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ABSTRACT 

This paper introduces the ―min-additive‖ (also called ―min-average‖) utility function. This 

function is a weighted combination of an additive utility function and a minimization over 

a set of single attribute utility functions. The weighting is accomplished by exploiting 

information already contained in the additive and minimization models. Four forms of the 

min-additive (MA) model are presented—basic, uniform, logistic, and relaxed. The basic 

MA model generalizes the additive and minimization models but does not require any 

additional parameters to be estimated. It can be employed in situations where the decision-

maker’s preferences violate the additive independence assumptions inherent in the additive 

model. The uniform MA model extends the basic MA model by adding ―location‖ and 

―spread‖ parameters. The logistic MA model extends the uniform MA model by creating a 

continuously differentiable weighting function. This weighting function is shown to be a 

close approximation of a Gaussian cumulative distribution function. The relaxed MA 

model removes the non-negativity requirements on the weights. This version of the MA 

model is shown to be a generalization of the two-dimensional multi-linear utility function 

(and the two-dimensional multiplicative utility function). Numerical examples and 

graphical representations of the models are presented. The paper contains three 

appendices. Appendix A illustrates how the MA model can be nested in a decision 

preference hierarchy. Appendix B compares the MA model to the recently proposed 

―limited average‖ and ―exponential-average‖ family of utility functions. Finally, Appendix 

C summarizes the complement to the MA model—the max-additive model. The max-

additive model is used in risk analysis and other situations involving disutilities. 

1. Introduction 

Let },,,{ 21 nxxx x  be the set of attributes that are of interest to the decision maker (DM). 

Each attribute ix  varies from a least preferred value WORST
ix  to a most preferred value BEST

ix . A 

utility function [Keeney (1992), p.132] is a real-valued function that expresses the DM’s strength 

of preference for various levels of x . In practice, the most commonly used utility function is the 

additive model of the form 
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Figure 1–Alternatives A and B  Figure 2–Alternatives C and D 

where the iw ’s are a set of n non-negative weights (i.e., constants) that sum to unity, the )( ii xu ’s 

are a set of n single dimensional (i.e., single attribute) utility functions and )(xu  = 

}{ )(,),(),( 2211 nn xuxuxu  . Typically, each )( ii xu  is calibrated so that 0)( WORST
ii xu  and 

1)( BEST
ii xu . Then )( )(xuADD  also ranges between 0 and 1. There is an extensive and well-

established literature for determining the functional form of the )( ii xu ’s and for assessing the 

values of the iw ’s in the additive model (see, for example, [Clemen and Reilly (2004)], [Keeney 

and Raiffa (1976)], [Kirkwood (1997)], [Mollaghasemi and Pet-Edwards (1997)], [Pomerol and 

Barba-Romero (2000)], [Raiffa (1968)], and [von Winterfeldt and Edwards (1986)]). 

 

The additive model assumes additive independence [Fishburn (1964), pp. 43–47], [Keeney and 

Raiffa (1976), pp. 295–297] meaning, simply, that )( )(xuADD  is assumed to be a linear function 

with respect to the individual utilities, iu . Thus, iu/ADD , the marginal rate of change of 

)( )(xuADD  with respect to iu , is assumed to be constant (namely the weight iw ) regardless of 

the value of any of the individual utilities nuuu ,,, 21  . [Clemen and Reilly (2004), p. 585], 

[Kirkwood (1997), p. 250], [von Winterfeldt and Edwards (1986), p. 309], and others point out 

that additive independence is, in some cases, an unrealistic assumption. A classic example (see, 

for example, [Kirkwood (1997), p. 250]) illustrating the implications of this assumption involves 

a project manager (the DM) who is considering two attributes—project cost ( 1x ) and project 

schedule ( 2x ). The cost attribute can vary from 
BEST
1x (project completed in budget) to 

WORST
1x (project suffers unacceptable cost overruns). The schedule attribute can vary from 
BEST
2x (project completed on schedule) to WORST

2x (project suffers unacceptable delays). We set 

0)( 11

WORSTxu , 1)( 11

BESTxu , 0)( 22

WORSTxu , and 1)( 22

BESTxu . The DM is asked to consider two 

alternatives—A and B (see Figure 1). For alternative A there is a 50% chance that the project 

will be in budget but will fail due to unacceptable schedule delays, and a 50% chance that the 

project will be on schedule but will fail due to unacceptable cost overruns). In contrast, for 

alternative B, there is 50% chance that the project will be completed in budget and on time, and a 

50% chance that the project will have both unacceptable cost overruns and unacceptable delays. 
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As shown in eq. (2), under the additive independence assumption, the expected utility for the two 

alternatives is the same implying that the DM is indifferent between the two alternatives: 
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However, this indifference conclusion is unrealistic since it assumes that the DM is willing to 

tradeoff unacceptable outcomes in the same manner as she/he is willing to tradeoff acceptable 

outcomes. In reality, if the project is failing because of unacceptable cost overruns, the DM is 

more likely to have a low utility assessment regardless in the status to the schedule attribute. 

Similarly, if the project is experiencing unacceptable schedule delays, the DM will have a low 

utility assessment irrespective of the project costs. Thus, when unacceptable outcomes are being 

considered the DM’s strength of preference is more accurately represented by a minimization 

model of the form 

 }{ )(,),(),(min)( 2211)( nn xuxuxu xuMIN  (3) 

where, as with eq. (1), the )( ii xu ’s are the set of n single dimensional utility functions. Applying 

the minimization model to the two alternatives depicted in Figure 1 yields 
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The minimization model indicates that the DM prefers alternative B (with a 50% chance of 

project success) to alternative A (with a 0% chance of project success).  

 

This example was specifically constructed to illustrate the limitations of the additive model. But 

the minimization model has limitations as well. To illustrate the shortcomings of the 

minimization model, suppose the DM (i.e., the project manager) is asked to consider another pair 

of alternatives—C and D (see Figure 2). Let MID
1x be the value of 1x  such that 2

1
11 )( MIDxu ; 

similarly, let MID
2x be the value of 2x  such that 2

1
22 )( MIDxu . In alternative C, MID

11 xx  and 
MID
22 xx  so that 2

1
11 )(xu  and 2

1
22 )(xu . On the other hand, in alternative D, 

BEST
11 xx  and 

MID
22 xx so that 1)( 11 xu  and 

2
1

22 )(xu . Note that alternative D is at least as good as 

alternative C in all the attributes and strictly better than alternative C in at least one attribute. 

