

CIDR Perspectives 2009

The Role of Schema Matching in Large Enterprises

Ken Smith, Peter Mork, Len Seligman, Arnon Rosenthal, Michael Morse, Christopher Wolf,
David Allen & Maya Li

The MITRE Corporation
7515 Colshire Dr

McLean, VA 22102
(703) 983-6115

{kps, pmork, seligman, arnie, mdmorse, cwolf, dmallen, haoli}@mitre.org

ABSTRACT
To date, the principal use case for schema matching research has
been as a precursor for code generation, i.e., constructing
mappings between schema elements with the end goal of data
transfer. In this paper, we argue that schema matching plays
valuable roles independent of mapping construction, especially as
schemata grow to industrial scales. Specifically, in large
enterprises human decision makers and planners are often the
immediate consumer of information derived from schema
matchers, instead of schema mapping tools. We list a set of real
application areas illustrating this role for schema matching, and
then present our experiences tackling a customer problem in one
of these areas. We describe the matcher used, where the tool was
effective, where it fell short, and our lessons learned about how
well current schema matching technology is suited for use in large
enterprises. Finally, we suggest a new agenda for schema
matching research based on these experiences.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design – data models,
schema and subschema.

General Terms
Experimentation, Human Factors, Design.

Keywords
Schema Matching, Industrial-Scale, Experience, Decision Makers.

1. Introduction
The database community has been conducting research on schema
matching for decades [1]. This research has usually assumed that
schema matching (i.e., the generation of semantic
correspondences among schemata) is merely a precursor to the
creation of executable transformation code (e.g., database views
or ETL scripts). Thus, the assumption has always been that the
ultimate result of schema integration will be a program to effect

data transfer across systems with different yet similar schemata.
For example, Bernstein, et al. state that “Most systems-integration
work requires creating mappings between models, such as
database schemata, message formats, interface definitions, and
user-interface forms [2].” Indeed, when we embarked on our own
Harmony schema matching project [3], we believed that to fully
realize its value, we would need to integrate Harmony with a
schema mapping tool, and we did so with the AquaLogic Data
Service Platform [4, 5].

However, while working on Harmony, members of our research
team have worked closely with customers in large government
organizations on a wide range of integration problems. In the
course of those efforts, we came to the realization that schema
matching provides crucial insights to human decision makers,
including planners, information system managers, and enterprise
architects who have no immediate intention of performing data
exchange.

We also observed that the current generation of schema matching
tools lacks capabilities that would help provide these necessary
insights; for example, enterprise architects and managers often
work with much larger schemata than developers need to
manipulate. In addition, the challenges of supporting architects,
decision makers, and planners in large enterprises (e.g.,
corporations, government organizations) introduce new
requirements for schema matching research and tools.

Based on our insights from these experiences, this paper makes
the following contributions:

1. We describe several application areas that illustrate the use
of schema matching results by human decision makers,
planners, and system architects in large enterprises.
(Section 2).

2. For one such application area—a planning effort involving
multiple large schemata (each on the order of 103
elements)—we report our experiences and describe our
lessons learned. (Sections 3 and 4).

3. Motivated by these observations and experiences, in
Section 5 we then enumerate additional research challenges
that must be addressed to meet needs of data integrators in
large enterprises.

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 08-1723

CIDR Perspectives 2009

2. Broadening the view of schema matching
In this section, we describe several scenarios drawn from our
work with government customers in which the results of schema
matching are directly useful to people and organizations, without
ever generating transformation code.

Project feasibility: Within the US Department of Defense (DoD),
many integration projects are organized around “communities of
interest” (COIs) [6]. Each such community represents a collection
of parties whose information needs overlap significantly and who
have in interest in sharing data. A key goal of a COI is to develop
a community vocabulary (i.e., a mediated schema) that can serve
as a basis for data exchange.

Convening a COI requires a decision maker to commit significant
resources to support the COI’s activities; however, no resources
will be committed unless the potential value is clear. Schema
matching tools are needed to quickly estimate the extent to which
it will be feasible to generate a community vocabulary from a
collection of data sources.

