
Obligations in Trust Negotiation

Jeff Puchalski
jpuchalski@mitre.org

Vipin Swarup
swarup@mitre.org

The MITRE Corporation
7515 Colshire Drive
McLean, VA 22102

ABSTRACT
Trust negotiation frameworks allow communicating parties
to incrementally establish trust in one another to achieve
security goals. The goals we focus on deal with sharing
sensitive information that is protected by a disclosure pol-
icy. Traditionally, such policies are satisfied through the use
of signed credentials that express role memberships or at-
tributes. The requirements in these policies are known as
provisions, and represent past and present state. Although
useful, provisions can sometimes prove too rigid, are suscep-
tible to schema-matching problems, and cannot provide as-
surances on how information is used once it has been shared.

In this paper, we propose a means of augmenting trust
negotiation frameworks to support obligations, which are
commitment-based requirements to perform certain actions
in the future. We provide a metamodel for such a frame-
work along with a method of converting provisions into sets
of obligations. We analyze the complexity of this conversion,
and then provide a study of obligation optimality during the
negotiation.

1. INTRODUCTION
Trust management enables two or more principals to estab-
lish trusted channels (for providing information services),
using policies based on attributes such as the principals’
identities, authorizations, environments, and communica-
tion medium. Sometimes the attributes or policies them-
selves may be sensitive, and hence require additional poli-
cies to regulate how they are exchanged—trust negotiation
enables the conditional exchange of policy and attribute cre-
dentials so that principals can establish mutual trust in an
incremental manner.

In many cases, principals may not be able to establish trust
in other principals or environments, but yet need to be able
to share critical information and provide information ser-
vices so that those principals can perform mission-critical
operations. Existing trust management and trust negotia-

tion methods are fundamentally inadequate to deal with this
need to provide information services in non-trustworthy sit-
uations. Firstly, their policies are static and rigid; a party
either has the necessary credentials to satisfy the provisions
in a policy or it does not. Second, they make no guarantees
on the future usage of the information being shared. Once
information has been shared, it could be misused by provid-
ing it to unauthorized parties that don’t have the necessary
credentials. A third weakness of provision-based policies
is that a party may have the credentials needed to satisfy
some policy, but they may be in a form unrecognizable to
the other party. Thus, a credential exchange would result in
failure.

The key reason for these shortcomings is that existing meth-
ods are concerned with protecting information, rather than
sharing information. Hence, trust decisions are based on the
risks of sharing information and exclude consideration of the
risks of not sharing information. While adequate protection
of information services is necessary, the failure to provide an
information service to the right entity at the right time can
be as (or more) disastrous as the inadvertent disclosure of
information.

We address these problems in this paper by introducing obli-
gations to trust negotiation. Obligations allow one to specify
that certain actions should take place in the future. Another
party can then enter into a binding agreement, or commit-
ment, to fulfill those actions within a specified time bound.
Our key observation is that parties can substitute obliga-
tions for provisions in trust negotiation. That is, when per-
mitted by policy, a party can commit to obligations in lieu
of satisfying some provisions. This provides a high degree
of flexibility that does not rely on rigidly expressed creden-
tials. Obligations can be constructed (or negotiated) by the
involved parties as required, and formulated in such a way
that a party who is a complete stranger could make sense of
them and take appropriate action.

Obligations provide a weaker form of assurance than provi-
sions because there is no guarantee that their actions will
be fulfilled. It is thus not always possible to ensure that
obligations are satisfied. However, penalties for violation,
along with a suitable enforcement mechanism, can help to
mitigate this risk by encouraging behaviors that will satisfy
obligations. Further, obligations can be used together with
provisions to provide mandated assurance.

1

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 08-0191

In this paper, we develop a metamodel for including obliga-
tions in trust negotiation. We then explore ways in which
provisions can be dynamically converted to obligations in
order to achieve mission goals. We also examine how par-
ties commit to obligations, specifically ways of ensuring that
a party does not commit to more obligations than are nec-
essary. Finally, we conclude with a thorough treatment of
the complexity and decidability of determining whether an
optimal (i.e., minimal) set of obligations has been used to
achieve the negotiation goals. To our knowledge, this is the
first treatment of obligations with regards to trust negotia-
tion.

Our paper proceeds as follows. We begin in Section 2 by
presenting a motivating example for why obligations are
needed. Section 3 introduces several key concepts we use,
such as trust negotiation, provisions and obligations. In
Section 4, we describe a metamodel of a trust negotiation
system containing support for obligations, and develop a
method of converting provisions to obligations and ensuring
that a minimal set of obligations is being used. Section 5
contains our analysis of optimal usage of obligations in trust
negotiation. Finally, Section 6 presents related work, and
Section 7 concludes.

2. MOTIVATING EXAMPLE
In order to make the case for why obligations are needed
in trust negotiation and why provisions should be converted
into obligations, we present here a realistic example sce-
nario. Situations similar to this one often arise in the real
world whenever there are security or privacy concerns over
the disclosure of information, especially between unfamiliar
parties. We will revisit this example throughout the paper.