Thus, alternative D dominates alternative C, implying that the DM should prefer alternative D to 

alternative C. The DM’s preference for alternative D is reflected in the additive model which 

indicates that the DM would prefer alternative D as long as 0/ 11 uw ADD : 
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In contrast, the minimization model implies that the DM would be indifferent between 

alternatives C and D: 
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This discussion motivates the need for a composite utility function that captures the desirable 

aspects of the additive and minimization models while, at the same time, avoids the pitfalls 

inherent in each of these two models.  

 

One established approach for incorporating the properties of both the additive and the 

minimization model is the multi-linear model [Keeney and Raiffa (1976), pp. 293–294]. This 

model extends the additive model to include the cross-products of the individual utility functions. 

The multi-linear model is of the form 
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where the iw ’s, ijw ’s, ijkw ’s,…, nw ,,1  are a set of weights (i.e., constants) and the )( ii xu ’s are a 

set of n single dimensional utility functions. The first summation in eq. (7) is the additive model. 

The remaining terms in this equation are cross products of the individual utility functions. If any 

of the )( ii xu ’s in a cross-product term is zero, then the value of that term is zero. Thus, for 

unacceptable outcomes, the cross-product terms mirror the effect of the minimization model. 

Although the multi-linear model has been successfully applied in practice, it has two drawbacks. 

First, note that the multi-linear model contains 12n  weights ( iw , ijw , etc.). Thus, the number of 

weights that need to be assessed skyrockets as the number of individual utility functions 

increases. Second, in many cases the cross-product terms do not have a meaningful interpretation 

to the DM. Other extensions of the additive model, such as the multiplicative model and higher 

order polynomials, have been proposed [Krantz et. al (1971), pp. 321–328]. However, they suffer 

from some of the same drawbacks as the multi-linear model. 

 

In this paper, we propose an alternative approach for melding the characteristics of the additive 

and minimization models. This approach combines the additive and minimization forms in a 

straightforward manner, requires few additional parameters to be estimated, can be visualized 
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graphically, and has a relatively easy interpretation for the DM (and the analyst!). We call this 

form of utility function the min-additive model.
1
  

 

The remainder of this paper is organized as follows. Section 2 introduces the basic min-additive 

model. Section 3 extends the basic MA model by adding ―location‖ and ―spread‖ parameters 

using a uniformly distributed weighting function. Section 4 offers a further refinement of the 

basic MA model using a logistic weighting function. This weighting function closely 

approximates a Gaussian cumulative distribution function. Section 5 proves that a variation of 

the uniform MA model is a generalization of the two-dimensional multi-linear model (and the 

two-dimensional multiplicative utility function). Section 6 gives a graphical representation of the 

min-additive model and provides a numerical example. Section 7 summarizes the paper. 

Appendix A illustrates how the min-additive model can be nested in a decision-making 

hierarchy. Appendix B compares the min-additive model with the recently proposed ―limited 

average‖ [Moynihan and Shimi (2004)] and the ―exponential average‖ [Schmidt (2007)] models. 

Appendix C describes the complement to the MA model—the max-additive model—used to 

represent the DM’s preference structure in situations involving disutilities. 

2. Basic Min-Additive Model 

Note that both the additive and the multi-linear models use constant coefficients (i.e., the weights). 

However, if the weights to be assessed in a utility function are permitted to be functions of the 

attributes (rather than constants), then the distinction between a weight and a utility blurs. They 

both are functions of the attributes, they both vary between 0 and 1, and they both express the 

preferences of the DM. Thus, permitting the weights to be functions actually eases the burden of 

developing a utility function since the utilities themselves can serve as weights. In particular, 

consider a weighted combination of the additive and minimization models of the form 

 )()()()()( )()()()()( xxxxx uuuuu ADDMINMA ADDMIN ww  (8) 

where )( )(xuADD  and )( )(xuMIN  are defined in eqs.(1) and (3), respectively, and )( )( xuADDw  

and )( )(xuMINw  are non-negative weight functions that sum to one. The next question is: What 

should be the functional form of the weights )( )( xuADDw  and )( )(xuMINw ? But, in principal, we 

have already answered this question. For instance, as we observed in the Introduction, the 

importance of the )( )(xuMIN  model increases as the minimum value of the individual utility 

functions (i.e., the )( ii xu ’s) approaches zero. But, the minimum value of the individual utility 

functions is simply )( )(xuMIN  itself. Thus, the information about the value of the weight of 

)( )(xuMIN  can be inferred directly from )( )(xuMIN , or more precisely, from the complement of 

                                                 
1
 In previous work, we used the label ―min-average model.‖ [Lamar and Schmidt (2004)]. Thus, ―min-additive‖ and 

―min-average‖ are synonyms for the same model. 
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)( )(xuMIN . In other words, )(1)( )()( xx uu MINMINw . Furthermore, since the weights in eq. (8) 

sum to one, we have )()( )()( xx uu MINADDw . Thus, the basic form of the min-additive model is 

 )()()()(1)( )()()()()( )(0 xxxxx uuuuu ADDMINMINMINMA  (9) 

where )( )(xuADD  is defined in eq. (1) and )( )(xuMIN is defined in eq.(3). The subscript ―0‖ 

attached to )( )(0 xuMA  is used to denote the ―basic form‖ of the min-additive model. Three 

extensions of the model—denoted )( )(1 xuMA , )( )(2 xuMA  and )( )(3 xuMA —are presented in 

Sections 3 through 5. 

 

To illustrate the performance of the basic min-additive model, we apply this model to the four 

alternatives—A, B, C, and D—depicted in Figures 1 and 2. 
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 (10) 

The calculations in eq. (10) show that, according to the basic min-additive model, alternative B is 

preferred to alternative A. This preference is reasonable since alternative B has a 50% chance of 

project success, whereas alternative A has a 0% chance of project success. The min-additive 

model also indicates that the DM is indifferent between alternatives B and C. In addition, the 

min-additive model indicates that alternative D is preferred to alternative C. This preference is 

reasonable since alternative D dominates alternative C. 

 

In comparing eq. (10) with eq. (5), we see that the utility value of alternative D is lower in the 

min-additive model than it is in the additive model ( 14
1

2
1 w  compared to 12

1
2
1 w ). The min-

additive utility value is lower because this model ―discounts‖ the utility value of an alternative 

based on the proximity of the attributes associated with that alternative. As the attribute values 

get closer and closer to an unacceptable value, the ―discounting‖ of the utility value gets greater 

and greater. Thus, from a mathematical programming perspective, the min-additive model can be 

viewed as a convex combination of a utility maximizing objective function and a barrier function 

[Bazaraa and Shetty (1979), pp. 342–349] constraining the solution space to a feasible region. 

