
 
 

1

  
Abstract—Mission-critical information is typically stored in 

the clear on some trusted portion of a network and only 
encrypted when sent elsewhere. If the network is penetrated, the 
information becomes vulnerable to disclosure, modification, and 
deletion, thus jeopardizing the mission. In response to such an 
attack or the imminent threat of attack, the information may be 
disconnected from the network, but the resulting lack of 
availability may also jeopardize the mission. We define 
requirements for a data caching system that is designed to 
maintain availability of mission-critical reference information, 
despite network penetration by an adversary, without sacrificing 
the information’s security. We describe a basic network model 
and three alternative caching architectures to address these 
requirements: a secure, centralized (SCCA); a secure, 
unstructured, distributed (SUDCA); and a secure, structured, 
distributed (SSDCA) caching architecture. We define availability 
and confidentiality models and apply them to characterize these 
three architectures and compare their relative performance. We 
show that the SSDCA outperforms the alternatives in providing 
data availability and data confidentiality, assuming the 
compromise of data caches and the presence of eavesdropping. 
Lastly, we recommend related areas for further exploration. 
 

Index Terms—Distributed Caching, Erasure Coding, 
Fragmentation, Confidentiality, Integrity, Availability, Resiliency 

I. INTRODUCTION 
UNNING a mission requires access to information that is 
stored on network systems. Some of this information is 

relatively static (e.g., map data) as opposed to being subject to 
frequent updates. We call such static data reference 
information. In today’s networks, mission-critical information 
is typically protected from disclosure, modification, and 
deletion using perimeter protection, in which some inner 
sanctum of the network is assumed to be trusted because 
measures are in place between it and the Internet to protect it 
 

Manuscript received June 15, 2009. This work was supported in part by 
The MITRE Corporation.  

R. C. Durst, S. Jajodia, and S. F. Symington are with The MITRE 
Corporation, McLean, VA 22102 USA (corresponding author to provide 
phone: 303-555-5555; fax: 303-555-5555; e-mail: {durst, susan}@mitre.org 
susan@mitre.org).  

S. Jajodia is also with the Center for Secure Information Sciences, George 
mason University, mail Stop 4A4, Fairfax, VA 22030-444 USA (email: 
jajodia@gmu.edu). 

A. Mei is with the Dipartimento di informatica of the Università di Roma 
“La Sapienza,” Via Salaria 113, 00198 Roma, Italy (e-mail: 
mei@dsi.uniroma1.it). 

from penetration from outside.  
Often, the information in this trusted portion of the network 

is stored in the clear and is only encrypted when sent outside 
of the trusted portion of the network. If the trusted portion of 
the network is penetrated by an intruder or if it is subjected to 
an insider threat, the information on it is vulnerable to 
disclosure, modification, and deletion, thereby jeopardizing 
the mission’s success. As a result, if a network penetration is 
detected or if an insider threat is discovered, the typical 
response is to disconnect the trusted portion of the network 
from the internet or to shut down the network altogether. Such 
self-partitioning jeopardizes availability of mission-critical 
data, however, and may mean having to abort the mission or 
may cause the mission to fail. 

In some cases, high-value information may be encrypted. 
However, such encryption is typically at the file-system level 
(whole-disk encryption) rather than the object (individual file) 
level, precluding the information from being searched or made 
available in encrypted form at the object level. In other cases, 
systems storing extremely high value data are not permitted to 
be connected to the Internet. Such policies achieve security at 
the cost of limiting availability. Ideally, mission-critical 
reference information should be both available and secure 
throughout the lifetime of a mission, even if the network on 
which the information resides has been penetrated. 
 
Objectives and Approach 

We define requirements for a data caching system that is 
designed to maintain availability of mission-critical reference 
information, despite network penetration by an adversary, 
without sacrificing the information’s security. We design a 
basic network model and three alternative architectures to 
address these requirements: a secure, centralized caching 
architecture (SCCA), a secure, unstructured, distributed 
caching architecture (SUDCA), and a secure, structured 
distributed caching architecture (SSDCA). We define 
availability and confidentiality models to characterize these 
architectures and compare their relative performance. Lastly, 
we recommend additional related areas for further exploration.  

