
1

Galaxy: Encouraging Data Sharing Among Sources with
Schema Variants

Len Seligman, Peter Mork, Michael Morse, Arnon Rosenthal, Chris Wolf, Jeff Hoyt
The MITRE Corporation

{seligman, pmork, mdmorse, arnie, cwolf, jchoyt}@mitre.org

ABSTRACT
This demonstration presents Galaxy, a schema manager that fa-
cilitates easy and correct data sharing among autonomous but
related, evolving data sources. Galaxy reduces heterogeneity by
helping database developers identify, reuse, customize, and adver-
tise related schema components. The central idea is that as sche-
mata are customized, Galaxy maintains a derivation graph, and
exploits it for matching, data exchange, discovery, and multi-
database query over the “galaxy” of related data sources. Using a
set of schemata from the biomedical domain, we demonstrate how
Galaxy facilitates schema and data sharing.

1. INTRODUCTION
Communities often emerge in which participants collect and man-
age their own data using many variants of the same schema. For
example, a biomedical researcher may make experimental data
available in a spreadsheet or Access database (Figure 1). Others
then adopt and customize the schema and populate it with their
own data. These customizations may in turn be further custom-
ized by others.
To improve data sharing, many communities agree on a core
schema but also allow sub-communities to add their own informa-
tion, for example using an XML wildcard (e.g., xs:any). This is a
widespread design pattern in practice,1 that we call core and co-
rona, where a corona is an extension of the core schema that adds
new entity types and/or properties of interest to a narrower com-
munity. The core schema provides a base level of interoperability
across many systems, while participants still have the flexibility
to respond rapidly to local data needs by creating coronae as
needed.
There are huge opportunities to increase the interoperability im-
pact of such data standards by explicitly supporting the fractal
nature of sharing communities—many sub-communities’ coronae
in turn serve as some narrower community’s core. Prior tools do
not exploit this observation and therefore miss many opportunities
to share specifications and thereby reduce data heterogeneity.
This demonstration presents Galaxy, a community schema man-
ager that facilitates easy and correct data sharing among autono-
mous, but related, evolving data sources. It accomplishes this by:

1 E.g., the National Information Exchange Model (www.niem.gov)

• explicitly managing the derivations among families of
related schemata,

• reducing heterogeneity by helping database developers
identify, reuse, customize, and advertise related schema
components, and

• using the knowledge of inter-schema relationships to
support multi-database query and data exchange over all
related data sources that can answer the query.

Of course, one could discover correspondences across coronae
post facto; however even with tools, this remains expensive and
error prone. We propose a complementary strategy: provide tools
that encourage reuse of specifications, and then use schema match
and mapping tools (e.g., [1]) to resolve remaining heterogeneity.
In this demonstration proposal, we first describe the Galaxy mod-
els for tracking derivations and querying across schemata. We
then provide details of the conference demonstration. Finally, we
describe related work.

2. GALAXY REPOSITORY MODEL
Galaxy’s repository consists of 1) a directed acyclic graph in
which nodes are schemata and arcs indicate derivation (described
below), 2) metadata on data sources (e.g., how they can be que-
ried), and 3) a 1-to-n relationship between a schema and the data
sources that use the schema. Figure 2 illustrates a derivation graph
as shown by the Galaxy user interface. A rectangle with a blue S
is a schema, an arrow indicates derivation, and a blue rectangle
represents a data source that uses the schema to which it is linked.

Patient
id
name
address
language

A B

D

C+insurance –address

+insurance
+age

Figure 1: Sample sharing scenario in which participant A
forwards a spreadsheet (or schema) to two colleagues (B
and D) each of whom customize the spreadsheet. B then
forwards his revised spreadsheet to C who makes further
revisions.