Consider a hypothetical situation where a United States
federal agency suspects that a terrorist cell is stockpiling
hazardous materials in a factory, some of which might be
flammable or combustible. The federal agency is in con-
tact with other agencies, such as the Centers for Disease
Control and Prevention (CDC), that have detailed knowl-
edge about the hazardous materials. A fire suddenly breaks
out in a warehouse adjacent to the factory, and local fire-
fighters respond to the emergency. The fire grows rapidly
and is about to spread to the factory. Meanwhile the fire-
fighters are preparing to enter the warehouse. The CDC
has a document that contains detailed information about
the hazardous materials in the factory, but the document
is classified. Further, the classification guidelines state that
in addition to the clearance requirement, a party must have
demonstratable need-to-know in order to access the docu-
ment. This includes being a member of Hazardous Materi-
als Community of Interest (COI) and being at the location
where the materials are present. The local firefighters do
not have any security clearances, are not members of the
COI, and cannot provide verification of their current loca-
tion. This information is relevant to their current mission
because lives, theirs and possibly others, are at stake. Un-
fortunately, traditional access control methods would disal-
low release of the document because the firefighters do not
satisfy the CDC’s hypothetical disclosure policy.

This presents a conundrum. In the real world, people with
operational responsibilities are sometimes compelled to vi-

olate access control policies if they believe that the benefit
of sharing information (e.g., saving lives) outweighs the risk
(e.g., disclosing sources and methods). This often gets done
ad-hoc without any formal procedure, which can result in a
lot of headaches after the fact. It also can result in damag-
ing unchecked information leakages with little to no control
over what happens to the information once it gets out.

The goal here is to be able to permit sharing the information
to people who have a demonstratable need for it while man-
aging the level of risk incurred by doing so. By just handing
out the information freely, the level of risk is clearly high
because there are no controls to restrict (a) who can get the
information, and (b) what they can do with it once they
have it. Traditional access control policies have focused on
and done well at satisfying (a), but do not deal with (b).
While usage control policies address both, they do not an-
alyze the trade-off between (a) and (b). In the remainder
of this paper, we will outline how information sharing can
occur by incurring a modest increase in risk in cases where
parties, such as the firefighters, cannot satisfy all of the re-
quirements of a static security policy. In doing so, we will
also allow parties to dictate how their information gets used
after it has been released.

3. CORE CONCEPTS
In this section we introduce the fundamental components of
interest. They will be used in the next section to construct
a metamodel for sharing information via trust negotiation
with obligations.

3.1 Trust Negotiation
In electronic trust negotiation, two parties incrementally es-
tablish trust in one another by selectively exchanging digi-
tally signed credentials that contain attribute and role mem-
bership information. One common purpose of trust negoti-
ation is to share information between the parties or users
involved. The information is usually contained in an elec-
tronic medium such as a file or document. We refer to the
party requesting the information as the requester and the
party holding the information as the provider.

As long as the information being shared is not sensitive,
then no negotiation is necessary to obtain it. In many cases
however, the information to be shared is sensitive, and a
provider may only want to share it with trusted requesters
that satisfy some disclosure policy. An access control (AC)
policy consists of rules that specify what roles need to be sat-
isfied in order for sensitive information to be shared. Role
memberships are usually satisfied through the use of signed
credentials that represent a statement by some authority
that a user belongs to a particular role. In a trust nego-
tiation, these signed credentials are exchanged between the
parties in order to satisfy rules in disclosure policies and
therefore enable sharing of information.

Sometimes the credentials themselves that are being ex-
changed during a trust negotiation are sensitive. To safe-
guard their disclosure, AC policies can be used in the same
manner as for information. Sometimes, the knowledge of
whether a party even has a particular credential or not must
be protected. Several types of disclosure policies have been
proposed to handle this problem. Parties can use Acknowl-

2

edgment (Ack) policies [14] to guard knowledge about the
presence or absence of sensitive credentials. Requesters will
be required to satisfy the Ack policy before the party reveals
whether or not they have the sensitive credential. Note that
the Ack policy is always presented to the requester regard-
less of whether a party has the sensitive credential or not.
A similar scheme called hidden credentials [8], controls the
disclosure of sensitive information by encrypting messages
such that only a party who has the necessary credentials
can decrypt the message and retrieve the information.

3.2 Provisions
The credentials discussed thus far express memberships in
roles that hold at the present time. The role memberships
required to satisfy a policy are called provisions. Provisions
are a representation of the past state of the world since they
rely on actions performed or credentials obtained at some
prior point in time for satisfaction. Provisions are unam-
biguous; a party either has or lacks the credentials neces-
sary for satisfaction. Given that there is usually a high level
of security inherent to credentials, provisions offer relatively
strong assurance.