 
Threat Model and Trust Requirements 

We assume an internal adversary who can gain standard-
user privilege access to client nodes and who can exfiltrate, 
modify, and delete stored information (except for stored keys) 

A Secure, Structured, Distributed Caching 
System for Providing Availability of Mission-

Critical Reference Data  
Robert C. Durst, Sushil Jajodia, Senior Member, IEEE, Alessandro Mei, and Susan F. Symington 

R 

© The MITRE Corporation. All rights reserved.

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 09-2115



 
 

2

on both clients and data caches. The adversary is assumed to 
understand the network topology and know on which nodes 
information is stored; he is also assumed to have the ability to 
eavesdrop on traffic throughout the network.  

We trust all key servers to manage and distribute 
cryptographic keys correctly and without compromise. We 
trust that all reference data is correct and trustworthy upon 
initial entry into the network. We do not trust client or caching 
systems; these are vulnerable to compromise. We assume that 
both client and caching systems operate on high assurance 
platforms that prevent an adversary from gaining access to key 
material stored on them. We assume that all data in persistent 
storage on clients is stored in encrypted form. If an adversary 
gains control of a valid user account on a client, he will be 
able to view in plaintext all reference information that the 
account holder is authorized to access. However, his privileges 
will be limited to the account holder’s privileges; he will not 
be able to access or corrupt any other reference information.  
 
Requirements 

The overarching requirement of our caching system is to 
maintain availability of the reference information that is 
stored, despite network penetration and without sacrificing the 
information’s security. In the context of our threat model, this 
means that our system must prevent disclosure of both data at 
rest (DAR) and data in motion (DIM), and prevent disclosure 
and ensure the integrity and availability of information despite 
some eavesdropping and despite some number of caches being 
compromised or made unavailable. Furthermore, our system 
must prevent disclosure of information even in the case in 
which an adversary absconds with some number of data 
caches and subjects their contents to high-powered, nation-
state-capable, brute force attempts to crack the encryption 
therein. To promote availability, our system must be able to 
locate and retrieve information based on its content in addition 
to its filename. Our system must preserve availability despite 
periods of network partitioning and despite a lack of 
continuous connectivity to the data owner, which was the 
original source of the reference information and which 
controls the information’s access control policy. If the access 
control policy changes due to a user privilege revocation or 
some other reason, then to take advantage of the availability of 
the information that is already stored on the caches our system 
must honor this revised access control policy to the extent 
possible without requiring that any cached reference 
information be replaced and without requiring continuous 
connectivity to the Data Owner.  

II. THE BASIC NETWORK MODEL 
We assume a network model consisting of four types of 

nodes as shown in Fig. 1. Data Owners insert reference 
information into the network and set the information access 
control policy. Key Servers store and distribute all necessary 
keys via secure channels as determined by the access control 
policy. Data Caches store reference information, and Clients 
consume it. Our model supports encryption of both data at rest 
and data in motion, encryption on a per-file basis, data 

integrity, and content-based searching. It also provides 
dynamic access control using the over-encryption technique 
proposed in [2]. Data Owners Base Encryption Layer (BEL)-
encrypt data to protect its confidentiality from the Data Caches 
that will store it, and Data Caches Surface Encryption Layer 
(SEL)-encrypt this data upon providing it to clients, using a 
key appropriate to the requesting user’s privileges as defined 
by the most recent access control policy. 
 

 
Fig. 1.  The Basic Network Model 

Data Owners 
Before inserting a file into the network, a Data Owner signs 

the file, BEL-encrypts the file and signature, associates 
(possibly encrypted) metadata with the encrypted file, signs 
the combined encrypted file and metadata, and sends the result 
to one or more Data Caches for storage.  

