

Visualization Service Bus

Abstract— In this research, we are applying modern Service-Oriented Architecture (SOA) technologies to make complex

visualizations realizable without intensive graphics programming; in fact, without writing code at all. A Visualization Service Bus is

the integration of two powerful Extensible Markup Language (XML) technologies, Extensible 3D (X3D) and an Enterprise Service

Bus (ESB), which allows users to integrate data and develop user defined visualizations together. Analysts use graphical

interfaces to construct visual elements, assemble a dynamic scene, connect to and transform data from a variety of sources, and

map scientific data to the scene. The development and implementation of this visualization architecture allows non-programmers

to develop their own visualization applications for their specific needs.

Index Terms—X3D, XML, ESB, BPEL, XSLT, XSD, SOA, JBI, JMS, and XPATH.

1 INTRODUCTION

In the aviation research community, scientists analyze, mine, verify,
manipulate and visualize data in many ways to understand complex
problems and to convey research results. Analysts today use a wide
variety of visualization tools to demonstrate their research findings.
Typically, these tools are designed to read in a specific type of data
in a proprietary format and transport protocol. These visualizations
tend to be inherently rigid, and large software efforts are needed to
make changes or implement new features. However, recent
advances in software technology, architecture, and methods provide
an opportunity to improve this process.

A common design pattern is unfolding with the rise of Service-
Oriented Architecture (SOA). The SOA design pattern is the
decoupling of application-specific functionality into standardized
functional nodes described in XML. A generalized engine that
knows how to turn those nodes into functional logic is a recurring
theme in SOA. This design pattern allows for greater flexibility
between application user and software developer. In the SOA
paradigm, a set of standard services are defined rather than specific
end user requirements. Thus, developers focus on implementing
these standard services, which are then wired together to meet a
business need by the end user. The focus of this research is to use
existing standards to provide a service framework such that end users
can query, create and translate data into user-defined visualizations.

1.1 Enterprise Service Bus

An Enterprise Service Bus is a middleware platform that implements
a set of standardized interfaces for portability, security, connectivity,
transformation, and communication, providing the capability to
integrate systems without the need to write code. The VSB
described in this paper runs within the Open Enterprise Service Bus
(Open ESB)[1]. The VSB is more formally an X3D Service Engine
running within a Java Business Integration (JBI) container [9] Open
ESB is a JBI container created and maintained by Sun Microsystems
and is an open source ESB that leverages standards built on the JBI
model.

1.1.1 Java Business Integration

The JBI model is a standard created under the Java Community
Process (JCP) to implement SOA. This standard defines components
that consume and provide services as binding components and
service engines. JBI components, once installed in the JBI
environment, interact with each other using message exchange
documents published by the JBI component providing the services.

These documents fully describe the message exchange using
Web Service Definition Language (WSDL) [2]. WSDL is an XML-
based language for describing Web services and how to access them.
The JBI specification defines two types of components: binding
components and service engines.

1.2 Binding Components

Binding components communicate with external services. These
components access services over a known protocol and data format.
Examples include HTTP, SOAP, JMS, TCP, FTP, and SMTP. The
binding component is responsible for communicating with external
services over a specified protocol and converting that data into the
data format that is used in the Normalized Message Router (NMR).
Since each component communicates with the NMR, the
components are decoupled from other components communication
protocol.

1.1.1 Service Engines

Service Engines are components within the JBI runtime environment

which provide data transformation, business logic, processing, and

routing services. Binding components and service engines provide

the generalized services that end users assemble to implement a

business process as a service assembly.

1.1.2 Service Assemblies

Service assemblies contain the configuration information that tells

the JBI container the names of the components that each service unit

will be deployed. A service unit is the configuration information that

is to be deployed to a component.

1.3 Extensible 3D (X3D)

X3D is an open standard format that describes 3D scenes and objects
in XML, it is based on the Virtual Reality Modelling Language
(VRML). X3D is a scene graph description of a scene, which is a
directed and acyclic tree structure. The specification is defined in an
Extensible Schema Definition (XSD) file, which can be used by any
XML binding software to convert to programming code. This
flexibility allows software developers to program in their favorite
programming language without portability concerns.

