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Abstract

As the fielding of enterprise systems of systems becomes
common it becomes increasingly important to
understand the interactions between the systems as well
as the important role that human behavior plays. This
paper suggests that Agent-Directed Simulation is a
valuable and crucial analysis tool for the Systems
Engineer. The paper examines the concept of Agent-
Directed Simulation for Systems Engineering and then
introduces the notion of Human Complex Systems. An
analysis infrastructure is described and a case study is
provided to illustrate the concepts.

1 INTRODUCTION

The development of Systems of Systems (SoS) is
becoming commonplace; the government and private
industry are increasingly faced with the problem of
investing large amounts of money in SoS that cannot be
fully specified in a requirements document, and cannot
be fully tested or in many cases even prototyped.
Compounding this problem is that SoS are not simply
very complicated systems like a racecar or a
communications satellite. While complicated systems
have many parts that interact with each other in
nontrivial ways, we can describe the interaction using
well-understood laws of mechanics and physics. SoS on
the other hand present a constantly changing topology,
evolving over time and space. Moreover, human are an
important, if not the most important, component of
these systems. Humans interact with each other as well
as with technology to provide new systemic capabilities
in ways that are often impossible to define a priori. This
differs from the classical view of systems where the
human element was considered outside the system or as
a user of the system.

With this expansion of scope there has come a
recognition that new approaches are needed (e.g. [1],
[2], [3]and[4]). There has been good progress in
developing paradigms that provide relatively static
descriptions of the SoS, hierarchically decomposed
views of the enterprise with robust descriptions of the
interfaces. While providing a valuable base for analysis,
these approaches do not provide a clear path for gaining
insight into the dynamic and evolutionary behavior of
SoS.

To ‘engineer’ a SoS we propose that additional
techniques are required. @ The sheer number of
components in fielded SoS and their associated complex
behaviors argues strongly against using closed forms of
analysis. However, systems engineers are often required
to advise in areas such as portfolio management that
require a quantitative understanding of the possibility
space of complex interactions. @ We suggest the
employment of agent-directed simulation (ADS)
alongside rigorous, proven systems engineering
techniques and enterprise architecture development to
gain insight into the specification, design and evolution
of systems of systems.

Our argument for the necessity, and utility, of ADS is
built upon a foundation of work from Wegner, Simon,
Doyle, Schelling, Buss, et al., Epstein and Axtell. Wegner
[5, 6] showed that as powerful as closed form
algorithmic analysis is, that it essentially represents the
system as a Turing machine; whereas, allowing the
algorithms to interact, (e.g. an interaction machine or
ADS), is a far more powerful analytic representation.
Simon [7] argued that complex systems can be
meaningfully represented as collections of subsystems;
hierarchies of nearly decomposable systems. Within
these collections the state of each subsystem through
time is only weakly influenced by the other subsystem.
The ability to represent these complex systems (or SoS)
in this way makes systems engineering of them possible
and creating ADSs of them meaningful and useful. Csete
and Doyle [8] stresses not only the importance of
modules in complex SoS but also the criticality of
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common interfaces between the components. These
interfaces are critical for large collections of systems to
function properly. Schelling [9] argued that the
interaction of subcomponents of a system, without
meaningful centralized control, can have enormous
impact on the behavior and performance of the system
as a whole.

Moreover, Buss et al. [10] proved that under ideal
conditions a model of SoS as a collection of
homogeneous automata with a global control rule that is
independent of the states of any of the automata the
system will be predictable (i.e. the future state of the
system is computable) in polynomial time; if, however,
the global control rule is not independent of the states of
the automata then the prediction of the system become
PSPACE-complete. This means that one can do no better
to understand the future states of the system than to
simulate it. More recently, Epstein [11] has argued, and
demonstrated, that it can be far more insightful to
examine the dynamics of a system as it moves through
time than to “solve” for the system’s equilibria. It is
trivial to specify a system that may not be able to obtain
it’s equilibria from plausible initial conditions or that it
may take longer than the universe has been in existence
for the system to achieve an equilibrium state. This
being the case, simulations can prove far more useful
from a systems engineering perspective to gain insight
into the actual, or meaningful, performance of the
system in question. Finally, Epstein and Axtell [12], and
Epstein [13] argue for a generative nature to our
understanding of social systems—“If we didn’t grow it,
we didn’t explain it.” They argue that understanding the
emergent properties of a SoS (the macro-dynamics)
comes from specifying the components and then
allowing the system to move forward in time. In this
way one generates a sufficiency theorem—this
specification with this set of input is sufficient to
generate this output. Again, this argues that ADS for SoS
engineering is not only useful, but may be one of the only
ways to meaningfully understand and design complex
SoS.

