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ABSTRACT 
To date, the principal use case for schema matching research has 
been as a precursor for code generation, i.e., constructing 
mappings between schema elements with the end goal of data 
transfer. In this paper, we argue that schema matching plays 
valuable roles independent of mapping construction, especially as 
schemata grow to industrial scales. Specifically, in large 
enterprises human decision makers and planners are often the 
immediate consumer of information derived from schema 
matchers, instead of schema mapping tools. We list a set of real 
application areas illustrating this role for schema matching, and 
then present our experiences tackling a customer problem in one 
of these areas. We describe the matcher used, where the tool was 
effective, where it fell short, and our lessons learned about how 
well current schema matching technology is suited for use in large 
enterprises. Finally, we suggest a new agenda for schema 
matching research based on these experiences. 

Categories and Subject Descriptors 
H.2.1 [Database Management]: Logical Design – data models, 
schema and subschema. 

General Terms 
Experimentation, Human Factors, Design. 

Keywords 
Schema Matching, Industrial-Scale, Experience, Decision Makers. 

1. Introduction 
The database community has been conducting research on schema 
matching for decades [1]. This research has usually assumed that 
schema matching (i.e., the generation of semantic 
correspondences among schemata) is merely a precursor to the 
creation of executable transformation code (e.g., database views 
or ETL scripts). Thus, the assumption has always been that the 
ultimate result of schema integration will be a program to effect 

data transfer across systems with different yet similar schemata. 
For example, Bernstein, et al. state that “Most systems-integration 
work requires creating mappings between models, such as 
database schemata, message formats, interface definitions, and 
user-interface forms [2].” Indeed, when we embarked on our own 
Harmony schema matching project [3], we believed that to fully 
realize its value, we would need to integrate Harmony with a 
schema mapping tool, and we did so with the AquaLogic Data 
Service Platform [4, 5]. 

However, while working on Harmony, members of our research 
team have worked closely with customers in large government 
organizations on a wide range of integration problems. In the 
course of those efforts, we came to the realization that schema 
matching provides crucial insights to human decision makers, 
including planners, information system managers, and enterprise 
architects who have no immediate intention of performing data 
exchange. 

We also observed that the current generation of schema matching 
tools lacks capabilities that would help provide these necessary 
insights; for example, enterprise architects and managers often 
work with much larger schemata than developers need to 
manipulate. In addition, the challenges of supporting architects, 
decision makers, and planners in large enterprises (e.g., 
corporations, government organizations) introduce new 
requirements for schema matching research and tools. 

Based on our insights from these experiences, this paper makes 
the following contributions: 

1. We describe several application areas that illustrate the use 
of schema matching results by human decision makers, 
planners, and system architects in large enterprises. 
(Section 2). 

2. For one such application area—a planning effort involving 
multiple large schemata (each on the order of 103 
elements)—we report our experiences and describe our 
lessons learned. (Sections 3 and 4). 

3. Motivated by these observations and experiences, in 
Section 5 we then enumerate additional research challenges 
that must be addressed to meet needs of data integrators in 
large enterprises. 
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2. Broadening the view of schema matching 
In this section, we describe several scenarios drawn from our 
work with government customers in which the results of schema 
matching are directly useful to people and organizations, without 
ever generating transformation code. 

Project feasibility: Within the US Department of Defense (DoD), 
many integration projects are organized around “communities of 
interest” (COIs) [6]. Each such community represents a collection 
of parties whose information needs overlap significantly and who 
have in interest in sharing data. A key goal of a COI is to develop 
a community vocabulary (i.e., a mediated schema) that can serve 
as a basis for data exchange. 

Convening a COI requires a decision maker to commit significant 
resources to support the COI’s activities; however, no resources 
will be committed unless the potential value is clear. Schema 
matching tools are needed to quickly estimate the extent to which 
it will be feasible to generate a community vocabulary from a 
collection of data sources. 

