
1 

 

Searching Semantic Resources for Complex Selectional Restrictions to Support Verb Sense 

Disambiguation 

Merwyn Taylor 
The MITRE Corporation 

McLean, VA USA  
mgtaylor@mitre.org 

 
 
 

Lynn Carlson, Stephanie Poisson,  
Sun Fontaine, Ethan Cooper 

Department of Defense 
 Ft. George G Meade, MD  

USA 
{} @tycho.ncsc.mil 

 
Abstract— Natural language processing systems are 

increasingly integrating lexicons with ontologies for 

word sense disambiguation (WSD).  Manually acquiring 

a lexicon that is integrated with a large ontology and 

other semantic resources can be difficult and inefficient 

in part due to the complexity of ontologies and 

inconsistency of entity extractors supporting WSD 

applications.  A major contributing factor to the 

difficulty is the creation of selectional restrictions with 

respect to particular semantic resources.  This paper 

presents a process for acquiring complex expressions 

for selectional restrictions via search through an 

ontology. 

I. Introduction 

Supervised learning of lexicons for Verb Sense 
Disambiguation (VSD) is an active are of research in 
Natural Language Processing (NLP).  Supervised 
learning is used in the semi-automated acquisition of 
verb lexicons to support automated information 
extraction.  An individual entry in a lexicon expresses 
the meaning & structure of a verb sense via 
constraining the interpretations of verb arguments to 
concepts in an ontology.  The constraints are 
commonly referred to as selectional restrictions [1].   
 
We are developing METEOR event extraction 
system which implements a theory of VSD based on 
complex selectional restrictions of semantic parses.  
METEOR‟s VSD theory relies on entity extraction of 
nouns based on semantic resources such as ontologies 
and semantic networks mapped to ontologies.  As a 
result, lexicographers creating lexicons for METEOR 
have to familiarize themselves with the contents of 
the semantic resource.  Supervised learning is used to 
reduce the burden of navigating complex semantic 
resources. 
 

The task of the lexicographer is to determine which 
concepts in the ontology best characterizes the types 
of entities that determine the senses of verbs included 
in the lexicon.  The grammar of the METEOR 
lexicon allows lexicographers to create complex 
expressions involving disjunction, conjunction, and 
negation of ontological concepts subsuming the 
entity types extracted as argument fillers for the verbs 
of interest.  For example, a “ConvergenceEvent” can 
be expressed as the following selectional restrictions 
on the verb “meet”: 
{meet.subject} → (Physical – CognitiveAgent) & 
{meet.object}  → (Physical – CongnitiveAgent). 
This expression states that the filler of the 
subject(object) of a meet verb has to have an 
ontological interpretation that is subsumed by 
Physical but not subsumed by CognitiveAgent as 
defined in SUMO [2]. 
 
Lexicographers manually search semantic resources 
to identify concepts for selectional restrictions that 
represent terms in collections of sentences.  The 
manual process is timing consuming and is not 
scalable.  We use supervised learning to assist the 
manual lexicon acquisition task. 
 
The benefits of supervised learning of lexicons to 
lexicographers include: 

 reduced lexicon acquisition time 
 efficient ontological traversal 
 efficient lexicon update if the ontology is 

replaced/updated 
 provide suggestions to existing lexicons 

 
We are particularly interested in developing a 
supervised learning system that induces inclusionary 
selectional restrictions to cover the positive training 
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examples of selected verb senses and exclusionary 
selectional restrictions to dismiss negative examples.  
In practice we believe that the system will be a tool 
for the lexicographer to seed a verb lexicon because 
the meaning of some senses may not be sufficiently 
conveyed via the training examples. 

II. Related Research 

The use of supervised learning for word sense 
disambiguation is an active area of research.  Most of 
the work is based on the use of WordNet [3] as a 
semantic resource.  Resnik discussed a probabilistic 
model that captures the co-occurrence behavior of 
predicates and conceptual classes in a taxonomy for 
noun sense disambiguation [4].  Ye presented an 
approach based on a semantic parse and 
demonstrated the use of arguments other than 
subjects and objects [5].  The work presented in this 
article adopts an approach similar to [5].  In [6], 
Scheffczyk discusses an approach to link 
FrameElements in FrameNet to SUMO.  The 
approach discussed in this paper differs from (6) in 
that we search for more complex expressions that 
include classes to exclude.  Dligach proposed an 
approach to supervised learning for WSD based on 
the lexical, syntactic, and semantic features [7].  
Dligach demonstrated the utility of words 
surrounding the target verb, POS tags, and the path 
through parse tree connecting the target verb to its 
arguments. 