This viewpoint also enables us to refine the definition of WORST
ix  such that 0)( WORST

ii xu . 

 

Let WORST
ix  be the value of attribute ix  beyond which the solution is infeasible to the DM.  

 

In the project management example given above, 
WORST
1x  was defined as an unacceptable cost 

overrun and 
WORST
2x  was defined as an unacceptable schedule delay. That example implied dire 
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consequences if the value of WORST
ix  was exceeded. However, that need not be the case. For 

example, [von Winterfeldt and Edwards (1986), p. 236] describe the facility location problem of 

an executive (the DM) in a consulting firm who wants to open a branch office in southern 

California. One attribute of DM’s location decision is the distance of the office from LAX 

international airport. In this example, the DM is unwilling to consider sites that are more than 

one-hour’s driving time from LAX
2
. Hence, 60WORST

ix  minutes for the ―driving time‖ attribute, 

ix . There is nothing wrong, per say, with offices located more than an hour away from LAX. 

They are just not feasible solutions to the DM’s decision problem at hand. 

 

The next three sections present three extensions of the basic min-additive model. 

 

)( )(xuADD

)(1 mwMA

)( )(xuMIN

)( )(xuMA

)(mwMA
)( )(xuADD

)(1 mwMA

)( )(xuMIN

)( )(xuMA

)(mwMA

 

Figure 3–Probability interpretation of MA weight function 

3. Uniform Min-Additive Model 
Let )( )(xuMINm and let )(mwMA  be the weight applied to the )( )(xuADD  term in eq. (8). We 

call )(mwMA  the ―min-additive weight function‖ (or ―MA weight function,‖ for short). By 

substituting the MA weight into eq. (8), this equation can be re-written as 

 )()()()(1)( )()()( )( xxx uuu ADDMINMA MAMA mwmw  (11) 

For any given m, )(mwMA  can be interpreted as the (conditional) probability that the DM prefers 

the additive model rather than the minimization model; and the value of the )( )(xuMA  utility 

function can be interpreted as the conditional expected value of these two models (see Figure 3). 

Let )(
0

mwMA  denote the value of the MA weight, )(mwMA , in the basic min-additive model given 

in eq. (9). The value of )(
0

mwMA  increases uniformly from 0 to 1 as m varies from 0 to 1. That is, 

 

0  if1

10  if

0  if0

)(
0

m

mm

m

mwMA  (12) 

In fact, )(
0

mwMA  is the cumulative distribution function (CDF) of a uniformly distributed random 

variable in the domain [0,1] (see Figure 4).  

                                                 
2
 Approximately 2 miles during rush-hour. 
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In order to extend the basic min-additive model, let 1  be the value of m below which the DM 

exclusively accepts the minimization model; and let 1r  be the value of m above which the DM 

exclusively accepts the additive model. In the basic min-additive model, the left endpoint, 1 , is 

fixed at 0 and the right endpoint, 1r , is fixed at 1. A natural extension of the basic min-additive 

model is to allow 1  and 1r  to be parameters. We call this extension the uniform min-additive 

model whose utility function value is denoted by )( )(1 xuMA  and whose MA weight function is 

denoted by )(
1

mwMA . In the uniform min-additive model, )(
1

mwMA  is the CDF of a uniformly 

distributed random variable in the domain ],[ 11 r  (see Figure 5). Specifically,  

 )()()()(1)( )()()(
11

)(1 xxx uuu ADDMINMA MAMA mwmw  (13) 

where )( )(xuADD  and )( )(xuMIN  are defined in eqs.(1) and (3), respectively, and )(
1

mwMA  is 

given by 
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m
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where 1  is the mid-point between 1  and 1r , and 1  is the difference between 1  and 1r  (see 

Figure 5). That is, 

  and)( 111112
1

1  rr  (15) 

Inverting eq. (15) gives 

  and 12
1

1112
1

11 r  (16) 

Note that 1  is a ―measure of location‖ and 1  is a ―measure of spread‖ of the distribution. 

Thus, varying 1  shifts the distribution to the left or right along the real number line; and 

varying 1  alters the distance between the left and right endpoints, 1  and 1r . Equivalently, 
1

1  

(i.e., the reciprocal of 1 ) is equal to the maximum rate of change of )(
1

mwMA  with respect to m, 

and thus 1

1  is a ―measure of steepness‖ of the distribution. 

 

These parameters can be set to represent the preferences of the DM. For example, if 5.01  and 

4.01 , using eq. (16) gives 3.01  and 7.01r . These parameter values indicate that the 

DM strictly prefers the minimization model (eq. (3)) if any of the single dimensional utility 

function (i.e., the )( ii xu ’s) has a value below 0.3. Conversely, the DM strictly prefers the 

additive model (eq.(1)) if all of the )( ii xu  values are above 0.7. Otherwise, the DM prefers a 

weighted combination of the additive model and the minimization model (with the weight given 

by eq. (14)). 
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Note that the parameters 1  and 1r  are not required to be between 0 and 1. The only restriction 

placed on these two parameters is that 11 r . This gives a fair amount of flexibility in 

calibrating the uniform min-additive model to reflect the DM’s preferences. In particular, 

 )()( then ,0 and  If )()(1111 xx uu ADDMArr  (17a) 

 )()( then , and 1 If )()(1111 xx uu MINMA r  (17b) 

The next section presents a further extension of the basic min-additive model. 

4. Logistic Min-Additive Model 
The uniform min-additive model discussed in the previous section uses a piecewise-linear MA 

weight function (see Figure 5 and eq. (14)). As noted, the parameters 1  and 1r  (or 

correspondingly 1  and 1 ) can be adjusted to reflect a range of DM preferences. But, despite 

these advantages, the piecewise-linear functional form also has two drawbacks—one practical 

and the other mathematical. First, as a practical matter, the DM may be uncomfortable or unable 

to specify a point 1  below which he/she exclusively prefers the minimization model, or a point 

1r  above which he/she exclusively prefers the additive model. Second, the piecewise-linear 

function given by eq. (14) is not differentiable at the endpoints 1  and 1r . These two drawbacks 

argue for replacing )(
1

mwMA  with a ―smooth‖ function that asymptotically approaches zero (resp. 

one) as the value of m decreases (resp. increases) while, at the same time, retains the desirable 

characteristics of )(
1

mwMA . A convenient function satisfying these requirements is a ―logistic‖ 

function (i.e., a ―sigmoid‖ function or ―S-shaped‖ function). Hence, we refer to this extension as 

the logistic min-additive model. The logistic min-additive utility function, denoted as )( )(2 xuMA , 

is specified as 

 )()()()(1)( )()()(
22

)( xxx uuu ADDMINMA MAMA2 mwmw  (18) 

where )( )(xuADD  and )( )(xuMIN  are defined in eqs.(1) and (3), respectively, and )(
2

mwMA  is 

given by a logistic function
3
 of the form (see Figure 6) 

 

)(
2

24exp1

1
)(

2
m

mwMA  (19) 

                                                 
3
 The more common form of logistics function is 

)(m
exp1

1  

The coefficient –4 is used in eq. (19) in order to keep the notation used in the logistic min-additive model 

consistent with the notation used in the other versions of min-additive model. 