Project planning: A related scenario involves determining the 
level of effort (and corresponding cost) needed for an integration 
project. For example, the Air Operations COI has presented us 
with a community vocabulary and asked: To what extent can the 
attributes in the community vocabulary be populated by a specific 
data source? To what extent must this vocabulary be expanded to 
cover the data used by a related set of systems? And, most 
importantly, how much time and money should be allocated to 
these projects? 
Answering these questions requires us to match the source 
schemata to the community vocabulary, although not to generate 
mappings (at this point), but to help the COI planners estimate the 
level of programming effort required to establish the actual 
mappings so an appropriate contract can be written with realistic 
cost estimates. 

Generating an exchange schema: In the preceding scenario, the 
COI has already identified a candidate vocabulary. However, it is 
often the case that COI participants need to construct an exchange 
schema from scratch. In many scenarios, this exchange schema 
needs to be constructed quickly, albeit incompletely. For example, 
in an emergency response scenario, many new data sharing 
partners (e.g., state and federal agencies, non-profits, 
corporations) may suddenly be thrust together to respond to a 
crisis. 
In such a scenario, schema matching tools are needed to identify 
which information the available systems have in common. The 
various agencies need to be able to throw their data models into a 
giant beaker and to distill out a minimal mediated schema that will 
serve as the basis for their collaboration. Eventually, the agencies 
will need to map their systems to the mediated schema, but they 
need schema matching support while at the negotiating table. 

Identifying the integration target: In certain large and diverse 
communities (e.g., the entire U.S. military, the entire U.S. law 
enforcement community), authorities mandate particular data 
models as a starting point for much data sharing. Under the 
pressure of accommodating a broad range of possible data 
exchanges, these schemata can grow to become too large for 
participants to comprehend and exploit.1 In this situation, data 

                                                                    
1 E.g., en.wikipedia.org/wiki/JC3IEDM and niem.org 

sharing partners need schema matching support to identify that 
subset of the exchange schema that is relevant to their system. 
Again, schema matching provides valuable information at the 
project design stage, well before programmers are tasked with 
developing mappings. 

Enterprise information asset awareness: The Chief Information 
Officer (CIO) of a large enterprise needs to understand what 
information is being managed across the enterprise’s information 
systems, and by which systems. For example, the CIO of a Health 
Maintenance Organization may want to know which data sources 
contain the concept of “blood test”, and what specific concepts are 
shared by five different systems involving patient health history. 

The CIO could answer these questions given a comprehensive 
vocabulary: an exhaustive list of the concepts found in a set of 
data sources, and, for each concept, the sources using that concept 
in their data model. Schema matching is a valuable tool for 
forming a comprehensive vocabulary because it helps identify 
shared concepts, independently of future mapping construction. In 
Section 3 we describe an effort to derive a comprehensive 
vocabulary in support of project planning. 
Finding relevant and related schemata: Some very large 
communities have an enterprise schema registry. For example, 
within the DoD, all data models must be posted to the DoD 
Metadata Registry (MDR), which now contains thousands of 
schemata in a wide range of formats. One goal of the MDR is to 
make system developers more aware of each other’s systems to 
increase reuse and thereby reduce semantic heterogeneity. 

A powerful way to search the MDR would be to simply use one’s 
target schema as the “query term.” Using schema matching 
technology, the system would rank the available schemata. 

Using a similar approach, a schema repository such as the MDR 
could automatically propose new COIs by clustering the schemata 
into related groups. Automatic schema clustering within a 
repository would also be valuable to an enterprise’s CIO, who 
seeks to understand the extent to which large and diverse sets of 
information assets across their organization are related. 

3. Detailed Example 
In this section we present an instance of the project planning 
application area in some detail. 

3.1 Task Summary 
A military customer presented us with two large independently-
developed schemata that the customer believed should overlap 
significantly. Each schema should, for example, include 
information about persons, vehicles, and military units. 

• Schema A (SA) is relational, contains 1378 elements, and is 
the schema of version 3 of an actively used system: Sys(SA). 
To enhance compatibility among military services, Sys(SA) is 
currently being redesigned into version 4. 

• Schema B (SB) is an XML Schema, contains 784 elements, is 
the schema of legacy system Sys(SB), and is reputed by the 
customer to include a conceptual subset of SA. Sys(SB) is 
disliked by users and there is pressure to eliminate it. 

