long as the total number
of movers in the scene does not exceed p. Second, for a given set of exposures, movers may have a velocity
sufficiently small that they do not transition between FOV elements. The result of this is that we have at most
2p FOV elements that change between exposures. The total number of configurations of the change map is then

N =
2p∑

k=0

(
n
k

)
=

2p∑
k=0

n!
(n− k)! k!

.

Again, N grows combinatorially, and does so faster than in the CGT case. This is mitigated somewhat by
the base-3 logarithm. A simple numerical example can provide some idea of scale: This result claims that a
dCGT system for tracking up to 5 movers in a scene with 104 FOV elements requires at least 403 measurements.
Achieving anything near the information theoretic bound is therefore a significant efficiency improvement of the
traditional approach (which would make 104 measurements).

3.1.1 DESIGN AND DECODING CHALLENGES

Despite efforts over several decades, CGT approaches have not become widespread and applications involving
CGT rarely achieve efficiencies near the information-theoretic limit. This is largely the result of two inter-
related challenges that arise in the context of CGT: design and decoding. The design challenge arises because
although the simple information-theoretic argument allows us to determine the minimum required number of
measurements, it provides no information about the construction of an overall design that produces a one-to-one
mapping between possible configurations and the resulting measurement strings.

In addition to needing a working measurement design, we also need an effective method for mapping the
measurement string back to a particular configuration state. This is the decoding challenge. The combinatorial
growth of potential configuration states renders a lookup table approach completely impractical, and therefore
we require some algorithmic method for extracting the meaning from the measurement string. For this reason,
the most effective CGT designs to date have been based on specific families of mathematical objects that both
solve the design challenge (by provably providing unique mappings) and allow simple decoding of the resulting
measurement strings. Unfortunately, the designs generated by these methods fall far short of the information-
theoretic bound, and therefore do not result in the full efficiency gains promised by the CGT framework. In
formulating dCGT, it is our hope that the underlying ternary structure may prove more amenable to designs
operating near the performance limit. Our efforts to this point have focused on design/decoding of random
dCGT designs (as opposed to the deterministic concepts discussed above). These efforts are beyond the scope
of this manuscript.

4. `-1-MINIMIZATION APPROACH

An alternative approach to efficient measurement of sparse difference images is provided by the `-1 minimiza-
tion methods that have attracted so much attention in recent years.5–9 To understand the utility of the `-1
approach, we first recognize that for systems where T has fewer rows than columns (as we desire), that Eq. 2
is underdetermined. Thus, there are numerous possible solutions that are consistent with the measurements.
However, we have additional knowledge that can be used to constrain the solution: The difference image d is
sparse/compressible. Traditional methods such as least-squares solution (minimization of the `-2 norm) are ex-
tremely computationally efficient, but do not preferentially seek sparse solutions. Minimization of the `-0 norm
would, by definition, find a sparse solution (since the `-0 norm of a vector is the number of non-zero elements),
but `-0 minimization of large problems is known to be computationally intractable. Additionally, the applicabil-
ity of the `-0 norm to compressible (as opposed to sparse) signals is questionable. The `-1 norm (sum of vector
elements) occupies an interesting position between the `-2 and `-0 cases. `-1 minimization can be accomplished
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via linear programming techniques, and is therefore computationally tractable. Additionally, `-1 minimization
preferentially finds sparse/compressible solutions.

The design and decoding challenges that arose in the context of dCGT are not unique to that approach, but
are instead more general to the problem of efficient (underdetermined) measurement of sparse signals. The `-1
approach is a potential solution to the decoding challenge, providing a tractable method of converting a set of
measurements into an estimate of the underlying sparse state. The great realization of recent years has been the
applicability of random sampling to the design challenge. In particular, the realization that the reconstruction
techniques based on `-1 minimization are effective provided that the sensing matrix T has the restricted isometry
property (RIP)

(1− δs)||s||22 ≤ ||Ts||22 ≤ (1 + δs)||s||22, (8)

for all sufficiently sparse vectors s. Here || · ||22 represents the square of the `-2 norm. When the RIP holds, the
sensing matrix T approximately maintains the lengths of sufficiently sparse vectors (i.e. it is an approximate
isometry for those vectors). As a result of the length-preservation, interior angles and inner products between
the vectors are also approximately preserved. Further, since any linear functional can be represented as an
inner product with a fixed vector, the action of linear operators in the dimensionally-reduced space is similarly
preserved. It is this preservation of sparse vector geometry under the action of T that provides the utility of the
`-1 approach.

The magnitude of the isometry constant (the smallest value of δs for which Eq. 8 remains true) determines the
degree to which the `-1 approach produces a result that matches the `-0 solution. In addition to formulating the
problem in terms of the RIP, the manuscripts5–9 showed that instantiations of certain classes of random matrices
exhibit the RIP with a high degree of probability. This result, therefore, offers a simple solution to the design
problem—do no design and use a random sampling matrix instead. This, combined with the computational
tractability of the `-1 minimization approach provides a complete solution to the efficient measurement of sparse
vectors.