The metadata that is associated with the file indicates 
attributes such as file content, associated mission, or security 
level. Metadata enables the file to be subjected to content-
based search as well as filename-based access. If metadata 
confidentiality must be maintained, the Data Owner encrypts 
the metadata using a different encryption key from that which 
was used to BEL-encrypt the file. The metadata key is shared 
with the Data Caches so that they can examine the metadata. 
BEL keys, however, are never shared with any Data Caches; 
Data Caches never have the capability to decrypt the reference 
information that they store. 
 
Data Caches 

Data Caches do not have user accounts. Data Caches 
receive access control policies and BEL-encrypted files from 
Data Owners. They verify the integrity of these files before 
storing or forwarding them. Upon receipt of a Client’s request 
for information, a Data Cache will forward the request to 
adjacent Data Caches using diffusion routing. It will also 
search its store for all information having metadata that 
satisfies the request. If the request was received from an 
adjacent Client that has appropriate privileges, the responding 
cache will SEL-encrypt the data based on the access control 
policy and send this BEL- and SEL-encrypted data to the 
Client. If the request was received from an adjacent Data 
Cache, the responding cache will forward satisfying BEL-
encrypted data to the requesting cache. 

Within the network, content-based Data Caches are 
maintained dynamically using diffusion routing. The result is 
that information is stored in the network near where it has 

Key Server
Data

Owner

Data
Cache

Access control 
policy and 
BEL-encrypted, 
signed, data 
fragments

Thin 
Client

Keys for 
decryption 

Keys for BEL and
metadata         2  

Request 
for Data

Access Control Policy
1

3

4

SEL-encrypted 
data

5

2

© The MITRE Corporation. All rights reserved.



 

been used so that when it is requested by subsequent 
is available even if there is currently no connectivity from the 
originator to the user because it only has to travel from where 
it is stored to the user. 

 
Clients 

Users have accounts on Clients from which they 
reference information according to characteristics that are 
captured by the information’s metadata. Clients send these 
requests to their neighboring Data Caches.  

Upon receiving the requested reference information, the 
Client verifies its integrity, SEL-decrypts it
decrypts it to recover the plaintext reference information and 
provide it to the user. The plaintext form of the reference 
information resides only in the Client’s volatile memory; i
never stored in the Client’s persistent memory.
 
Dynamic Access Control 

When a Data Cache receives a request from a Client
consults the access control policy that has been provided to it 
by the Data Owner to verify that the requesting user is 
authorized to receive that information, applies SEL
encryption to the information based on that
policy, and sends this BEL- and SEL-
information to the requesting user’s Client. 
control policy changes, the Data Owner must send the new 
policy to the Key Server and the Data Caches, but 
is not impacted because there is no need for the Data Owner to 
re-encrypt any reference information, nor is there any 
the reference information that is already stored in the 
be replaced. Because the information in the cache
SEL-level encryption applied at the time the information is 
sent to a Client, the information will be encrypted
appropriate to the access control policy that was most recently 
provided to the Data Cache.  

This approach does not require the Data Caches to interact 
with the Data Owners at each data request, 
cached information to remain available despite the fact that the 
Data Owner may not be available. The application of
encryption by the Data Owner ensures that the
not have access to the plaintext of the information that they 
store. This BEL-encryption protects the confidentiality of the 
information from attacks on Data Caches and from 
eavesdropping. The application of SEL-encryption 
Caches enables the protection applied to the data to
to changes in access control policy simply by varying the key 
with which the SEL-level encryption is performed. 

If a Data Cache has been compromised such that it is 
malicious or uncooperative, it may not willingly enforce the 
new access control policy that is provided to it. Because the 
information that it stores has been BEL-level encrypted by the 
Data Owner, however, the confidentiality of this data will not 
be at risk at the compromised Data Cache. 