The customer recognized the transition from Sys(SA).v3 to 
Sys(SA).v4 as an opportunity to eliminate Sys(SB) by augmenting 
Sys(SA) to subsume its role, incorporating its operations and any 
distinct data elements of SB into SA. However, the customer 
lacked detailed expertise with Sys(SB), and the specific nature and 
extent of the relationship between SA and SB was unknown. 
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Eliminating Sys(SB) was not the clear choice if a) the set of 
distinct SB elements were sufficiently large and b) the set of 
common elements (i.e., elements involved in matches between SA 
and SB) were sufficiently small. In this case, it could be inferred 
that the roles of Sys(SA) and Sys(SB) were so different that 
subsuming Sys(SB) was unattractive compared to retaining it and 
building an ETL bridge to feed Sys(SA) (i.e., a classic data 
warehouse architecture). In summary: due to the size, complexity, 
and unknown relationship of these systems, the customer could 
not easily evaluate the merit and cost of these two options. 

As an initial step toward selecting one of these two options, the 
customer presented us with schemata SA and SB and requested an 
analysis of what they held in common, how and to what extent 
they differed, and a representation of their comprehensive 
vocabulary. This customer challenge appeared to be an excellent 
test of schema matching technology’s ability to address a real, 
“industrial scale” problem. 
Note several important features of this problem: 

1. Both the distinctiveness (i.e., SB–SA and SA–SB) and the 
overlap (i.e., SA∩SB) of the data models involved were 
important. In particular, the cardinalities of SA∩SB and 
SB–SA were vital to the customer's decision process. 

2. The customer organization was so large that the people 
tasked with planning the fate of information systems 
lacked detailed knowledge of those systems’ contents. 

3. The scale of the entailed schema match, 106 potential 
matches, would be tedious for human users, and exceeds 
that of most published schema matching studies. 

4. Generating executable mappings between SA and SB 
was not the immediate goal. 

3.2 Harmony Schema Matcher 
We now describe the matcher used to address this problem. 
Harmony is a MITRE-developed schema matcher that combines 
multiple match algorithms with a graphical user interface for 
viewing and modifying the identified schema correspondences. 
Unlike most schema matching tools, Harmony relies heavily on 
textual documentation to identify candidate correspondences 
instead of data instances because, as we reported in [3], at least in 
the government sector, schema documentation is easier to obtain 
than data (which may not yet exist, or may be sensitive). This 
characterization holds for the matching task between SA and SB. 

The Harmony match engine adopts a conventional schema 
matching architecture [2, 7-9]. It begins with linguistic 
preprocessing (e.g., tokenization and stemming) of element names 
and any associated documentation. Then, several match voters are 
invoked, each of which identifies correspondences using a 
different strategy. For each [source element, target element] pair, 
each match voter establishes a confidence score in the range (–1, 
+1) where –1 indicates that there is definitely no correspondence, 
+1 indicates a definite correspondence and 0 indicates complete 
uncertainty. A vote merger combines the confidence scores into a 
single match score. 

As a match voter observes more evidence, the confidence score is 
pushed towards –1 or +1. Compared to conventional schema 
matching tools, Harmony is novel in that it considers both the 
standard evidence ratio (e.g., number of shared words in the 
documentation) as well as the total amount of available evidence 
when calculating confidence scores. This approach allows the 
vote merger to combine confidence scores into a single match 

score based on how confident each match voter is regarding a 
given correspondence. 

Once the match engine identifies candidate correspondences, the 
Harmony GUI displays these correspondences as color-coded 
lines between source and target elements. The GUI supports a 
variety of filters that then assist the integration engineer in 
focusing their attention in various ways. These filters are loosely 
categorized as link filters, which depend on the characteristics of a 
given candidate correspondence, and node filters, which depend 
on the characteristics of a given schema element. 

For the current discussion, the most relevant link filter is the 
confidence filter. Only those correspondences whose match score 
falls within the specific range of values are displayed graphically. 
Thus, the integration engineer can focus their attention first on the 
most likely correspondences. 

The node filters include a depth filter and a sub-tree filter. The 
former enables only those schema elements that appear at a 
particular nested depth. For example, in a relational model, 
relations appear at a depth of one and attributes at a depth of two. 
Using this filter, the engineer can focus on a particular level of 
granularity. The sub-tree filter enables only those elements that 
appear in a given sub-tree. For example, this filter can be used to 
focus one’s attention on the ‘Vehicle’ sub-schema. The engineers 
responsible for matching SA to SB relied heavily on this filter. 