One key drawback of provisions though is that they must
be known to both parties to be effective in the negotiation.
Further, each party may have different ways of representing
the same provisions, resulting in a schema matching prob-
lem that could prevent the negotiation from succeeding. In
a structured trust negotiation environment, such problems
can be avoided through advance planning, but in an environ-
ment where unfamiliar parties attempt to share information,
the difficulties faced can cause the process to breakdown. In
our firefighters example from earlier, imagine a case where
the firefighters are responding to a blaze and request in-
formation from a government agency. The agency presents
a policy stating that the firefighters must have a security
clearance in order to access the information. The firefight-
ers present their clearance credentials, only to get rejected
because their clearance was a different type that the agency
does not understand or accept.

Another problem with provisions is that they do not al-
low future data protection requirements to be met. Once
information has been shared, there are no controls offered
by provisions that regulate its usage. Going back to the
firefighters example, let us assume that the information is
sensitive but does not require a clearance and that the fire-
fighters are able to obtain it. They then decide to share
it with the local police department, the mayor’s office, and
several news outlets. The government agency almost cer-
tainly did not intend on such uses occurring, but could do
little to prevent it without some formal means of defining
usage control over the information.

3.3 Obligations
Our solution to these problems is to use obligations as a
companion to provisions in trust negotiation. Obligations
specify actions that must occur after information disclosure.
More formally, obligations represent a party’s commitment,
or binding agreement, to abide by a temporal policy over fu-
ture states by satisfying the actions specified by the policy.
Obligations can be used alongside provisions in disclosure
policies [1]. Future data protection and sharing require-

ments can thus be encoded as obligations that describe how
the information may be used.

Obligations provide flexibility that cannot be achieved with
provisions by allowing parties to agree to perform certain
actions instead of presenting credentials. In this manner, a
party that is qualified to receive information in a trust nego-
tiation can do so even if they cannot satisfy the provisions
that would otherwise be necessary. In the firefighters exam-
ple, if the information is sensitive and requires a clearance,
then the agency could waive the clearance requirement by re-
quiring the firefighters to commit to one or more obligations,
and possibly some weaker provisions, as an alternative.

3.3.1 Obligations as Two-Sided Agreements
In trust negotiation, a requester would have little motiva-
tion to make commitments to obligations without getting
something in return. Hence, an underpinning of obligations
is that, upon commitment, the requester will receive from
the provider the information being protected. Obligations
represent a two-sided agreement that implicitly places a re-
quirement on the provider to deliver the information being
protected upon commitment by another party. Note that
sharing of the information needs to occur upon commitment
to, not satisfaction of, the obligation. If the information is
not shared, then the agreement between the two parties is
nullified. The provider does retain first option however, as
they do not have to present an obligation to the requester
unless they are presently satisfied with the risk involved in
doing so. The provider’s knowledge about the requester will
likely play a part in making this decision.

3.3.2 Assurance and Risk
The primary drawback of obligations is that there are no
guarantees that their specified actions will be performed,
which could result in violations. By allowing parties to break
commitments, obligations offer a weaker form of assurance
than provisions. Research has been done to show how com-
mitment violations can lead to a decrease in a quantifiable
trust value [4]. It is assumed that the benefit of sharing in-
formation outweighs the risk involved in using obligations.
Without delving into a deep discussion of this trade-off, we
will state that parties can be diligent in attempting to de-
termine if another party is not only able to perform the
actions required to satisfy an obligation, but also likely to
do so. Given the reduced assurance of obligations, it seems
straightforward that given a choice between using provisions
or obligations, the former should be preferred as long as the
cost to both parties of dealing with provisions and creden-
tials is less than the cost of dealing with obligations and
commitments. We expect this to be true in all but a small
number of cases.

To increase the likelihood of obligations being satisfied, par-
ties can be given incentives to fulfill their commitments
by creating a reward/penalty system where satisfaction of
an obligation results in a reward and violation results in a
penalty, or sanction, being applied. In order for sanctions
to hold merit, a suitable method of enforcement must be
present. In the context of obligations, there are two primary
characteristics to consider when dealing with enforcement:
controllability and observability [7]. Obligations that are
controllable will always be satisfied because it is not possi-

3

CDC Policies:
p1 : CDC.HazardInfo ← CDC.NeedToKnow
p2 : CDC.NeedToKnow ← IAFF.Firefighter ! DOD.Location
p3 : CDC.NeedToKnow ← DOD.Clearance(level >= ‘Secret’) ! COI.Member(group = ‘HazMat’)

Figure 1: The policies of CDC

ble for violation to occur. Obligations that are observable
can be monitored to tell when they are satisfied or violated,
but it may or may not be possible to prevent violation from
occurring. Obligations that are neither controllable nor ob-
servable offer little assurance and should be avoided. There
has been work performed in the area of contract negotia-
tion to build an enforcement framework in which trusted
third parties enable negotiating entities to trust that con-
tract commitments will be monitored and enforced [11]. We
will not be addressing sanctions or enforcement further in
this work, but will instead focus on the way obligations in-
tegrate with trust negotiation.

4. TRUST NEGOTIATION WITH
OBLIGATIONS METAMODEL

In this section we define a metamodel for trust negotia-
tion that includes support for obligations. Before doing so
though, we return to the firefighters example to formally ex-
press several characteristics of the scenario. We express the
CDC data protection requirements from Section 2 as a set
of policy rules shown in Figure 1.