III. Learning Algorithm 

A. Basic algorithm 
The METEOR system uses a complex lexicon 
consisting of selectional restrictions with references 
to an ontology, cardinality constraints, and argument 
quantifiers that influence the semantics of the 
selectional restrictions.  The goal of this research is to 
automatically learn lexicons that are consistent with 
the aforementioned features.   The learning algorithm 
has to accomplish the following: 

 Find a minimal set of ontological concepts 
that subsume terms in positive examples 

 Find a minimal set of ontological concepts 
that subsume terms in negative examples but 
not terms in the positive examples 

 Approximate the saliency of arguments 
Before describing the lexicon learning algorithm, we 
introduce the following notations:  

 A = {Asub, Aobj, Awith, …} is set of attribute 
names denoting attributes that we expect 
from the parser.  Asns is the special attribute 
denoting the sense of a training example.  
Acls denotes the set of senses to which an 
example has been classified. 

 D = {I1, I2, …In} denotes the set of training 
examples.  Ii is a vector containing values 
for all attributes of A, Asns, and Acls.  Ii.Aa = 
T denotes that T is the entity type for the 
filler of argument Aa in training example Ii 
or T is the filler if the entity type is 
unknown. 

 V = {V1, V2, …Vn} denotes the set of senses 
for a particular verb.  V contains the set of 
senses that we want to automatically learn. 

 Vi.Aa.range = {IC1, IC2,..} – {EC1,EC2,..} 
denotes an ontological range constraint for 
sense Vi on argument Aa.  This is a 
selectional restriction.  ICi denotes 
inclusionary constraints while ECi denotes 
exclusionary constraints. 

 Vi.Aa.quantifier = {„C+‟|‟C-„|‟S‟} is an 
annotation denoting the saliency of a 
selectional restriction.  „C+‟ denotes that the 
argument is required and the fillers must 
satisfy the range constraint.  „C-„ denotes 
that the argument is restricted such that its 
fillers do not satisfy the range constraint.  
„S‟ denotes that the argument is optional. 

 Dist(T,C) denotes the semantic distance 
from T to C.  If T is a term then Dist(T,C) is 
the longest distance from all interpretations 
of T to C based on the WordNet2SUMO [8] 
mappings.  If T is a concept then Dist(T,C) 
is the longest distance from T to C. 

 
The algorithm has to learn a selectional restriction for 
verb sense Vi and argument Aa in the form  

Vi.Aa.range = {ICi} – {ECj} 
as described above.   For example the selectional 
restriction for an argument can be expressed as  

          (1) 
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which includes all concepts subsumed by Physical 
except those subsumed by CognitiveAgent.  An 
alternative selectional restriction would be  

               (2) 

This expression is logically equivalent to (1) but it is 
not a robust expression.  If the ontology is updated to 
include new descendants of Physical, (2), and all 
similar equations would have to be updated.  For this 
reason we seek concise and robust expressions. 
 
The algorithm also has to assign quantifiers to all 
selectional restrictions in form  

Vi.Aa.quantifier = {„C+‟|‟C-„|S}.  These 
quantifiers influence the semantics of the selectional 
restriction and are thus vital to the learning process. 
 
The basic algorithm is listed in Figure 1. 
 
The IncludeConcpets() function searches for a set of 
concepts in the ontology that subsume the distinct 
values for all arguments partitioned by sense.  The 
function does not adjust for negative examples 
because the lexicon grammar allows two degrees of 
freedom to exclude concepts and concepts are 
excluded in the ExcludeConcepts function.  
 
The criteria for selecting a concept Ca from CTa in 
the IncludeConcepts function is based on three 
factors: 

 SemDist: average semantic distance from 
values in I.Aa to Ca 

 DistVals: proportion of distinct values in 
I.Aa that Ca subsumes 

 RelFrq: the probability that Ca subsumes 
values in I.Aa 

A subsumption score is calculated for every Ca in 
CTa.  The subsumption score equation is  
 

 .             (3) 

             (4) 

                 (5)  

      (6) 

SemDist measures the generality of concepts with 
respect to the values that they subsume in the training 
data.  Concepts that are semantically closer to the 
instance data are preferred.  The Dist(t,C) function 
uses the longest path from term t to concept C to 
determine the distance between t and C.  Zhong 
reported the use of the longest path to measuring 
semantic distance that performed well [9].  DistVals 
measures the total number of distinct values 
subsumed by Ca.  Higher values are preferred since a 
single concept may subsume many examples.  RelFrq 
measures the percentage of training examples 
containing values for argument Aa that are subsumed 
by Ca.  Higher values are preferred because viewer 
concepts will be required to model the training 
examples.  DistVals and RelFrq are weighted with 
0.5 because in practice the average semantic distance, 
SemDist, tended to be more significant with respect 