X3D supports 3D graphics, 2D graphics, CAD data, animation,
audio and video, user interaction, navigation, user-defined objects,
scripting, and networking. Dynamics can be added through ROUTE
nodes statically or by writing software that uses the Scene Access
Interface (SAI) to access the scene at runtime. X3D provides nodes
to draw and perform tasks to do virtually anything desired in a 3D
world. X3D files are read in by a generalized browser which
displays the description of the scene.

The rest of this paper will show that by creating an X3D Service
Engine in the Open ESB implementation of the JBI standard, users
are then able to construct business logic, connect data sources, and
construct visualizations without the need to write code thus
providing a codeless visualization programming framework.

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 09-1047

2 VSB DESIGN

In the Open ESB project all binding components and service engines
have two module projects which make up the design of a component.
Open ESB is implemented as a Netbeans plug-in. A Netbeans
module project is a plug-in project for the Netbeans Integrated
Development Environment (IDE). One module project provides an
editor interface for the user to construct the XML and configurations
required to tell the service engine how it needs to behave. The other
project is to build the generalized service engine.

The VSB design follows this pattern. It is made up of two
components. The first is an X3DEditor which allows users to define
their visualization and how the incoming data will map to the scene.
The second is an X3D Service Engine, which reads the XML data
produced by the X3DEditor, constructs the dynamic scene, and
updates it as incoming messages are received from the NMR.

2.1 X3D Editor

The X3DEditor was built using the Netbeans API [10] provided by
Sun Microsystems. The editor has four separate views: Tree Graph,
Data Map, 3D, and XML. Together they allow the designer to
construct how the visualization will look and behave in response to
incoming data. .

2.1.1 Tree Graph View

The user will first construct the static part of the visualization using
the tree view. A view of the X3D file in a graphical tree is provided
so users can drag and drop X3D nodes from a palette into the
graphical tree. Users of this tree view need to understand how X3D
works, but they do not need to understand XML syntax. The
majority of users in our community will be merging together X3D
files that represent airports, airspace models, airplanes, and other
National Airspace System (NAS) models. They will not be trying to
construct complex geometric models using this editor. Tools such as
Maya [3], Flux [4] or Blender [5] can be used to construct complex
geometric object models. Instead this editor is used to create a
simple tree view of many complex models enabling users to
construct and change complex scenes quickly. In contrast, for a
traditional 3D application a software developer will need to spend
significant effort making software changes to achieve the desired
result.

Fig. 1. Tree Graph View X3D Editor

2.1.2 Tree Graph Canvas

The Tree Graph Canvas is the graphical area onto which users can
drop X3D nodes from the palette. Users can zoom in and out to
change the focus and viewing area of large trees. To edit the static
data for each node the user can right click on the node and edit node
parameters. Changes to the tree will only be written to the XML file
once the file has been saved.

2.1.3 Tree Graph Palette

The Palette contains all the nodes contained within the X3D
specification and are outlined based on a similar editing tool, X3D-
Edit [6], for uniformity. In future releases this palette will be linked
with a database enabling users to drag and drop predefined X3D files
that contain objects like airplanes, airports, etc.

2.1.4 Tree Graph Toolbar

The tree representation of the scene can get quite large. A
magnifying glass is provided for users to scroll across the tree with
the mouse. The level of magnification can be altered by pressing the
plus and minus buttons in the top left corner. A window pane
navigation window is provided in the bottom left corner so users can
change the view of the tree without using scroll bars.

2.1.5 Data Map View

Aviation researchers need to visualize a wide variety of data.
Example topics include noise modelling, airspace redesign, and
traffic flow management algorithms. Visualization helps researchers
analyze this data and verify it against known models. The
X3DEditor allows an analyst to quickly assemble a scene, and then
map scientific data to it using the Data Map View on the X3DEditor.
Once the user has a static tree view of the scene they can define how
data is going to be mapped into this scene. The data map view
enables users to dynamically add X3D nodes to a scene or to update
existing nodes. The editor can then automatically generate an XSLT
file with embedded JavaScript to define the data mapping.