4.1 Components
Several key components can be identified by looking at the
policy rules for our example. Here we will describe each of
those components in turn. We take a bottom-up approach,
starting with the fundamental building blocks: provisions
and obligations.

Provisions Specify requirements for membership in roles.
Take the form B.R used in the RT0 language [15],
where B is some principal or authority and R is a role.
They are satisfied by digitally signed credentials that
make authoritative statements about entities. From
the policies shown in Figure 1, the single provision of
the policy in p1 is CDC.NeedToKnow, meaning that
a party trying to gain access to the CDC’s hazardous
materials information first needs to demonstrate that
they have a need-to-know for that information. As
another example, the provision DOD.Location in p2

means that a party needs to show that they are at a
DOD-verifiable location that corresponds to the loca-
tion of the fire. This role would likely have several
attributes that express things like exact street address
or GPS coordinates, but we have left them off for sim-
plicity.

Obligations Specify future time-bounded actions, and are
satisfied by commitments to fulfill those actions. Take
the form ω(action, subject, time-bound), where the
specified action must be applied with regards to the
subject within the time-bound provided. From our
example, assume that Fred is a firefighter, but can-
not verify or prove his location in order to satisfy the

CDC Obligations:
o1 : ω(install, monitoring software, now)
o2 : ω(submit, background check, 48h)

Figure 2: The CDC’s available obligations

CDC.NeedToKnow role. Further, the CDC has several
obligations available that it can use in place of provi-
sions, shown in Figure 2. The CDC converts the provi-
sion for the location attribute to obligation o1, which
states that Fred must install monitoring software on
his machine in order to satisfy the need-to-know re-
quirement. The time-bound of now means that as soon
as Fred commits to the obligation he will be expected
to fulfill it by performing the action of installing the
software. We use shorthand such as 48h in o2 to rep-
resent a time-bound of 48 hours.

Our description here of the obligation for monitoring
software is a bit terse. We assume that the obligation
would come with a more complete description of what
systems the software needs to be installed on, what
types of behaviors will be monitored, and so forth.
Since these details only affect the decision-making pro-
cess of the parties involved and not the model itself,
we have omitted them in this paper.

Policy Rules Represent conditional disclosure of some
information based upon the satisfaction of provisions
and obligations. The information (or credential) con-
tained in the head of the rule will be released if the
provisions and obligations contained in the body are
satisfied. We use the syntax of the role-based trust
language RT0 [16, 15] for writing policy rules. We also
use the concept of policy preconditions [13] to protect
sensitive policies. A policy is written as D ← precond
! B1.R1 ∩ . . . ∩ Bk.Rk, where D is the information
or role to be granted upon satisfaction of the policy,
precond is the optional precondition that needs to be
satisfied before the policy itself is disclosed, and the
Bi.Ri represent roles in the policy body.

Policy p2 shown in Figure 1 is sensitive and has the pre-
condition IAFF.Firefighter. Therefore, a party must
first prove that they are a firefighter before they can
see p2. The body of policy p2 contains a single role,
DOD.Location, that must be satisfied.

Trust negotiations have the intention at each step of sharing
some sensitive information. The information is presented as
the head of a policy rule that has one or more provisions
and obligations in its body. The information could be the
negotiation goal, or it could be a sensitive credential, role,
or policy. Once the provisions and obligations in the pol-
icy are satisfied via credential exchanges and commitments,
the information can be shared. This entire agglomeration

4

CDC Conversion Functions:
f1 : IAFF.Firefighter → US.Citizen ∧ o1

f2 : DOD.Location → o1

f3 : DOD.Clearance(level >= ‘Secret’) → US.Citizen ∧ o2

f4 : COI.Member(group = ‘HazMat’) → o1

Figure 3: CDC’s provision to obligation conversion functions

consisting of sensitive information, a policy rule, credential
exchanges and commitments is called a decision point.

Definition 1. We define the set of decision points D in
a trust negotiation as the points where conditional release
of information occurs based upon the satisfaction of rules
comprised of provisions or obligations. Each decision point
d ∈ D has a rule that contain one or more provisions d.pi or
obligations d.ωi.

We model trust negotiation as a proof tree, where the nodes
represent decision points. The root node of the tree contains
the goal in a policy head. For a policy rule at some node,
the provisions contained in the rule body can be expanded
out into child nodes, where each provision serves as the head
of the rule in a child node. Figure 4 shows the initial proof
tree for our firefighters example. Thus far, CDC has added
the goal and their policies to the tree.

When referencing decision points in a negotiation, we typ-
ically refer to the policy nodes that are protecting the in-
formation to be released once credentials are exchanged and
commitments are made. In our firefighters example, the de-
cision points in the proof tree of Figure 4 occur at the nodes
on the second level of the tree containing policies p1 and p2.

