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Abstract 

Preventing interference among radio circuits used for air traffic services (ATS) often requires 
spectrum managers to observe channel-assignment rules based on minimum ratios of the 
great-circle distances (GCDs) traversed by desired and undesired (potentially interfering) 
signals. Each circuit operates within a service volume of airspace having a circular or polygonal 
“footprint” on the surface of a spherical Earth. Minimizing undesired-to-desired GCD ratios with 
respect to these footprints can be significantly facilitated in many cases through the use of 
stereographic projection. Instead of performing the minimization using the footprints on the 
surface of the sphere, a stereographic projection of the footprints to the complex plane is 
performed to transform the original minimization problem into a simpler problem of 
minimizing a ratio of distances in the complex plane. This ratio can be expressed in terms of a 
single real variable and then minimized using the Newton-Raphson method. 

There are other assignment rules that require spectrum managers to observe channel 
assignment rules based on minimum distances between service volume footprints. Finding the 
minimum GCD distance between service volume footprints on the sphere can be done in an 
efficient manner using vector analysis, and as a result a closed form solution can be provided 
enabling the computation to be performed quickly. 

Procedures described in this paper have been incorporated into Spectrum Prospector™, an 
automated tool developed by The MITRE Corporation’s Center for Advanced Aviation System 
Development (CAASD) to perform spectrum analysis studies for the Federal Aviation 
Administration (FAA). 
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1 Introduction 
The Federal Aviation Administration (FAA) has approximately 530 very high frequency (VHF) 
radio channels available for assignment to an air traffic services (ATS) radio system comprising 
more than 7,000 air/ground (A/G) radio circuits.  Each circuit operates within a service volume 
(SV) of airspace having a circular or polygonal “footprint” on the surface of a spherical Earth.  
Extensive channel reuse is essential to satisfying such a large demand with the resources 
available.  However, preventing interference among the circuits often requires spectrum 
managers to observe channel-assignment rules based on minimum ratios of the great-circle 
distances (GCDs) traversed by desired and undesired (potentially interfering) signals. Such 
ratios are called undesired-to-desired (u/d) GCD ratios. In Figure 1-1, dG  and uG  are the GCDs 
(measured on the surface of the Earth) used as measures of the distances that the desired and 
undesired signals, respectively, must traverse. 

 

 
Figure 1-1. Components of u/d GCD Ratio 

 

Minimizing u/d GCD ratios with respect to these footprints can be significantly facilitated 
through the use of stereographic projection. Instead of performing the minimization using the 
footprints on the surface of the sphere, a stereographic projection of the footprints to the 
complex plane is performed to transform the original minimization problem into a simpler 
problem of minimizing a ratio of distances in the complex plane. This ratio can be expressed in 
terms of a single real variable and then minimized using the Newton-Raphson method. 

There are other assignment rules that require spectrum managers to consider assignments 
based on minimum GCD distances between service volume footprints. Finding the minimum 
GCD distance between service volume footprints on the sphere can be done in an efficient 
manner using vector analysis, and as a result a closed form solution can be provided enabling 
the computation to be performed quickly. 
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Procedures described in this report have been incorporated into Spectrum Prospector™, an 
automated tool developed by The MITRE Corporation’s Center for Advanced Aviation System 
Development (CAASD) to perform spectrum analysis studies for the Federal Aviation 
Administration (FAA) [1,2,3,4].  The optimization procedures described in this report are 
designed to enable Spectrum Prospector to follow distance-based channel assignment rules as 
accurately as possible without excessive running time. 

1.1 Background 
In the ATS environment, pilots use airborne radios (ARs) to communicate with their designated 
ground-based radios (GRs), which are used by air traffic controllers. Each circuit operates 
within a SV, a three-dimensional volume of airspace whose horizontal cross section at any 
altitude has the same circular or polygonal “footprint” on the surface of a spherical Earth. 
Aircraft within the same SV communicate with the same GR on a given channel. The GR does 
not necessarily lie in the footprint of its SV. Because spectrum is a scarce resource, channels are 
reused, constrained by certain stringent rules that must be followed to prevent interference 
between the radios in one circuit and those in other circuits assigned the same channel. The 
problem of determining whether two circuits can be cochannel, i.e., assigned the same channel, 
can be posed as an optimization problem involving circles and polygons on the surface of a 
sphere. 

1.2 Approach 
Because the u/d ratio as it stands is a complicated function (i.e., an inverse trigonometric 
function) of four variables (the latitudes and longitudes of the two aircraft positions), 
attempting to find a global minimum in a straightforward manner leads to a very inefficient and 
cumbersome mathematical procedure. Much of the complication is due to the fact that the ratio 
is comprised of GCDs on the surface of the sphere. We realized that one possible simplifying 
step was to project the components involved in the ratio to the complex plane through 
stereographic projection. Stereographic projection is a viable approach because circles on the 
sphere are projected to circles in the complex plane, allowing us to retain the simple structure 
of the circle, which is crucial in simplifying the minimization process. Further, stereographic 
projection enables expressing the chordal length between points on the sphere in terms of 
distances between points in the complex plane. Thus, a ratio of chordal lengths can be 
expressed in this way, and it turns out, minimized in an efficient manner.  But in this report we 
show that the solution to the problem of minimizing the ratio of chordal lengths is also the 
solution to the actual problem of minimizing the ratio of GCDs.  

In terms of finding the minimum GCD between two SVs on the sphere, we were able to find an 
efficient procedure using vector analysis to obtain a closed-form solution to the problem of 
finding the minimum GCD from a point on the sphere to an arc of a great circle. Using this result 
and a feature of intersecting great circles, we were able to find an efficient procedure for finding 
the minimum GCD between any two SVs on the sphere. 
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2 Use of Stereographic Projection to Find Minimum Great-
Circle Distance Ratios 

This section first describes the problem of cochannel interference (CCI), which gives rise to the 
need for the distance-ratio calculations in this report. It then describes an efficient procedure 
for finding minimum u/d GCD ratios through the use of stereographic projection. 

2.1 Cochannel Interference 
Figure 2-1 shows an example of a situation where CCI could arise between two A/G radio 
circuits operating in neighboring SVs. In the example, the desired circuit’s AR receives not only 
the desired signal from its own GR, but also a potentially interfering undesired signal 
transmitted by the AR of the undesired circuit. This constitutes a case of potential “air-to-air” 
interference. The desired circuit, of course, can also interfere with the undesired circuit, 
although interference in that direction is not shown in the figure. Air-to-ground, ground-to-air, 
or ground-to-ground interference might also occur between the two circuits but is not shown in 
the figure either. The altitudes of the aircraft above the earth are usually small enough, in 
relation to the horizontal extent of the SV, that the actual lengths of the signal paths are 
virtually identical to the associated GCDs. 

Whenever dealing with SVs, only a “horizontal” slice at a given altitude is considered, and the 
boundary of the horizontal slice is projected to lie as a footprint on the sphere as shown in 
Figure 2-2. Any further reference to SVs will be to their footprints. Also, all distances between 
any two points in the horizontal slices, regardless of altitude, are measured along the surface of 
the earth using their footprints as shown in Figure 2-2. In Figure 2-2, dG and uG are the GCDs 
used as measures of the distances that the desired and undesired signals must traverse, 
respectively. The circuits of Figure 2-2 are close enough for ARs operating at their edges at the 
maximum allowable altitude to have an unobstructed mutual radio line of sight (RLOS), which 
in ATS spectrum management is generally regarded as an essential condition for interference. 

 

 
Figure 2-1. Cochannel Interference between A/G Radio Circuits 
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Figure 2-2. Sector Footprints and GCDs 

For the problem we are considering, it is often assumed for simplicity that the desired and 
undesired radio signals have identical output powers, and that free-space propagation laws 
prevail over both the desired and the undesired signal paths. Under these conditions, the rules 
for avoiding CCI can be expressed as distance-based channel-assignment constraints.  

Prior to the development of the procedure in this report, a worst-case u/d GCD ratio was used, 
because attempting to find the extremum solution was too complex and time-consuming. 
Figure 2-3 shows the values used to compute this worst-case u/d ratio. The denominator max,dG  

is the GCD between the GR and the farthest point in the desired SV, and the numerator min,uG is 
the minimum GCD between the desired and undesired SVs. 

 

 
Figure 2-3. Components of Worst-Case u/d GCD Ratio 
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Let 
min









d

u

G
G be the minimum possible value of the u/d ratio, and let extmuG ,  and extmdG ,  be the 

values of uG  and dG  that produce that extremum u/d ratio. Then we would have  

 

max,

min,

,

,

min d

u

extmd

extmu

d

u

G
G

G
G

G
G

≥=







 

 

Thus, using the worst-case ratio would be a lower bound on the extremum ratio and could 
result in a less efficient use of spectrum. In the special case when the GR is located at the center 
of a circular desired SV and the undesired SV is also circular, the minimum u/d ratio is equal to 
the worst-case ratio, and it is easy to calculate. For cases other than this special case, this report 
describes an efficient procedure for obtaining the true minimum u/d ratio. 

In present FAA channel-planning practice, no pair of A/G circuits with an unobstructed mutual 

RLOS may operate on the same channel unless 5
min

≥








d

u

G
G  for that pair — i.e., unless the 

victim radio is at least 5.0 times as far from the undesired signal source as from the desired 

transmitter. Thus, 
min









d

u

G
G  must be calculated to determine its value. 

Calculating that ratio on the sphere for each of the millions of circuit pairs that exist in the U.S. 
ATS system can be a time-consuming process. This report describes a more efficient procedure 
that transforms the optimization problem on the sphere to an optimization problem in the 
complex plane through the use of stereographic projection. 

Although the results we provide in this report are for the ratio of GCDs, Appendix A extends the 
results to the case where SV altitudes are incorporated with the GCDs to produce a ratio of 
“slant ranges.” 

2.2 Stereographic Projection 
Figure 2-4 illustrates a stereographic projection, which is a projection from points on the 
sphere to points in the complex plane. The projection equations that transform a point ( )ZYX ,,  
on the sphere with radius R to a point iyxz +=  in the complex plane are [6, 7]: 

Y
ZR

Ry

X
ZR

Rx

−
=

−
=

2
2

2
2

     (1) 
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The inverse equations from the complex plane to the sphere are: 
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Figure 2-4. Stereographic Projection 

 

2.2.1 Stereographic Projection of Circles and Polygons on the Sphere 

It is known that the stereographic projection maps circles on the sphere (s-circles) to circles in 
the complex plane, and that the interior of an s-circle is mapped to the interior of its projected 
circle in the complex plane. Appendix B shows the derivation of the equation of a circle in the 
complex plane that is the stereographic projection of an s-circle on the sphere. These s-circles 
can be either great s-circles (i.e., those with center at [0,0,R]) or small s-circles (i.e., those with 
centers elsewhere). Projections of great circles contain the origin of the complex plane in their 
interiors. 