III. THREE ARCHITECTURES USED FOR C
Given the basic network model already described, we define 

three architectures for using this model in support of an 

 

subsequent users, it 
there is currently no connectivity from the 

originator to the user because it only has to travel from where 

Users have accounts on Clients from which they request 
g to characteristics that are 

captured by the information’s metadata. Clients send these 

Upon receiving the requested reference information, the 
decrypts it, and then BEL-

to recover the plaintext reference information and 
provide it to the user. The plaintext form of the reference 

the Client’s volatile memory; it is 
never stored in the Client’s persistent memory. 

request from a Client, it 
the access control policy that has been provided to it 

that the requesting user is 
authorized to receive that information, applies SEL-level 

based on that access control 
-level encrypted 

to the requesting user’s Client. If the access 
control policy changes, the Data Owner must send the new 

Data Caches, but availability 
there is no need for the Data Owner to 

crypt any reference information, nor is there any need for 
stored in the caches to 

. Because the information in the caches will have 
the information is 

, the information will be encrypted using a key 
was most recently 

quire the Data Caches to interact 
with the Data Owners at each data request, enabling the 

te the fact that the 
The application of BEL-

ensures that the Data Caches do 
not have access to the plaintext of the information that they 

encryption protects the confidentiality of the 
information from attacks on Data Caches and from 

encryption by the Data 
protection applied to the data to be adapted 

to changes in access control policy simply by varying the key 
level encryption is performed.  

If a Data Cache has been compromised such that it is 
may not willingly enforce the 

new access control policy that is provided to it. Because the 
level encrypted by the 

the confidentiality of this data will not 

COMPARISON 
Given the basic network model already described, we define 

three architectures for using this model in support of an 

information storage and retrieval service: 
• Secure, centralized caching 
• Secure, unstructured, distributed caching (SUDCA)
• Secure, structured, distributed caching (SSDCA)

The quantity and structure of the
organization of the information as stored on these Data Caches
is what distinguishes the three architectures

 
Secure, Centralized Caching (SCCA)

In this first alternative architecture, which is representative 
of current practice, there is a single Data Cache for storing 
reference information, and perhaps 
can be accessed in the event that the main 
functioning or is otherwise inaccessible.
its entirety in each cache, with the topology

 

 
Fig. 2: Data Cache Topology in the 

 
Secure, Unstructured, Distributed Caching

In the SUDCA there are many Data Caches rather than 
one or two. These caches are not structured insofar as there is 
no precise control over their topology or 
are permitted to forward information to other caches. Nor is 
there any control over the placement
Data Caches. Caches join this architecture by
loose rules, making it resilient to caches
the network arbitrarily. This architecture is not depicted.

 

Fig. 3: Data Cache Topology in the 
 
Secure, Structured, Distributed Caching

In the SSDCA, which is depicted in F
SUDCA, there are many Data Caches
significant amount of structure. 
connections among the Data Caches
enforce partitioning of the network into 
networks (VNs), and reference information is stored on these 
VNs in a highly structured manner.  
 
Storing Data in a Distributed Cache

Fig. 4 depicts the steps that are performed on 

                                                         3

information storage and retrieval service:  
Secure, centralized caching (SCCA) 

ured, distributed caching (SUDCA) 
structured, distributed caching (SSDCA). 

the Data Caches and the 
organization of the information as stored on these Data Caches 

the three architectures from each other.  

, Centralized Caching (SCCA) 
In this first alternative architecture, which is representative 

of current practice, there is a single Data Cache for storing 
 a backup Data Cache that 

nt that the main Data Cache is not 
otherwise inaccessible. Each file is stored in 

each cache, with the topology shown in Fig. 2. 

 

2: Data Cache Topology in the SCCA 

Secure, Unstructured, Distributed Caching (SUDCA) 
are many Data Caches rather than just 

are not structured insofar as there is 
topology or over which caches 

are permitted to forward information to other caches. Nor is 
placement of information on the 

join this architecture by following only 
aches entering and leaving 

This architecture is not depicted. 