The proof tree for a trust negotiation could have many pos-
sible expansions. The number of possible proof trees is db,
where d is the tree’s depth and b is the node branching fac-
tor. When a negotiation actually happens, the proof tree
that gets constructed is called a proof tree instance. Each
proof tree instance represents one possible expansion of the
nodes, which is equivalent to saying one possible event trace
of the negotiation.

It is worth noting here that any trust negotiation frame-
work, such as the Trust Target Graph (TTG) [25, 14, 13]
and TrustBuilder(2)/Traust [22, 12], can be extended with
support for obligations in order to implement this meta-
model.

4.2 Converting Provisions into Obligations
The initial state of an provider’s policy rule is the way it
is represented when its decision point is first encountered.
The requester always first attempts to satisfy the rule in its
initial state. If they cannot, then the provider has the op-
tion to change the rule. A policy rule can undergo change
by having a provision converted into one or more obligations
expressed in disjunctive normal form (DNF). Each time this
occurs only a single provision gets converted. Once a change
has been made, the requester again tries to satisfy the rule.
If they cannot, then more rounds of conversion occur until

either the rule is satisfied or no more conversions are possi-
ble. The choice of which provision to convert at each turn
rests with the provider. It is presumed that one would want
to convert the least important provisions first.

We write the conversion function for provisions to obliga-
tions in product of sums form as f : p→ Ω1+. . .+Ωn, where
Ω := o1 ∧ . . . om and ok is an obligation. Each conjunction
of obligations in the resulting DNF formula, or monom [24],
represents a set of obligations that results in satisfaction of
the requirement originally specified by the provision. The
requester is free to choose any of the monoms. Figure 3
shows several conversion functions that the CDC can use in
our firefighters example to convert various provisions from
the policy rules in Figure 1 to obligations from Figure 2.

For the sake of completeness, we assume a partial ordering
of obligations oi ≺ oj where oj is deemed as more stringent
than oi. This means that it would be beneficial for the
requester to choose oi over oj . We can extend this notion
to sets of obligations Ωi ≺ Ωj , where the set Ωj is more
stringent than the set Ωi. Note that this does not imply
oa ≺ ob for any oa ∈ Ωi and ob ∈ Ωj . A complex scheme
for comparing obligations could be used, but for simplicity
in this paper we rank sets of obligations based solely on
cardinality:

Ωi ≺ Ωj ↔ |Ωi| < |Ωj | (1)

In our firefighters example, say there is a firefighter named
Fred who can satisfy the IAFF.Firefighter role, but can-
not prove his location. Therefore, the CDC converts the
provision DOD.Location into obligation o1. Additionally,
Fred does not have a security clearance, so the provision
DOD.Clearance(level >= ‘Secret’) gets converted into the
provision US.Citizen and obligation o2. Finally, Fred is not
a member of the Hazardous Materials Community of Inter-
est (COI), so the role COI.Member(group = ‘HazMat’) gets
converted into obligation o1. Figure 5 shows what the proof
tree looks like after these conversions have been made.

4.3 Minimizing Obligation Formulae
The policy rule at a decision point can have multiple pro-
visions, each of which can be converted to a different DNF
formula. This can result in redundancies and inefficiencies
because it allows the requester to satisfy more obligations
that may be necessary to satisfy the rule. To alleviate this
problem, we present an algorithm that can be used to find
the minimal set of obligations needed to satisfy the policy.

Imagine a trust negotiation is in progress between two par-
ties. A decision point is reached that initially has a pol-
icy rule g ← p1 ∧ p2 ∧ p3, where g is the goal and the pis

5

Figure 4: Initial proof tree for CDC example

Figure 5: Proof tree for CDC example after conversions

are provisions. Assume that the provider converts p1 and
p2 into obligation formulae using the conversion function
f : p→ Ω1 + . . . + Ωn as follows:

f1 : p1 → o1o2o3 + o2o4o5 + o1o4o5

f2 : p2 → o1o6 + o1o4o8

In order to determine the minimal set of obligations, we
first need to take the cross product of all the formulae. This
generates all possible combinations of obligations. Taking
the cross product of f1 and f2 yields the following:

f1 × f2 = o1o2o3o6 + o1o2o4o5o6 + o1o4o5o6+

o1o2o3o4o7 + o1o2o4o5o7 + o1o4o5o7

The next step is to simplify this formula. In this case we can
take advantage of the fact that the second and third monoms
and fifth and sixth monoms only differ by one term, so using
the cardinality ordering from (1) above we can throw out the
second and fifth monoms because they have an extra term.
We can then combine like terms and eliminate one monom
by the cardinality ordering to end up with the following:

f1 × f2 = o1o2o3o6 + o1o4o5o6 + o1o4o5o7

In more complex cases, a variation of the Quine-McCluskey
(Q-M) algorithm [19, 17], also known as the method of
prime implicants, can be used for function minimization.
The Q-M method has been shown to have a runtime of
O(N log2 3 log2

2 N), where N = n2 and n is the number of

variables [24]. Taking the cross-product in the first step of
this minimization algorithm takes O(mn), where m is the
number of rules and n is the number of obligations. This
runtime dominates the runtime of the Q-M algorithm, so
the upper bound on the runtime of the entire algorithm is
O(mn);

5. OBLIGATION OPTIMALITY
The minimization performed in the previous section is useful
because it prevents a requester from committing to more
obligations than are necessary to satisfy a policy. Here we
will formalize this notion of minimality by introducing the
concept of optimality.