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 07-1552

2

A schema in Galaxy consists of two kinds of components: con-
structs (attributes, relationships, and domain values in our demo)
and constraints (e.g., primary and foreign keys). Schema con-
structs have an associated semantics that may be represented as
text or more formally as a reference to an element of an ontology.
When schema S2 is derived from S1, this means that S2 imports
both the constructs (including their semantics) and the constraints
from S1. The imported component is exactly the same in S2 as it is
in S1. (i.e., each component could be identified using a URI.) In
addition to importing components, a corona can customize the
schema either by adding or removing components.
To illustrate, we can view Figure 1 as a schema derivation graph.
Schema B is derived from A and imports the Patient entity with
attributes id, name, address and language along with their seman-
tics and any associated constraints. B customizes A by also adding
the attribute insurance. C imports everything in B, except that it
removes address. Note that while both B and D add insurance, they
cannot be assumed to be the same concept, since they were added
independently by autonomous participants. For example,
B.insurance could have a domain of {Yes, No} for autos, while
D.insurance could be {Aetna, BlueCross, …} for health.
The Galaxy model allows one to associate additional constraints
with data sources. For example, one might have a schema Driver-
Info with attributes Person.license# and Person.zip. Driver-Info may
contain a constraint that Person.license# is not null. An associated
data source VirginiaDrivers may have an additional constraint that
Person.zip must be a valid Virginia zipcode.

3. GALAXY QUERY MODEL
Based on the Galaxy repository model above, we now describe
the Galaxy query model. We first describe how queries are posed,
then describe how queries are forwarded to relevant data sources,
and finally, describe the handling of overloaded domain values.
Recall that each schema in the derivation graph contains a set of
schema components and each such component is uniquely de-
fined. We define the schema universe to be the set of all schema
components defined by any participant. A query in the galaxy

model is posed using the constructs appearing in the schema uni-
verse. Thus, a query can (in theory) draw from a potentially large
set of names. In practice (and in our demo), queries are posed
using the constructs appearing in a particular schema, but, by
definition, such queries are valid with respect to the universe.
Given a specific query, the next task is to determine which data
sources could sensibly answer that query. Towards this end, we
partition the schema constructs mentioned in a query into those
that are optional and those that are mandatory. For example, to
satisfy an equality predicate, the corresponding attribute is man-
datory, but attributes appearing only in a SELECT clause are
generally optional (i.e., NULL values are acceptable).
Let MC be the set of mandatory constructs mentioned by query Q.
Let SC be the set of schema constructs appearing in schema S. It
is sensible to forward Q to instances of S if MC⊆SC.
Consider Figure 1 and a query for which address is a mandatory
construct. It is sensible to forward that query to any instances of
schemata A, B, and D. It is not sensible to forward the query to
instances of schema C because address has been removed by C.
An added complication arises when a domain value appears in a
negated context (e.g., language ≠ English). In this case, this query
can sensibly be forwarded to any database. However, some data-
bases may contain domain values that do not make sense from the
perspective of the local schema. As a result, when there are enu-
merated domain values, we convert negative predicates that men-
tion specific domain values into equivalent positive predicates,
such as language ∈ {Spanish, German, …}.
This is particularly important when the same label is introduced
by multiple schemata. For example, in the domain for language, B
defines a new domain value with the label ‘BI’ to mean “bilin-
gual,” while D introduces a different domain value (with the same
label) that means “the language of Burundi.” Whereas the two
senses of the string ‘BI’ are indistinguishable from the perspective
of the underlying relational databases, the Galaxy middleware
correctly preserves the distinction.

4. DEMONSTRATION
The Galaxy system contains a number of features that enable ease
of extension and querying for schema families. We will demon-
strate these features by illustrating a typical schema extension
life-cycle. Database architects use Galaxy to facilitate schema
extension through four main steps: searching for potentially rele-
vant schemata, navigating the derivation graph to identify a
schema to reuse, extending that schema to accommodate applica-
tion specifics, and finally querying instances of that schema for
data. Details of each process follow:

Search: To identify a core set of schema elements to extend,
users enter keywords pertinent to their application. Galaxy returns
schemata and extensions to these schemata which match the en-
tered text, including annotations about schema entries and attrib-
utes to assist users.