We also need to show that the interiors of polygons on the sphere (s-polygons) are projected to 
the interiors of their projections in the complex plane. Since, in the cases we are considering 

 

(x,y)(x,y)
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now, each side of an s-polygon is an arc segment of a great circle on the sphere, the 
representation in the complex plane of a side is an arc segment of a circle. This is shown in 
Figure 2-5. An exception to the situation where the side of an s-polygon is projected to an arc of 
a circle in the complex plane is when the side lies along a meridian, i.e., when the two vertices of 
the side have the same longitude. In this case the projection of the s-polygon side is a line 
segment. In this report we deal with the more prevalent case where the side of an s-polygon 
does not lie along a meridian. The concepts and procedures developed here also have been 
adapted to the exceptional case. 

A great circle partitions a sphere into two hemispheres. We define the interior of a great circle 
as the sphere’s southern hemisphere, and the exterior as its northern hemisphere. Figure 2-5 
also shows that any point in the interior (exterior) of a great circle is mapped under 
stereographic projection to the interior (exterior) of the projection of that great circle in the 
complex plane. Therefore, for any point on the sphere that is inside an s-polygon, its 
relationships (i.e., interior or exterior) with respect to the great circles on which the polygon 
sides lie are maintained with respect to the projected circles of those great circles in the 
complex plane. This means that the projection of a point on the sphere within an s-polygon will 
be within the “circular” polygon (a polygon whose sides are circular arc segments) that is the 
projection of the s-polygon (see Figure 2-6). That s-circles and s-polygons are mapped to circles 
and circular polygons and that interiors are mapped to interiors are results enabling the 
application of the Maximum Modulus Principle, which we will encounter later. 

 
Figure 2-5. Stereographic Projection of a Great Circle Arc 

N(0,0,2R)

Great Circle 
Arc Segment

Projected Circular Arc Segment
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Figure 2-6. Representation of an s-Polygon in the Complex Plane 

 

2.2.2 Computing Chordal Lengths 

Useful to our optimization procedure is the computation of chordal length (D), which for any 
two points ( )111 ,, ZYX and ( )222 ,, ZYX on the sphere is defined as 

 

( ) ( ) ( )221
2

21
2

21 ZZYYXXD −+−+−=    (3) 

 

It can be shown that D can be computed in the complex plane, using the stereographic 
projections of the points ( )111 ,, ZYX  and ( )222 ,, ZYX , as [6, 7] 

 

2
2

22
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2
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2
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4
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++

−
=     (4) 

 

This equation will be useful in minimizing the u/d ratio in an efficient manner. 

 

 

Complex Plane
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2.3 Optimization of the u/d Ratio 
Working with ratios of chordal lengths rather than ratios of GCDs enables us to develop a more 
efficient minimization procedure. The first step of our strategy is to show the equivalence of 
minimizing a u/d ratio of GCDs and its corresponding ratio of chordal lengths. The second step 
is to show that the minimum solution lies on the boundaries of the desired and undesired SVs. 

2.3.1 Showing that GCD and Chordal u/d Ratios Have the Same Minimum 
Solution 

In the applications we discuss later, the u/d ratio is required to be minimized over the entire 
boundary of a circle, or just over an arc of a circle. These two cases are dealt with separately to 
show that the u/d GCD ratio and the chordal length u/d ratio have the same minimum solution 
in each case. 

2.3.1.1 Minimizing Over the Entire Boundary of a Circle 

Let ( )yx PPG ,  be the GCD between two points xP and yP on the sphere. The problem we wish to 
solve is: 

 

( )
( )rd

du

PP PPG
PPG

Min
du ,

,
,

     (5) 

 

( )uuuu ZYXP ,,= , ( )dddd ZYXP ,,= , ( )rrrr ZYXP ,,=  

where uP is on the boundary of the undesired SV, dP is on the boundary of the desired SV, and 

rP  is the fixed location of the desired ground radio. That the solution of (5) occurs for dP  on the 

boundary of the desired SV and for uP  on the boundary of the undesired SV will be shown later. 

Let ( )du PPD ,  and ( )rd PPD ,  be the undesired and desired chordal lengths, respectively. We will 
show that the solution to the minimization problem: 

 

( )
( )rd

du

PP PPD
PPD

Min
du ,

,
,

     (6) 

 

is also the solution to the minimization problem (5).  That (6) implies (5) means that if the ratio 
of chordal lengths is minimized at some point ( )

00
, du PP , then the ratio of corresponding GCDs is 

also minimized at ( )
00

, du PP . 
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We use the following relationship between chordal length and GCD. Let S be the length of the 
chord connecting the endpoints of an arc on the sphere of radius R with central angleα , so 







=

2
sin2 αRS . The length of the corresponding arc, i.e., the GCD between the endpoints of the 

arc, is 





= −

R
SRR

2
sin2 1α . The ratio of GCDs can be expressed as: 
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  (7) 

 

Without loss of generality, we can assume that the sphere has unit radius and that the problem 
can be simplified by rotating the undesired s-circle so that its center on the sphere is at the 
South Pole, using the equations in Appendix D. Then its stereographic projection has its center 
at the origin of the complex plane. Using the same rotation equations, the desired SV and the 
desired GR location are rotated so that the undesired SV and the desired SV and its GR maintain 
the same geographical relationships as before the rotations and then are stereographically 
projected. The stereographic projections of the undesired and desired s-circles or s-polygons 
are referred to as the undesired and desired circles or polygons, respectively. 

The strategy to show that the same pair of points minimizes both ratios is to show that for each 
fixed point in or on the desired projected s-circle or great circle, the point on the boundary of 
the undesired projected s-circle or great circle that minimizes the ratio of chordal lengths also 
minimizes the ratio of GCDs. Using (4) the ratio of chordal lengths can be written as 
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2
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4
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4
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r
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z

z
zz
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zz

zz

zz
PPD
PPD

+

+

−

−
=

++

−
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−
=   

          (8) 

 

Now we fix 
0dz at any point in or on the desired circle, but outside an arbitrarily small disc of 

radius ε  centered at rz .  The reason for excluding this disc is that the ratio approaches infinity 
as 

0dz  approaches rz .  Therefore, the minimum for the ratio would occur outside this disc.  

Assume that uz  is on an arbitrary circle uc  of radius ur  contained within the undesired circle, 
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as shown in Figure 2-7.  This arbitrary circle would be the stereographic projection of an 
arbitrary s-circle scu

( ) ( )( )θθ sincos izz uu +=

 contained within the undesired SV on the sphere. 

Then , uuu Rrz ≤= , where uR  is the radius of the undesired circle. 

Since 
0dz and rz are fixed, and since ur  is constant, the ratio simplifies a great deal to 

 

( )
( ) 0

0

0
1  

,
,

du
rd

du zzK
PPD

PPD
−=     (9) 

 

where K1
2

2

4

41

0 u

r

rd r

z

zz +

+

−
 is a positive constant equal to  

 

 
Figure 2-7. Minimizing Ratio of Chordal Lengths 

 

( )
0000

,  dddd yxzP =→

( )rrrr yxzP ,  =→

For each fixed  P ,  P minimizes the undesired-to-desired ratio of chordal lengths

( )
0000

,  uuuu yxzP =→

Arbitrary Circle

( )uuuu yxzP ,  =→

→

Complex Plane

Desired

Undesired

uu zr = θ 0uz

0dz

uR

uz

(0,0)

Denotes stereographic projection

0d 0u

( )usc

rz
ε
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The ratio of chordal lengths can then be expressed in terms of the single variable θ  as 

 

( )( )
( ) ( ) ( )θθ
θ

sin2cos2  
,
,

00000

0

0 222
11 dududdudu

rd

du yrxryxrKzzK
PPD
PPD

−−++=−=  (10) 

 

And because ur  is a constant, the ratio of chordal lengths is simply a constant times a function 

of θ for fixed 
0dP , i.e., 

 

  
( )( )

( ) ( )θθ
fKzzK

PPD
PPD

du
rd

du
11 0

0

0   
,
,

=−=    (11) 

 

The ratio of GCDs can be expressed using (8) and applying (4) to the chordal length in the 
numerator as 
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( ) ( )( )θθ sin2cos2sin
0000

222
3

1
2 dududdu yrxryxrKK −−++= −  (12)

  

where 2K and 3K are positive constants equal to 

  
( ) 1

1
2 2

,sin 0

−
−















= rd PPDK , 

1
22

3 0
44

2
1 −







 ++= du zrK  (13) 

 

This shows that if the ratio of chordal lengths is ( ) ( )θθρ fKchdl 1= , then the ratio of GCDs is 

( ) ( )( )θθρ fKKGCD 3
1

2 sin −=  
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Thus, ( ) ( ) ( ) 0 when ,01 === θ
θ

θ
θ

θρ
θ

f
d
df

d
dK

d
d

chdl . 

Also, ( )
( )

( )
0

1 22
3

32
=

−
=

θ

θ
θθρ

θ fK

f
d
dKK

d
d

GCD
 when ( ) 0=θ

θ
f

d
d . 

 

If the extreme point of ( )θρchdl  is a minimum, then the extreme point of ( )θρGCD  is also a 

minimum. This is a result of applying the first derivative test, and the fact that 1K , 2K , and 3K  
are positive constants. Therefore the value of θ  that minimizes the u/d ratio of chordal lengths 
on an arbitrary circle of radius ur  within the undesired circle also minimizes the u/d ratio of 

GCDs on that arbitrary circle. This value of θ depends on  and on an arbitrary circle of 

radius ur . We can write it as , suppressing the notation for its dependence on the 

arbitrary s-circle. Since the same value of ( )
0dPθ  minimizes ( )θρchdl  and ( )θρGCD  and since 

is an arbitrary point, we can say that ( )
( )rd

du

PP PPD
PPDMin

du ,
,

,
 and ( )

( )rd

du

PP PPG
PPGMin

du ,
,

,
 have the same solution for 

dP  in or on the desired s-circle and uP  on the undesired arbitrary s-circle scu

( )
( )rd

du

PP PPD
PPDMin

du ,
,

,

. Because the 

circle within the undesired circle is arbitrary, we can say that  and ( )
( )rd

du

PP PPG
PPGMin

du ,
,

,
 

have the same solution for any points in or on the desired and undesired s-circles. 