2 AGENT-DIRECTED SIMULATION FOR
THE SYSTEMS ENGINEERING OF HUMAN
COMPLEX SYSTEMS

By contrast to the static models described above,
simulation often represents the method of choice for
researchers (e.g.,, Carley and Svoboda [14], Epstein and
Axtell[12], Levinthal [15], March [16] and McKelvey
[17,18] among others) to explore complex dynamics
often found in Human Complex Systems [19]. Human

Complex Systems (HCS) are systems of systems that
include active, human participants beyond simple roles
of systems operator (e.g, large, public venue including
crowd and security personnel; metropolitan area
experiencing a pandemic; and financial exchange
including traders and regulators). Analyzing HCS
requires a refactoring of tools; McKelvey and Cyert and
March call for a specific class of simulation for HCS,
namely simulation with ADS [18, 20, 21]

While simulations applied to the study of HCS first
occurred as much as forty years ago (e.g., Cyert and
March [21]), only recently has it begun to generate a
broader acceptance [22]. Not only special issues but
entire journals are now dedicated to simulation and its
application to the science of HCS (e.g, Carley [23],
Lissack [24] and Gilbert [25]). This acceptance stems
from two critical aspects of simulation research: (a)
simulation allows researchers to explore the inherent
complex dynamics of HCS [22, 26], hence (b) simulation
research allows for the conduct of experiments that
would typically be impossible or impractical in the
physical world [27].

Stressing the value of simulations for theorizing [28],
Axelrod [29, p. 23-24] believes that simulation offers a
new vehicle for conducting scientific research that
differs from induction (i.e., the “discovery of patterns in
empirical data”) and deduction (i.e., “specifying a set of
axioms and proving consequences that can be derived
from those assumptions”). On the one hand, simulation
research resembles deduction in that simulations start
with a set of assumptions. On the other hand, the
simulation generates data to be inductively analyzed.
Axelrod [29, p. 24] refers to simulation research as
“thought experiments” since the assumptions might
seem simple but the results are often counter-intuitive
(i.e., the nonlinear, macro-level effects of interacting
agents known as emergent properties).

Axelrod [29] provides further support for simulation as
an alternative to the rational actor / choice assumptions.
Because the rational actor / choice assumption allows
for deductive, closed-form analysis, researchers are
willing to overlook the bounded rational limitations of
their actors [30]. The primary alternative to the rational
actor / choice assumption lies in some form of adaptive
behavior. Due to the complex effects of social
interactions, Axelrod [29] asserts that ADS offers the
only vehicle to study sets of actors who possess an
adaptive capacity.

With the growing acceptance of simulation in the design
and engineering of HCS due in no small part to March’s



research, several leading scholars have called for the
formal use of ADS (e.g., Anderson [32], Axelrod[29],
Dooley [22] and McKelvey [17, 18]). As the primary tool
of complexity theorists, ADS assume that agents behave
in a stochastic, nonlinear manner and that agents
possess a nonlinear capacity to adapt over time. This
stochastic, nonlinear behavior of agents is consistent
with the stochastic, idiosyncratic microstates of HCS.
That is, despite institutional influences [33, 34], strong
forces remain to idiosyncratically steer both the
behaviors of individuals and the conduct of aggregate
processes [31]. Among others, such forces might include
unique organizational cultures, the unique set of
suppliers and customers (i.e, organizations are each
embedded within a unique social network) and the
unique interaction network of different individuals each
with his/her own personal history in different contexts.
Therefore, agent activity in an ADS can offer an excellent
representation of the adaptive and idiosyncratic
behavior of an HCS and that of its human agents.

3 AN INFRASTRUCTURE FOR THE
ENGINEERING OF HUMAN COMPLEX
SYSTEMS

ADS typically represent the only way one may
experiment and test the SoS in question. With that in
mind, we developed the Infrastructure for Complex-
systems Engineering (ICE). With its model-centered
core, the ICE is a collection of software tools,
computational hardware, and methodologies that allow
one to move from abstract thought experiments to
“operational” testing and optimization of an HCS.

Consistent with solid SE practices, an application of the
ICE starts with an assessment of what information about
the SoS in question is currently known; this includes
Subject Matter Expert understanding of the components
of the SoS and how they are interconnected, measures of
performance for individual components (usually in
isolation), and so on. Once enough information is
amassed about the SoS in question, one moves to the
prototyping stage. = What constitutes an adequate
prototype will be driven largely by what the SoS is and
the questions to be asked about it. For example, if the
prototype does not need to be overly large in scale (less
than 10,000 entities) we have had very good luck with
NetLogo [35]. However, there are times when even the
prototype must be very large scale. In those cases, we
move to Repast [36]. Eventually as the prototype
stabilizes we, typically, port the NetLogo simulation to
Repast for deployment on a high-performance cluster
computer. Though Repast is more tightly integrated

with our cluster computer, NetLogo can be run on the
cluster, also. Therefore, if scale or high-performance is
not a driving concern we may not move away from our
prototype.