Project planning: A related scenario involves determining the
level of effort (and corresponding cost) needed for an integration
project. For example, the Air Operations COI has presented us
with a community vocabulary and asked: To what extent can the
attributes in the community vocabulary be populated by a specific
data source? To what extent must this vocabulary be expanded to
cover the data used by a related set of systems? And, most
importantly, how much time and money should be allocated to
these projects?
Answering these questions requires us to match the source
schemata to the community vocabulary, although not to generate
mappings (at this point), but to help the COI planners estimate the
level of programming effort required to establish the actual
mappings so an appropriate contract can be written with realistic
cost estimates.

Generating an exchange schema: In the preceding scenario, the
COI has already identified a candidate vocabulary. However, it is
often the case that COI participants need to construct an exchange
schema from scratch. In many scenarios, this exchange schema
needs to be constructed quickly, albeit incompletely. For example,
in an emergency response scenario, many new data sharing
partners (e.g., state and federal agencies, non-profits,
corporations) may suddenly be thrust together to respond to a
crisis.
In such a scenario, schema matching tools are needed to identify
which information the available systems have in common. The
various agencies need to be able to throw their data models into a
giant beaker and to distill out a minimal mediated schema that will
serve as the basis for their collaboration. Eventually, the agencies
will need to map their systems to the mediated schema, but they
need schema matching support while at the negotiating table.

Identifying the integration target: In certain large and diverse
communities (e.g., the entire U.S. military, the entire U.S. law
enforcement community), authorities mandate particular data
models as a starting point for much data sharing. Under the
pressure of accommodating a broad range of possible data
exchanges, these schemata can grow to become too large for
participants to comprehend and exploit.1 In this situation, data

1 E.g., en.wikipedia.org/wiki/JC3IEDM and niem.org

sharing partners need schema matching support to identify that
subset of the exchange schema that is relevant to their system.
Again, schema matching provides valuable information at the
project design stage, well before programmers are tasked with
developing mappings.

Enterprise information asset awareness: The Chief Information
Officer (CIO) of a large enterprise needs to understand what
information is being managed across the enterprise’s information
systems, and by which systems. For example, the CIO of a Health
Maintenance Organization may want to know which data sources
contain the concept of “blood test”, and what specific concepts are
shared by five different systems involving patient health history.

The CIO could answer these questions given a comprehensive
vocabulary: an exhaustive list of the concepts found in a set of
data sources, and, for each concept, the sources using that concept
in their data model. Schema matching is a valuable tool for
forming a comprehensive vocabulary because it helps identify
shared concepts, independently of future mapping construction. In
Section 3 we describe an effort to derive a comprehensive
vocabulary in support of project planning.
Finding relevant and related schemata: Some very large
communities have an enterprise schema registry. For example,
within the DoD, all data models must be posted to the DoD
Metadata Registry (MDR), which now contains thousands of
schemata in a wide range of formats. One goal of the MDR is to
make system developers more aware of each other’s systems to
increase reuse and thereby reduce semantic heterogeneity.

A powerful way to search the MDR would be to simply use one’s
target schema as the “query term.” Using schema matching
technology, the system would rank the available schemata.

Using a similar approach, a schema repository such as the MDR
could automatically propose new COIs by clustering the schemata
into related groups. Automatic schema clustering within a
repository would also be valuable to an enterprise’s CIO, who
seeks to understand the extent to which large and diverse sets of
information assets across their organization are related.

3. Detailed Example
In this section we present an instance of the project planning
application area in some detail.

3.1 Task Summary
A military customer presented us with two large independently-
developed schemata that the customer believed should overlap
significantly. Each schema should, for example, include
information about persons, vehicles, and military units.

• Schema A (SA) is relational, contains 1378 elements, and is
the schema of version 3 of an actively used system: Sys(SA).
To enhance compatibility among military services, Sys(SA) is
currently being redesigned into version 4.

• Schema B (SB) is an XML Schema, contains 784 elements, is
the schema of legacy system Sys(SB), and is reputed by the
customer to include a conceptual subset of SA. Sys(SB) is
disliked by users and there is pressure to eliminate it.