3.3 Our Approach 
On the surface, our task was “simply” to perform a 1378×784 
schema match, report the pairs of matching elements, and report 
separately the unmatched elements from each schema. In fact, we 
had recently scaled Harmony to perform matches of this size, and 
the fully automated match executed in 10.2 seconds. 

However, there were two problems with simply reporting the 
matcher’s results. First, neither the matcher’s output (a match 
matrix) nor existing visualizations of such a matrix gave our 
customer much insight into the high level areas of overlap and 
differences between SA and SB. A lengthy list of matches such as 
“DATE_BEGIN_156 ⇔ DATETIME_FIRST_INFO” overloaded 
the user and failed to provide the “big picture.” The integration 
engineers recognized a need to introduce concept labels 
representing important domain concepts such as “Event” and 
“Person,” which in turn could be assigned to schema elements. 

Second, the integration engineers needed help navigating 
thousands of potential matches in order to validate and annotate 
them (e.g., with additional semantics such as is-a or part-of). 
Again, concept labels helped them organize this process. 

For example, the “All_Event_Vitals” table of SA consisted of 
attributes corresponding to a concept they labeled “Event.” In 
general, there was strong correlation between the tables and views 
in SA, the types and elements in SB, and these abstract 
designations. Through inspection, they identified 140 schema 
elements corresponding to useful abstract concepts in SA and 51 in 
SB. 
Once identified, they used Harmony's sub-tree filter to 
incrementally match each concept (i.e., the schema sub-tree 
rooted at that concept) with the entire opposing schema. For 
example, “All_Event_Vitals” in SA was chosen as the current sub-
tree, and then matched to all of SB. These match operations were 
rapid: typically between 104 and 105 matches were considered in 
each increment. Using the confidence filter, matches scoring 
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above a threshold were then examined by a human integration 
engineer; valid matches and related annotations were recorded in 
Harmony. A common outcome was a strong match from the fields 
of one concept to the fields of a corresponding concept in the 
other schema, plus a few matching fields from other concepts. 
When this occurred, we also recorded a concept-level match (i.e., 
a match between a label used in SA and one used in SB. 24 of these 
concept-level matches were thus identified and recorded. 

This concept-at-a-time workflow had several benefits: It helped 
the integration engineers organize and track their progress each 
day. It also provided them with deeper insights into the conceptual 
coverage in each schema, and where these concepts matched. 
Finally, it allowed the integration engineers to keep entirely 
visible at least one side of the match (i.e., corresponding to one 
concept label), and perhaps both sides, in the user interface. This 
precluded a large mass of criss-crossing lines, denoting off-screen 
matches, from cluttering the display and obscuring the user’s 
view. 

The entire matching process required three days of effort, by two 
human integration engineers. 

3.4 Outcome 
At the customer's request, the final result was delivered as an 
Excel spreadsheet. The first sheet enumerated the 191 concepts 
with their 24 concept-level matches (167 rows), the second sheet 
contained the individual schema elements (indexed to a concept) 
and their element-level matches. Both sheets were organized in 
“outer-join” style with three types of rows: those specific to SA, 
those specific to SB, and those having matched elements of SA and 
SB. Note that, had the end-goal been code generation, this step in 
the workflow would normally not have been needed. 

The result showed that only 34% of SB matched SA and 66% of SB 
(or 517 elements) did not, indicating that subsuming Sys(SB) 
would be a challenging undertaking. 

Near the completion of this project, the customer requested a 
further, expanded, study. They gave us four additional large 
schemata: SC, SD, SE, and SF, and requested a comprehensive 
vocabulary for SA and these four additional schemata. That is, for 
any non-empty subset of {SA, SC, SD, SE, SF}, the customer wanted 
to know the terms those schemata (and no others in that group) 
held in common. 

While this expansion is an ongoing effort, several clear lessons 
about the role of schema matching in large scale enterprises have 
emerged through our engagement in these tasks, as discussed in 
the following section. 