Fig. 2. Data Map View X3D Editor

2.1.6 Data Map Canvas

The Canvas provides a graphical interface for users to construct
mappings from incoming requests to X3D nodes. These incoming
requests come from the NMR. A WSDL file is needed to construct a
WSDL file to describe the data formatting and what operations are
available to either update or add X3D nodes into the scene. To
populate the canvas with nodes, users can drag and drop a WSDL
file from the Projects Tab, drag and drop X3D and Function Nodes
from the Palette, or select an X3D node from the Tree View. Each
attribute of a node is shown in the node box and an arrow can be
drawn from each field to represent the mapping. Function nodes can
sit between the mappings to indicate additional logic to be applied
before the mapping takes place.

The user first constructs a WSDL file using the Netbeans IDE.
Netbeans provides an easy setup wizard for constructing a WSDL
file without directly editing XML. Once the user constructs the
incoming messages for this instance of an X3D Service Engine, then
the user constructs an XML Schema Definition (XSD) which
describes the structure of the XML data received in these incoming
messages. Netbeans also provides a wizard and GUI to construct an
XSD file without the need to directly write XML.

The user can drag the newly constructed WSDL onto the data
map canvas, which will automatically create data nodes to represent
the incoming data.

Often when a user wants to map data into a visualization scene
the user will want to apply a mathematical operation to the incoming
data. This view provides a palette of nodes that represent
mathematical, string manipulation, and XPATH expressions on the
incoming data. These nodes can be drag-and-dropped from the
palette and sit between the incoming data nodes and visualization
X3D nodes. Each of these Function Nodes auto-generates JavaScript
to be embedded into the auto-generated XSLT file.

When a user wants to add 3D elements to a scene based on
incoming messages then the user can drag and drop X3D nodes from
the palette onto the canvas. On the tree view users can select which
tree branch node this data will be added to. If no node is selected on
the tree view then the first Group node will be the parent for the
incoming data. Each X3D nodes’ static data can be edited by right
clicking on the node. For example, if a WSDL node containing a
message that represents an alert in a geographic airspace region is
added to the canvas, then the user would be able to draw an arrow
from the WDSL node to the X3D sphere node. This associates each
incoming message to map to adding a sphere node to the scene
whenever this message arrives. Editing the X3D sphere node’s static
properties by setting the radius indicates to add a sphere of specified
size to the scene every time an incoming message arrives.

2.1.7 Data Map Toolbar

The Canvas provides a graphical interface for users to construct
mappings from incoming requests to X3D nodes. These incoming
requests come from the NMR. A WSDL file is needed to describe
the data formatting and what operations are available to either update
or add X3D nodes into the scene. To populate the canvas with
nodes, users can drag and drop a WSDL file from the Projects Tab,
drag and drop X3D and Function Nodes from the Palette, or select an
X3D node from the Tree View. Each attribute of a node is shown in
the node box and an arrow can be drawn from each field to represent
the mapping.

2.1.8 3D View

This view provides VSB users with a way to visualize the results of
their mappings and tree editing. The 3D view is a visualization of
the X3D file and shows the scene changing dynamically based on
incoming requests. This view allows for network connectivity to
deployed X3D Service Engines, and provides a basic browser for
navigation and user input. During the development of the
X3DEditor it was discovered that X3D lacks networking standards.
We plan to work with the Web3d Consortium to standardize the
networking for X3D and to provide an implementation in the Xj3D
open source project. [7]

Fig. 3. 3D View X3D Editor

2.1.9 3D Browser

The 3D browser is an embedded Xj3D [7] browser which displays

the X3D-defined scene and provides navigation controls. The Xj3D

browser is an open source toolkit that can be used as a standalone

browser or be embedded into a Java application using its Application

Programming Interface (API). This view displays the X3D file

generated using the tree view and can also register with a

deployment of the X3D Service Engine to take incoming requests

and turn them into SAI function calls to update the scene

dynamically.