The customer recognized the transition from Sys(SA).v3 to
Sys(SA).v4 as an opportunity to eliminate Sys(SB) by augmenting
Sys(SA) to subsume its role, incorporating its operations and any
distinct data elements of SB into SA. However, the customer
lacked detailed expertise with Sys(SB), and the specific nature and
extent of the relationship between SA and SB was unknown.

CIDR Perspectives 2009

Eliminating Sys(SB) was not the clear choice if a) the set of
distinct SB elements were sufficiently large and b) the set of
common elements (i.e., elements involved in matches between SA
and SB) were sufficiently small. In this case, it could be inferred
that the roles of Sys(SA) and Sys(SB) were so different that
subsuming Sys(SB) was unattractive compared to retaining it and
building an ETL bridge to feed Sys(SA) (i.e., a classic data
warehouse architecture). In summary: due to the size, complexity,
and unknown relationship of these systems, the customer could
not easily evaluate the merit and cost of these two options.

As an initial step toward selecting one of these two options, the
customer presented us with schemata SA and SB and requested an
analysis of what they held in common, how and to what extent
they differed, and a representation of their comprehensive
vocabulary. This customer challenge appeared to be an excellent
test of schema matching technology’s ability to address a real,
“industrial scale” problem.
Note several important features of this problem:

1. Both the distinctiveness (i.e., SB–SA and SA–SB) and the
overlap (i.e., SA∩SB) of the data models involved were
important. In particular, the cardinalities of SA∩SB and
SB–SA were vital to the customer's decision process.

2. The customer organization was so large that the people
tasked with planning the fate of information systems
lacked detailed knowledge of those systems’ contents.

3. The scale of the entailed schema match, 106 potential
matches, would be tedious for human users, and exceeds
that of most published schema matching studies.

4. Generating executable mappings between SA and SB
was not the immediate goal.

3.2 Harmony Schema Matcher
We now describe the matcher used to address this problem.
Harmony is a MITRE-developed schema matcher that combines
multiple match algorithms with a graphical user interface for
viewing and modifying the identified schema correspondences.
Unlike most schema matching tools, Harmony relies heavily on
textual documentation to identify candidate correspondences
instead of data instances because, as we reported in [3], at least in
the government sector, schema documentation is easier to obtain
than data (which may not yet exist, or may be sensitive). This
characterization holds for the matching task between SA and SB.

The Harmony match engine adopts a conventional schema
matching architecture [2, 7-9]. It begins with linguistic
preprocessing (e.g., tokenization and stemming) of element names
and any associated documentation. Then, several match voters are
invoked, each of which identifies correspondences using a
different strategy. For each [source element, target element] pair,
each match voter establishes a confidence score in the range (–1,
+1) where –1 indicates that there is definitely no correspondence,
+1 indicates a definite correspondence and 0 indicates complete
uncertainty. A vote merger combines the confidence scores into a
single match score.

As a match voter observes more evidence, the confidence score is
pushed towards –1 or +1. Compared to conventional schema
matching tools, Harmony is novel in that it considers both the
standard evidence ratio (e.g., number of shared words in the
documentation) as well as the total amount of available evidence
when calculating confidence scores. This approach allows the
vote merger to combine confidence scores into a single match

score based on how confident each match voter is regarding a
given correspondence.

Once the match engine identifies candidate correspondences, the
Harmony GUI displays these correspondences as color-coded
lines between source and target elements. The GUI supports a
variety of filters that then assist the integration engineer in
focusing their attention in various ways. These filters are loosely
categorized as link filters, which depend on the characteristics of a
given candidate correspondence, and node filters, which depend
on the characteristics of a given schema element.

For the current discussion, the most relevant link filter is the
confidence filter. Only those correspondences whose match score
falls within the specific range of values are displayed graphically.
Thus, the integration engineer can focus their attention first on the
most likely correspondences.