IncludeConcepts() 
foreach subsense Vi in V 
  foreach argument Aa in A 

1. collect distinct values DVa from I.Aa for 
all I in D where I.Asns = Vi 

2. build coverage tree CTa for DVa 
3. select concepts from CTa that subsume 

all values in DVa . 
4. Vi.Aa.range = CTa 
5. compute Vi.Aa.quantifier  

 
ExcludeConcepts() 
foreach subsense Vi 
    compute error for Vi 
    foreach argument Aa in A 

1. collect distinct values DVa from I.Aa for 
all I in D where I.Asns = Li 

2. collect distinct values DCVa from I.Aa 
for all I in D where I is incorrectly 
labeled as Vi 

3. build coverage tree CCTa from DCVa 
4. select concepts from CCTa that subsume 

values in DCVa but do not subsume 
values in DVa 

5. Vi.Aa.range = Vi.Aa.range – CCTa 
 

Figure 1: Selectional Restriction Algorithm 
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to selecting the desired concepts for selectional 
restrictions.  Other weights for DistVals and RelFrq 
yielded concepts that were too specific and resulted 
in poor METEOR performance. 
 
Searching semantic resources is often based on 
semantic distance measures.  Onyshkevych 
introduced a distance measure based on weighted 
properties, along the path connecting concepts, to 
determine the semantic distance [10].   Zuber 
presented a similarity measure derived from the 
number of descendants for each concept and common 
features [11].   
 
In this research, we focus on finding suitable 
expressions for selectional restrictions.  In many 
cases, the concept that best minimizes the semantic 
distance between terms is not always the best concept 
for an expression.  For this reason, we use a simple 
edge-counting approximation to semantic distance. 
 
Step 3 in IncludeConcepts is performed iteratively 
until all values in DVa are covered by the selectional 
restrictions.  This searches for concepts in the 
ontology that cover values that cluster well together 
as opposed to searching for a single concept that 
covers all values as in [12]. 
 
The ExcludeConcepts function attempts to find a set 
of concepts in the ontology that subsume values from 
negative examples while preserving values in the 
positive examples.  This phase restricts existing C+ 
selectional restrictions or creates new C- selectional 
restrictions.  Both approaches exploit the expressivity 
of METEOR‟s lexicon grammar. 
 
An existing selectional restriction with a C+ 
quantifier is refined by searching for concepts in the 
ontology that subsume values from the negative 
examples while not subsuming values in the positive 
examples.  To achieve this goal we use (3) as well as 
entropy measures.  We select concepts with low 
entropies and are predictive of values stored in the 
negative examples.   
 
Figure 2 illustrates the problem of generating the 
selectional restriction for the subject of a 

“ConvergenceEvent” involving physical objects.  The 
desired expression is  

Vi.Asub.range = Physical – CognitiveAgent. 
The positive training examples are expressions 
having subjects which are instances of Region, 
Process, etc. but not CognitiveAgent.  The negative 
examples have subjects which are instances of  
Human and Organization.  The positive examples are 
generalized to Physical while the negative examples 
are generalized to CognitiveAgent.  In this example, 
Physical is selected because it is the concept that has 
the maximum value for (1) among the positive 
examples and CognitiveAgent was selected because 
it had the maximum value for (1) among the negative 
examples. 
 
New selectional restrictions with C- quantifiers are 
created by identifying arguments that are prevalent in 
the negative examples.  Let Aa denote an argument 
that has fillers in negative examples but is not used in 
selectional restrictions for a given verb sense Vi.  A 
new selectional restriction, 

 , 
 is created by identifying concepts CCTai in the 
ontology where entropy(CCTai) < 0.01 and 
maximizes (3).  Concepts with low entropies are 
preferred because they tend to partition the training 
examples better. 

Physical 

Region 

Object 

Entity 

Process 

Agent 

CognitiveAgent 

Human Organization 

- examples 

+ examples 

Figure 2 Distribution of positive and negative examples 
leading to the expression Physical – CognitiveAgent. 
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B. Argument Quantifier 

 In addition to selecting range constraints for 
selectional restrictions, the algorithm also attempts to  
quantify selection restrictions with semantics that 
influence the interpretations of the selectional 
restrictions.  The algorithm currently generates 
quantifiers in the set {C+, C-, S}.  A selectional 
restriction Vi.Aa is annotated with 'S' if the argument 
Aa is used in less than 74% of the training examples 
where D.I.Asns = Vi.  A selectional restriction Vi.Aa is 
annotated with 'C+' if the argument Aa is used in 
more 74% of the training examples where D.I.Asns = 
Vi.  A selectional restriction Vi.Aa is annotated with 
„C-„ if it is created as described above. 
 