 

2.3.1.2 Minimizing Over an Arc 
Now we find the minimum u/d ratio over an arc of a circle, instead of the whole circle as 
previously. This arises when the undesired SV is an s-polygon. Thus, let us consider that the 
desired SV is an s-circle as previously and that the undesired SV is now an s-polygon. Recall that 
each side of an s-polygon is an arc of a great circle on the sphere, and its projection is the arc of 
a circle in the complex plane. We perform the rotations described previously for an entire circle 
so the great circle is rotated to the equator, and its projection is a circle centered at the origin of 
the complex plane. 

In this case the solution of ( ) 0=θ
θ

f
d
d , as discussed previously for the entire circle, may fall 

outside of the undesired arc in the complex plane. Under this condition, we want to show that 
( )
( )rd

du

PArcP PPD
PPDMin

du ,
,

,  ε
 and 

( )
( )rd

du

PArcP PPG
PPGMin

du ,
,

,  ε
have the same solution, since this would allow us to 

solve the simpler problem of minimizing the ratio of chordal lengths. 

0dP
( )

0dPθ

0dP
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To prove this we use the following result, depicted in Figure 2-8, that from any point 
0dz

external to a circle in the complex plane, the closest point on the boundary of that circle to the 
external point is the intersection with the circle of a line connecting the external point and the 
center of the circle. Thus, the result is that 

( )
( )

0, duz
zzMin

u

−
=

θ
ηθθ

=
00 du zz −  where ( )

00 uu zz =θ and 

0000 uddu zzzz −=− . This latter equality expresses the condition that  ,,
00 du zz and the center 

of the circle are collinear. The solution 
0uz  that minimizes the distance will also minimize the 

ratio of chordal lengths ( ) ( )
01 duchdl zzK −= θθρ  for the same 

0dz  since ( )θρchdl  is a positive 

constant multiple 1K of the distance. In addition, 
0uz will also minimize the ratio of GCDs, 

( ) ( )( )
03

1
2 sin duGCD zzKK −= − θθρ , for the same 

0dz  where 2K and 3K are positive constants, 

due to the fact that ( )θρGCD  increases as ( )
03 du zzK −θ increases. 

 

 
Figure 2-8. Closest Point on Circle to External Point 

 

Another very useful result is that the distance from the circle to the external point 
monotonically increases as a point ( )θuz on the circle moves away in either direction from 

( )00
θuu zz = , the closest point to the external point. This also implies that both u/d ratios, 

( )θρchdl and ( )θρGCD , monotonically increase as θ  moves away from 0θ . 

 

External Point

Complex Plane

Closest Point to 
External Point
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This result suffices to prove that if the arc on the undesired circle does not contain the location 
of the global minimum solution over all πθθ 20 , ≤≤ for a fixed 

0dP , then it must occur at one 
of the vertices, and it must be the vertex that is nearest the location of the global minimum 
solution. In Figure 2-9, the minimum occurs at 1,vertexP . 
 

 
Figure 2-9. Minimum Distance Ratio Over an Arc 

 

Note that the above proof shows that the same point optimizes the two ratios considered above 
in or on the boundary of the desired circle. This is important since, when we show that the 
optimal solution for the ratio of chordal lengths must occur on the boundary of the desired 
circle, it must also be true of the ratio of GCDs. 

 

 

 

 
Complex Plane

Desired

Undesired

minimizes the undesired-to-desired ratio of chordal lengths over

Find minimum u/d ratio on encircled arc

minimizes the undesired-to-desired ratio of chordal lengths over arc

Denotes stereographic projection
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2.3.2 Proving that Minimum u/d Ratio of GCDs Occurs on the Boundary of the 
Desired SV 

Now we prove that the optimal solution must occur on the boundary of the desired SV. In all of 
the proofs above we have assumed that 

0dP can occur anywhere in or on the boundary of the 
desired SV. We now prove that it must occur on the boundary of the desired SV for a fixed 
location on the boundary of the undesired SV. (It suffices to consider a point on the boundary of 
the undesired SV due to Section 2.3.3.) Because we showed in the previous section the 
equivalence of minimizing the u/d ratio of GCDs and chordal lengths, we will prove the result 
for a ratio of chordal lengths, which is a much easier task. 

To begin, we stereographically project the SVs under consideration to the complex plane. Using 
the result of Section 2.3.1, we need only consider the following ratio of chordal lengths using 
(4): 
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rdu
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zRzz
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zzR
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zzR

PPD
PPD

+−

+−
=
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−
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    (14) 

 

Since the term 224 rzR + is a constant due to rz  being the fixed location of the desired radio, 
this implies that if we wish to minimize the u/d ratio over a region in the complex plane, we 
should solve the problem 

22, 4 urd

du

zz zRzz

zz
Min

du +−

−
    (15) 

 

For a fixed point 
0uz  of the projected undesired SV, we have to determine if 

22
0

0

4 urd

du

z
zRzz

zz
Min

d +−

−     (16) 
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occurs on the boundary of the projected desired SV in the complex plane, which would greatly 
simplify the problem. The variable dz must be considered over the boundary and interior of the 
projected desired s-polygon or s-circle. It would be convenient to use the Minimum Modulus 
Principle [8] to show that the minimum occurs on the boundary and not in the interior, but the 
Minimum Modulus Principle applies only to analytic functions (i.e., differentiable functions of a 
complex variable). The function to be minimized is not analytic because the aircraft can be 
anywhere in the desired s-polygon or s-circle, and thus it can be directly over the desired radio 
site, which means that rd zz − , the denominator, can be zero if the radio site is within the SV. 
To resolve this problem, we can invert the expression and find 

 

du

urd

z zz

zRzz
Max

d −

+−

0

0

224
    (17) 

Since 
22

0
4 uzR + is a positive constant, we denote it by K so that the maximization problem 

becomes 
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z zz
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−
=

−
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and thus K can be effectively ignored in the maximization. The function 

 

0
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r

zz
zzzg

−
−

=     (19) 

 

is an analytic function in and on the projection of the desired s-polygon or s-circle. Therefore, 
the Maximum Modulus Principle [8] can be used, which says that 

 

0

)(
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r

zz zz

zz
MaxzgMax

−

−
=     (20) 

 

occurs on the boundary of the projection of the desired s-polygon or s-circle. 
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This proves that for a fixed 
0uz  in the projection of an undesired s-polygon or s-circle, the 

maximum of )(zg in and on the desired s-polygon or s-circle occurs on the boundary of the 
projection of the desired s-polygon or s-circle. Therefore, for fixed 

0uz  the minimum of the u/d 
ratio of chordal lengths occurs on the boundary of the projection of the desired SV and hence on 
the boundary of the desired s-polygon or s-circle. In addition, for fixed 

0uz the u/d ratio of GCDs 
also takes its minimum on the boundary of the desired s-polygon or s-circle, since both ratios 
have the same minimum solution as shown in Section 2.3.1. Since 

0uz  was arbitrary, we can 
state that the u/d ratio of GCDs takes its minimum on the boundary of the desired SV. 

Appendix A shows that the results of this section also apply to ratios of “slant ranges,” 
mentioned earlier. 

2.3.3 Proof that the Minimum u/d Ratio of GCDs Occurs on the Boundary of the 
Undesired SV 

We have shown that the minimum u/d ratio occurs on the boundary of the desired SV. Now we 
prove that it also occurs on the boundary of the undesired SV. As in the previous section, we 
will prove that the result for the u/d ratio of chordal lengths, and we will also work with the 
inverted u/d ratio or d/u ratio. We will prove the result first for an s-circle and then for an 
s-polygon. 

2.3.3.1 Proof that the Minimum u/d (Maximum d/u) Distance Ratio of Chordal 
Lengths Occurs on the Boundary of the Undesired s-Circle 

We begin by letting 
0dP  be any fixed point of the desired SV. We use the equations in Appendix 

D to rotate the undesired s-circle so that its center is at the South Pole. To maintain the same 
geographical relationships with the undesired s-circle, 

0dP  and rP  (the location of the desired 
GR) undergo the same rotation. 

Then we stereographically project the undesired s-circle and desired SV to the complex plane. 
The d/u ratio of chordal lengths can be expressed using (4) and simplified as: 
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Let 
0dz  be the projection of 

0dP  and rz  be the projection of rP . We note that 
0dz  lies outside 

the projection of the rotated undesired s-circle, as shown in Figure 2-10. 
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Since rz  is fixed, 
2

24 rzR +  is a constant. We will show that the maximum of the following 

expression occurs on the boundary of the projection of the undesired s-circle, where uz  is any 
point in or on the projection of the undesired s-circle: 

 

    
0

0

224

du

urd

z zz

zRzz
Max

u −

+−
   (22) 

 

As Figure 2-10 shows, for any point int,uz  in the interior of the projection of the undesired 

s-circle, there is always a point Buz ,  on its boundary that is closer to the external point 
0dz . 

Thus, we see that int,, uBu zz >  and 
00 int,, dudBu zzzz −<− . It follows then that for any int,uz  

there exists a Buz ,  such that 

00 int,

2
int,

2

,

2
,

2 44

du

u

dBu
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zz

zR

zz

zR

−

+
>

−

+
 

 

Because 
0dz  and rz  are fixed, this establishes that the solution of (22) occurs on the boundary 

of the projection of the undesired s-circle. Since 
0dP  was picked as any point of the desired SV, 

thus making 
0dz  an arbitrary point of the projection of the desired SV, we conclude that the 

maximum d/u ratio or the minimum u/d ratio occurs on the boundary of the undesired s-circle. 
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Figure 2-10. Illustration of Proof that Minimum Occurs on Undesired Circle, and Not in its 

Interior 

 

2.3.3.2 Proof that the Minimum u/d (Maximum d/u) Distance Ratio of Chordal 
Lengths Occurs on the Boundary of the Undesired s-Polygon 

Now assume that the undesired SV is an s-polygon and that 
0dP  is the point of the desired SV 

and 
0uP  is the point of the undesired SV that minimize the u/d ratio of chordal lengths on the 

sphere. Further assume that 
0u

P  is an interior point of the undesired s-polygon. 

Then the great circle that connects 
0dP  and 

0uP  must intersect one of the sides of the s-polygon. 

Let the vertices of this side be 
1vP  and 

2vP . Rotate the great circle on which the s-polygon side 

lies to the equator so that 
0dP  is in the northern hemisphere. Apply the same rotation to 

0dP , 

0uP , and rP . Then stereographically project the great circle and the points 
0dP , 

0uP  and rP  to 
the complex plane. The projection of the great circle is a circle centered at the origin in the 
complex plane and 

0dz  lies outside the circle. Thus, we obtain the configuration of Figure 2-11. 