2.1.10 3D Networking

The connect button on the 3D view allows the user to connect to a

deployed X3D Service Engine in a service assembly. When

messages are translated in the deployed application server then those

messages will be sent to registered browsers. The incoming data is

in X3D and this browser will convert those incoming messages into

SAI requests to either update the scene or add new data to the scene.

2.1.11 3D Navigation

The Xj3D browser provides a rich set of navigation controls. Users

can fly, pan, rotate, walk, go home, and zoom into a selected object.

Users can navigate to any point in their 3D world with these controls.

2.2 X3D Service Engine

The X3D Service Engine implements the appropriate JBI interfaces

to perform as a service engine. When a user deploys a X3D Service

Engine configuration as part of a service assembly, an XSLT file is

deployed and read by the X3D Service Engine. XSLT files are

created from the Data Map view in the X3DEditor and can contain

embedded JavaScript to define complex mathematical operations on

XML nodes. This service engine also creates a TCP socket

connection that the Netbeans IDE connects to when running a

service assembly. When the X3D Service Engine receives data the

engine will translate the incoming XML data based on the XSLT file

and apply the JavaScript to produce a final set of X3D XML nodes

for display. This output is sent over TCP to the registered browsers.

In future releases of X3D Service Engine a web service will provide

a HTML page from which users can launch a 3D browser. This

browser is unique because it can retrieve the X3D messages and

convert those messages into SAI calls to either update or add X3D

nodes into the existing scene.

Fig. 4. X3D Service Engine Concept Design

2.2.1 Data Translation

The X3D Service Engine’s primary role is to map the incoming

messages into the visualization scene. Our original idea was to use a

XSLT service engine, but it was soon realized that XSLT does not

support complex mathematical operations well or at all. The idea for

a new mapping language was considered, but in the end it was

decided to build on the existing XSLT technology. Embedding

JavaScript into XSL files is not a new idea, but most

implementations do not support this level of the standard (XSLT

1.1), and the future of embedded scripts is not clear since it may

compromise the portability of XML to embed a specific language.

However, no solid alternatives were found.

The XSLT processor used in the X3D Service Engine supports

XSLT 1.0, so the processing must be done in two steps. First, the

incoming XML messages are translated into new messages based on

the XSLT mapping file provided in the deployment. Next, the XSLT

file is scanned for embedded JavaScript, and for each node with

embedded JavaScript, the script is run to produce new nodes that are

added back to the XML using a DOM parser. The result is then sent

to registered browsers and converted into SAI calls to update the

scene.

2.2.2 Networking

Networking seems to be the least supported feature of X3D in the

browser community. The Web3D Consortium has made a proposal

for direct networking for which all of the configurations for network

communication would be edited in an X3D node rather than

embedded scripts. Browsers may support this functionality in the

future. For the time being, a TCP network connection is made

between browsers and the deployed X3D Service Engine. The

service engine translates the incoming messages into X3D nodes and

publishes the updates to the registered browsers. The registered

browsers convert the X3D requests into SAI function calls to update

the scene. CAASD plans to help define the standards with the

Web3D Consortium and the networking functionality in the Xj3D

browser.

3 EXAMPLES OF VSB IMPLEMENTATIONS

3.1 Escorted Aircraft Landing

To show the ease of assembling a complex scene, a collection of 3D
models were downloaded from the NPS Scenario Authoring and
Visualization for Advanced Graphical Environments (SAVAGE) [8].
SAVAGE is a library of open-source X3D models used for defense

simulation. For this scene construction example, the X3D Service
Engine was not used; rather data points (e.g., aircraft position
histories) were built by hand using the X3DEditor.

3.1.1 Add and Position 3D Models

The first step in constructing the scene was to add the 3D models.
Each model was referenced by an Inline node, and usually placed
underneath a Transform node so that the position and orientation of
the model can be set and controlled. Initially, the Transform node
contains default values. The user can use the 3D view as a reference
while editing the Transform fields to correctly position the model.
Alternative techniques for adding models are currently being
explored.