 
3: Data Cache Topology in the SSDCA 

Secure, Structured, Distributed Caching 
, which is depicted in Fig. 3, as in the 

there are many Data Caches. However, they have a 
structure. Specifically, the set of 

the Data Caches is tightly controlled to 
enforce partitioning of the network into m separate virtual 

eference information is stored on these 
 

Storing Data in a Distributed Cache 
that are performed on a file before a 

© The MITRE Corporation. All rights reserved.



 
4

Data Owner sends it to a cache. In all three caching 
architectures, the Owner signs the file (depicted by “$”) and 
encrypts the file and its signature. In the SCCA, the file is then 
ready to have metadata associated with it before being stored. 
In both distributed caching architectures, however, the Data 
Owner next fragments the file into m shares that are the result 
of a non-systematic erasure coding algorithm such that the file 
as a whole can be reconstructed by accessing k (where k � m) 
shares that are arbitrarily chosen, however, having k-1 or 
fewer shares provides no benefit toward being able to 
reconstruct the file. Next, the Data Owner associates (possibly 
encrypted) metadata with the encrypted fragments, signs each 
fragment/metadata combination, duplicates the fragments, and 
disperses them among multiple Data Caches using diffusion 
based routing, which distributes the copies according to how 
they are requested.  

 
In the case of the SUDCA, fragments may be placed in any 

Data Caches, and multiple fragments from the same file may 
(or may not) be on a single Data Cache. In the case of the 
SSDCA, the set of Data Caches in the network is partitioned 
into m subsets, as shown on the vertical axis in Fig. 3. Each of 
the Data Caches in subset i stores at most a single fragment, 
fragment j, of any given file. When duplicate fragments are 
inserted into the network by data owners, these fragments are 
all sent to Data Caches in the same subset i for 0 <= i <= m. 
When fragments are forwarded between two Data Caches in 
the network, they must be forwarded between Data Caches 
that are in the same subset. In this sense, the network of Data 
Caches is partitioned into m VNs of Data caches, each of 
which stores and forwards only one of the m fragments of any 
given file. This dimension of structure serves to protect the 
confidentiality of the reference information by breaking it up 
into m fragments, while providing availability by making each 
fragment available on some VN. Within each VN, there are x 
Data Caches. This dimension of structure promotes 
availability, making multiple copies of a given fragment 
available within the network. 

 

 
 

Fig. 4: Steps performed before storing information in one of the Secure, 
Distributed Architectures (both structured and unstructured) 
 
Reassembly at the Client  

When a Client requests information, it must receive at least 
k out of m fragments to reconstitute the requested file. Upon 
receiving k of m fragments, it validates and SEL-decrypts each 
fragment (not shown in Fig. 5), reassembles the original BEL-
encrypted file, BEL-decrypts and validates this file, and 

provides it to the requesting user (see Fig. 5).  Because not all 
m fragments of the file are required in order to reconstruct it, 
the Client will still be able to recover the information if up to 
m-k fragments are unavailable or corrupted.  

 

 
 

Fig. 5: Steps performed on the BEL-encrypted fragments by the Client 
before making the requested information available to the user. 
 

Overall, the information assurance support provided by the 
SSDCA is summarized in Table I. This table describes the 
mechanisms that address each requirement. 

 
Table I: SSDCA Threats and Associated Requirements  

 

IV. COMPARISON ANALYSIS  
Methodology 

We measure availability of a file by determining the amount 
of effort required on the part of an attacker to deny availability 
of that file to an authorized user. We define H to be the 
amount of effort required to deny availability to the first Data 
Cache and h as the amount of effort required to deny 
availability to subsequent caches of that same type. We 

File File $

Frag 1

Frag 2

Frag m

...
Frag 2Meta

-data

Frag mMeta
-data

Frag 1Meta
-data

Frag 1 $Meta
-data

Frag 2 $Meta
-data

Frag m $Meta
-data

Threat Requirement Mechanism

Adversary penetrates 
up to k-1 Data Caches 
to exfiltrate information

Info. remains 
confidential

Data BEL-encrypted and caches 
don’t have keys. Fragmentation of 
data and dispersion of shares 
across m VNs prevents adversary 
from obtaining all k shares needed 
to reconstruct the info. 