The node filters include a depth filter and a sub-tree filter. The
former enables only those schema elements that appear at a
particular nested depth. For example, in a relational model,
relations appear at a depth of one and attributes at a depth of two.
Using this filter, the engineer can focus on a particular level of
granularity. The sub-tree filter enables only those elements that
appear in a given sub-tree. For example, this filter can be used to
focus one’s attention on the ‘Vehicle’ sub-schema. The engineers
responsible for matching SA to SB relied heavily on this filter.

3.3 Our Approach
On the surface, our task was “simply” to perform a 1378×784
schema match, report the pairs of matching elements, and report
separately the unmatched elements from each schema. In fact, we
had recently scaled Harmony to perform matches of this size, and
the fully automated match executed in 10.2 seconds.

However, there were two problems with simply reporting the
matcher’s results. First, neither the matcher’s output (a match
matrix) nor existing visualizations of such a matrix gave our
customer much insight into the high level areas of overlap and
differences between SA and SB. A lengthy list of matches such as
“DATE_BEGIN_156 ⇔ DATETIME_FIRST_INFO” overloaded
the user and failed to provide the “big picture.” The integration
engineers recognized a need to introduce concept labels
representing important domain concepts such as “Event” and
“Person,” which in turn could be assigned to schema elements.

Second, the integration engineers needed help navigating
thousands of potential matches in order to validate and annotate
them (e.g., with additional semantics such as is-a or part-of).
Again, concept labels helped them organize this process.

For example, the “All_Event_Vitals” table of SA consisted of
attributes corresponding to a concept they labeled “Event.” In
general, there was strong correlation between the tables and views
in SA, the types and elements in SB, and these abstract
designations. Through inspection, they identified 140 schema
elements corresponding to useful abstract concepts in SA and 51 in
SB.
Once identified, they used Harmony's sub-tree filter to
incrementally match each concept (i.e., the schema sub-tree
rooted at that concept) with the entire opposing schema. For
example, “All_Event_Vitals” in SA was chosen as the current sub-
tree, and then matched to all of SB. These match operations were
rapid: typically between 104 and 105 matches were considered in
each increment. Using the confidence filter, matches scoring

CIDR Perspectives 2009

above a threshold were then examined by a human integration
engineer; valid matches and related annotations were recorded in
Harmony. A common outcome was a strong match from the fields
of one concept to the fields of a corresponding concept in the
other schema, plus a few matching fields from other concepts.
When this occurred, we also recorded a concept-level match (i.e.,
a match between a label used in SA and one used in SB. 24 of these
concept-level matches were thus identified and recorded.

This concept-at-a-time workflow had several benefits: It helped
the integration engineers organize and track their progress each
day. It also provided them with deeper insights into the conceptual
coverage in each schema, and where these concepts matched.
Finally, it allowed the integration engineers to keep entirely
visible at least one side of the match (i.e., corresponding to one
concept label), and perhaps both sides, in the user interface. This
precluded a large mass of criss-crossing lines, denoting off-screen
matches, from cluttering the display and obscuring the user’s
view.

The entire matching process required three days of effort, by two
human integration engineers.

3.4 Outcome
At the customer's request, the final result was delivered as an
Excel spreadsheet. The first sheet enumerated the 191 concepts
with their 24 concept-level matches (167 rows), the second sheet
contained the individual schema elements (indexed to a concept)
and their element-level matches. Both sheets were organized in
“outer-join” style with three types of rows: those specific to SA,
those specific to SB, and those having matched elements of SA and
SB. Note that, had the end-goal been code generation, this step in
the workflow would normally not have been needed.

The result showed that only 34% of SB matched SA and 66% of SB
(or 517 elements) did not, indicating that subsuming Sys(SB)
would be a challenging undertaking.

Near the completion of this project, the customer requested a
further, expanded, study. They gave us four additional large
schemata: SC, SD, SE, and SF, and requested a comprehensive
vocabulary for SA and these four additional schemata. That is, for
any non-empty subset of {SA, SC, SD, SE, SF}, the customer wanted
to know the terms those schemata (and no others in that group)
held in common.