We wuse NetLogo and/or Repast to handle the
representation of the SoS as a whole. Usually, however,
there are components of the SoS that are of particular
importance to the functioning and performance of the
SoS. These components are handled specially in the ICE
framework. These high importance components are
modeled separately at as high a resolution as possible.
The family of simulations is now run together to
represent the functioning of the system.

Use of a cluster computing system allows us to scale very
large if necessary and also to run many replicates of the
simulation to perform a Monte Carlo analysis of the
modeled SoS. Intelligent design of experiments is very
important here as the parameter space associated with
these models can be nearly infinite. As part of the
cluster computing system we have an automated genetic
optimization framework. Optimization over a complex
space requires a reasonable degree of verisimilitude.
Consequently, our methodology employs detailed
physical models and vetted behavioral models where
possible. We also seek to provide realistic physical
models of the geometry where that level of detail is
important to the question at hand.

Concurrent with the model development is the
development of a preference model. Most decisions
involve a number of (frequently competing) criteria.
Our methodology characterizes the goodness of a given
decision by developing a preference structure and an
overall utility equation through interaction with subject
matter experts (SMEs). This step is described in detail in
the next section.

To explore the complex interaction of the components
we employ an ADS framework. We begin with rapid
prototyping to facilitate communication with the subject
matter experts and gain additional insight into the
problem. Subsequent to the initial runs, we develop a
higher fidelity model that is more scalable and designed
to make wuse of a high-performance computing
environment. Additional tools such as Matlab are
employed to develop additional high-resolution models
as warranted. Parallel model development is important
in systems where emergence is a feature of study. This
is the case because once the scalable model is developed
we can compare its dynamics with those of the
prototype and determine their similarities [23]. If both
models demonstrate the same dynamics then we can be



more confident that these results are a true attribute of
the system rather than a bug in our code or an artifact of
the modeling framework we chose.

To explore a variety of system responses, formal design
of experiments [37] are created to use statistical
techniques to manage the inherent combinatorics.
These experiments are then run in a high-performance
computing environment to investigate a wide variety of
behaviors that are implied from the stochastic and/or
adaptive behavior of the agents. Frequently, the number
of individual simulation runs will approach 105 or more.

As the simulation runs are completed, two types of
analyses are conducted. The first uses optimization
techniques such as genetic algorithms to drive to areas
of optimal parameter combinations, optimality being
defined using the utility analysis described below. The
second conducts statistical analysis to characterize the
relationship of the various parameters within the
simulation. ~While the optimization algorithms will
generally find families of solutions, the statistical
analyses will provide additional insight into areas of
concern as well as statistical anomalies that might have
catastrophic consequences. This overall methodology is
illustrated in Figure 1.

4 CASE STUDY: DEFENDING THE
STADIUM

ADS enhanced systems engineering has been used to
explore the best ways to best defend a stadium against
possible terrorists. In this case, stadium defense is a
complex interaction of sensors, tactics, and decision
making. Typically, a heterogeneous mix of sensors is
fielded. The mix represents different modalities of
detection (e.g., infrared imaging, millimeter wave radar,

etc.) as well as different performance profiles. In fact,
the exact performance of the sensor is highly dependent
upon the placement as well as environmental conditions
such as crowd flow, occlusion by spurious objects,
humidity, ambient temperature and even sunlight.

Initially a straight-forward agent model of sensors was
considered for this analysis. However, early studies
conducted using simple parameterized sensor models
resulted in overly optimistic estimates for systemic
detection of prohibited materials. Consequently, the
decision was taken to replace simple sensor agents with
high fidelity deterministic models of the sensors which
resulted in much more realistic results.

On the other hand, agent models were used to represent
the decisions of law enforcement officers who decide
which individuals to examine with the sensors, and if the
individual is suspicious enough to interdict, to keep
tracking, or to break contact. Further, as the decisions
are done in a resource constrained environment, there is
not a straightforward deterministic algorithm for
making the decisions; they are often fraught with
uncertainty and error.

The decision that a law enforcement officer takes is a
study in complexity. Dedicating sensors to a potential
person of interest reduces the opportunity to scan other
individuals. To complicate matters even more the
number of law enforcement officers available to
interdict suspicious persons is relatively small; if an
interdiction decision is taken there is an opportunity
cost for interdicting other potential persons of interest.
Further, interdiction decisions will affect the behavior of
other individuals in the crowd, potentially providing
warning to individuals with prohibited materials.



Figure 1. The Infrastructure for Complex-systems Engineering.