This document has been approved for public release. 
Case number 09-0383. Distribution unlimited. 

B.W. Lamar, “Min-Additive Utility Functions,” pp. 1–32. 
© 2009 The MITRE Corporation. All rights reserved. 

 

– 11 – 

where )exp(  denotes exponentiation of the Euler number, e. The parameters 2  and 2  in the 

logistics MA weight function play analogous roles to the parameters 1  and 1  in the uniform 

MA weight function (see eq. (14)). Namely, 2  is a ―measure of location‖ and 2  is a ―measure 

of spread.‖ For the logistic MA weight function, we define two additional parameters, denoted 

2  and 2r , where 2  is the point below which DM ―strongly prefers‖
4
 the minimization model 

)( )(xuMIN ; and 2r  is the point at which DM ―strongly prefers‖
5
 the additive model )( )(xuADD . 

Then 2  is defined as the mid-point between 2  and 2r ; and 2  is defined as the difference 

between 2  and 2r . Thus, the following relationships hold: 

 22
1

2222
1

22222222
1

2 ,,,)( rrr   (20) 

These relationships enable us to describe the phrase ―strongly prefers‖ (used in the definition of 

2  and 2r ) more precisely. Specifically, substituting, respectively, 2  and 2r  for m in eq. (19) 

yields 

 88.0
1

1
)(and88.0

1

1
)(1

2222 22 e
rw

e
w MAMA   (21) 

Thus, at 2m , there is an 88% chance that the DM will prefer the minimization model 

whereas, at 2rm , there is an 88% chance that the DM will prefer the additive model.  

 

Moreover, again analogous with the uniform min-additive model, 1

2  (i.e., the reciprocal of 2 ) 

is a ―measure of steepness‖ of the distribution because 1

2 is equal to the maximum rate of 

change of )(
2

mwMA  with respect to m. To show this ―steepness‖ property, note that the derivative 

of )(
2

mwMA  with respect to m is given by 

 

)(
2

2
2 4cosh1

2
/)(

2

m
mmwMA  (22) 

where )cosh(  denotes the hyperbolic cosine function. Observe that 1)0cosh(  and that 

)cosh(1 y  for all 0y . Applying the hyperbolic cosine properties to eq. (22) shows that 

the maximum value of mmw /)(
2MA  is attained at 2m  and that 1

22 /)(
2

mwMA . 

Furthermore, these properties show that mmw /)(
2MA  exists for all m in the domain ),(  

provided that 02 . This condition on 2 , in turn, implies that the only requirement on 2  and 

2r  is that 22 r . Thus, as with the uniform min-additive model, there is a great deal of 

flexibility in setting the parameters of the model. 

 

                                                 
4
 Defined below. 

5
 Ibid. 
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(a) Logistic MA weight function (b) Gaussian CDF 

Figure 7–Comparison of the logistic MA weight function and the Gaussian CDF 

 

Finally, Cramer (2003) and others have noted the similarity between a logistic function and a 

Gaussian (i.e., Normal) cumulative distribution function (CDF) (see Figure 7). Let )(m  denote 

a Gaussian CDF and let mmm /)()(  be a Gaussian density function given by 

 
2

2
1exp

2

1
)( )(m

m  (23) 

where  is the mean,  is the standard deviation, and )exp(  denotes exponentiation of the 

Euler number, e. Note that  is also the point of symmetry and that, at m , we have 

)/(12/1)( 2.5)( . Equating eqs. (22) and (23) at their point of symmetry yields 

 25
22222

2222
1

5.222
and)(




r
r  (24) 

In other words, the logistic MA weight function can be approximated by the CDF of a Gaussian 

distribution with a mean of 2  and a standard deviation of approximately 25
2 . 

 

The parameters of the min-additive model can also be set to represent a two-dimensional multi-

linear model. This version of the min-additive model is discussed next. 

5. Relaxed Min-Additive Model 
As noted in Section 3, the additive and minimization models are special cases of the 

uniform min-additive model (see eq. (17)). In this section we show that a two dimensional 

(i.e., two attribute) multi-linear model is also a special case of the min-additive model. The 

general n-dimensional form of the multi-linear model was given in eq. (7). The two-dimensional 

version [Keeney and Raiffa (1976), pp. 233–235] of this equation is 
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 )()()()()( 221112222111)( xuxuwxuwxuwxuMULTILIN  (25) 

where 1w , 2w , and 12w  are weights (i.e., constants). and )( 11 xu  and )( 22 xu  are single 

dimensional (i.e., single attribute) utility functions. In the multi-linear model, the first two 

weights, 1w  and 2w , are non-negative constants; and the three weights sum to one. That is, 12w  = 

211 ww . If 12w  equals zero, then the multi-linear model reverts to a pure additive model and, 

as shown in Section 3, the uniform min-additive model is equivalent to the additive model if 

01r  and 11 r  (see eq. (17)).  

 

On the other hand, if 012w , then this weight is permitted to take on negative as well as positive 

values. This relaxation is equivalent to permitting the uniform MA-weight function, )(
1

mwMA , 

(see eq. (14)) to take on values outside the range ]1,0[ . We let )(
3

mwMA  denote the relaxed 

version of the MA weight function where )(
3

mwMA  is simply (see Figure 8) 

 
1

1

2
1)(

3

m
mwMA  (26) 

This version of the model, called the relaxed min-additive model, is denoted by )( )(3 xuMA  and is 

specified by 

 )()()()(1)( )()()(
33

)( xxx uuu ADDMINMA MAMA3 mwmw  (27) 

where )( )(xuADD  and )( )(xuMIN  are defined in eqs.(1) and (3), respectively, and )(
3

mwMA  is 

given by eq. (26). Comparing eq. (14) in Section 3 with eq. (26) in this section, we see that the 

uniform MA weight function, )(
1

mwMA , is composed of three piecewise-linear segments whereas 

the relaxed MA weight function, )(
3

mwMA , is comprised of a single linear segment (again, see 

Figure 8). 