While this expansion is an ongoing effort, several clear lessons
about the role of schema matching in large scale enterprises have
emerged through our engagement in these tasks, as discussed in
the following section.

4. Lessons Learned
In this section, we describe lessons learned from applying
Harmony to a real problem. We begin by describing Harmony-
specific features that proved to be useful. We then describe more
general lessons about needed advances in schema match
technology.

4.1 Harmony-specific Features
Three Harmony features were unexpectedly useful. 1) As
mentioned above, the sub-tree filter was valuable. We could
visually isolate a specific concept and its descendants, and limit a
match operation to just those elements, ensuring the only match
lines generated would originate in the selected sub-tree. Upon
reflection, the sub-tree filter enables a form of incremental
schema matching, a technique recommended for industrial scale

problems [10]. 2) Similarly, the depth filter allows a user to ignore
(i.e., exclude from matching) schema elements whose depth in the
schema tree exceeds a certain threshold. This made it possible to
only match table names in SA, and ignore their attributes. 3)
Finally, it was helpful that Harmony can export validated matches
as a spreadsheet. Beyond simply being the desired delivery
format, our integration engineers found it significantly easier to
validate matches in this view, as opposed to the traditional line-
drawing interface provided by Harmony and most schema
matchers.

4.2 Lesson #1: Matching at Large Scales
Requires Summarization
Large-scale schema matching involves a human workflow and not
just running an algorithm. While some authors raise the workflow
issue [3, 10], most of the schema matching literature focuses
solely on the MATCH (S1, S2) [11] operator and its optimization.
We observed that the integration engineers’ workflow
encompassed operations beyond the core task of matching. This
workflow followed three basic steps:

1. SUMMARIZE (SA) and SUMMARIZE (SB). In
SUMMARIZE(S), the human integrator creates a simpler
version of S. This summarization allows the integrator to
organize his cognitive efforts, may guide subsequent
matching steps, and helps the integrator understand the final
match product.

2. Using the schema matcher to do automated matching and
interactive refinement of matches.

3. Post-matching analysis, in which both the matches and non-
matching elements of SA and SB are exported to
downstream tools for further analysis (more on this step in
Lesson #2).

In the use case described above, neither our integration engineers,
nor the customer could directly comprehend the result of
MATCH (SA, SB). Instead, the integration engineers manually
summarized both SA and SB prior to performing the match. As
noted above, they used a very simple summarization technique:
creating a set of labels (corresponding to important domain
concepts) and assigning them to particular schema elements.

This summarization served many purposes: First, both the
customer and the integration engineers, who often lack detailed
domain expertise (especially for legacy systems such as Sys(SB)),
could more easily understand the conceptual coverage of each
schema. Second, the integration engineers could first match the
top-level nodes corresponding to those concepts, before diving
into the lower-level details. Intuitively, one does not expect
attributes from dissimilar concepts to match (although the
integration engineers did observe some cross-concept matches).
Third, the integration engineers could communicate their results
to the customer at the level of the concepts (e.g., 75% of concept
A matched, but only 25% of concept B matched).

Thus, we believe that industrial-scale schema matching systems
must also support summarization. This operator would take a
schema S as its input and generate a simpler representation S′ as
its output. The operator must also generate a mapping that relates
the elements of S to those of S′. While our engineers created S′ as
a flat list of concept labels and the mapping related each schema
element to at most one concept, recent research points the way
toward more sophisticated schema summarization [12, 13]. More

CIDR Perspectives 2009

work on this is needed. In addition, it is an open question how to
best use schema summarization to improve matching.

At a minimum, an industrial-strength schema matching tool
should allow users to: a) manually summarize a schema, possibly
by associating concepts with portions of the schema, b) match
only those schema elements associated with a given element of
the summarization, and c) easily iterate through the higher-level
concepts to perform incremental matching, in the fashion
described in [10].

4.3 Lesson #2: Matching at Large Scales
Requires New Visualization Approaches
As noted by others [10], we found that “line-drawing”
visualizations of schema match break down rapidly as schema
size grows much larger than the user’s screen. While this was
ameliorated by Harmony’s sub-tree filter, other visualization
improvements would have made life much easier for our
engineers.