 

 Complex Plane

(0,0)
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Figure 2-11. Illustration of Proof that Minimum Occurs on Undesired Polygon, and Not in 

its Interior 

 

We work with the d/u ratio as in the previous section, starting with (21). Since rz  is fixed, 
224 rzR +  is a constant. Thus, the solution 

0dz , 
0uz  that minimizes the u/d ratio would 

maximize the d/u ratio: 
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Now let Buz ,  be the intersection of the line connecting 
0uz  and 

0dz  with the arc 
1vz , 

2vz . Using 

the reasoning of the previous section, 
000, dudBu zzzz −<−  and 

0, uBu zz > , so 
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 Complex Plane

(0,0)

Denotes stereographic projection



 

2-20 

 

This contradicts the assumption that 
0uz  maximizes (23). Therefore, 

0uz  cannot lie in the 
interior of the projection of the undesired s-polygon but must lie on its boundary. This implies 
that 

0uP  cannot be in the interior of the undesired s-polygon but must be on its boundary. Thus, 
we conclude that the minimum u/d ratio of chordal lengths occurs on the boundary of the 
undesired s-polygon. 
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3 Minimizing u/d Ratios for Air-to-Air Communications 
There are four cases to consider: air-to-air, ground-to-air, air-to-ground, and ground-to-ground. 
In this section we present only the air-to-air case, which is the most difficult to analyze because 
neither the interference source nor the interference victim has a fixed location. The concepts 
and procedures developed for the air-to-air case have been adapted to the other three cases 
involving the ground radio and are presented in Section 4.0. 

Because there are two variable points, the location (latitude and longitude) of the aircraft in the 
desired service volume and the location of the one in the undesired service volume, the 
optimization problem can potentially become one of trying to minimize a function of four 
variables. However, we will show that the problem can always be reduced to minimizing a 
function of a single variable. In order to convert the four-dimensional minimization problem 
into a one-dimensional minimization problem, some useful results must first be developed.  

The construction shown in Figure 3-1 in the complex plane is useful for our application. When 
the desired and undesired SVs are s-circles, the minimization is performed over the entire 
boundaries of both circles. In the complex plane, we define the Desired Containment Arc as the 
arc on the undesired circle subtended by the central angle of the undesired circle whose sides 
are tangent to the desired circle. The Desired Containment Arc is so named because the sides of 
its defining central angle “contain” the desired circle. Appendix C shows how to find the lines 
forming the central angle of the undesired circle that subtends the Desired Containment Arc. A 
feature of the Desired Containment Arc is that a line drawn from any selected point on the 
boundary of the desired circle to the center of the undesired circle will intersect it. The point of 
intersection is, in fact, the closest point on the undesired circle to the selected point on the 
desired circle. Any line drawn from anywhere on the boundary of the desired circle to any point 
on the undesired circle external to this arc will not pass through the center of the undesired 
circle. 
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Figure 3-1. Desired Containment Arc 

 

For the case where the desired and undesired service volumes are both s-circles, it was shown 
previously (see Figure 2-8) that for each fixed point 

0dz on the desired circle, the point 
0uz on 

the undesired circle that minimizes the ratio of chordal lengths, lies on the line connecting 
0dz  

with the center of the undesired circle. It is the intersection of this line with the undesired 
circle. Thus, because the center of the undesired circle is at the origin of the complex plane as 
shown in Figure 3-1, uz is a constant equal to the radius of the circle. Also, recall that because 

of collinearity udud zzzz −=− . Under these conditions and using (6) and (8), (6) can be 
simplified to the following minimization problem, on the right hand side, of one complex 
variable dz : 
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(Note that using the result of Section 2.3.1, the original problem involving a ratio of GCDs has 
been reduced to one involving a ratio of distances in the complex plane.). Since dz lies on a 
circle, it can be parametrized in terms of the angle formed by the radius of the circle of which it 
is an endpoint and the horizontal radius to the right of the center (see Figure 3-2). 

Thus, minimization problem (24) can be further simplified so that the minimization can be 
done with respect to a single real variable. Therefore, solving problem (24) is just a matter of 
minimizing over the angle corresponding to points on the desired circle. Note that the angle is 
now associated with the desired circle rather than with the undesired circle as in our previous 
discussion. This is further discussed in the following section. 

3.1 Two s-Circles 
There are two cases to consider in this situation: the desired radio site is at the center of the 
desired s-circle, and the desired radio site is not at the center of the desired s-circle. This 
section discusses the latter case. The former case can be performed in a much simpler manner 
based on finding the minimum GCD between the two s-circles, which is described in Section 5.1. 

For the latter case, the undesired s-circle is rotated to the South Pole (see Appendix D) and then 
projected to the complex plane to obtain the configuration of Figure 3-1. The desired s-circle 
and the desired radio site location undergo the same rotation, and then the procedure in 
Appendix B is used to find the center and radius of the desired circle’s projection in the complex 
plane. The transformed desired radio site location is also projected to the complex plane. As 
just discussed, we need only find the solution to (24) to solve (6), and (5) and (6) have the same 
solution as shown in Section 2.3.1. Thus, solving (24), involving a ratio of distances, solves (5), 
involving a ratio of GCDs, which is the problem we set out to solve. Figure 3-2 shows the 
configuration used to minimize the u/d ratio. 
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Figure 3-2. Configuration for Air-to-Air u/d Ratio Minimization (Two s-Circles) 

 

The u/d ratio can then be expressed using (24) as follows: 
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The single complex variable dz  has been parametrized in terms of the angle θ  corresponding 
to points on the desired circle as shown in equation (25) and in Figure 3-2. As discussed in the 
previous section, finding the minimum u/d ratio over all ( )du zz ,  is just the problem of 
minimizing (25) with respect to θ . This can be done using the Newton-Raphson method [9]. 
Thus, the fact that the minimization can be done over a single real variable is a great 
simplification. 
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3.2 s-Circle and s-Polygon 
In minimizing the u/d ratio when dealing with two different types of service volumes, namely 
an s-circle and an s-polygon, there are two scenarios to consider: (i) the s-polygon is the desired 
service volume; and (ii) the s-circle is the desired service volume. The procedure for finding the 
minimum u/d ratio for a side of the s-polygon is described below. The minimum ratio is found 
for each side and the minimum of those minima is the solution for the entire problem. 

3.2.1 Desired s-Polygon and Undesired s-Circle 

Minimizing the u/d ratio in this case is very similar to the two s-circle case covered in 
Section 3.1. The difference is that instead of having an entire circle for the desired SV, we have 
the arc of a circle, which is the projection of an s-polygon side, as shown in Figure 3-3. (The 
desired circle of Figure 3-3 is in actuality the projection of a great circle and thus would include 
the origin of the complex plane in its interior. Figure 3-3 does not show the desired circle 
containing the origin of the complex plane in order to more clearly show the details of the 
desired arc and its associated angles.) In order to determine the θ  interval for the arc, the 
Cartesian coordinates ( )aa yx ,  and ( )bb yx ,  of the endpoints of the projected side of the s-
polygon as shown in Figure 3-3 are used to find the angles baii ,, =θ  by means of the following 
equation: 

bai
s

hxCos
d

di
i , ,1 =







 −
= −θ     (26) 

where ds is the radius of the desired circle. 

As in the two s-circle case, the problem is to minimize the expression shown in (27), which is 
the same as (25) since collinearity holds for all points on the arc, but now where the angle θ  is 
restricted to lie between the angles aθ  and bθ . 
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( )( ) ( )( ) ba

drddrd
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ud

syksxh

zsksh
zz
zz

zz
zz

θθθ
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=

−
−

=
−
−

   ,
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22
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  (27) 
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Figure 3-3. Configuration for Air-to-Air u/d Ratio Minimization (Desired s-Polygon, 

Undesired s-Circle) 

 

If the optimal solution to (27) is found to lie outside of the interval ba θθθ ≤≤ , then as shown 
previously using Figure 2-9, the optimal solution must be at one of the endpoints, 
corresponding to either aθ  or bθ . Each one must be checked to determine which one provides 
the smaller value for the right hand side of (27). 

3.2.2 Desired s-Circle and Undesired s-Polygon 

There are two cases to consider in this situation: the desired radio site is at the center of the 
desired s-circle, and the desired radio site is not at the center of the desired s-circle. This 
section discusses the latter case. The former case can be performed in a much simpler manner 
based on finding the minimum GCD distance between the desired s-circle and the undesired 
s-polygon and is described in Section 5.2. 

The case described now is more complicated than the cases discussed in Sections 3.1 and 3.2.1 
because the collinearity condition ( udud zzzz −=− ) enabling a simplification of the 
minimization process is no longer guaranteed for every point on the desired circle. Figures 3-4 
and 3-5 show the projections from the sphere to the complex plane of the desired s-circle and 
one side of the undesired s-polygon. The projection of a side of the undesired s-polygon will be 
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referred to as an “undesired arc.” This undesired arc would be on a circle (a projection of the 
great circle upon which the s-polygonal side lies) in the complex plane. To center this circle at 
the origin of the complex plane, the spherical center (see Appendix D) of the great circle on the 
sphere is rotated to the South Pole, using the rotation equations in Appendix D. The center of 
the desired circle and the desired radio site location undergo the same rotation before being 
projected. There are four cases to consider: (i) the undesired arc completely overlays the 
Desired Containment Arc so that it is equal to it or overextends it on one or both sides; (ii) the 
entire undesired arc lies on the Desired Containment Arc as a subarc, i.e., neither endpoint of 
the undesired arc coincides with an endpoint of the Desired Containment Arc; (iii) no portion of 
the undesired arc lies on the Desired Containment Arc; (iv) the undesired arc lies partly on the 
Desired Containment Arc. 

The first case is easily solved, since a line connecting any point dz on the desired circle with the 
origin of the undesired circle would intersect the portion of the undesired arc overlaying the 
Desired Containment Arc. Thus, there would always be a point uz  on the undesired arc that is 

collinear with dz , which together with dz  would minimize the u/d ratio. Therefore, the 
solution is found as in Section 3.1 by minimizing (25). 