 

)(
1

mwMA

m

1

1

1

11 1r

1

)(
1

mwMA

m

1

1

1

11 1r

1  

)(
3

mwMA

m

1

1

1

11 1r

1

)(
3

mwMA

m

1

1

1

11 1r

1  

(a) Uniform MA weight function (b) Relaxed MA weight function 

Figure 8–Comparison of uniform and relaxed MA weight functions 
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Substituting the right-hand-side of eq. (26) for )(
3

mwMA  in eq. (27) and expanding the equation yields 

 

)()(

)(

)()()(
1

)()()()(

)()()(

)()()()(

1

1

1
2
1

3

xxx

xxxx

uuu

uuuu

MINADDMIN

MINADDMINMA

)(

)(
 (28) 

To cast eq. (28) in the form of the multi-linear model given in eq. (25), we consider four possible 

cases (depending on whether 1w  and/or 2w  equals zero). Note that the case where 12w  equals 

zero has already been covered. Thus, in Case 1 through Case 4 below, we assume that 012w . 

 

Case 1:   0 and 0  ,0 1221 www  

If all three weights are non-zero, then we make the following assignments: 

 )()()(and)()( 222111111 )()( xuwxuwxuw xx uu ADDMIN  (29a) 

 12
1

1

12

21
1 and

w

ww
 (29b) 

Substituting the expressions in eq. (29) into the min-additive model specified in eq. (28) gives 

 

)(

)()()()(

)()()()(

)()()()()(

)(

)(

)()()()(

)()(

)()(

221112222111

111222111111

21

12

111222111

1

12
1

2
1

1113

x

x

u

u

MULTILIN

MA

xuxuwxuwxuw

xuwxuwxuwxuw
ww

w

xuwxuwxuwxuw

)(

)(

 (30) 

Case 2:   0 and 0  ,0 1221 www  

If 1w  equals zero but the other weights are non-zero, then we make the following assignments: 

 )()()(and)()( 22211222 )()( xuwxuxuw xx uu ADDMIN  (31a) 

 12
1

1

12

2
1 and

w

w
 (31b) 

Substituting the expressions in eq. (31) into the min-additive model specified in eq. (28) gives 
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)(

)()()(

)()()()(

)()()()()(

)(

)(

)()()(

)()(

)()(

221112222

22222211222

2

12

22222211

1

12
1

2
1

2223

x

x

u

u

MULTILIN

MA

xuxuwxuw

xuwxuwxuxuw
w

w

xuwxuwxuxuw

)(

)(

 (32) 

Case 3:   0 and 0  ,0 1221 www  

If 2w  equals zero but the other weights are non-zero, then we make the following assignments: 

 )()()(and)()( 22111111 )()( xuxuwxuw xx uu ADDMIN  (33a) 

 12
1

1

12

1
1 and

w

w
 (33b) 

Substituting the expressions in eq. (33) into the min-additive model specified in eq. (28) gives 

 

)(

)()()(

)()()()(

)()()()()(

)(

)(

)()()(

)()(

)()(

221112111

11122111111

1

12

11111122

1

12
1

2
1

1113

x

x

u

u

MULTILIN

MA

xuxuwxuw

xuwxuxuwxuw
w

w

xuwxuwxuxuw

)(

)(

 (34) 

Case 4:   0 and 0  ,0 1221 www  

Finally, if both 1w  and 2w  equal zero, then we make the following assignments: 

 )()(1)(and)()( 221111 )()( xuxuxu xx uu ADDMIN  (35a) 

 12
1

11 and1  (35b) 

Substituting the expressions in eq. (35) into the min-additive model specified in eq. (28) gives 

 

)(

)()(

)(1)()(

)(1)(

)()()(1)()(

)(

)(

)()(

)()()(

)()(

)()(

2211

221111

2211

112211

1

12
1

2
1

113

x

x

u

u

MULTILIN

MA

xuxu

xuxuxu

xuxu

xuxuxuxu )(

 (36) 

By considering these four cases, we have shown that any two dimensional multi-linear model 

can be converted into the relaxed min-additive model. Hence, this version of the min-additive 
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model inherits all the properties associated with the multi-linear model (e.g., connectivity, 

transitivity, mutual utility independence, etc. [Keeney and Raiffa (1976), pp. 232–240]). 

Moreover, note that in Case 4 above, the relaxed min-additive model was equated to a two-

dimensional multiplicative model. Thus, this version of the min-additive model is a 

generalization of both the multi-linear utility function and the multiplicative utility function. 

6. Graphical Representation and Numerical Example 
This section provides a visual representation of the models presented in this paper. The material 

is divided into three parts. Section 6.1 graphically compares the basic MA model with the 

additive and minimization models. Section 6.2 illustrates the effects of the ―location‖ and 

―spread‖ parameters using the uniform and logistic MA models. Section 6.3 visually 

demonstrates the equivalence between the two dimensional multi-linear model and the relaxed 

MA model. [Additional graphical representations are contained in Appendix B.] 

6.1 Additive, Minimization, and Basic Min-Additive Models 

To visualize the basic form of the min-additive model, consider again the example of a project 

manager (the DM) who is considering two attributes—project cost ( 1x ) and project schedule 

( 2x ). The cost attribute can vary from BEST
1x (project completed in budget) to WORST

1x (project 

suffers unacceptable cost overruns); and the schedule attribute can vary from BEST
2x (project 

completed on schedule) to WORST
2x (project suffers unacceptable delays). We set 0)( 11

WORSTxu , 

1)( 11

BESTxu , 0)( 22

WORSTxu , and 1)( 22

BESTxu . For this example, we assume that the two single 

dimensional utility functions are weighted equally (i.e., 
2
1

1w  and 
2
1

2w ). Figures 9, 10, and 

11 show topographic projections of, respectively, the additive model (eq. (1)), the minimization 

model (eq. (3)), and the basic min-additive model (eq. (9)). Each figure contains (a) an overhead 

view (i.e., plan view) showing contours projected onto the 21 uu  plane; and (b) a perspective 

view showing an isometric sketch contained within the unit-cube. The color bands in the figures 

represent intervals of utility values. The contour lines on the boundary between adjacent color 

bands represent iso-utility curves (i.e., indifference curves). The legend for the color bands is 

summarized in Table 1.  