Adversary can 
eavesdrop in network

Info. remains 
confidential

BEL- and SEL-level encryption; 
fragments dispersed across m VNs.

Adversary makes up to 
m-k Data Caches 
unavailable

Info. remains 
available

Replication of fragments on multiple 
Data Caches in each VN; k
fragments are sufficient to 
reconstruct the data.

Adversary penetrates 
up to m-k Data Caches 
to modify or delete 
information

Integrity can be 
assured

Info is digitally signed and validated 
upon receipt by each Data Cache
and Client; invalid info. is deleted 
upon detection; original data can be 
reconstructed using k valid shares.

Adversary can access 
data after his privileges 
have been revoked

User access is 
limited by his 
privileges; 
dynamic 
access control

Data Cache verifies user privileges 
and SEL-level encrypts data with a 
key specific to current access 
control policy before sending data 
to Client.

Compromise of both a 
Client and k-1 Data
Caches

Info. user is not 
authorized to 
access remains 
confidential

Client has BEL key and can bypass 
SEL, but fragmentation prevents 
Client from having all k shares 
needed to reconstruct info. that the 
user is not authorized to access.

Compromise of Client Info. user is not 
authorized to 
access remains 
confidential

No info. is stored persistently on 
Client in plaintext form; adversary 
cannot access client keys; 
Adversary may access only the info. 
the user is authorized to access, 
and only until AC policy is changed.

© The MITRE Corporation. All rights reserved.



 
 

5

assume that H > h because once an adversary has figured out 
how to deny availability to a single cache, he can use the same 
method to deny availability to a subsequent cache of the same 
type, and this subsequent attempt will require less effort than 
the initial one. Analogously, when measuring confidentiality, 
we define H to be the amount of effort required to hack into 
the first Data Cache to exfiltrate information and h to be the 
amount of effort required to hack subsequent caches of that 
same type, where H > h.  

Despite the fact that the files are BEL-encrypted before 
being fragmented and stored, we do not take the 
confidentiality that is provided by this encryption into 
consideration in our confidentiality model. We consider only 
the confidentiality that is provided by the fragmentation of the 
information via non-systematic erasure coding. We assume 
that if an adversary is able to obtain k out of m fragments, 
confidentiality has been breached. In reality, the 
confidentiality of the information is greater, due to BEL-
encryption. Our model may be considered to be calculating a 
lower bound on confidentiality, which is the effort needed to 
reach the point at which an adversary could begin to try to 
decrypt the BEL-encrypted file. 

In both our availability and confidentiality models we 
assume that m is the total number of fragments of a file and k 
is the number of fragments needed to reconstruct the file. A1, 
A2, and A3 are the three architectures: SCCA, SUDCA, and 
SSDCA. In A3, m is also the number of VNs. We assume that 
there is one copy of each fragment of a given file (i.e., there is 
no fragment replication) and the adversary knows in which 
caches each fragment is located and so can target them. This 
means that in architecture A1 there is no backup Data Cache; 
in A2, because fragments are distributed randomly, some 
caches may contain multiple fragments from the same file; and 
in A3, because the fragments from a given file must be 
partitioned across the set of VNs, there is exactly one fragment 
in each VN. 

We assume that each of the Data Caches in a given VN is of 
the same type, but that Data Caches in different VNs are of 
different types. In A2, the number and types of Data Caches are 
assumed to be the same as in architecture A3. This means that 
in architecture A2, there are m different types of Data Cache 
and the fragments are distributed randomly across these Data 
Cache types. We calculate the number of Data Cache types 
that, in architecture A2, do not have any fragments from a 
given file on them. This number of Data Cache types that do 
not have any fragments from a given file on them is also the 
number of fragments that are located on a type of Data Cache 
on which other fragments of the same file are stored. Those 
fragments are of interest to us because an adversary only has 
to expend h effort to exfiltrate those fragments. This number 
of Data Cache types is calculated using a variation of the 
classic randomized “Balls and Bins” load balancing algorithm 
as follows: 

Assume that you have m bins (the number of bins = the 
number of different Data Cache types in A2). Assume a worst-
case scenario in which k=m, meaning that an adversary has to 
obtain all m fragments of a given file in order to reconstruct it. 