4.1 SIMULATION

To evaluate the utility of the `-1 approach to motion detection in PPS applications, we developed a simple
MATLAB simulation. The overall simulation framework consists of three parts: 1) a scene generator, which
moves an arbitrary number of single-pixel movers around a scene of city streets scene from altitude, 2) a sensor
simulator which generates a measurement vector from each time step of the scene by applying a sensing matrix
T, and 3) a reconstruction routine that attempts to reconstruct the difference images of the scene (e.g. a change
map of the scene) from differences of consecutive measurement vectors ∆m. With this framework we can evaluate
the reconstruction accuracy and robustness of various sensing matrices and reconstruction algorithms.

Results from one simple simulation are presented below in Fig. 1. The scene includes 100×100 FOV elements
with up to 20 simultaneous movers, observed over 200 timesteps. The reconstruction algorithm is the “L1 LS”
package provided by the Boyd group at Stanford.10 The sensing matrix is 103 × 104 (compression ratio of 10),
with the elements randomly drawn from {0, 1} and with each row then normalized to maintain the signal sum
(equivalent to conservation of energy for the case of an incoherent optical image). The upper left of Fig. 1 shows
frame 100 of the scene as shown to the sensor. Note that the movers are in general not easily observed on
the background. The upper right shows the actual location of the movers in the scene without the cityscape
background. The lower left shows the difference image formed by the difference between frames 100 and 99.
Note that in general, as expected, the movers appear as a bipolar signal involving two pixels. The magnitude of
the pixels depends on the relative intensity of the mover and the background of the scene. In addition, not all
movers have velocities such that they transition from one FOV element to another during a single frame. For these
reasons, not all movers appear in the difference image, and of those that do, not all have a clearly defined bipolar
signal. The lower right is the reconstructed difference image formed by running the `-1 reconstruction algorithm
on the difference of the random multiplex measurements made on frames 100 and 99. The reconstruction is in
perfect qualitative agreement with the actual difference image. Quantitatively, the maximum relative error is
less than 3% and the RMSE is ≤ 9× 10−3.
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Figure 1. (Upper left) The scene as presented to the sensor in frame 100. The movers are barely visible on the scene
background. (Upper right) The actual mover locations in the scene. (Bottom left) The true difference image between
frames 99 and 100. (Bottom right) The reconstruction of the difference image from an `-1 minimization algorithm as
applied to the difference of random multiplex measurements made on frames 99 and 100. The qualitative agreement is
exact, the quantitative agreement is within 3% with an RMSE ≤ 9× 10−3.
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4.2 NOTIONAL DESIGN

The simulation results support the idea that `-1 style approaches offer the potential for highly efficient motion
tracking in PPS. Of course, at this point, a new challenge arises—to develop an optical architecture capable
of implementing the multiplex sensing needed by either the dCGT or the `-1 technique. To date, the majority
of experimental systems to implement these approaches have utilized spatial light modulators (SLMs) of one
form or another (either an array of fixed masks or a dynamic SLM such as a digital micromirror array (DMM)).
These architectures typically involve parallel imaging of the scene (in the case of an array of masks) or temporal
sequencing (with the dynamic SLMs). Either approach complicates the optical architecture and divides the
available photons from the scene, reducing the measurement SNR.

We have begun considering an alternative architecture, which dispenses with the ability to generate controlled
multiplex measurements in exchange for optical simplicity and increased measurement SNR. A schematic of the
architecture is shown in Fig. 2. The key idea is that the scene is imaged a random diffuser (random phase mask)
with features smaller than the desired image resolution. Photons striking the diffuser are then scattered over an
angular range before being intercepted by a detector array. The diffuser thus randomly distributes energy from
one resolution element into a small neighboorhood of resolution elements that are downsampled by the detector
array. In this way, the output of each detector element is proportional to a weighted sum of intensities from
a number of resolution elements. Unlike the matrices discussed above, however, the elements present in any
particular weighted sum are not drawn globally from all of the available resolution elements, but from a local
neighborhood. In this way, the architecture owes much to extended PSF imagers discussed previously in the
literature.11 Despite this non-global behavior, early simulations support the idea that `-1 based methods can
accurately reconstruct scenes measured in this way.

Scene

Imaging optics

Image plane/
Random diffuser

Coarsely-sampled
detector array

Figure 2. Simple schematic of a notional optical architecture. The scene is imaged onto a random phase mask. The
mask scatters the photons in a pseudorandom manner over a small spatial neighborhood which is downsampled by large
detector elements. In contrast to SLM based systems, the architecture is particularly simple. Early simulations support
the idea that `-1 based methods can provide accurate reconstruction despite the non-global nature of the sensing matrix
T.

5. CONCLUSION AND FUTURE WORK

We have begun investigating methods for efficient motion tracking in PPS applications. We have formulated
a variation on CGT, which we term dCGT suitable to the motion tracking task and have developed a simple
information-theoretic bound on its performance. We have also investigated `-1 based methods for sparse signal
recovery in these kinds of systems and have performed basic simulations showing the viability of the general
approach. In addition, we have begun formulating a practical system architecture that is potentially more
suitable to the application than other experiments to date. We are continuing our research into both the dCGT
and `-1 systems, in particular the new system architecture. Future manuscripts will be forthcoming as results
warrant.
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