 

Color Swatch Utility value interval 

Blue  [0.8 , 1.0] 

Green  [0.6 , 0.8] 

Yellow  [0.4 , 0.6] 

Orange  [0.2 , 0.4] 

Red  [0.0 , 0.2] 

Table 1–Legend for topographic contours 
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(a) Overhead view (b) Perspective view 

Figure 9–Graphic representation of additive model 
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(a) Overhead view (b) Perspective view 

Figure 10–Graphic representation of minimization model 
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(a) Overhead view (b) Perspective view 

Figure 11–Graphic representation of basic min-additive model 
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Comparing Figure 11 with Figures 9 and 10, we see that the basic MA resembles the additive 

model if both individual utility values are in the proximity of one. On the other hand, the shape 

of the basic MA model is similar to the minimization model if either one (or both) of the 

individual utility values is in the proximity of zero.  

 

The topographic projections can also be used to visualize the four alternatives discussed in 

Sections 1 and 2 (see Figures 1 and 2). Figure 12 plots the coordinates of alternatives A, B, C, 

and D on the 21 uu  plane. 
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Figure 12–Coordinates of alternatives A, B, C, and D 
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(a) Alternative A (b) Alternative B (c) Alternatives C and D 

Figure 13–Value of alternatives A, B, C, an D using additive model 
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(a) Alternative A (b) Alternative B (c) Alternatives A and D 

Figure 14–Value of alternatives A, B, C, an D using minimization model 
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(a) Alternative A (b) Alternative B (c) Alternatives C and D 

Figure 15–Value of alternatives A, B, C, an D using basic min-additive model 

Figure 13 displays the topographic projection of these four alternatives based on the additive 

model. This figure shows that the additive model gives the same utility value for alternative A and 

B. Figure 14 displays the topographic projection of the four alternatives based on the minimization 

model. This figure shows that the minimization model does not distinguish between alternatives C 

and D. Figure 15 displays the topographic projection of the four alternatives using the basic MA 

model. This figure shows that the basic MA model represents the DM’s preference for alternative 

B over alternative A as well as the DM’s preference for alternative D over alternative C.  

6.2 Logistic Mid-Additive  and Uniform Min-Additive Models 

This section illustrates the effects of the ―location‖ and ―steepness‖ parameters using the same 

project management example that was summarized in Section 6.1. The topographic views shown 

in this section are based on the logistic MA model. Very similar contours are produced by the 

uniform MA model. Figures 16 through 18 illustrate the effects of alternating the ―location‖ 

parameter, 2 , ceteris paribus. Specifically, the ―steepness‖ parameter, 
1

2  is held fixed at 
2
1  

while 2  is varied from –1 to +1. At 12  (see Figure 16), the MA model is almost identical 

to the additive model (see Figure 9), at 12  (see Figure 18), the MA model is very similar to 

the minimization model (see Figure 10); and at 02  (see Figure 17), the MA model is a 

mixture of the two extremes represented by the additive and minimization models. 

 

Figures 19 through 21 show the effects of alternating the ―steepness‖ parameter, 
1

2 , ceteris 

paribus. Specifically, the ―location‖ parameter, 2  is held fixed at 
2
1  while 1

2  is varied from 

0.2 to 20. At 2.01

2  (see Figure 19), the MA weight function has a very gentle gradient. A 

gentle gradient means that the weight placed on the additive model is just slightly less than 
2
1  for 

low values of m; and just slightly more than 
2
1  for high values of m. In contrast, at 201

2  (see 

Figure 21), the MA weight function has a very steep gradient near 
2
1m . A steep gradient 

means that the weight placed on the additive model changes abruptly for values of m near 
2
1  with 

almost no weight placed on the additive model for 
2
1m  and almost 100% weight placed on the 

additive model for 
2
1m . At 0.21

2 , (see Figure 20) the logistic (and uniform) MA model 

performs in a manner similar to the basic MA model (compare Figures 11 and 20).  
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(a) MA weight function (b) Overhead view (c) Perspective view 

Figure 16–Logistic MA model with 12  and 21
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(a) MA weight function (b) Overhead view (c) Perspective view 

Figure 17–Logistic MA model with 02  and 21
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(a) MA weight function (b) Overhead view (c) Perspective view 

Figure 18–Logistic MA model with 12  and 21

2  (i.e., 
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(a) MA weight function (b) Overhead view (c) Perspective view 

Figure 19–Logistic MA model with 
2
1

2  and 2.01

2  (i.e., 52 ) 
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(a) MA weight function (b) Overhead view (c) Perspective view 

Figure 20–Logistic MA model with 
2
1

2  and 21
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Figure 21–Logistic MA model with 
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(a) Shortage attribute (b) Outdating attribute 

Figure 22–Single attribute utility functions for blood bank example 

6.3 Multi-Linear Model and Relaxed Min-Additive Model 

This section illustrates the equivalence between the two dimensional multi-linear model and 

the relaxed min-additive model using an example involving policy decisions for inventorying 

whole blood, blood plasma, and other components at a hospital blood bank  [Jennings (1968) 

pp. 335–342], [Keeney and Raiffa (1976), pp. 273–281], [Clemen and Reilly (2004), pp. 587–581]. 

Since demand for blood units is stochastic, a safety stock must be maintained to minimize the 

probability of shortages. Yet, blood units are also perishable and must be discarded if their 

allowable shelf-life is exceeded.
6
 Let 1x .be the annual percent of units demanded but not in 

stock; and let 2x  be the annual percent of units removed from inventory due to outdating. The 

nurse in charge of maintaining blood supplies at the hospital (the DM) has determined that 

101

WORSTx  (i.e., a 10% shortage rate) and 01

BESTx  (i.e., no shortage of blood units). Also, 

102

WORSTx  (i.e., a 10% discard rate) and 02

BESTx  (i.e., no units discarded due to outdating). 

Her single attribute utility functions were assessed as 
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 (37b) 

where e is the Euler number (i.e., e 718282.2 ). The coefficients –0.13 and –0.04 indicate a 

greater disutility for shortages than for outdating (see Figure 22). 

 

Assuming mutual utility independence [Keeney and Raiffa (1976), pp. 264–267], a two-dimensional 

multi-linear model (see eq. (25) was calibrated with 7242.01w , 1381.01w , and 1377.012w . 