If we randomly distribute the fragments (balls) across these 
bins, we are interested in knowing the expected value of the 
random variable x, where x = the number of empty bins. 
 
Define xi = 1 if bin i is empty and 0 otherwise. 

� � � ��  
�

��	
 

 
Ex = expected value of x = E∑ ��  ���	  = ∑ ���  ���	  
 
Exi = 0 · Prob[xi = 0] + Prob[xi = 1] 
Exi = Prob[xi = 1] = the probability that bin i is empty. 
 
For a given ball, the probability that that ball is not in bin i is 
�1 �  1/��. 
So, the probability that none of the m balls is in bin i is     
�1 �  1/���. 

Exi = �1 �  1/���. 
As m → ∞, �1 �  1/���

→ 1/�. 

�1 � 	
��� �  	

� �1 � 	
��. 

 
Therefore, Ex = ∑ ���  ���	  = ��1/���1 � 1/��,  which is 
approximately �/� for large values of m. Therefore, the 
fraction of the m bins that are empty approaches 1/�. 
 
Availability 

For the availability model, we define: 
D(Ax) = expected effort to deny availability to a file in 

architecture Ax. 
Because an adversary needs to deny availability to m-k+1 
caches to deny availability to the data, we calculate that: 

D(A1) = H 

D(A2) ≤ (1 – f)(m-k+1)H + f(m-k+1)h, where f = 
	
�(1 – 

	
�) ~ 

	
�  ~0.37 

D(A3) = (m-k+1)H 
D(A1) = H because in order to deny availability to a file in 

A1, an adversary need only deny availability to one Data 
Cache, which requires effort H. 

D(A3) = (m-k+1)H because in order to deny availability to a 
file in architecture A3, an adversary needs to deny availability 
to m-k+1 fragments, each of which is on a separate VN. The 
effort required to deny availability to each of these caches is 
H, because each VN is comprised of caches of different types. 

Understanding D(A2) requires making use of the “Balls and 
Bins” analysis above, which showed that f is the fraction of 
the bins that are empty. This means that f is the fraction of the 
Data Cache types that are empty. In order to deny availability 
to the reference data in architecture A2, an adversary needs to 
deny availability to m-k+1 fragments, all of which are located 
on one of the fraction �1 � �� of data cache types that contain 
fragments. The effort to deny availability to the first fragment 
in a cache of each one of these cache types  is H. Fraction f of 
the fragments are also stored on caches of one of this fraction 
�1 � �� of data cache types.  The effort required to deny 

© The MITRE Corporation. All rights reserved.



 
 

6

availability to these additional fraction f of fragments is only 
h, because the adversary has already figured out how to deny 
availability to fragments on the data cache types on which 
they are stored. D(A2) is the expected effort required to make a 
file unavailable in  A2; the actual effort required depends on 
the distribution of fragments across data cache types. In the 
best-case scenario, all fragments are on different cache types, 
so D(A2) approaches D(A3). In the worst case, all fragments 
are stored on a single cache, so D(A2) approaches D(A1). 

Using these formulas for availability, we conducted 
experiments of 100,000 iterations while varying the values of 
k and m. The results are shown in Table II. 

 
Table II: Comparison of Effort Required to Deny 
Availability to a File in each Caching Architecture 

 
Confidentiality 

We use an analogous methodology for our confidentiality 
model.  

S(Ax) = expected effort to exfiltrate a BEL-encrypted file in 
architecture Ax. 