As the combinatorics of the possible sensor
placements and the wide variety of tactics was
daunting, it was determined that simulation could be
used to provide recommendations to optimize stadium
defense. An experiment was formally designed and a
number of simulation excursions were run. The
various combinations of sensor placements and tactics
were then scored in a utility framework, with specific
recommendations briefed to guide live
experimentation.

4.1 Simulation Setup

Figure 2 illustrates the three types of agents in the
prototype model: Security, Civilians, and “bad actors”.
Bad actors model terrorists; agents that have a goal of
getting through the turnstiles undetected carrying
explosives. Bad actors must traverse a corridor from
left to right where they are likely to encounter sensors
as well as security guards. If a bad actor successfully
crosses the turnstile, he is considered successful.



Figure 2. Simulation Setup.

Bad actors will take evasive measures to avoid
security guards. If the security guards close off
potential escape routes and the bad actor considers
the situation hopeless, then the bad actor will exhibit
satisficing behavior and detonate the explosives. In
this simulation, bad actors do not act collaboratively.
Security agents have a primary goal to interdict the
bad actors. Security agents are throughout the
corridors as well as around the turnstiles. Security
agents use fused data from the sensors to evaluate
whether a passenger agent is a bad actor or not. As
false alarms are possible, non-bad actors may be
targeted as bad actors and stopped by the security
agents. The remainder of the agents are “innocent
passengers” that are instantiated as a rate per unit
time. The number created each time-step is drawn
from a random-exponential distribution. Upon
instantiation a small percentage of the passengers
(0.005%) may be designated as an individual with a
bomb or a bad actor.

4.2 Experimental Results

The simulation was run for a wide variety of sensor
placements, varying the x and y coordinates of two
passive infrared (IR) sensors and a passive millimeter
wave (mmw) sensor as well as their respective angle
with respect to the incoming traffic. Additionally, the
amount of evidence necessary for the security guards
to interdict a possible suspect was varied. In other
words, varying the sensors directly affected the
amount of information received. @ Changing the
evidence threshold resulted in varying the likelihood
of false positives or false negatives. As discussed
above, the “goodness” of a configuration of sensors in
combination with the likelihood of interdiction was
modeled as a utility function. Two primary measures
of effectiveness were considered; for a given
configuration the probability that an explosive would
be detected and the probability that there would be a
false alarm, meaning an explosive was indicated where

no explosive existed. Two thousand possible
combinations were modeled; each design point was
run thirty times as there were a number of stochastic
features in the simulation.

The data indicated a number of interesting aspects.
First, for any given configuration there was wide
variability in the results. However, some general
trends were observed. Figure 3a plots utility against
numbered sensor configurations. From sensor
configurations 0 - 26, the general trend is that the
mmw sensor starts out significantly in front of the IR
sensors and then progressively moves closer. At
sensor configuration 27-53, the mmw sensor is behind
the IR sensors. As a general practice, it would appear
that placing the IR sensors behind the mmw sensor is
preferred.
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Figure 3. a) Average Utility vs. Sensor Configuration, b)
Maximum Utility vs. Sensor Configuration.

Figure 3b illustrates the maximum utility plotted
against sensor configuration. Consistent with the
indication from shown in Figure 3a, the best
performing configurations from a maximum utility
perspective are where the mmw sensor is behind the



IR sensors. There are two groupings of similar
configurations that performed roughly the same.
However, the highest utility occurred during a run
using sensor configuration 10, where the mmw sensor
is in front of the IR sensors. This can be viewed as an
anomalous result, possible but unlikely as the average
utility is much less.

For both the average utility as well as the maximum
utility, optimal temperament configuration for the
security forces was a mildly aggressive but not overly
aggressive profile. Overly aggressive security forces
result in too many false alarms whereas passive
security forces miss too many threats. This result
seemed relatively consistent across all of the sensor
configurations.

5 SUMMARY

As our development of systems becomes increasingly
complex, the practice of systems engineering must
evolve. Our tools and techniques must expand to
handle issues of combinatorial complexity, long term
system evolution, managerial independence and
emergent behavior. Increasing recognition that viable
models of the organizational element of an enterprise
require concordant maturation of our toolset. We
have suggested here that Agent Directed Simulation
can provide a valuable tool to gain insight into
complex enterprises. The application of ADS builds on
a long history of successful work in organizational
theory married with traditional systems engineering
and enterprise architecture. We have found that with
significant computational capabilities we can find
statistically interesting insights into complex SoS,
allowing us to provide quantitative engineering
direction to all phases of the systems lifecycle for a
SoS.  The use of ADS has been shown to provide
significant value for the design and implementation of
SoS and will continue to gain importance as our
systems grow in scope and complexity.
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