4. Lessons Learned 
In this section, we describe lessons learned from applying 
Harmony to a real problem. We begin by describing Harmony-
specific features that proved to be useful. We then describe more 
general lessons about needed advances in schema match 
technology. 

4.1 Harmony-specific Features 
Three Harmony features were unexpectedly useful. 1) As 
mentioned above, the sub-tree filter was valuable. We could 
visually isolate a specific concept and its descendants, and limit a 
match operation to just those elements, ensuring the only match 
lines generated would originate in the selected sub-tree. Upon 
reflection, the sub-tree filter enables a form of incremental 
schema matching, a technique recommended for industrial scale 

problems [10]. 2) Similarly, the depth filter allows a user to ignore 
(i.e., exclude from matching) schema elements whose depth in the 
schema tree exceeds a certain threshold. This made it possible to 
only match table names in SA, and ignore their attributes. 3) 
Finally, it was helpful that Harmony can export validated matches 
as a spreadsheet. Beyond simply being the desired delivery 
format, our integration engineers found it significantly easier to 
validate matches in this view, as opposed to the traditional line-
drawing interface provided by Harmony and most schema 
matchers. 

4.2 Lesson #1: Matching at Large Scales 
Requires Summarization 
Large-scale schema matching involves a human workflow and not 
just running an algorithm. While some authors raise the workflow 
issue [3, 10], most of the schema matching literature focuses 
solely on the MATCH (S1, S2) [11] operator and its optimization. 
We observed that the integration engineers’ workflow 
encompassed operations beyond the core task of matching. This 
workflow followed three basic steps: 

1. SUMMARIZE (SA) and SUMMARIZE (SB). In 
SUMMARIZE(S), the human integrator creates a simpler 
version of S. This summarization allows the integrator to 
organize his cognitive efforts, may guide subsequent 
matching steps, and helps the integrator understand the final 
match product. 

2. Using the schema matcher to do automated matching and 
interactive refinement of matches. 

3. Post-matching analysis, in which both the matches and non-
matching elements of SA and SB are exported to 
downstream tools for further analysis (more on this step in 
Lesson #2). 

In the use case described above, neither our integration engineers, 
nor the customer could directly comprehend the result of 
MATCH (SA, SB). Instead, the integration engineers manually 
summarized both SA and SB prior to performing the match. As 
noted above, they used a very simple summarization technique: 
creating a set of labels (corresponding to important domain 
concepts) and assigning them to particular schema elements. 

This summarization served many purposes: First, both the 
customer and the integration engineers, who often lack detailed 
domain expertise (especially for legacy systems such as Sys(SB)), 
could more easily understand the conceptual coverage of each 
schema. Second, the integration engineers could first match the 
top-level nodes corresponding to those concepts, before diving 
into the lower-level details. Intuitively, one does not expect 
attributes from dissimilar concepts to match (although the 
integration engineers did observe some cross-concept matches). 
Third, the integration engineers could communicate their results 
to the customer at the level of the concepts (e.g., 75% of concept 
A matched, but only 25% of concept B matched). 

Thus, we believe that industrial-scale schema matching systems 
must also support summarization. This operator would take a 
schema S as its input and generate a simpler representation S′ as 
its output. The operator must also generate a mapping that relates 
the elements of S to those of S′. While our engineers created S′ as 
a flat list of concept labels and the mapping related each schema 
element to at most one concept, recent research points the way 
toward more sophisticated schema summarization [12, 13]. More 
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work on this is needed. In addition, it is an open question how to 
best use schema summarization to improve matching. 

At a minimum, an industrial-strength schema matching tool 
should allow users to: a) manually summarize a schema, possibly 
by associating concepts with portions of the schema, b) match 
only those schema elements associated with a given element of 
the summarization, and c) easily iterate through the higher-level 
concepts to perform incremental matching, in the fashion 
described in [10]. 

4.3 Lesson #2: Matching at Large Scales 
Requires New Visualization Approaches 
As noted by others [10], we found that “line-drawing” 
visualizations of schema match break down rapidly as schema 
size grows much larger than the user’s screen. While this was 
ameliorated by Harmony’s sub-tree filter, other visualization 
improvements would have made life much easier for our 
engineers. 