Fig. 5. Scene in Tree View

Figure 5 shows the result of using the X3DEditor to put together

a scene of a 747 aircraft being escorted by two fighter jets. This was

done by creating a few Inline nodes that point to the downloaded 3D

models, and creating ROUTE nodes to move them in the 3D world.

In total, 30 Inline nodes were required to assemble the visualization

depicted in Figure 6.

3.1.2 Animate 3D Models

X3D’s specifies animation simply by allowing most fields to be

modified at runtime. Changes to field values are known as events.

Three types of nodes were needed to animate this scene:

 ROUTE nodes connect the output field of one node to

the input field of another node.

 The PositionInterpolator node linearly interpolates a

3-vector value output based on the key and a

keyValue fields.

 The TimeSensor node is the trigger to an event.

An example of X3D XML using these nodes is shown below.

<Transform DEF="f18" scale="39.3113 39.3113 39.3113" translation="-

78040.8 11000 50000" rotation="0 1 0 .65">

 <Inline url='"file:F18.x3d"'/>
 </Transform>

<PositionInterpolator keyValue="-78940.8 11626.5 50000 -40000 1000

14000 -15000 10000 2000" key="0.0 0.5 1.0" DEF="PIP1"/>
 <TimeSensor cycleInterval="90.0" loop="true" DEF="PTS1"/>

 <ROUTE toField="set_fraction" toNode="PIP1"

fromField="fraction_changed" fromNode="PTS1"/>
 <ROUTE toField="set_translation" toNode="f18"

fromField="value_changed" fromNode="PIP1"/>

As shown above, a Transform, Inline, PositionInterpolator,

TimeSensor and two ROUTE nodes are needed to fly an F18 in the

3D scene. These nodes were added using the X3DEditor tree view.

The Transform node was used to place the F18 at a starting position

in the scene. The PositionInterpolator gives the flight path of the

F18. Only three data points were picked for the flight: starting

position, mid flight position and ending position. The TimeSensor is

used to trigger the animation, and the ROUTE nodes indicate how

the fields are mapped. The aircraft position was smoothly

interpolated between positions by the X3D browser as time passed in

the animation. Note that users of the VSB will rarely animate scenes

in this way. Instead, they will use the data map view on the

X3DEditor to map data from another source into the static

visualization picture. This example is shown here to demonstrate

how easily one can assemble a complex 3D scene with the

X3DEditor. The next example will show another alternative, where

a running simulation can be used to animate a scene using the VSB.

3.1.3 Final 3D Scene

This dynamic scene (Figure 6 shows a still view) was constructed in

only a few hours. We plan to assemble a database of 3D NAS

models so that our aviation researchers can easily construct scenes

like the one below, or scenes containing abstract representations of

air traffic management structures (e.g., sector boundaries). This

effort will be expedited with object model converter tools. These

tools provide the ability to convert from one object model into the

X3D format.

Fig. 6. Escorted Aircraft Landing in Hawaii

3.2 Traffic Flow Network

This example is a two step process. The first step takes geometric

airspace data and constructs a static X3D file to display the traffic

flow network. The second step runs another assembly which maps

incoming data from a live simulation into the generated X3D scene

to add the dynamic elements to the scene.

3.2.1 Static Flow Network

The static flow network is the X3D scene that contains spheres,

boxes, and links projected onto an earth object. These objects are

static because no animation nodes are used to animate these 3D

objects. The dynamics of the scene will be added in the next section.

The spheres represent sector center points. Sectors are volumes of

airspace that an air traffic controller team is responsible for. Each

box represents an airport. A flight will take off from one airport and

travel through many sectors and arrive at another airport. The

number and direction of flights passing between airports and sectors

are represented by links. These links are scaled by size and color

gradient to represent the number and direction of flights that travel

each link within a designated time interval. The simulation is given

parameters for a particular airport and time range which, when run,

generates a large XML document file containing sector center points,

airport locations, and flight count data by time interval for sectors,

airports, and links between them. This visualization gives insight

into how traffic is flowing in and out of airports and how air traffic

controllers are affected by the traffic flows over this time period.