Definition 2. A decision point is optimal if the minimum
set of obligations is used that allow its rule to be satisfied.

We assume that a minimal set is selected based on the car-
dinality ordering of obligations shown in (1) in Section 4.2.
Optimality also minimizes the level of risk to the provider
because, in order to achieve optimality, provisions are con-
verted to obligations one at a time. Another way to describe
optimality is to say that there is no smaller set of obligations
that would allow the negotiation to make progress.

Theorem 1. Given a decision point that converts pro-
visions p1, . . . , pn to obligations o1, . . . , on according to the
function f : p → Ω1 + . . . + Ωm, the problem of computing
the optimal solution is decidable with complexity O(mn).

Proof. Sketch. Using the algorithm from Section 4.3,
we can construct the minimum set of obligations for a pol-
icy rule, which by definition results in the optimal solution
for a decision point. Taking the cross product of m rules

6

with n terms has complexity O(mn), which dominates the
complexity of Q-M.

It is far more ambitious to determine optimality over the
entire proof tree (i.e., across all decision points) for a nego-
tiation. It is in fact possible to achieve optimality at each
individual decision point and not have optimality over the
entire proof tree. The primary difficulty in attaining opti-
mality over the entire tree is caused by the horizon prob-
lem. In this case, the horizon results from not being able to
”‘see”’ unexpanded nodes further down the tree from any
given state. Without such lookahead knowledge, it becomes
impossible to determine the correct selection of a minimal
set of obligations at the current node’s decision point.

Imagine having a choice between two or more equally min-
imal sets of obligations at a decision point. Without any
other knowledge, the choice seems to be arbitrary and ir-
relevant. However, if one of the choices has an intersection
with a set of obligations from a node that is later expanded,
then that choice would be the correct one in order for proof
tree optimality to be possible.

Theorem 2. During a trust negotiation, the problem of
determining whether the proof tree instance is optimal is un-
decidable.

Proof. Sketch. We will use our firefighters example to
show the horizon problem. Assume that the proof tree for
our negotiation looks as it does in Figure 5, except that
Carol, who is a citizen but not a firefighter, is on the scene
instead of Fred. Since Carol is not a firefighter, she does not
satisfy the IAFF.Firefighter provision. Therefore, the CDC
uses conversion function f1 from Figure 3 to convert the re-
quirement into the provision and obligation pair US.Citizen
∧ o1. At this point Carol can either satisfy US.Citizen ∧ o1

on the left branch or US.Citizen ∧ o2 on the right branch.
However, if she chooses the latter and commits to o2, she
will eventually also have to commit to o1, resulting in one
more obligation than was necessary and a sub-optimal proof
tree. The CDC will not know in advance what provisions
need to be converted, and so they are unable to prevent this
situation from occurring. Because neither party can ”‘see”’
the nodes further down the tree that are not yet expanded,
they cannot determine what choices should be made in order
to achieve optimality.

Once the negotiation has terminated either in success or
failure, the proof tree will not be expanded further. Given
complete knowledge of the nodes that were expanded, it
becomes possible to determine if proof tree optimality was
achieved.

Theorem 3. After a trust negotiation has concluded, it
is decidable to determine if optimality was achieved for the
proof tree instance.

Proof. Sketch. Going back to our firefighters example
with Carol, assume that we have a proof tree instance from

a completed negotiation in which Carol committed to both
o1 and o2. This proof tree instance will not be expanded
further. Assuming that the minimization algorithm from
Section 4.3 was applied during the negotiation to achieve
optimal efficiency at each decision point, we can now take
the minimized formula from each decision point and re-apply
the minimization algorithm to determine the optimal solu-
tion, QED.

After the negotiation, both parties will have a final version
of the proof tree instance that was generated. If the parties
see that an optimal solution was not reached (e.g., due to
the horizon problem), they may be able to renegotiate the
set of obligations that were committed to in order to achieve
optimality. In Carol’s case, both she and the CDC will know
after the negotiation that she could have just used o1, so they
could potentially renegotiate the terms in order to nullify
o2.

6. RELATED WORK
Trust negotiation and obligations have both been well stud-
ied, albeit independently, in the literature. Hilty et al. [7]
present a framework, based on Distributed Temporal Logic
(DTL), for expressing obligations. In particular, they focus
on temporal and observability aspects in developing a classi-
fication system for obligations, including a method of trans-
forming non-observable obligations into observable ones. Ir-
win et al. [9] present a metamodel for obligations and define
a notion of accountability based on secure system states. In
this paper, we have modeled an obligation as a set of ac-
tions in a bounded time range. Bettini et. al. [1] make a
distinction between provisions and obligations in access con-
trol policies—the trust negotiation literature has focused on
access control policies involving provisions, whereas in this
paper, we consider access control policies with both provi-
sions and obligations.