First, we need a match-centric view of matches in addition to the 
typical schema-centric view. We came to this finding by probing 
the reasons that our customers wanted results delivered as a 
spreadsheet. At first, this struck us as a step backwards: most 
non–tool-assisted schema matching is done by manually editing a 
spreadsheet, and we (like others) viewed this approach as inferior 
to one based on a semi-automated schema matcher. Upon 
reflection, however, we found a problem with typical matcher 
interfaces: each schema remains intact while overlaid lines denote 
the matches. In many contexts, users care more about matches and 
sets of matches than about the original schema. Spreadsheets 
allow users to flexibly sort matches (e.g., by status, team member 
assigned to investigate it, etc.). This kind of match-centric view is 
something that must be added to schema match tools. 

Second, the modified schema match workflow discussed above 
involves a summarization operation in which the integration 
engineers assigned domain concept labels to schema elements. It 
is an open question how to exploit these (and more sophisticated) 
summarizations to aid user understanding of matches and to best 
support the engineers’ workflow. 

4.4 Lesson #3: Schema-Matching Identifies 
both Commonalities and Distinctions 
When matching is only performed as a precursor to code 
generation, it is natural to ignore unmatched elements. However, 
this use case demonstrates schema matching being used to 
generate knowledge vital to planners and decision makers. Both 
matched and unmatched elements can generate valuable 
knowledge. Specifically: we observed that the three sets: {S1–S2}, 
{S2–S1}, and {S1∩S2} provide a useful partition of the match of 
two large schemata; the first two of these are examples of 
knowledge derived from unmatched schema elements. 
We therefore assert that schema matching tools must provide as 
output not simply the set of full matches, but also any set of 
partial matches, including sets of unmatched elements. Note that 
summarization and visualization are again relevant: while it is 
trivial to produce {S1–S2}, {S2–S1}, and {S1∩S2} from the output 
of a standard schema matcher, how does one give the integration 
engineer the big picture of what concepts are unique to one 
schema as opposed to another? This task becomes increasingly 
difficult as we address scaling beyond binary matches, the topic of 
the next subsection. 

4.5 Lesson #4: Scaling Beyond Binary 
Matches is a High Priority 
As we encountered in the recent expansion of our project in 
Section 3, addressing the needs of large enterprises can involve 
scaling both to large numbers of elements in individual schemata 
and to more than two schemata. 

Consider again the three sets: {S1–S2}, {S2–S1}, and {S1∩S2} that 
partition a binary match. In general, given N schemata there are 
2N-1 such sets partitioning their N-way match; each of which 
supplies a potentially valuable piece of knowledge to information 
system decision makers, such as our customer. 

Although current schema matching research focuses on binary 
matches, the challenge problems discussed in this paper require 
matchers that support matching multiple schemata (N>2) [1]. This 
requirement is especially important for scenarios involving 
communities of peer organizations who share data—e.g., 
recognizing likely sharing partners in the community, establishing 
information asset awareness (i.e., what info resources do we have 
as a community?), understanding which concepts would be most 
fruitful to try to standardize, etc. 

5. Research Directions & Conclusions 
In this section, we enumerate new research opportunities based on 
both our direct experiences and the use cases we identified. 

Schema summarization: As noted above, our integration 
engineers needed to manually identify top-level concepts as a way 
to organize their work. We believe that schema summarization is 
a useful pre-cursor to large scale schema matching and that 
research is needed both in exploiting such summaries, and in 
creating them. Some promising work [12, 13] has been done, 
based on purely structural hints. More work is needed to extract 
key concepts from a schema and its documentation and to break 
the schema into semantically-related chunks. 
Ideally, a summarization tool would convert a complex schema 
into a simpler representation, while preserving the relationship 
between the complex representation and the simple one. More 
theoretical work is needed to formalize this intuition, but the 
result of summarization should have the following characteristics: 
a) it is easier for a human to understand, b) it allows coarse-
grained schema matching, c) it drives incremental refinement, and 
d) it helps the user understand the final match result. We expect 
there to be both algorithmic and user interface components of this 
work. 
User interfaces: In our work and that of others [10, 14], there has 
been new emphasis on the schema matcher user interface. The 
canonical UI represents the source and target schema as 
hierarchical structures with lines drawn between them. 
We found this view of matching to be useful at times; however, 
the sheer number of lines displayed at once is often 
overwhelming. As a result, research prototypes such as [3] 
and [10] provide mechanisms for reducing the number of lines 
shown at any one time. In addition to de-cluttering, our engineers 
needed a match-centric view that would let them flexibly sort and 
group matches. In addition, future engineers will need interfaces 
appropriate for specifying schema summarizations and visualizing 
their results. These recommendations are just a first step. Much 
more UI work is needed, preferably using rigorous HCI 
experimental methods. 
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N-way matching: Strategies for matching more than two 
schemata are not novel; the first general discussion of which we 
are aware was over two decades ago [1]. However, it has only 
been infrequently considered since that time, e.g., [15, 17], and 
this is a research area which needs a revival. Deriving a 
comprehensive vocabulary for a group of schemata in a large 
enterprise relies on extending schema matching beyond the binary 
case. The larger-N use cases we have presented also lead to more 
research problems than simply matching, as illustrated by the 
following three topics. 