3.2.2.1 Undesired Arc Lies on the Desired Containment Arc 
In order to determine the location of the undesired arc with respect to the Desired Containment 
Arc (see Figure 3-4), the intersections ( ) 2,1,, =iyx ii  with the undesired circle of the (dashed) 
lines through the origin of the complex plane (the undesired circle’s center) and the endpoints 
of the undesired arc must be found. The method used to find these intersection points is 
provided in Appendix E. Figure 3-5 shows there are two arcs, highlighted by dashes, of the 
desired circle for which the collinearity condition can be used. The endpoints of these arcs are 
found as the intersection points with the desired circle of the sides of the central angle of the 
undesired circle that subtends the undesired arc. To each endpoint ( ) 2,1,, =iyx ii of the 

undesired arc, there correspond two intersection points on the desired circle ( ) 2,1,, ,, =jyx jiji . 
The method to find these intersection points is provided in Appendix F. The corresponding 

2,1;21,, == j,ijiθ  are found using equation (26) with iθ replaced by ji,θ  and ix  replaced by jix , . 

 



 

3-8 

 

 
Figure 3-4. Configuration for Air-to-Air u/d Ratio Minimization (Desired s-Circle, 

Undesired s-Polygon) With Undesired Arc Intersections 

 

Since the entire desired circle must be considered, points outside the intervals ( )1,21,1 ,θθ  and 

( )2,12,2 ,θθ  shown in Figure 3-4 must also be considered as viable candidates for minimizing the 

u/d ratio. As shown in Figure 3-5, when the point 
0dz falls outside the arcs of the desired circle 

where the collinearity condition applies, the point on the undesired circle that is collinear with 

0dz  and minimizes the u/d ratio for 
0dz  is ( )

00 duu zzz = , which is not on the undesired arc. As 

shown before, the u/d ratio for a given 
0dz  monotonically increases as a point moves away from 

0uz , so its minimum value on the undesired arc would be attained at 1,,vertexuz , the closest 

endpoint of the undesired arc to 
0uz . 
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Figure 3-5. Configuration for Air-to-Air u/d Ratio Minimization (Desired s-Circle, 

Undesired s-Polygon) With Collinearity Condition Identification 

 

This leads to the following procedure for finding the solution that minimizes the u/d ratio for 
points of the desired circle whose closest points on the undesired circle do not lie on the 
undesired arc (i.e., collinearity can’t be applied). Referring to Figure 3-5, for points on the 
desired circle between ( )1,21,2 , yx  and ( )2,22,2 , yx  use 2,,vertexuendpt zz = as the endpoint, and for 

points between ( )2,12,1 , yx  and ( )1,11,1 , yx  use 1,,vertexuendpt zz = . The optimization problem for 
these two instances is then formulated as 

 

( )( ) ( )( )
( )( ) ( )( )22
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rddrdd
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endptd
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=

−
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Thus, again, to find the solution requires minimizing a function of a single variable, which can 
be done using the Newton-Raphson method. 

To summarize the procedure for the case where the entire undesired arc lies on the Desired 
Containment Arc as a subarc, there are four minimization sub-problems that must be solved: 
problem (28) over the arc counterclockwise from ( )1,21,2 , yx  to ( )2,22,2 , yx  using 2,vertexuendpt zz =  

and again over the arc counterclockwise from ( )2,12,1 , yx  to ( )1,11,1 , yx  using 1,vertexuendpt zz = ; 

problem (27) over the highlighted arc from ( )1,11,1 , yx  to ( )1,21,2 , yx  and again over the 

highlighted arc from ( )2,22,2 , yx  to ( )2,12,1 , yx . The minimum of the solutions from these four sub-
problems is then selected as the solution for the polygon side under consideration. 

3.2.2.2 Undesired Arc External to the Desired Containment Arc 
Now consider the case where the undesired arc lies entirely outside the Desired Containment 
Arc, as shown in Figure 3-6. 

 

 
Figure 3-6. Undesired Arc Does Not Lie on Desired Containment Arc 
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Figure 3-6 illustrates that the same argument as above can be used to show that the optimal 
solution must be of the form ( )dendpt zz , . The endpoint closest to the Desired Containment Arc is 
selected and the optimization problem (28) above is solved with πθ 20 ≤≤  to provide the 
solution for the polygon side under consideration. 

3.2.2.3 Undesired Arc Lies Partly on the Desired Containment Arc 
If the undesired arc partially overlays the Desired Containment Arc as shown in Figure 3-7, 
then the portion of the desired circle corresponding to that overlaying section of the undesired 
arc is where the collinearity condition holds. Therefore, for the highlighted portion of the 
desired circle between ( )1θdz  and ( )2θdz , the expression in (27) must be minimized over the 
interval 21 θθθ ≤≤ . 

 

 
Figure 3-7. Undesired Arc Partially Lies on Desired Containment Arc and Partially 

Outside It 
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Because the entire desired circle must be considered, points outside the highlighted portion of 
the desired circle also must be considered. On the undesired arc, 1vertexz  being on the Desired 

Containment Arc, is the closest point to ( )
0du zz  corresponding to any 

0dz on the non-
highlighted portion of the desired circle. Thus the minimization problem (28) is solved using 

1vertexz  as the endpoint over the interval 12 θθθ ≤≤ . The minimum of the solutions to (27) and 
(28) is selected as the solution for the polygon side under consideration. 

3.2.3 Desired s-Polygon and Undesired s-Polygon 

For the case where both SVs are s-polygons, the optimization procedure must be applied to 
each pair of sides, one side from the desired s-polygon and the other side from the undesired 
s-polygon. Thus, we are always dealing with great circles. In all cases the center of the great 
circle containing the side under consideration of the undesired s-polygon is rotated to the South 
Pole. When these same rotation equations are applied to the great circle containing the side 
under consideration of the desired s-polygon, the two new vertices of that side may have the 
same longitudes. Thus, when that side is projected to the complex plane, we obtain a straight 
line instead of a circle. This case is covered in Section 3.3. 

The case of two s-polygons is treated in a manner similar to the case of a desired s-circle and an 
undesired s-polygon discussed in Section 3.2.2. The difference is that the desired s-circle is 
replaced by the arc of a great circle as shown in Figure 3-8 after projection to the complex 
plane. The same four relationships described in Section 3.2.2 that can occur between an 
undesired arc and a desired circle can occur also between an undesired and a desired arc. 
Collinearity can be used where the central angle of the undesired circle that subtends the 
undesired arc (the undesired central angle) and the central angle of the undesired circle that 
subtends the desired arc (the desired central angle) overlap. Where collinearity cannot be used, 
the vertex of the undesired arc closest to the desired arc is used in the u/d ratio to be 
minimized. Figure 3-8 shows an example of the case that is similar to case (iv), identified in 
Section 3.2.2, and shown in Figure 3-7. 

To find the solution, the u/d ratio (27) is minimized over the interval 2,2θθθ ≤≤a , where 

collinearity holds, and the minimization problem (28) is solved over the interval bθθθ ≤≤2,2  

using 1,,vertexuz , where collinearity does not hold. The angles aθ , 2,2θ , and bθ are defined with 

respect to ( )dd kh , (see Figure 3-3). For each minimization problem, the endpoints of the 
interval over which the minimization is performed must be checked whenever the derivative 
has no zero value in the interval. From the solutions obtained from minimization problems (27) 
and (28), the smaller one is selected as the solution for the side under consideration. The 
minimum u/d ratio is found for each pair of sides, and the minimum of these minima is the 
solution to the entire problem. 
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Figure 3-8. Desired Central Angle and Undesired Central Angle Overlap 

 

3.3 Projection of a Side of Desired SV is a Straight Line 
In this case, we assume that after the great circle on which the undesired arc lies has been 
rotated to the equator, the side under consideration of the desired s-polygon, after undergoing 
the same rotation, lies along a meridian. This means that the two vertices of the desired 
s-polygon side have the same longitudes, and the great circle containing this side passes 
through both Poles. A stereographic projection of this side would be a straight line segment in 
the complex plane passing through the origin of the complex plane as shown in Figure 3-9. 
Figure 3-9 shows the case where the desired line segment falls within the central angle of the 
undesired arc. 
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Figure 3-9. Side of Desired s-Polygon Projects as Straight Line Segment on Line 

Intersecting Undesired Arc 

 

The endpoints of the desired line segment are easily obtained as the stereographic projection of 
the endpoints of the great circle arc segment shown in Figure 3-9, whose latitudes and 
longitudes are known. Since the line segment is on a line passing through the origin of the 
complex plane, any point on the line segment can be expressed as di

dd esz θ= where ds is 

variable and bounded by the magnitudes of the endpoints of the line segment, and dθ is a 
constant since a vector from the origin to any point along the line segment makes the same 
angle with the real axis of the complex plane. For any point dz on the line segment, the point on 

the undesired arc that minimizes the u/d ratio is the point 
0uz  which is the intersection of the 

line through the origin containing the desired line segment with the undesired arc. Since the 
collinearity condition applies, the undesired distance can be expressed as 

0ud zz −  = ud Rs − , 
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where uR is the radius of the undesired circle. The desired distance can be expressed as 

( )rdrdrd
i

r
i

drd sssseseszz rd θθθθ −−+=−=− cos222 . Thus, we must solve the problem 

( ) 2,1,22
,

cos2
endptddendptd

rdrdrd

ud

s
zsz

ssss

Rs
Min

d

≤≤
−−+

−

θθ
              (29) 

 

The minimization would be performed over the single variable ds , since all the other variables 
are constant, and can be implemented using the Newton-Raphson method. 

All of the above also applies in the case when there is an undesired s-circle instead of an 
undesired s-polygon, the center of the undesired s-circle is rotated to the South Pole, and the 
side under consideration of the desired s-polygon undergoes the same rotation and lies along a 
meridian. 

Figure 3-10 shows the case where the desired line segment falls outside the central angle of the 
undesired arc. In this case the endpoint on the undesired arc closest to 

0uz  is selected to solve 
the minimization problem 

( )
( ) 2,1,22

11
2

1
2

,
cos2

cos2
endptddendptd

rdrdrd

endptdendptdendptd

s
zsz

ssss

ssss
Min

d

≤≤
−−+

−−+

θθ

θθ
 (30) 

 

As before the minimization would be performed over the single variable ds , since all the other 
variables are constant, and Newton-Raphson would be applied. 

Note that in both problems (29) and (30), the minimization is applied to the ratio of chordal 
lengths; however, the solution obtained is also the solution to the problem where the ratio of 
chordal lengths is replaced with the ratio of GCDs, which is what we really desire to minimize. 
The proof provided in Section 3.0 can be shown to apply to this case where the projected 
desired side is a straight line segment. 
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Figure 3-10. Side of Desired s-Polygon Projects as Straight Line Segment on Line Not 

Intersecting Undesired Arc 
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4 Minimizing u/d Ratios for Ground-to-Air, Ground-to-
Ground, and Air-to-Ground 

This section covers the u/d ratio for the cases where the ground radio either transmits the 
interfering signal or it is the victim of the interfering signal. 