Using these weights and substituting )( 11 xu  and )( 22 xu  from eq. (37) into eq. (25) yields 

                                                 
6
 Maximum allowable storage time for most blood components is approximately three weeks.  
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A topographic projection of eq. (38) is produced in Figure 23. Figure 23(a) shows the 

contour lines for the utility function projected onto the 21 xx  attribute plane; and Figure 

23(b) is a 3-dimensional rendering of this function. Observe that the utility function decreases as 

either 1x  or 2x  decreases; and that the rate of decrease is greater for 1x  than for 2x  reflecting the 

DM’s greater concern for shortages of blood rather than for the outdating of blood.  
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(a) Overhead view (b) Perspective view 

Figure 23–Multi-linear model for blood bank example 

 

 

1x

2x

–10

0–10
1x

2x

–10

0–10

 

 

(a) Overhead view (b) Perspective view 

Figure 24–Relaxed min-additive model for blood bank example 
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To construct the equivalent representation using the relaxed min-additive model, note that all the 

weights in eq. (38) are non-zero. Hence, Case 1 in Section 5 applies and we set 
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By substituting the expressions in eq. (39) into the relaxed min-additive model specified in eq. 

(28) we get 
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 (40) 

Comparing eq. (38) with eq. (40), we see that the two equations are identical. Hence, 

)()( )()( xx uu MULTILINMA3 . This equivalence is also confirmed by comparing the 

topographic projection of eq. (38) (see Figure 23) with the topographic projection of eq. (40) (see 

Figure 24). 

 

The next section summarizes the paper. 

7. Summary 
This paper has presented a family of ―min-additive‖ (MA) utility functions that generalize the 

additive and minimization utility functions. The MA models can be employed in situations where 

the decision-maker’s preferences violate the additive independence assumptions inherent in the 

additive utility model. The basic version of the MA model does not require any additional 

parameters to be estimated. Extensions of the basic model use ―location‖ and ―spread‖ 

parameters to specify a wide range of decision-makers’ preferences. Moreover, these parameters 
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can also be set to represent the two-dimensional multi-linear utility function (and the two-

dimensional multiplicative utility function). Thus, the MA utility model is a generalization of a 

host of other utility models. 

 

Extensions of the MA model presented in this paper are also possible. Appendix A shows how 

the MA utility function can be nested in a decision tree hierarchy; Appendix B compares the MA 

model with two other models—the ―limited average‖ utility function and the ―exponential-

average‖ utility function; and Appendix C describes the ―max-additive‖ function used to model 

risk minimization (rather than utility maximization). For further examples of analytical methods 

for risk management, see, for example, [Garvey (2000)], [Garvey (2009)]. 

 

In sum, these extensions, together with the four versions of the min-additive model presented in 

this paper can help decision-makers make better decisions. 

Appendix A 
This appendix illustrates how the min-additive model can be nested in a decision-making 

hierarchy. Consider the following hypothetical situation.
7
 Mr. Taylor’s classroom has three 

students in it: Xaviar (X), Yvonne (Y), and Zachary (Z). Each student is taking four subjects: 

ENGLISH, HISTORY, MATH, and SCIENCE. Suppose that the students have received the grades for 

the four subjects that are posted in Table 2. 

 

Student 

Subject and grade Method of Summarizing 

ENGLISH HISTORY MATH SCIENCE 
Grade 
point 

average 

Lowest 
grade 

Basic ―Min-
Additive‖ 

model 

X        
Y        
Z        

Table 2–Hypothetical subject grades and summary measures for three students 

How should a student’s grades be aggregated? The traditional method, of course, is to compute a 

grade point average (assigning 4 grade points for an ―A,‖ 3 grade points for a ―B,‖ etc., summing 

the grade points, and dividing by the number of subjects). The grade point average summary is 

shown in Table 2. The grade point average summary distinguishes between students X and Y but 

does not distinguish between students Y and Z. In particular, the grade point average summary 

does not reflect student Z’s failing grade in SCIENCE. One method of capturing this failing grade 

in a summary measure is to report the lowest (i.e., minimum) grade for each student. Table 2 also 

                                                 
7
 This example is intended to illustrate the work-breakdown-structure (WBS) typical of many system-of-systems 

configurations. It is not intended to advocate any polices regarding educational assessment. 
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shows the lowest grade summary measure. This measure distinguishes between student Y and 

student Z but it does not distinguish between student X and student Y.  

 

The  basic ―min-additive‖ (MA) summary measure (described in Section 2) distinguishes among 

all three students. Specifically, the grade point average summary measure is computed using 

)( )(xuADD  (see eq. (1)), the lowest grade summary measure is specified using )( )(xuMIN  (see 

eq. (3)); and the basic ―min-additive‖ (MA) summary measure is calculated using )( )(xu0MA  

(see eq. (9)). As shown in Table 2, for students that are performing well (getting ―A‖’s and 

―B‖’s), the MA summary measure places emphasis on the grade point average. However, if a 

student is receiving a failing grade in any subject, that information is not overlooked. 

 

This same method of averaging high scores while ―red flagging‖ low scores can be implemented 

at multiple levels as illustrated by the hypothetical hierarchy depicted in Figure 25. The Regional 

School (node ―R‖) has two classrooms: Mr. Taylor’s classroom (node ―T‖) and Ms. Smith’s 

classroom (node ―S‖). As mentioned before, Mr. Taylor’s classroom has three students in it: 

Xaviar (X), Yvonne (Y), and Zachary (Z) (see Table 2). Ms. Smith’s classroom also has three 

students in it: Ulysses (U), Victor (V), and Wilbert (W); and each student in Ms. Smith’s class is 

also taking four subjects: ENGLISH, HISTORY, MATH, and SCIENCE. Starting at the bottom level 

of the tree, the basic MA summary measure is applied to each successively higher level. Thus, 

the students’ ―scores‖ are based on their course grades, teachers’ ―scores‖ are based on the scores 

of the students in their class, the school’s ―score‖ is based on the scores of the teachers in the 

school, and so on. By using the MA summary measure, overall performance is measured at each 

level without attenuating a failing score at a lower level. The measure also provides a ―trace‖ to 

the ―root cause‖ of a failing score (a rightmost depth first search for the tree hierarchy shown in 

Figure 25. Moreover, the MA performance measure can pinpoint where additional resources or 

other corrective measures can gainfully be employed. 

 

R

S

U V W

T

X Y Z

R

S

U V W

T

X Y Z

 

Figure 25–Hypothetical example of hierarchy of min-additive performance measures 
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Appendix B 
This appendix summarizes other methods that combine the additive and minimization models. 

Two promising models of this type are the limited average model [Moynihan and Shimi (2004)] 

and the exponential average model [Schmidt (2007)]. 

B.1 Limited  Average Model 

The limited average model, denoted )( )(xuLIMAVG , is given by 

 }{ )(,)(min)( )()()( xxx uuu MINADDLIMAVG  (41) 

where )( )(xuADD  and )( )(xuMIN  are specified in eqs. (1) and (3), respectively, and  is a 

parameter. To illustrate the affect of , the limited average model was applied to the same 

project management example described in Section 6. The topographic projections of eq. (41) are 

shown in Figures 26 through 28. The legend for these figures is summarized in Table 1 in 

Section 6. Figure 26 shows that when 1 the limited average model takes the form of the 

additive model. Figure 27 shows that when 2.0 , the limited average model is a mix of the 

additive model and the minimization model. Figure 28 shows that when 0 , the limited 

average model takes the form of the minimization model. 