3.2.2 Network Flow Mappings

The mapping of data in the translation file for a sector center point

creates an X3D tree branch as shown in Figure 7. Each sector center

point contains a name, latitude, longitude, and altitude that are

translated into a GeoLocation node’s latitude, longitude and altitude.

The DEF name for the GeoLocation contains the name of the sector

plus GeoLocation to uniquely identify this node. DEF is a field that

all X3D Nodes contain which is used to uniquely indentify the node.

DEF fields can also be used in conjunction with USE fields so that

fields defined with a DEF field can be copied, which is far more

efficient than creating new nodes. The GeoLocation node contains

two children, a Text child to display the sector name, and a Sphere

child to represent this sector. A Billboard node is utilized so the

Text child will always face the user, and the Sphere child is given a

Material node since the desired behavior is to change the color of the

sphere based on changes to the flow over time. Rather than

embedding animation nodes in the scene as in Example 3.1, we are

creating the animation dynamically utilizing the X3D Service Engine

which updates the scene using the SAI. Airports are described by a

very similar tree branch, except that a Box node is used instead of a

Sphere node.

Fig. 7. Tree View of Network Flow Scene

Figure 8 shows the branch view of the flow links between the

adjoining sectors and airports. The IndexedLineSet contains the

coordinates for the sector or airport ends. The LineProperties node is

added to change the size of the links based on the amount of traffic.

The entire Tree View for this scene, once all sectors, airports, and

nodes have been created, is extremely large. However, the Zoom

and Satellite views make it easy to navigate the tree.

Fig. 8. Flow Link

3.2.3 Static Flow Network Assembly

It was beneficial to create a service assembly for this network flow,

otherwise several scripts and commands would have been necessary

and manually invoked whenever new sets of data were produced.

With this service assembly, when a user runs a simulation for a given

time period for a particular airport, the service assembly picks up the

airspace data written to disk and creates a static network flow XSD

file. The service assembly for this example is shown in Figure 9.

In this example, the simulation generates airspace data in XML

and creates a file on disk. Next, a BPEL process is created using the

Netbeans IDE. This process reads the XML airspace data using the

file binding component. It then sends the data to the XSLT service

engine that was configured to convert the data into an X3D scene.

The dynamics of the scene can be accomplished by either using

the animation techniques shown in the first example, producing a

standalone X3D file, or through the use of the X3D Service Engine.

An additional benefit to using the X3D Service Engine is that users

can connect to live simulations and view the data as the simulation is

running.

Fig. 9. Static Traffic Flow Service Assembly Diagram

3.2.4 Dynamic Traffic Flow Network

Figure 10 shows the completed running service assembly. In this

example, a simulation is running outside the JBI environment and

sends data over TCP. A BPEL process was configured to read the

incoming simulation data using a TCP binding component, and then

sends the incoming messages to the X3D service engine. The X3D

Service Engine translates the data and sends the data to the Netbeans

IDE where the user can view the updates. In future versions, users

will be able to launch a browser from an HTML page on the

application server to display the scene. This will allow users to share

the scene with others in remote locations.

Fig. 10. Dynamic Traffic Flow Service Assembly Diagram

3.2.5 Dynamic Update Mappings

The first step in using the Data Map view on the X3DEditor is to

construct a WSDL file which contains the messages to update the

scene. For the scene in this example there are messages to update

the size and color of the sectors, airports, and flow links. Once the

user constructs a WSDL file they can drag and drop it onto the Data

Map view canvas, which causes a jbi.xml file to be created for

configuring this service engine into the JBI framework. The canvas

is populated with the messages and schema types that are defined in

the WSDL file.