S(A1) = H 

S(A2) ≤ (1 – f)kH + fkh, where f = 
	
�(1 – 

	
�) ~ 

	
�  ~ 0.37 

S(A3) = kH 
In order to exfiltrate a file in architecture A2, an adversary 

needs to exfiltrate k fragments, all of which are located on one 
of the fraction �1 � �� of data cache types that contain 
fragments. The effort to exfiltrate from the first cache of each 
type is H. Fraction f of the fragments are also stored on caches 
of one of this fraction �1 � �� of data cache types. The effort 
required to exfiltrate these additional fraction f of fragments is 
only h, because the Data Cache types on which they are stored 
have already been broken into.  

Using these formulas for confidentiality, we conducted 
experiments of 100,000 iterations while varying the values of 
k and m. The results are shown in Table III. 

 
Table III: Comparison of Effort Required to Exfiltrate a 

File in each Caching Architecture 

 

V. CONCLUSION AND FUTURE WORK 
We have demonstrated that the SSDCA outperforms the 

alternatives in providing availability and confidentiality, 
assuming the compromise of data caches and the presence of 
eavesdropping. Novel aspects of the caching model include 
providing for continuous and consistent protection of both 
DAR and DIM on a per data object (e.g. a per file or message) 
basis; dynamic content-based cache population based on 
previous information requests; metadata tagging of data 
objects to facilitate content-based searching and sharing rather 
than just filename-based searching and sharing and also to 
provide mission-use marking of information; the ability to 
encrypt the metadata separately from the data itself so that 
caches can locate and serve data from their caches despite 
their inability to decrypt the data itself; no persistent storage of 
reference data in plaintext form at any data cache or client 
system; dynamic access control that does not require any 
stored data to be replaced when the access control policy 
changes and that does not require continuous connectivity to 
the access control policy owner; and cross-domain information 
sharing potential.  

 
For future work, we recommend exploring mechanisms to 

enhance the SSDCA, such as using a hash of each cache’s 
public key certificate to determine which file fragment that 
cache may store and thereby avoid relying on hardware to 
enforce the partitioning of fragments across VNs. We suggest 
exploring how to move fragments among caches (assuming 
some caches are more trusted than others) so that the amount 
of effort required to compromise a file never falls below a 
certain threshold; investigating the potential to respond to 
changing threat levels or to the appearance or disappearance of 
caches by modifying the number of fragment replicas and/or 
moving their location, or by choosing different values for k or 
m; exploring the potential applicability of the architecture to 
the storage of non-reference information by experimenting 
with the propagation of updates from writing nodes to the 
caches and adjusting caching in response to a changing ratio 
of readers to writers, i.e., increasing caching when read 
frequency is high and reducing caching when write frequency 
is high, to balance consistency with availability. 

REFERENCES 
[1] A. Mei, L.Mancini, and S Jajodia, “Secure Dynamic Fragment and 

Replica Allocation in Large-Scale Distributed File Systems,” IEEE 
Transactions on parallel and Distributed Systems, vol. 14, No. 9, 
September 2003, pp. 885-896. 

[2] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. 
Samarati, “Over-encryption: Management of Access Control Evolution 
on Outsourced Data”, Very Large Database Endowment, September 23-
28, 2007, Vienna, Austria. 

[3] A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 22, no. 11, 
1979.  

[4] Y. Deswarte, L. Blain and J.-C. Fabre, "Intrusion Tolerance in 
Distributed Computing Systems", in Proc. IEEE Symp. on Security and 
Privacy, Oakland California (USA), 1991, pp. 110-121. 

k:m centralized Unstructured structured

1:16 H 10.30H + 5.70h 16H

2:16 H 9.30H + 5.70h 15H

4:16 H 7.33H + 4.67h 13H

8:16 H 4.15H + 4.75h 9H

16:16 H H H

k:m SCCA (A1) SUDCA (A2) SSDCA (A3)

1:16 H H H

2:16 H H+h 2H

4:16 H 1.77H + 2.23h 4H

8:16 H 3.57H + 4.44h 8H

16:16 H 10.3H + 5.70h 16H

© The MITRE Corporation. All rights reserved.