Winslett, Yu, et. al. [26] and Smith et. al [22] developed
a system called TrustBuilder, which is an implementation
of a trust negotiation framework that includes a descrip-
tion language for writing policy rules and provides an au-
tomated compliance checker that can determine satisfying
sets of credentials. In [25] Winsborough et al. present two
automated trust negotiation (ATN) strategies, one of which
is a parsimonious strategy that aims to achieve a success-
ful negotiation with a minimal exchange of credentials. Our
work complements this approach in that we use obligations
to replace provisions in cases where the necessary credentials
are not available. Winsborough, Li, et. al. [14, 13] designed
the (Extended) Trust Target Graph ([E]TTG) protocol and
ATNL specification language to represent trust negotiation
as a tree structure with typed nodes and edges. They lever-
age earlier work on a role-based rule language called RT [16,
15], which we also use in this paper. They also introduce
Acknowledgment policies as a method of handling disclosure
of sensitive information.

Yu and Winslett introduce policy migration [28] to protect
sensitive credentials by integrating the policy of a sensitive
credential into the policies of other credentials so that a
user’s behavior will be the same regardless of whether they
have the sensitive credential. Yu et. al. [29, 30] present a

7

formal model of negotiation protocols and strategies, with
a focus on allowing two parties with different strategies to
communicate. They also discuss ways of negotiating in the
presence of sensitive policies and credentials. Seamons et.
al. [20] discusses ways to dynamically modify policy state-
ments to prevent sensitive information leakage from probing
attacks.

Techniques have been proposed for integrating measures of
opponent trust into negotiation. Sierra and Debenham [21]
define a negotiation model and language in which negotiat-
ing entities can employ trust measures into their negotiation
strategy. Wooldridge and Parsons [27] present a formal lan-
guage for negotiations and shows how negotiation protocols
written in this language can be evaluated to show that agree-
ment can be both identified when it occurs and guaranteed
to occur. Hanson and Milosevic [6] define a number of ne-
gotiation patterns in terms of conversation policies that are
suitable for automated negotiation by agents.

7. CONCLUSION AND FUTURE WORK
In this paper, we have shown that obligations are a valu-
able companion to provisions in trust negotiation. Provi-
sions and obligations each have their strengths and weak-
nesses, but without obligations one loses not only flexibility,
but also the ability to offer information usage assurances
in the future. We have shown a way in which a provider’s
provisions can be converted into obligations in a way that
offers more flexibility by providing multiple options to the
requester, and how to minimize the options presented so as
to avoid spurious obligations from being necessary. Finally,
we have analyzed the complexity and decidability of deter-
mining whether various parts of the trust negotiation are
optimal with regards to the usage of obligations.

As a continuation of our work, we would like to create a
better model of obligations that could potentially automate
some or all of the commitment process. We anticipate that
this could include negotiating the terms of the obligations
themselves, such as their actions, time bounds, violation
penalties, and enforcement mechanisms. We would also like
to explore the enforcement piece in greater detail to develop
better methods of dealing with obligations that are mon-
itorable but not enforceable. Another area to focus on is
formalizing the ordering of obligations. In this paper we as-
sumed that one exists, and for sets of obligations we used
cardinality, but it would be useful to have a more tangible
way of comparing two obligations.

8. REFERENCES
[1] Claudio Bettini, Sushil Jajodia, Xiaoyang Sean Wang,

and Duminda Wijesekera. Provisions and obligations
in policy rule management. Journal of Network and
Systems Management, 11(3):351–372, 2003.

[2] Guido Boella and Leendert van der Torre. A game
theoretic approach to contracts in multiagent systems.
IEEE Transactions on Systems, Man and Cybernetics,
Part C: Applications and Reviews., 36(1):68–79,
January 2006.

[3] Guido Boella and Leendert W. N. van der Torre.
Negotiating the distribution of obligations with
sanctions among autonomous agents. In de Mántaras
and Saitta [5], pages 13–17.

[4] Jan Broersen, Mehdi Dastani, Zhisheng Huang, and
Leendert W. N. van der Torre. Trust and commitment
in dynamic logic. In EurAsia-ICT ’02: Proceedings of
the First EurAsian Conference on Information and
Communication Technology, pages 677–684.
Springer-Verlag, 2002.

[5] Ramon López de Mántaras and Lorenza Saitta,
editors. Proceedings of the 16th Eureopean Conference
on Artificial Intelligence, ECAI’2004, including
Prestigious Applicants of Intelligent Systems, PAIS
2004, Valencia, Spain, August 22-27, 2004. IOS Press,
2004.

[6] James E. Hanson and Zoran Milosevic.
Conversation-oriented protocols for contract
negotiations. In EDOC ’03: Proceedings of the 7th
International Conference on Enterprise Distributed
Object Computing, page 40. IEEE Computer Society,
2003.