4.1 Ground-to-Air 
The ground-to-air case shown in Figure 4-1 covers the situation where a radio at a ground site 
supporting a given SV A causes interference with an aircraft flying in a different SV B because 
SV A and SV B are cochannel. In this instance, the undesired signal is from the ground radio. 
Figure 4-2(a) shows the footprint associated with Figure 4-1 including the desired and 
undesired GCDs. This case falls under the case of an undesired s-circle and a desired s-circle, 
where the undesired s-circle has decreased to a circle of radius zero, i.e., it is just a point. 
Figure 4-2(b) shows the stereographic projection to the complex plane for this case, where it is 
assumed that the location of the undesired GR has been rotated to the South Pole. For the case 
of a desired s-polygon, the projection of a side would be the arc of a circle. In the case of a 
desired s-circle, the minimum u/d ratio can be found as a solution to (25) with .0=uz  For a 

desired s-polygon, the minimum u/d ratio for a given side is the solution to (27) with .0=uz
The minimum for all sides is then the solution. 

 

 
Figure 4-1. Ground-to-Air Case 
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Figure 4-2. Footprint and Stereographic Projection for Ground-to-Air Case 

 

4.2 Air-to-Ground 
The air-to-ground case shown in Figure 4-3 covers the situation where an aircraft in SV B 
causes interference to a radio site supporting SV A because SV A and SV B are cochannel. 
Figure 4-4(a) shows the footprint associated with Figure 4-3 including the desired and 
undesired GCDs. Figure 4-4(b) shows the stereographic projection to the complex plane. In this 
case the ground radio for SV A is trying to receive a signal from an aircraft in SV A, but is being 
interfered with by a signal from an aircraft in SV B. In this case the u/d ratio always has the 
same numerator, which is the undesired chordal length between the point 

0uz on the undesired 

circle and rz . This is because 
0uz is collinear with rz  and the center of the undesired circle, and 

therefore is the point where the undesired chordal length is the smallest (see Figure 2-9). It will 
never change because the radio site rz  is fixed. Notice that the center of the desired circle is at 
the origin of the complex plane (because we rotated the center of the desired s-circle to the 
South Pole), instead of the center of the undesired circle as in all the previous cases. This is 
done to simplify the minimization of the u/d ratio of chordal lengths, which can be expressed as 
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The terms ru zz −
0

, 
22

0
4 uzR + , and 224 dzR + are all constants, and R is the radius of 

the sphere from which the projection is done. The latter term is a constant because dz is a point 
on a circle with center at the origin of the complex plane. Therefore, the problem becomes one 
of minimizing the expression
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This is equivalent to solving the problem 

 

( )( ) ( )( )22 sincos rdrdrd
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  (32) 

 

which has the solution πθ +







= −

r

r

x
yTan 1 . This corresponds to the point on the desired circle 

which is farthest from rz . 

 



 

4-4 

 

 
Figure 4-3. Air-to-Ground Case 

 

 

 
Figure 4-4. Footprint and Stereographic Projection for Air-to-Ground Case 
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In the above examples the SVs are s-circles. The same procedure can be applied to an s-circle 
and an s-polygon or to two s-polygons since the projection of an s-polygon side lies on a circle 
in the complex plane. The procedure must be applied to each of the sides of an s-polygon, and 
for each projected side the optimization would be restricted to an arc of the circle rather than to 
the entire circle. If the undesired projection is an arc, then 

0uz would be replaced by the closest 

point on the undesired arc to rz  to compute the minimum undesired chordal length. 

4.3 Ground-to-Ground 
The ground-to-ground case is shown in Figure 4-5. Figure 4-6(a) shows the footprint associated 
with Figure 4-5 including the desired and undesired GCDs. Figure 4-6(b) shows the 
stereographic projection to the complex plane. This case represents another instance where the 
center of the desired circle is at the origin of the complex plane because the center of the 
desired s-circle is rotated to the South Pole. The minimum u/d ratio in this case can be found by 
applying the formulation for the air-to-ground case and using (31) where rBrA zz −  is used in 

place of ru zz −
0

and 224 rBzR + is used in place of 
22

0
4 uzR + . Note that rBrA zz −  can 

be easily computed because the coordinates of the two radio sites are provided. If the desired 
SV is an s-polygon, then each side must be projected to obtain an arc in order to generate the 
solution, and the optimization of (32) is restricted to the arc. The maximum over all the 
solutions of (32) for each side is the solution. 

 

 
Figure 4-5. Ground-to-Ground Case 
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Figure 4-6. Footprint and Stereographic Projection for Ground-to-Ground Case 
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5 Minimizing Great-Circle Distance between s-Objects 
Minimizing the GCD between the footprints on the sphere of two s-objects is a relatively easy 
task in comparison to minimizing the u/d ratio. We will discuss minimizing the GCD in the 
following sections between two s-circles, an s-circle and an s-polygon, and two s-polygons. 

There are two basic applications that require finding the minimum GCD between s-objects. The 
first is in minimizing the u/d ratio in the case of a desired s-circle with the radio site at its 
center and an undesired s-polygon as mentioned in Section 3.2.2, and the second is to 
determine whether adjacent channels can be used in a pair of SVs based on the minimum GCD 
between them. In the current system, if the minimum GCD between two service volumes is less 
than 0.6 nmi, then their assignments must be separated by at least two channels. This rule, to 
prevent adjacent-channel interference (ACI), is referred to as the adjacent-channel assignment 
rule. 

The reason why minimizing the GCD between service volume footprints on the sphere applies 
to the first application is the following. In the case where the radio site is at the center of the 
desired s-circle, the denominator of the u/d ratio is a constant equal to the radius of the s-circle, 
and thus minimizing the u/d ratio requires only minimizing the undesired GCD. 

5.1 Minimizing Great-Circle Distance between Two s-Circles 
Figure 5-1 shows finding the minimum GCD between two s-circles of a given radius. In this case, 
it is not necessary or helpful to perform a stereographic projection. The minimum GCD is easily 
obtained by computing the GCD between the centers of the two s-circles and subtracting the 
two radii. Thus the minimum GCD between the circles 1C and 2C would be computed as 

 

( ) ( ) ( )( ) 21212,1
2,2,1,1, rrLonLatLonLatGCCGMin

BdryCBdryC
−−=   (33) 
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Figure 5-1. GCD Between Two s-Circles 

 

5.2 Minimizing Great-Circle Distance Between Two s-Polygons and 
Between an s-Circle and an s-Polygon 

The approach for minimizing the GCD between two s-polygons is based on the fact that any two 
great circles intersect as shown in Figure 5-2. It can be seen that the GCD between the two great 
circles is monotonic as one moves away from the point of intersection in either direction. For 
great-circle arcs, Figure 5-3 illustrates that the minimum occurs at an endpoint of one of the 
arcs, and would be the shortest distance between an endpoint of one of the arcs and the other 
arc. We have developed a very efficient point-to-arc algorithm, explained in the next section, to 
determine the minimum distance between a point external to an arc of a great circle and that 
arc. Given that procedure and given any two arcs of great circles, an approach to finding the 
minimum distance between the arcs would be the following. Using the point-to-arc algorithm, 
find the minimum distance between each endpoint of each arc and the other arc. The smallest 
of these four minimum distances would be the minimum GCD between the two arcs. If it is 
found that no shortest GCD arc from any endpoint of either arc intersects the other arc, then the 
shortest GCD would occur between a pair of endpoints from the two arcs as shown in 
Figure 5-4. 
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To find the minimum GCD between two s-polygons, the minimum GCD from each side (arc) of 
one of the s-polygons is found to the other s-polygon, and then the GCD from each side of the 
other s-polygon is found to the first s-polygon. The minimum of the GCDs over all pairs of sides 
of the two s-polygons is the solution.  

The approach to find the minimum GCD between an s-circle and an s-polygon also relies on the 
point-to-arc algorithm. In this case the shortest GCD from the center of the circle to each side of 
the s-polygon is found, and the radius of the s-circle is subtracted. The smallest of these 
minimums is the solution. 

 

 
Figure 5-2. Intersecting Great Circles 
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Figure 5-3. Shortest GCD between Arcs of Great Circles 

 

 
Figure 5-4. Minimum GCD Occurs at Endpoints 
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5.3 Point-to-Arc Algorithm 
Figure 5-5 shows the constructs used to determine the minimum GCD from a fixed point 
( )000 ,, zyx  to the side of an s-polygon, where the side is a great circle arc between the points 
( )111 ,, zyx  and ( )222 ,, zyx . There are two cases to consider that are described in this section.  

The first case is when ( )000 ,, zyx  lies on the great circle of the polygon side. Then either it lies 
on the polygon side or outside of it. In the first instance, the minimum GCD is zero, and in the 
second instance, the minimum GCD is the minimum of the GCDs from ( )000 ,, zyx  to ( )111 ,, zyx  
and ( )222 ,, zyx . 

 

 
Figure 5-5. Construct for Finding Minimum GCD from Fixed Point to Side of s-Polygon 

 

In the second case, the problem can be posed as the problem of finding the point ( )vvv zyx ,, on 
the chord connecting ( )111 ,, zyx  and ( )222 ,, zyx  for which planes A and B are orthogonal. Once 
found, this point is projected along a vector from the origin of the sphere to the point 

( )vvv zyx ηηη ,, on the surface of the sphere where 
222

1

vvv zyx ++
=η . The procedure for 

determining if two planes A and B are orthogonal is to find the normal vectors AV and BV  to the 
planes and then require that these vectors be orthogonal. Two non-parallel vectors lying in 
plane A are the vectors from ( )0,0,0  to ( )000 ,, zyx  and from ( )0,0,0  to ( )vvv zyx ,, ; and two 
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non-parallel vectors lying in plane B are the vectors from ( )0,0,0  to ( )111 ,, zyx  and from ( )0,0,0  
to ( )vvv zyx ,, . Thus, AV  can be determined using the cross product as: 

( )000000   ,  , yxyxzxzxzyzyV vvvvvvA −−−= ; 

and BV  also can be determined using the cross product as: 

( )122112121221   ,  , yxyxxzzxzyzyVB −−−=  

We want to determine ( )vvv zyx ,,  such that: 

 

0=• BA VV      (34) 

where ""•  is the dot or scalar product. 

Equation 34 can be written as: 

 

( ) ( ) ( ) 0300200100 =−+−+− KyxyxKzxzxKzyzy vvvvvv  (35) 

where 

 

12213

12122

12211

yxyxK
xzzxK
zyzyK

−=
−=
−=

    (36) 

Note that  , , 21 KK and 3K  are constants. 