IV. Performance 

The lexicon learning system was applied to a corpus 
of sentences used to manually create lexicons for 
METEOR.  We compared the automatically 
generated lexicon to the manual created lexicon to 
determine the amount of labor that would be required 
to generate the final lexicon for a collection of verbs.  
We measured the differences in recall and precision 
and used these measurements to gauge the amount of 
labor required to finalize a lexical items.   

Table 1 contains a comparison of the recall and 
precision between the lexicon that was automatically 
generated and the manually created lexicon for a 
subset of the verbs.  Some expressions were 
classified as multiple senses.  In these cases all 
erroneous senses are counted individually.  The 
difference in the average recall was +0.09 and the 
difference in the average precision was +0.09. 

 There were fewer misclassifications reported when 
the automatically generated lexicon was applied to 
the training corpus.   The lexicon learner identified 
exclusionary ontological restrictions that 
lexicographers can use when finalizing lexical items.  
These exclusionary restrictions were in the form of 
„C-„ selectional restrictions for lexical items as well 
as concepts to exclude in „C+‟ selectional 
restrictions.  The results indicate that the automated 
approach can be used to reduce the burden of 
manually navigating semantic resources in an attempt 

to find concepts that are appropriate for selectional 
restrictions for a given sense of a verb. 
 
To illustrate the utility of automated semantic search 
we discuss a lexical entry for the verb “enter”.  The 
automatically generated entry included restrictions on 
collections of prepositions that were not included in 
the manually created entry.  Consequently, the 
automatically generated entry had a higher precision.  
These additional expressions could be manually 
added to the final lexicon at very little cost. 
 
An unintended consequence of this research was the 
detection of a sense substructure that was hidden in 
example training data.  The substructure was 
manually identified as the result of an unusual 
selectional restriction.   The unusual selectional 
restriction was created to accommodate training data 
that were structurally different from examples in the 
sense to which they belonged.  The offending 
examples were re-labeled and a new substructure was 
added to the lexical item. 
 
V. Problems 

A. Word Sense Disambiguation of Nouns 
When multiple interpretations for a term exist, the 
algorithm tends to select the interpretation that covers 
the highest number instances in other relevant 
training examples.  If the coverage statistics for the 
training examples are not sufficient for selecting an 
interpretation, the algorithm may randomly select an 
inappropriate interpretation that does not sufficiently 
characterize the sense conveyed by a verb sense.  
Selecting all interpretations actually degrades the 
accuracy and thus the performance of the lexicon. 
 

Verb Recall Precision 

join +0.14 +0.25 
enter +0.03 -0.08 
tell -0.01 -0.30 

travel +0.10 +0.10 
purchase 0 0 

meet -0.08 +0.33 
Table 1 Lexicon learner performance compared to 

manually acquired lexicon 
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B. Selectional Restriction Size 
It is desirable to create selectional restrictions that are 
as concise as possible.  This requires the right 
balance of concept generality and the number of 
concepts.  More specific concepts yield lexicons that 
are too fined grained and contain a higher amount of 
inclusionary concepts in selectional restrictions.  
More general concepts yield fewer inclusionary 
concepts but require more exclusionary concepts.  
The system currently doesn‟t consistently generate 
concise selectional restrictions.  It sometimes 
generates large disjuncts of specific concepts which 
could be reduced to fewer disjuncts of general 
concepts with a few exclusions. 
 
VI. Future Work 

METEOR's lexicon grammar allows a lexicographer 
to create a disjunction over 2 or more selectional 
restriction where the semantics of the disjunction are 
that at least one of the selectional restrictions has to 
be satisfied.  An example is a sense/structure of the 
travel verb which has to have a source or a 
destination but both are not required in an expression.  
The learning algorithm currently does not group 
selectional restrictions in this manner.  This is a very 
expressive feature of METEOR's lexicon that we 
wish to automatically learn in the future. 
 
The system tends of create too many C- selectional 
restrictions.  This over generation of C- selectional 
restrictions negatively impacts the applicability of a 
lexicon.  We want to research techniques for 
identifying the minimal amount of such selectional 
restrictions based principle component analysis. 
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