First, we need a match-centric view of matches in addition to the
typical schema-centric view. We came to this finding by probing
the reasons that our customers wanted results delivered as a
spreadsheet. At first, this struck us as a step backwards: most
non–tool-assisted schema matching is done by manually editing a
spreadsheet, and we (like others) viewed this approach as inferior
to one based on a semi-automated schema matcher. Upon
reflection, however, we found a problem with typical matcher
interfaces: each schema remains intact while overlaid lines denote
the matches. In many contexts, users care more about matches and
sets of matches than about the original schema. Spreadsheets
allow users to flexibly sort matches (e.g., by status, team member
assigned to investigate it, etc.). This kind of match-centric view is
something that must be added to schema match tools.

Second, the modified schema match workflow discussed above
involves a summarization operation in which the integration
engineers assigned domain concept labels to schema elements. It
is an open question how to exploit these (and more sophisticated)
summarizations to aid user understanding of matches and to best
support the engineers’ workflow.

4.4 Lesson #3: Schema-Matching Identifies
both Commonalities and Distinctions
When matching is only performed as a precursor to code
generation, it is natural to ignore unmatched elements. However,
this use case demonstrates schema matching being used to
generate knowledge vital to planners and decision makers. Both
matched and unmatched elements can generate valuable
knowledge. Specifically: we observed that the three sets: {S1–S2},
{S2–S1}, and {S1∩S2} provide a useful partition of the match of
two large schemata; the first two of these are examples of
knowledge derived from unmatched schema elements.
We therefore assert that schema matching tools must provide as
output not simply the set of full matches, but also any set of
partial matches, including sets of unmatched elements. Note that
summarization and visualization are again relevant: while it is
trivial to produce {S1–S2}, {S2–S1}, and {S1∩S2} from the output
of a standard schema matcher, how does one give the integration
engineer the big picture of what concepts are unique to one
schema as opposed to another? This task becomes increasingly
difficult as we address scaling beyond binary matches, the topic of
the next subsection.

4.5 Lesson #4: Scaling Beyond Binary
Matches is a High Priority
As we encountered in the recent expansion of our project in
Section 3, addressing the needs of large enterprises can involve
scaling both to large numbers of elements in individual schemata
and to more than two schemata.

Consider again the three sets: {S1–S2}, {S2–S1}, and {S1∩S2} that
partition a binary match. In general, given N schemata there are
2N-1 such sets partitioning their N-way match; each of which
supplies a potentially valuable piece of knowledge to information
system decision makers, such as our customer.

Although current schema matching research focuses on binary
matches, the challenge problems discussed in this paper require
matchers that support matching multiple schemata (N>2) [1]. This
requirement is especially important for scenarios involving
communities of peer organizations who share data—e.g.,
recognizing likely sharing partners in the community, establishing
information asset awareness (i.e., what info resources do we have
as a community?), understanding which concepts would be most
fruitful to try to standardize, etc.

5. Research Directions & Conclusions
In this section, we enumerate new research opportunities based on
both our direct experiences and the use cases we identified.

Schema summarization: As noted above, our integration
engineers needed to manually identify top-level concepts as a way
to organize their work. We believe that schema summarization is
a useful pre-cursor to large scale schema matching and that
research is needed both in exploiting such summaries, and in
creating them. Some promising work [12, 13] has been done,
based on purely structural hints. More work is needed to extract
key concepts from a schema and its documentation and to break
the schema into semantically-related chunks.
Ideally, a summarization tool would convert a complex schema
into a simpler representation, while preserving the relationship
between the complex representation and the simple one. More
theoretical work is needed to formalize this intuition, but the
result of summarization should have the following characteristics:
a) it is easier for a human to understand, b) it allows coarse-
grained schema matching, c) it drives incremental refinement, and
d) it helps the user understand the final match result. We expect
there to be both algorithmic and user interface components of this
work.
User interfaces: In our work and that of others [10, 14], there has
been new emphasis on the schema matcher user interface. The
canonical UI represents the source and target schema as
hierarchical structures with lines drawn between them.
We found this view of matching to be useful at times; however,
the sheer number of lines displayed at once is often
overwhelming. As a result, research prototypes such as [3]
and [10] provide mechanisms for reducing the number of lines
shown at any one time. In addition to de-cluttering, our engineers
needed a match-centric view that would let them flexibly sort and
group matches. In addition, future engineers will need interfaces
appropriate for specifying schema summarizations and visualizing
their results. These recommendations are just a first step. Much
more UI work is needed, preferably using rigorous HCI
experimental methods.