There are three variables in equation 35: vv yx   , , and vz . However, because these are 
coordinates of a point to be determined that lies on a straight line in 3-space, we can determine 
any two variables in terms of the third. We chose to determine vx  and vz  in terms of vy . The 
relevant equations for doing this are 

12

12

1

1

yy
xx

yy
xx

v

v

−
−

=
−
−

    (37) 

 

12

12

1

1

yy
zz

yy
zz

v

v

−
−

=
−
−

    (38) 
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Note that 12 yy −  could be zero. In that case we would chose to solve for vx  and vy  in 
terms of vz , or vz  and vy  in terms of vx , whichever one does not result in a zero 
denominator. 
From equations 37 and 38 we obtain 

( ) 111 Cymyymxx vxyvxyv +=−+=    (39) 

 

( ) 211 Cymyymzz vzyvzyv +=−+=    (40) 

where 

12

12

yy
xxmxy −

−
=  and 111 ymxC xy−=  

12

12

yy
zzmzy −

−
=  and 112 ymzC zy−=  

Equation 35 becomes 

 

[ ]( ) [ ] [ ]( ) [ ]( ) 03010220101020 =+−++−++−+ KyCymyxKCymxCymzKzyCymy vxyvvzyvxyvvzy

          (41) 

Equation 41 is an equation with the single unknown variable vy . Solving for vy , we obtain: 

 

303020201010

310220210120

KymKxKxmKzmKzKym
KCyKCxKCzKCy

y
xyzyxyzy

v −+−+−
++−−

=  (42) 

 

Once vy  is found using equation 42, equations 39 and 40 can be used to find vx and vz . If the 

point ( )vvv zyx ηηη ,,  is not found to be between ( )111 ,, zyx  and ( )222 ,, zyx , then the minimum 

GCD between ( )000 ,, zyx  and the s-polygonal arc must occur at one of the endpoints of the arc 

and thus would be computed as ( ) ( )( ) ( ) ( )( )[ ]222000111000 ,,,,,,,,,,,min zyxzyxGzyxzyxG . If 

the point ( )vvv zyx ηηη ,,  is found to be between ( )111 ,, zyx  and ( )222 ,, zyx , then the minimum 

GCD between ( )000 ,, zyx  and the s-polygonal arc would be the GCD between ( )vvv zyx ηηη ,,  and 

( )000 ,, zyx  as shown in Figure 5-5. 
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6 Conclusions 
This report has provided an efficient method, based on stereographic projection and complex 
analysis, for finding the minimum u/d ratio of GCDs between any two SVs on the sphere.  A 
proof was provided showing that the same solution provides the minimum values for u/d ratios 
of both chordal lengths and GCDs. It was also proven, using the Maximum Modulus Principle, 
that the minimum value is achieved on the boundaries of both SVs and not in their interiors. 
Further it was shown that to minimize the ratio of chordal lengths, and therefore of GCDs, 
requires only minimizing a ratio of distances in the complex plane. Thus, it is only necessary to 
find a solution for the u/d ratio of planar distances in the complex plane in order to determine 
the solution for the u/d ratio of GCDs on the sphere. 

In the complex plane the u/d ratio of distances can be expressed as a function of a single real 
variable to which the Newton-Raphson method can be applied in order to find the solution, 
requiring relatively few iterations. The result was found to be more accurate than the result 
produced by a method that performed the calculations directly on the sphere. In the case of s-
circles in a large, complex problem, the computational time was reduced by two-thirds. 

In addition this report has provided an efficient method for finding the minimum GCD between 
the footprints on the sphere of two s-objects. 

The method described in this paper to solve the problem of u/d ratio minimization has been 
incorporated into a spectrum analysis tool developed for the FAA by MITRE CAASD. Accurately 
solving this problem enables a more efficient use of the FAA’s spectral resources in the VHF A/G 
radio band. 
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Appendix A Generalization of u/d Ratio to Consider 
Vertical Distances 

Let ( )yx PPG ,  be the GCD between the two points xP and yP on the surface of the unit sphere. 
The solution that minimizes the ratio of GCDs can also be shown to minimize the following ratio 

( ) ( )
( ) ( )22

22

,

,

drd

udu

hPPG

hPPG

∆+

∆+

 
( )uuuu ZYXP ,,= , ( )dddd ZYXP ,,= , ( )rrrr ZYXP ,,=  

where uP is on the boundary of the undesired SV, dP is on the boundary of the desired SV, rP  is 

the fixed location of the ground radio, uh∆ is the vertical distance between the aircraft, and dh∆
is the vertical distance between the aircraft in the desired SV and the associated ground radio. 

We call the expression ( ) ( )22, udu hPPG ∆+ the undesired slant range and the expression

( ) ( )22, drd hPPG ∆+ the desired slant range. Figure A-1 shows the components involved in 
the slant range expressions. 

There are two aspects to determining the minimum ratio of slant ranges. The first is to show 
that the ratio of slant ranges has its minimum at the same points on the boundaries of the 
footprints on the sphere of the desired and undesired SVs as the ratio of GCDs. The second 
aspect is to determine the values of uh∆  and dh∆  that produce the minimum value of the ratio 
of slant ranges. 

To prove the first aspect select an arbitrary 
0dP , then ( )rd PPG ,

0
 is the constant 

2

2
K

(see 

equations (7) and (13) in the main body of this report). Therefore, the ratio of GCDs can be 
written as: 

    
( )
( ) ( )

0

0

0 ,
2,

,
2

du
rd

du PPGK
PPG

PPG
=    (A1) 
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Figure A-1. Slant Ranges 

 

Let 
0uP be the point on the boundary of the undesired SV that minimizes A1 for the given 

0dP . 
This means that 

( ) ( )
000

,, dudu PPGPPG ≤  uP ∀  

This further implies that 

( ) ( ) ( ) ( ) uuduudu PhPPGhPPG    ,, 2222
000

∀∆+≤∆+
 

and 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

u

drd

udu

drd

udu P
hPPG

hPPG

hPPG

hPPG
∀

∆+

∆+
≤

∆+

∆+
 

,

,

,

,
22

22

22

22

0

0

0

00

 
 

Since this result holds for arbitrary 
0dP , then we can claim that the points, uP and dP , on the SV 

boundaries where the minimum ratio of GCDs occurs are the same points where the minimum 
ratio of slant ranges occurs. 

In determining the values of uh∆ and dh∆  that would minimize the value of slant ranges, we 

want to choose the smallest possible value of uh∆  since it is in the numerator, and the largest 

 Desired SV

Undesired SV
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possible value of dh∆  since it is in the denominator. There are several cases to consider. Let 

dCL be the ceiling of the desired SV and dFL  its floor. Let uCL be the ceiling of the undesired 

SV and uFL its floor. 

The first case is when ud CLCL > as in Figure A-1 except that we allow dFL  to go down to the 

ground. Let dhx ∆=  and uu CLxh −=∆ . Note that uh∆ would not be negative since we are 

seeking to make x as large as possible and uh∆  as small as possible in absolute value. Let c and 

b be the values of uG and dG , respectively, that produce the minimum ratio of GCDs. Thus the 
ratio of slant ranges can be expressed as 

( )
22

22

xb

CLxc u

+

−+
 

If this ratio is differentiated with respect to x, the value of x that minimizes the ratio is the root 
of a quadratic equation and can be expressed as 

 

u

uuu

CL
bCLCLcbCLcb

x
2

4)()( 222222222 +−−+−−−
=  

 

Note that if dFL > uCL  and the solution for x is less than dFL , then x is set to dFL  so the 
desired aircraft remains in its SV. 

A second case is when dCL ≤ uCL  and uFL ≤ dCL . In this case if the aircraft in the desired and 

undesired SVs are at altitude dCL , then uh∆ = 0. Also, dh∆  assumes its maximum value of dCL . 

These values of uh∆  and dh∆  provide the minimum value of the ratio of slant ranges. 

A third case is when dCL < uFL . In this case if the aircraft in the desired SV is at altitude dCL  

and the aircraft in the undesired SV is at altitude uFL , then dh∆  assumes its maximum value of 

dCL  and uh∆ assumes its minimum value of uFL – dCL for this case. These values of uh∆  and 

dh∆  provide the minimum values of the ratio of slant ranges. 

 





B-1  
 

Appendix B Equations of Circles in the Complex Plane that 
are Projections of Circles on the Sphere 

Here we find the equation of the circle in the complex plane that is the stereographic projection 
of an s-circle. As shown in Figure B-1, the s-circle is the intersection of a plane with the sphere. 
Planes that pass through the center of the sphere (i.e., (0,0,R)) intersect the sphere in great 
circles. 

 
Figure B-1. s Circle Defined by Sphere and Intersecting Plane 

 

Given an s-circle, the coefficients A, B, C, D of the intersecting plane must be found. In the case of 
finding the great circle upon which a side of an s-polygon lies, the two vertices of the side and 
the center of the sphere are sufficient to find the coefficients. When dealing with circular 
service volumes, the s-circles are “small” — i.e., are intersections of planes that do not pass 
through (0,0,R) with the sphere. In this case, three points on the s-circle must be found. We will 
discuss how this is done after we discuss how to find the coefficients for the equation of the 
plane. Given the three points ),,(3 ),,,(2 ),,,(1 333222111 ZYXPZYXPZYXP on the sphere, 
compute the vectors 

)  ,  ,(32 and )  ,  ,(31 323232313131 ZZYYXXPPZZYYXXPP −−−=−−−−=−  

and take the cross product 
( ) ( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )313232313231313231323231 ,,

32  31
YYXXYYXXZZXXZZXXZZYYZZYY

PPPPn
−−−−−−−−−−−−−−−=

−×−=


then 

 

N(0,0,2R)

Complex Plane

N(0,0,2R)

Complex Plane
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( )( ) ( )( )31323231 ZZYYZZYYA −−−−−=  
( )( ) ( )( )32313132 ZZXXZZXXB −−−−−=  
( )( ) ( )( )31323231 YYXXYYXXC −−−−−=  

Since each of the points ),,(3 ),,,(2 ),,,(1 333222111 ZYXPZYXPZYXP lies in the plane, D can be 
found by inserting any one of these points into the equation of the plane, where the coefficients 
A, B, C have been determined as components of the cross product. 