B.2 Exponential  Average Model 

The exponential average model, denoted )( )(xuEXPAVG , is given by 

 
ni

i

ia
ii xu

aw
1

)(
log)( )(xuEXPAVG  (42) 

where a  is a parameter, }{loga  the base a logarithm, the iw ’s are a set of n non-negative 

weights (i.e., constants) that sum to unity, and the )( ii xu ’s are a set of n single dimensional (i.e., 

single attribute) utility functions To illustrate the affect of the parameter a, the exponential 

average model was applied to the same project management example described in Section 6. The 

topographic projections of eq. (42) are shown in Figures 29 through 31. The legend for these 

figures is summarized in Table 1 in Section 6. Figure 29 shows that when 1.0a  the 

exponential average model is a mixture of the additive model and the minimization model. 

Figure 30 shows that as a asymptotically approaches one, the exponential average model takes 

the form of the additive model. Figure 31 shows that when 10a , the exponential average 

model is a mix of the additive model and a maximization model given 

by )}(,),(),(max{ 2211 nn xuxuxu  . In fact, as a approaches zero, )( )(xuEXPAVG  approaches a 

pure minimization model; and as 1a  (the reciprocal of a) approaches zero, )( )(xuEXPAVG  

approaches a pure maximization model. For additional comparisons of the exponential average, 

the limited average, and the min-additive models, see Schmidt (2007). 
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(a) Overhead view (b) Perspective view 

Figure 26–Limited average model with 1 
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Figure 27–Limited average model with 2.0  
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Figure 28–Limited average model with 0  
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Figure 29–Exponential average model with 1.0a  
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Figure 30–Exponential average model with 1a  
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Figure 31–Exponential average model with 10a  
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Appendix C 
This appendix summarizes the complement of the min-additive model, namely the max-additive 

model.
8
 The max-additive model is intended for decision environments in which the decision 

maker (DM) wishes to minimize a ―disutility function‖ rather than maximize a utility function. 

This situation arises frequently in risk analysis where the DM must prepare for a collection of 

possible outcomes that have undesirable consequences. For example, during the hurricane 

season, emergency responders must plan for potential high winds, inclement weather, rising 

water levels, and a host or other uncertain risk events, which, in turn, can trigger other 

undesirable outcomes. These risk events are disutilities. Typical attributes associated with a risk 

event are the probability of occurrence; and if the event does occur, the time until the occurrence, 

the duration of the occurrence, the impact or severity, etc. (see, for example, [Garvey (2000)], 

[Garvey (2009)]).  

 

A disutility function is the complement of a utility function. That is, low values of the disutility 

function are more desirable to the DM than high values. Let )( ii xd  be the i-th single dimensional 

(i.e., single attribute) disutility function for attribute ix . For example, ix  might be the number of 

weeks until a risk event occurs (if it does occur), and )( ii xd  might be of the form 

)exp()( iii xxd  where )exp(  denotes exponentiation of the Euler number, e, and  is a 

time-constant parameter. For low values of this function (when the event, if it occurs, is many 

weeks away), the DM may be willing to make tradeoffs to mitigate other risk events. On the 

other hand, if the value of )( ii xd  is close to one (indicating a possibly imminent event), the DM 

may be less willing to consider tradeoffs. This asymmetry in the DM’s attitude towards tradeoffs 

is not reflected in an additive disutility model. However, it is captured in the ―max-additive 

model.‖ 

 

There are four versions of the max-additive model, completely analogous to the four versions of 

the min-additive model. Let )( )(xdkMAXADD  denote the k-th version of the max-additive model 

where the index 0k  for the basic version, 1k  for the uniform version, 2k  for the logistic 

version, and 3k  for the relaxed version; and )(xd  = }{ )(,),(),( 2211 nn xdxdxd   is a set of n 

single dimensional (i.e., single attribute) disutility functions. Each )( ii xd  ranges from zero to one 

(with zero indicating the most preferable value to the DM and 1 indicating the least preferable). 

The form of the k-th version of the max-additive model is given by 

 )()1(1)()1()( )()()( )( xxx ddd ADDMAXMAXADD MAMA MwMw
kkk  (43) 

                                                 
8
 The ―max-additive model‖ is also called the ―max-average model.‖ The prefix ―max‖ in the max-additive model is 

underlined to help to visually distinguish it from the prefix ―min‖ in the min-additive model.  
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where )( )(xdADD  is the additive model (see eq. (1)) with the argument )(xu  replaced by )(xd , 

)1( Mw
kMA  is the k-th min-additive weighting function (see eqs. (12), (14), (19), and (26)), with 

the argument m replaced with M1 , and M and )( )(xdMAX  are defined as 

 }{ )(,),(),(max)( 2211)( nn xdxdxdM xdMAX  (44) 

This structure creates a very straightforward relationship between the corresponding versions of 

the max-additive and the min-additive models. To specify this relationship, let 

 nixdxu iiii ,,1for  )(1)(   (45) 

Then 

 4,,1for  )(1)( )()( kkk xx ud MAMAXADD  (46) 

where )( )(xdkMAXADD  is defined in eq. (43), )( )(xukMA  is defined in eqs. (9), (13), (18), and 

(27), )(xd  = }{ )(,),(),( 2211 nn xdxdxd   is a set of n single dimensional (i.e., single attribute) 

disutility functions, and )(xu  = )}(,),(),({ 2211 nn xuxuxu  . is the complimentary set of n single 

dimensional utility functions (see eq. (45)). 

 

To prove eq. (46), we note that, by construction, the following relationships hold: 

 )(1)( )()( xx ud MINMAX  (47a) 

 )(1)( )()( xx ud ADDADD  (47b) 

where )( )(xdMAX  is defined in eq. (44), )( )(xuMIN  is defined in eq. (3) and )( )(xdADD  and 

)( )(xuADD  are defined in eq. (1). Note also that since )( )(xuMINm  and )( )(xdMAXM , eq. 

(47a) can be rewritten as  

 mM 1  (48) 

Substituting eqs.(47) and (48) in eq. (43) yields the following identity: 
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 (49) 

Eq. (49) shows that the max-additive model is the complement of the min-additive model and 

thus shares the properties inherent in the min-additive family of models. 
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