Navigation: Once one or more schema families of interest for an
application have been identified, the user can explore the schema
graph to identify the particular schema that is most appropriate to
serve as the core for their specific application, as shown in
Figure 2. Galaxy includes mechanisms to easily identify ances-
tor/descendant relationships among schemata and to navigate the

Figure 2: Galaxy User Interface, showing a navigation interface
for extensions of a particular schema, with instances shown in
blue. Once an appropriate schema is found, this schema can be
extended or modified graphically.

3

graph. Parents and their immediate children in the schema graph
have a percentage of similarity shown. Evaluation of schema
similarity is further enhanced through a graphical schema diff,
shown in Figure 3.

Extension: A new schema can be created by importing the enti-
ties and attributes of one or more existing schemata in a family.
This new schema is now a descendant of each of the schemata
whose entities and attributes it imported. The new schema can be
customized by adding or subtracting elements in a graphical envi-
ronment provided by Galaxy.

Query: Instances of a schema can be queried through middle-
ware, the architecture for which is shown in Figure 4. This mid-
dleware allows users to graphically generate queries against a
particular schema. An inference engine identifies data sources to
which a query can sensibly be forwarded. These instances receive
the query and forward all results back to the original database,
which combines the results before presenting them to the user.

During the demonstration, we will use a family of schemata taken
from a biomedical application domain whose core includes patient
identifying elements. Derived schemata from this core add ele-
ments necessary for different types of patient studies. For exam-
ple, one derived schema is for a neuro-imaging study and adds
schema elements pertaining to image modalities to the schema
core. Numerous health and medical study schemata extend from
the core schema, and many of these schemata have data sources
associated with them, which will be used to illustrate Galaxy's
distributed query facilities.

5. RELATED WORK
Numerous schema matching methods exist [6]; they are applied to
existing schemas, while we create schemas with known matches,
via reuse. Model management [2] provides a rich, general pur-
pose, very complex framework [4]; we show the value, for non-IT
specialists, of a small set of schema extension and edit operations.
Galaxy introduces a simple extension operator for which the map-
ping across versions is explicit. Galaxy is related to schema ver-
sioning [5] and evolution [3]: whereas in Galaxy each schema is
immutable, each derived schema can be viewed as a new version
of its parent.

6. SUMMARY
Galaxy demonstrates reuse and customization of components in a
family of related schemata. It uses knowledge of schema variants
to provide easy and correct data sharing among autonomous but
related, evolving data sources. We have demonstrated Galaxy to
several customers; their feedback convinces us that it addresses a
real and important problem.

7. REFERENCES
[1] Aumueller, D., Do, H., and Rahm, E. Schema and Ontology

Matching with COMA++. SIGMOD, 2005.
[2] Bernstein, P. Applying Model Management to Classical

Meta Data Problems. CIDR, 2003.
[3] Franconi, F., Grandi, F., and Mandreoli, F. A Semantic Ap-

proach for Schema Evolution and Versioning in Object-
Oriented Databases. Computational Logic, 2000.

[4] Melnik, S., Rahm, E, and Bernstein, P. Rondo: A Pro-
gramming Platform for Generic Model Management. In
SIGMOD, 2003.

[5] Roddick, J. A Survey of Schema Versioning Issues for Da-
tabase Systems. Information and Software Technology.,
37(7), 1995.

[6] Rahm, E., and Bernstein, P. A Survey of Approaches to
Automatic Schema Matching. VLDB Journal. 10(4) 2001.

Figure 3: The differences between members of a schema fam-
ily can be quickly identified through a graphical difference
display. Elements common to two schemata are shown in gray
while elements existing in only one or the other are in orange
or yellow.

Galaxy Middleware

Web Interface

Query Handler

Output Manager

Broadcast
Manager Web

Interface

Query
Handler

Output
Manager

Broadcast
Manager

Local Remote

Web
Interface

Query
Handler

Output
Manager

Broadcast
Manager

Inference Engine

Figure 4: Galaxy middleware allows users to query their fa-
vorite local schema, but receive results from all or selected
remote sources whose schemata contain the components nec-
essary to answer the query.