To find three points on a small s-circle, the most convenient approach is to choose points that 
share longitudes with the center of the s-circle or are directly east or west of the center. Three 
choices are shown in Figure B-2 where points P1 and P3 share the same longitude and P2 is 
directly east of the center ( )LoncLatc  , . For each point whose coordinates are to be found, the 
center of the s-circle and the radius s of the s-circle are then used in the following to find P1, P2, 
and P3 (the calculations are in radians): 

Finding coordinates of P1: 

It is given that LonP1=Lonc. Also, P1 is directly north of the center, which has latitude Latc at a 
great circle distance of s. Therefore the incremental angle θ from the center would be such that

sRearth =θ  or 
earthR
s

=θ . Therefore, 

earthR
sLatcLatP +=1

 

Finding coordinates of P2: 

P2 is directly east of the center at a great circle distance of s. It can be shown by spherical 
trigonometry that 

( )   cossinsin2 1


















= −

earthR
sLatcLatP  and ( )





























+= −

2cos

sin
sin2 1

LatP
R

s

LoncLonP earth  

Finding coordinates of P3: 

It is given that LonP3 = Lonc. Also, P3 is directly South of the center, and so, using a similar 
argument used to find the latitude of P1, we find that 

earthR
sLatcLatP −=3  



B-3  
 

 
Figure B-2. Identifying Three Points on Small s-Circle 

 

Replacing ZYX ,, in the equation of the plane with their inverse stereographic projections (see 
equations (2) in the main body of this paper), we obtain 

D
Rz

zR
Cy

Rz
RBx

Rz
RACZBYAX =

+
+

+
+

+
=++

22

2

22

2

22

2

4

2

4
4

4
4

 

Through algebraic manipulation and using 222 yxz += , the following equation for a circle is 

obtained 

( )
( )2

2222222222

2
24

2
2

2
2

DCR
RBRADCRDR

DCR
BRy

DCR
ARx

−
++−

=







−

++







−

+
 

with 

CR-D
RBRADCRDR

DCR
BR

DCR
AR

2
22 :Radius   

2
2,

2
2 :Center

2222222 ++−








−

−
−

−
 

 

N(0,0,2R)

Complex Plane

Center (Latc, Lonc)

N(0,0,2R)

Complex Plane

Center (Latc, Lonc)
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Appendix C Finding Tangent Points of Sides of Central 
Angle Forming Desired Containment Arc 

In this appendix we show how to find the points of tangency on the desired circle of the sides of 
the central angle forming the Desired Containment Arc as shown in Figure C-1. 

 

 
Figure C-1. Desired Containment Arc and Points of Tangency on Desired Circle 

 

Find slope of tangent lines in terms of the derivative 

( ) ( )

( ) ( )

d

d

dd

dd

ky
hx

dx
dy

dx
dykyhx

rkyhx

−
−

−=

=−+−

=−+−

022

222

 

 thereforeslope,  thealso is  :
x
yNote

 

d

d

ky
hx

x
y

−
−

−=      (C1) 

( )11 , yx

( )dd kh ,

( )22 , yx

Desired

Undesired

Complex Plane
r

(0,0)

Desired
Containment 

Arc
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( ) ( )dd hxxkyy −−=−     (C2) 

Multiplying ( ) ( ) 222 rkyhx dd =−+−  through by y2 

( ) ( ) 222222 rykyyhxy dd =−+−

gives 

 
Using (C2) gives 

( ) ( ) 222222 ryhxxhxy dd =−+−  
Solving gives 

( )
( )
( )
( )22

22

22
2

d

d

d

d

hxr

hxx
y

hxr
hxxy

−−

−
=

−−
−

=

 
Using (C1) and assuming ( ) 0>− dhxx  
 

( )
( )

( )
( )

( )
( )

( ) ( )
( )( )

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )[ ]
( ) ( )[ ]
( )
( )

( )( )
( )

( ) ( ) 022:

22

22

2

1

1

222222222

2222222222

2222222

222222

22

2222

222

222

2222

2222

22

22

22

22

22

22

22

=−−+++−−

+−=−+−

+−=−+−

+−=−−

+−=−−−

−+−=−−−

−−−=−−−

−−+−−=−−−

−+−−−=−−−

−−−=−−−−

−−−−

−−−
=

−−−−

−−−
=

−−

−
−−

−
−−

=
−−

−

DhkrkDhhkxhkxSolve
DxDhhxhkhxkxkrk

DxDhhxhxhxrk
DxDhhxhxrk

Dxhhxrk

rhxhhxrk

rhhxhxrk

rhxxhxhxrk

hxrhxxhxrk

hxrhxrkhxx

hxrkhxx

hxr

hxrkhxx

hxr

hxr

k
hxr

hxx
hx

hxr

hx

ddddddd

dddddddd

ddddd

dddd

ddd

dddd

dddd

dddd

dddd

dddd

ddd

d

ddd

d

d

d

d

d

d

d

d

 
where 22 rhD d −= . Solving the above quadratic gives the two solutions for the points of 
tangency. 
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Using (C1) and assuming ( ) 0<− dhxx  
 

( )
( )

( )
( )
( )

( )
( )

( ) ( )
( )( )

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )
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( ) ( )[ ]
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( )( )
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−−−−−
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hxr
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hxr
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Appendix D Rotation of Points on the Sphere to the South 
Pole 

When performing the u/d ratio minimization procedure involving the side of an s-polygon, 
which is an arc of a great circle on the sphere, it may be necessary to find the spherical center of 
the great circle on which the arc lies. The definition and calculation are given below. It also is 
useful to be able to rotate the spherical center of a great circle or the center of a small s-circle to 
the South Pole. The equations to do this are presented below. 

Computing the Spherical Center of a Great Circle 

Figure D-1 illustrates the method to find the spherical center ( )321 ,, CCCC =


 of a great circle. 

It is the endpoint of a vector that is the cross product of the vectors L


 and N


. L


and N


 are 
obtained using the endpoints of the arc under consideration of the great circle. Each one is a 
vector from the center of the sphere of radius R to an endpoint of the arc shown in Figure D-1. 
(The vectors L


 and N


would typically be specified with respect to a sphere centered at (0,0,0) 

as shown. The calculations can be carried out in that manner since what we are interested in is 
the latitude and longitude of the spherical center to use in the rotation equations.) We denote 
the latitude, longitude point corresponding to C


 by Latc, Lonc, respectively. The spherical 

center is found using the following equations: 

 

NL
NLC 




×

×
= R  

 

),,( vvv ZYXL =
→

 
 

),,( rrr ZYXN =
→
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Figure D-1. Finding the Spherical Center of a Great Circle 

 

Rotation to the South Pole 

When performing the u/d ratio minimization procedure with two SVs and a desired ground 
radio site location, either the center of a small s-circle or the spherical center of a great circle 
associated with a side of an s-polygon is rotated to the South Pole. (In the case of a great circle, 
the rotation moves the great circle to the equator.) To maintain the same distance relationships 
among the two SVs and the desired ground radio site location, the equations used to rotate the 
center (Latc, Lonc) of the selected s-circle or the spherical center (Latc, Lonc) of a great circle to 
the South Pole are applied to the other SV and the radio site location. If the other SV is an 
s-circle, then the equations are applied to the center on the sphere of the s-circle. If the other SV 
is an s-polygon, then the equations are applied to the vertices of the s-polygon side. 
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The following equations are used to rotate a point of interest on a sphere of radius R as shown 
in Figure 2-4 with Cartesian coordinates ( )ZYX ,,  to point ( )ZYX ′′′ ,, : 

( )

RWncLatWncLatZ
WY

WncLatWncLatX
Lat_nc_, W_, W_W

ZW
YncLonXncLonW

YncLonXncLonW
Lon_ncZYX

LoncncLon

LatcncLat

++=′
=′

−=′

=
+−=

+=

=

−−=

1_3)_cos(1_1)_sin(
1_2

1_3)_sin(1_1)_cos(
by  axis-Yabout  131211  Rotate

1_3
)_cos()_sin(1_2

)_sin()_cos(1_1
by  axis-about Z ),,( Rotate
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Appendix E Finding Endpoints on Undesired Circle of 
Desired Containment Arc 

In this appendix we find the points of intersection ( ) 2,1,, =iyx ii shown in Figure E-1 on the 
undesired circle of the sides of the central angle of the undesired circle that subtends the 
Desired Containment Arc. These intersection points would be the endpoints on the undesired 
circle of the Desired Containment Arc. 

 

 
Figure E-1. Endpoints of Desired Containment Arc 
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The following equations show how to find these intersection points. 
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As can be seen from these equations and Figure E-1, there are two solutions for each i. Only one 
of the solutions for each i is of interest. The intersection points of interest that correspond to 
the endpoints of the Desired Containment Arc are those closest to ( )1,1, , ii yx  for each i. 
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Appendix F Identifying Intersections of the Sides of the 
Undesired Arc’s Central Angle with the 
Desired Circle 

The endpoints ( ) 2 ,1   ,, =iyx ii  of the undesired arc are directly obtainable as the stereographic 
projection of the vertices of a side of the undesired s-polygon. Note that the great circle on 
which the side lies has been rotated to the equator. Using these endpoints, the intersection 
points of the sides of the central angle of the undesired arc with the desired circle shown in 
Figure F-1 can be found. 

 

 
Figure F-1. Intersections on Desired Circle 
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To find these intersection points, we substitute x
x
yy

i

i=  into the equation for the desired circle 

and thus solve the following 
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Two solutions ( ) , 1,11,1 yx  and ( )2,12,1 , yx  are obtained for i = 1 and two solutions ( ) , 1,21,2 yx  and 

( )2,22,2 , yx  are obtained for i = 2. To find the corresponding angles ji,θ , the following equation 
is used 
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d
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ji s
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, cosθ

 
 

With this, then ( ) ( ) ( )( )jiddjiddji skshz ,,, sin,cos θθθ ++= . 
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Appendix G Glossary  
Acronyms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACI Adjacent-channel Interference 

A/G Air/Ground 

AR Airborne Radio 

ATS Air Traffic Services 

CAASD Center for Advanced Aviation System Development 

CCI Cochannel Interference 

d/u Desired-to-Undesired 

DOT Department of Transportation 

FAA Federal Aviation Administration 

GCD Great-Circle Distance 

GR Ground Radio 

RLOS Radio Line of Sight 

SV Service Volume 

u/d Undesired-to-Desired 

VHF Very High Frequency 

  

Symbols 

dG  
Great-circle distance of desired signal path 

uG  Great-circle distance of undesired signal path 

( )yx PPG ,  Great-circle distance between points xP  and yP  on the sphere 

( )yx PPD ,  Chordal length between points xP  and yP  on the sphere 

uP  A point on the sphere in the undesired SV 

dP  A point on the sphere in the desired SV 

rP  A point on the sphere representing the desired radio location 

xz  Stereographic projection in complex plane of xP  
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chdlρ  Ratio of chordal lengths 

GCDρ  Ratio of GCDs 
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