Fig. 11. Sector Mappings

The SectorOccupancy box in Figure 11 is a message type from

the WSDL created for this scene. This message contains information

about the given sector and updates the correct Sphere based on the

DEF field. A mapping is shown that updates the Transform node’s

scale attribute which changes the Sphere’s size. The capacity

message part changes the color of the sphere. This mapping

generates an XSLT file that is deployed into the X3D Service

Engine, so that whenever this message arrives the sphere’s color and

size changes based on the incoming message parameters. The rest of

the mappings are done using similar techniques. The dominant

direction of flow is shown by a blue-to-green transition of the

connected lines. The airports’ traffic count increases the size of the

boxes. The color of the airport box transitions from blue when most

of the traffic is for departures, to green when most of the traffic is for

arrivals. While the simulation is running, the scene gives users an

indication of where the heavy traffic flows are occurring, and how

those flows are impacting air traffic controllers by implying

increased workload. Figure 3 shows a snapshot of this visualization.

4 CONCLUSION

In this paper we have shown that by applying modern SOA

technologies we are able to make complex visualizations realizable

without writing code. The paper described how by integrating X3D

and ESB technologies we give users the ability to use graphical

interfaces to construct visual elements, assemble a dynamic scene,

connect to and transform data from a variety of sources, and map the

data to the scene. The examples described in Section 3 are use cases

that demonstrate the potential power and flexibility of this

technology.

The power of this type of framework is in the elegance of the

GUI interface. However, we have observed that, for widespread

adoption of this technology, significant effort will be needed to

improve the user interface that we have developed. Currently, the

user needs to understand too much of the underlying technology to

easily use the provided tooling, but with improvements to the user

interface we believe that this type of visualization framework will

enable users of all technological levels to develop sophisticated

visualizations.

Glassfish

Application Server

3D View

BPEL XSLT X3D

Service Engines

Binding

Components

SOAP

JMS

Simulation

NMR

TCP/X3D

The combination of the X3D Service Engine and the X3DEditor

with Open ESB provides users the ability to wire in data from

external sources and construct visualizations without writing code,

thus providing a codeless visualization programming environment

for scientists, analysts, and non-programmers.

REFERENCES

[1] Sun Microsystems. About Us: Open ESB. Open ESB. [Online] July 20,

2008. [Cited: July 20, 2008.] https://open-

esb.dev.java.net/AboutOpenEsb.html.

[2] JBI Technical Component Overview. Open ESB. [Online] February

2008. [Cited: July 1, 2008.] https://open-

esb.dev.java.net/kb/v2/jbiag.html..

[3] Rawkee. An Open Source X3D Plug-in for Maya. Rawkee. [Online]

2004. [Cited: July 21, 2008.] http://rawkee.sourceforge.net/..

[4] Media Machines. Developers Resources. Media Machines. [Online]

2008. [Cited: July 21, 2008.]

http://www.mediamachines.com/developer.php.W.-K. Chen, Linear

Networks and Systems. Belmont, Calif.: Wadsworth, pp. 123-135, 1993.

(Book style)

[5] Blender. Blender Home Page. Blender. [Online] 2008. [Cited: July 21,

2008.] www.blender.org.

[6] Brutzman, Don and Daly, Leonard. Extensible 3D Graphics For Web

Authors. Extensible 3D Graphics For Web Authors. San Francisco :

Morgan Kaufmann, 2007, p. 441.

[7] Hudson, Alan. Xj3D Developer Documentation. Xj3D. [Online] 6 26,

2007. www.xj3d.org/arch.html

[8] Brutzman, Don. Scenario Authoring and Visualization for Advanced

Graphical Environments. Savage. [Online] April 23, 2008.

https://savage.nps.edu/Savage/index.html

[9] Sun Microsystems. Java Business Integration JSR 208. [Online] March

31, 2009. [Cited: March 31, 2009] http://jcp.org/en/jsr/detail?id=208

[10] Sun Microsystems. Netbeans API [Online] March 31, 2009. [Cited:

March 31, 2009] http://bits.netbeans.org/dev/javadoc/index.html