[7] Manuel Hilty, David Basin, and Alexander Pretschner.
On obligations. In 10th European Symposium on
Research in Computer Security (ESORICS 2005),
volume 3679 of LNCS, pages 98–117. Springer-Verlag,
2005.

[8] Jason E. Holt, Robert W. Bradshaw, Kent E.
Seamons, and Hilarie Orman. Concealing complex
policies with hidden credentials. In CCS ’04:
Proceedings of the 11th ACM Conference on Computer
and Communications Security, pages 146–157, 2004.

[9] Keith Irwin, Ting Yu, and William H. Winsborough.
On the modeling and analysis of obligations. In CCS
’06: Proceedings of the 13th ACM Conference on
Computer and Communications Security, pages
134–143. ACM Press, 2006.

[10] David Keppler, Vipin Swarup, and Sushil Jajodia.
Redirection policies for mission-based information
sharing. In SACMAT ’06: Proceedings of the 11th
ACM Symposium on Access Control Models and
Technologies, pages 210–218. ACM Press, 2006.

[11] Martin J. Kollingbaum and Timothy J. Norman.
Supervised interaction: creating a web of trust for
contracting agents in electronic environments. In
AAMAS ’02: Proceedings of the First International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 272–279. ACM Press, 2002.

[12] A. Lee, M. Winslett, J. Basney, and V. Welch. Traust:
a trust negotiation-based authorization service for
open systems. In SACMAT ’06: Proceedings of the
Eleventh ACM Symposium on Access Control Models
and Technologies, 2006.

[13] Jiangtao Li, Ninghui Li, and William H. Winsborough.
Automated trust negotiation using cryptographic
credentials. In CCS ’05: Proceedings of the 12th ACM
Conference on Computer and Communications
Security, pages 46–57. ACM Press, 2005.

[14] N. Li and W. Winsborough. Towards practical
automated trust negotiation. In POLICY ’02:
Proceedings of the 3rd International Workshop on
Policies for Distributed Systems and Networks
(POLICY’02), pages 92–103. IEEE Computer Society,
2002.

[15] Ninghui Li and John Mitchell. A role-based
trust-management framework. In Third DARPA

8

Information Survivability Conference and Exposition
(DISCEX III), pages 201–, 2003.

[16] Ninghui Li, John C. Mitchell, and William H.
Winsborough. Design of a role-based
trust-management framework. In SP ’02: Proceedings
of the 2002 IEEE Symposium on Security and Privacy,
pages 114–130. IEEE Computer Society, 2002.

[17] E. McCluskey. Algebraic minimization and the design
of two-terminal contact networks. Bell System
Technical Journal, 35:1417–1444, 1956.

[18] Alexander Pretschner, Manuel Hilty, and David Basin.
Distributed usage control. Communications of the
ACM, 49(9):39–44, 2006.

[19] W. V. Quine. The problem of simplifying truth
functions. The American Mathematical Monthly,
59:521–531, 1952.

[20] K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child,
and J. Jacobsen. Protecting privacy during on-line
trust negotiation, 2002.

[21] Carles Sierra and John Debenham. An
information-based model for trust. In AAMAS ’05:
Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent
Systems, pages 497–504. ACM Press, 2005.

[22] B. Smith, K.E. Seamons, and M.D. Jones. Responding
to policies at runtime in trustbuilder. Fifth IEEE
International Workshop on Policies for Distributed
Systems and Networks (POLICY 2004), pages
149–158, 2004.

[23] Vipin Swarup, Len Seligman, and Arnon Rosenthal.
Specifying data sharing agreements. In Proceedings of
the Seventh IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY’06),
pages 157–162, 2006.

[24] Ingo Wegener. The Complexity of Boolean Functions.
B. G. Teubner, and John Wiley & Sons, 1987.

[25] W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated trust negotiation. DARPA Information
Survivability Conference and Exposition, 1:88–102,
2000.

[26] Marianne Winslett, Ting Yu, Kent E. Seamons, Adam
Hess, Jared Jacobson, Ryan Jarvis, Bryan Smith, and
Lina Yu. Negotiating trust on the web. IEEE Internet
Computing, 6(6):30–37, 2002.

[27] M. Wooldridge and S. Parsons. Languages for
negotiation. In Proceedings of the Fourteenth European
Conference on Artificial Intelligence (ECAI-2000).
John Wiley & Sons, 2000.

[28] Ting Yu and Marianne Winslett. Policy migration for
sensitive credentials in trust negotiation. In WPES
’03: Proceedings of the 2003 ACM Workshop on
Privacy in the Electronic Society, pages 9–20. ACM
Press, 2003.

[29] Ting Yu, Marianne Winslett, and Kent E. Seamons.
Interoperable strategies in automated trust
negotiation. In ACM Conference on Computer and
Communications Security, pages 146–155, 2001.

[30] Ting Yu, Marianne Winslett, and Kent E. Seamons.
Supporting structured credentials and sensitive
policies through interoperable strategies for automated
trust negotiation. ACM Transactions on Information
and System Security (TISSEC), 6(1):1–42, 2003.

9