CIDR Perspectives 2009

N-way matching: Strategies for matching more than two
schemata are not novel; the first general discussion of which we
are aware was over two decades ago [1]. However, it has only
been infrequently considered since that time, e.g., [15, 17], and
this is a research area which needs a revival. Deriving a
comprehensive vocabulary for a group of schemata in a large
enterprise relies on extending schema matching beyond the binary
case. The larger-N use cases we have presented also lead to more
research problems than simply matching, as illustrated by the
following three topics.

Schema clustering and overlap analysis: Some use cases in
Section 2 identify, at a high-level, the overlap between two (or
more) schemata. We need new techniques to characterize overlap
approximately but quickly, in a way that is meaningful for human
decision makers.

Numeric characterizations of overlap could also be used as inter-
schema distance metrics by a clustering algorithm. The ability to
identify clusters of related schemata is vital, providing CIOs with
a big picture view of enterprise data sources and revealing to
integration planners the most promising (i.e., tightly clustered)
candidates for integration. Schema clustering techniques have
been presented for XML DTD’s [16] and conceptual schemata
(e.g., ER diagrams) [13], and a plan to topically cluster schemata
in the PAYGO architecture is discussed in [18], however much
more research is needed, both into algorithms for generating
schema clusters as well for appropriate means to visualize them.

Schema search: Schema matching tools are used after integration
engineers identify the schemata to be matched. Complementary
search tools are needed to locate potential match candidates from
a larger pool of schemata. These would take, as input, a query
specification (e.g., an example schema, predicates over schema
characteristics, example instance values). A simple search tool
would return a list of schemata sorted by relevance to the query; a
more sophisticated one could return relevant schema fragments.

Enterprise metadata repositories: Large enterprises can have
hundreds to thousands of schemata, illustrating the need to
manage schemata as data themselves. A schema (metadata)
repository is an appropriate context in which to cluster schemata,
to summarize them, to search for match candidates and to store
resulting match information.

Several commercial repository tools are available, but these
ignore the importance of schema matches as knowledge artifacts.
However, as noted in [7, 18], other developers should be able to
benefit from previous matches. Fundamental to such a repository
is the notion that matches are context-dependent; a match that
supports search may not have sufficient precision to support a
business intelligence application. A related research topic is
managing matching provenance—i.e., who said that X is the same
as Y, and should I trust that assertion in my application?

Support for integration teams: As illustrated by our experiences
in Section 3, large-scale schema matching is rarely performed by
a single individual with domain expertise in all the relevant
schemata, as well as knowledge about data integration. Research
is needed to enhance the current generation of schema matchers
with support for integration teams, with members having different
sorts of expertise. For example, how can we divide very large
matching workflows into modular task queues appropriate to each
team member, along with the necessary communication
mechanisms, to support a team-based matching effort? The

appropriate task visualization may also vary, for team members
with different expertise.
CONCLUSION
The push toward realistic, industrial-scaled schema matching
problems changes the problem both quantitatively and
qualitatively. Algorithmic improvements for binary matching are
valuable, but just one requirement. In large enterprises involving
many information systems, we observe that human planners and
decision makers can benefit as primary consumers of the
information generated by schema matching, as opposed to these
results solely being "piped" into code generation. Human
consumers, however, require different products from a schema
match. Our experiences thus point to a broader agenda for schema
matching research, opening new and interesting areas for
exploration, such as: a tighter integration of schema matching and
schema summarization research, specialized user interfaces, and
support for larger-N schema operations such as clustering, search,
and repositories.