Schema clustering and overlap analysis: Some use cases in 
Section 2 identify, at a high-level, the overlap between two (or 
more) schemata. We need new techniques to characterize overlap 
approximately but quickly, in a way that is meaningful for human 
decision makers. 

Numeric characterizations of overlap could also be used as inter-
schema distance metrics by a clustering algorithm. The ability to 
identify clusters of related schemata is vital, providing CIOs with 
a big picture view of enterprise data sources and revealing to 
integration planners the most promising (i.e., tightly clustered) 
candidates for integration. Schema clustering techniques have 
been presented for XML DTD’s [16] and conceptual schemata 
(e.g., ER diagrams) [13], and a plan to topically cluster schemata 
in the PAYGO architecture is discussed in [18], however much 
more research is needed, both into algorithms for generating 
schema clusters as well for appropriate means to visualize them. 

Schema search: Schema matching tools are used after integration 
engineers identify the schemata to be matched. Complementary 
search tools are needed to locate potential match candidates from 
a larger pool of schemata. These would take, as input, a query 
specification (e.g., an example schema, predicates over schema 
characteristics, example instance values). A simple search tool 
would return a list of schemata sorted by relevance to the query; a 
more sophisticated one could return relevant schema fragments. 

Enterprise metadata repositories: Large enterprises can have 
hundreds to thousands of schemata, illustrating the need to 
manage schemata as data themselves. A schema (metadata) 
repository is an appropriate context in which to cluster schemata, 
to summarize them, to search for match candidates and to store 
resulting match information. 

Several commercial repository tools are available, but these 
ignore the importance of schema matches as knowledge artifacts. 
However, as noted in  [7, 18], other developers should be able to 
benefit from previous matches. Fundamental to such a repository 
is the notion that matches are context-dependent; a match that 
supports search may not have sufficient precision to support a 
business intelligence application. A related research topic is 
managing matching provenance—i.e., who said that X is the same 
as Y, and should I trust that assertion in my application? 

Support for integration teams: As illustrated by our experiences 
in Section 3, large-scale schema matching is rarely performed by 
a single individual with domain expertise in all the relevant 
schemata, as well as knowledge about data integration. Research 
is needed to enhance the current generation of schema matchers 
with support for integration teams, with members having different 
sorts of expertise. For example, how can we divide very large 
matching workflows into modular task queues appropriate to each 
team member, along with the necessary communication 
mechanisms, to support a team-based matching effort? The 

appropriate task visualization may also vary, for team members 
with different expertise. 
CONCLUSION 
The push toward realistic, industrial-scaled schema matching 
problems changes the problem both quantitatively and 
qualitatively. Algorithmic improvements for binary matching are 
valuable, but just one requirement. In large enterprises involving 
many information systems, we observe that human planners and 
decision makers can benefit as primary consumers of the 
information generated by schema matching, as opposed to these 
results solely being "piped" into code generation. Human 
consumers, however, require different products from a schema 
match. Our experiences thus point to a broader agenda for schema 
matching research, opening new and interesting areas for 
exploration, such as: a tighter integration of schema matching and 
schema summarization research, specialized user interfaces, and 
support for larger-N schema operations such as clustering, search, 
and repositories. 
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