6. References
[1] C. Batini, M. Lenzerini, and S. B. Navathe, "A

Comparative Analysis of Methodologies for Database
Schema Integration," ACM Computing Surveys, vol. 18,
pp. 323–364, December 1986.

[2] P. A. Bernstein, S. Melnik, M. Petropoulos, and C.
Quix, "Industrial-Strength Schema Matching,"
SIGMOD Record, vol. 33, pp. 38–43, December 2004.

[3] P. Mork, A. Rosenthal, L. J. Seligman, J. Korb, and K.
Samuel, "Integration Workbench: Integrating Schema
Integration Tools," in InterDB, Atlanta, GA, 2006.

[4] M. J. Carey, S. Ghandeharizadeh, K. Mehta, P. Mork, L.
J. Seligman, and S. Thatte, "AL$MONY: Exploring
Semantically-Assisted Matching in an XQuery-Based
Data Mapping Tool," in SDSI, Vienna, Austria, 2007.

[5] M. J. Carey, S. Ghandeharizadeh, K. Mehta, P. Mork, L.
J. Seligman, S. Srivastava, and S. Thatte, "Semantically-
Assisted Integration Query Editing in the AquaLogic
Data Services Platform," in ICSC, Santa Clara, CA,
2008, pp. 482–483.

[6] A. Rosenthal, L. J. Seligman, and S. Renner, "From
Semantic Integration to Semantics Management: Case
Studies and a Way Forward," SIGMOD Record, vol. 33,
pp. 44–50, Dec 2004.

[7] H. H. Do and E. Rahm, "COMA - A System for
Flexible Combination of Schema Matching
Approaches," in VLDB, Hong Kong, China, 2002, pp.
610–621.

[8] A. Doan, P. Domingos, and A. Y. Halevy, "Learning to
Match the Schemas of Databases: A Multistrategy
Approach," Machine Learning, vol. 50, pp. 279–301,
March 2003.

[9] J. Madhavan, P. A. Bernstein, and E. Rahm, "Generic
Schema Matching with Cupid," in VLDB, Roma, Italy,
2001, pp. 49–58.

[10] P. A. Bernstein, S. Melnik, and J. E. Churchill,
"Incremental Schema Matching," in VLDB, Seoul,
Korea, 2006, pp. 1167–1170.

[11] P. A. Bernstein, "Applying Model Management to
Classical Meta Data Problems," in CIDR, Asilomar,
CA, 2003.

[12] S. Castano, V. De Antonellis, M. G. Fugini, and B.
Pernici, "Conceptual Schema Analysis: Techniques and

CIDR Perspectives 2009

Applications," ACM Transactions on Database Systems,
vol. 23, pp. 286–332, Sep 1998.

[13] C. Yu and H. V. Jagadish, "Schema Summarization," in
VLDB, Seoul, Korea, 2006, pp. 103–114.

[14] S. M. Falconer and M.-A. D. Storey, "A Cognitive
Support Framework for Ontology Mapping," in ISWC,
Busan, Korea, 2007, pp. 114–127.

[15] B. He and K. C.-C. Chang, "Statistical Schema
Matching across Web Query Interfaces," in Statistical
Schema Matching across Web Query Interfaces, San
Diego, CA, 2003, pp. 217–228.

[16] M. L. Lee, L. H. Yang, W. Hsu, and X. Yang, "XClust:
Clustering XML Schemas for Effective Integration," in
CIKM, McLean, VA, 2002, pp. 292–299.

[17] W. Wu, C. Yu, A. Doan, and W. Meng, "An Interactive
Clustering-based Approach to Integrating Source Query
Interfaces on the Deep Web," in SIGMOD, Paris,
France, 2004, pp. 95–106.

[18] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R.
Jeffery, D. Ko, and C. Yu, "Web-Scale Data Integration:
You can afford to Pay as You Go," in CIDR, Asilomar,
CA, 2007, pp. 342–350.

