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Abstract

Dempster-Shafer theory is one of the main tools for reasoning about data obtained from mul-

tiple sources, subject to uncertain information. In this work abstract algebraic properties of

the Dempster-Shafer set of mass assignments are investigated and compared with the proper-

ties of the Bayes set of probabilities. The Bayes set is a special case of the Dempster-Shafer

set, where all non-singleton masses are �xed at zero. The language of semigroups is used,

as appropriate subsets of the Dempster-Shafer set, including the Bayes set and the singleton

Dempster-Shafer set, under either a mild restriction or a slight extension, are semigroups with

respect to the Dempster-Shafer evidence combination operation. These two semigroups are

shown to be related by a semigroup homomorphism, with elements of the Bayes set acting as

images of disjoint subsets of the Dempster-Shafer set. Subsequently, an inverse mapping from

the Bayes set onto the set of these subsets is identi�ed and a procedure for computing certain

elements of these subsets, acting as subset generators, is obtained. The algebraic relationship

between the Dempster-Shafer and Bayes evidence accumulation schemes revealed in the inves-

tigation elucidates the role of uncertainty in the Dempster-Shafer theory and enables direct

comparison of results of the two analyses.

Keywords: data fusion, evidence accumulation, Dempster-Shafer theory, Dempster-Shafer

mass, Bayes inference, uncertainty, semigroup, semigroup homomorphism.
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"If we begin with certainties, we shall end in doubts; but if we begin with doubts, and are patient

with them, we shall end in certainties."

Francis Bacon, The advancement of learning

"If you demand a rule from which it follows that there can't have been a miscalculation here,

the answer is that we did not learn this through a rule, but by learning to calculate."

Ludwig Wittgenstein, On certainty

1 Introduction

Dempster-Shafer (DS) theory is one of the main tools for reasoning about data obtained from

multiple sources, subject to uncertain information. The principal task of such reasoning is data

fusion, or evidence accumulation. The goals of data fusion is to decrease uncertainty associated

with individual measurements and to permit identi�cation of the most likely alternative. The

DS approach has applications in several areas, including sensor fusion, medical diagnostics,

biometrics, and decision support [2], [12], [13], [18], [19]. A review of some of these applications

is given in [3].

Despite the ubiquity of the DS technique in science and engineering, several problems re-

main unsolved, making an e�ective translation of theory into practice diÆcult. Among these

problems are: (1) lack of model-based rules for mass assignment, (2) lack of theoretical jus-

ti�cation for the evidence combination rule, (3) lack of an appropriate formalism that would

allow one to interpret evidence combination results in probabilistic terms, (4) high asymp-

totic complexity of the evidence combination computation, and (5) unsatisfactory treatment

of incompatible evidence [9], [8], [25], [24].

Many alternative approaches to evidence accumulation have been proposed to address these

issues. They include: the transferable belief model (TBM) of Smets [5], the modi�ed DS

approach (MDS) of Fixsen and Mahler [16], the conditioned DS theory of Mahler [17], the

connectionist-based neural network approach of Basir et al [1], the proportional sum approach

of Shi et al [22], the composition of dependence method of Wu et al [23], and the fuzzy-value

of measure approach of Lucas and Araabi [15]. While these approaches seem to address some
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of the aforementioned concerns to a certain degree, they often increase the complexity of the

analysis and generally yield di�erent results. Since no consensus on which of these methods is

to be preferred has emerged, it appears that, despite its shortcomings, the original DS approach

still remains the standard reference.

In this work we focus on the relationship between the DS and Bayesian evidence accumula-

tions. There are several reasons for that. First, this relationship encapsulates the key ideas of

data fusion and links all of the aforementioned problems. Second, since the latter technique is

both more familiar and better understood, it is reasonable to expect that speci�cation of the

relationship between the two analyses will produce new insights into the DS theory. While it

is accepted that the DS theory is, in a certain sense, a generalization of the probability theory

[2], the approaches vary in several important respects, including the treatment of uncertain

information and the way the evidence is combined, making direct comparison of results of the

two analyses diÆcult. In this work we ameliorate these diÆculties by proposing a mathematical

framework within which the relationship between the two methods can be made precise. The

�ndings of the investigation elucidate the role uncertainty plays in the DS theory and enable

evaluation of relative �tness of the two techniques for practical data fusion scenarios.

The approach chosen for the analysis of the DS evidence accumulation is based on semigroup

theory. This is appropriate as certain subsets of the DS set are semigroups with respect to

the DS evidence combining operation. The abstract algebra approach allows one to access the

DS theory at the most general level, highlighting its most essential properties. Focusing on

the semigroup-theoretic structures of the fundamental DS concepts reveals key relationships

between certain special cases of the DS analyses and, most importantly, between the DS and

Bayes analyses.

Throughout this work we will �nd it convenient to distinguish between several special types

of the DS mass assignment. We will refer to the set of DS mass with arbitrary uncertainty

value as the DS set and to the set with zero uncertainty as the Bayes set. Similarly, the

analyses performed on these two sets will be called the DS and Bayes analyses, respectively.

Furthermore, we will identify two cases of DS analysis: the singleton DS analysis and the

general, or full DS analysis. In the former case the set of evidence includes only the singletons

and the universal set, the uncertainty. In the latter case the set of evidence includes all non-
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empty subsets of the universal set. To make presentation concise, only the singleton set is being

considered in this paper. We remark, however, that the key ideas and results described here

apply to the general case as well. Analysis of the full DS formalism will be given elsewhere [7].

The singleton case is important, as it succinctly captures the main features of the DS theory,

and as it is often used, due to its reduced complexity, in practical data fusion systems.

The analysis begins with identi�cation of two subsets of the DS set for which the combining

operation is well-de�ned. It is shown that these sets, together with the set of anomalous mass

assignments, form a partition of the singleton DS set. As the former two sets, together with

the evidence combining operation, are semigroups, the evidence admissibility condition for

the evidence combining operation can be conveniently replaced by the closure condition for a

semigroup, and the DS analysis can be replaced by a semigroup-theoretical analysis on subsets

of the DS set. This leads to two results. First, it is shown that the direct sum of the two

semigroups is a semigroup, and that it is the largest semigroup contained in the singleton DS set.

This result is satisfactory, as it excludes only the set of anomalous mass assignments. Second, a

homomorphism from the direct sum of the two principal semigroups onto one of the individual

semigroups is speci�ed. This homomorphism reduces the analysis on the DS set to the analysis

on a subset of the DS set that is identical with the set of non-zero Bayes probabilities, and

replaces the complex evidence combining operation with a pointwise multiplication. A special

role is played by the pre-image of the identity element of the Bayes set, given by a subset

of the DS set made up of elements of equal mass, except for the mass of uncertainty. This

pre-image coincides with the kernel of the homomorphism. The homomorphism induces an

equivalence relation on the DS set, which leads to the construction of a factor group of the DS

set with respect to the kernel of the homomorphism. The DS set is thus partitioned into disjoint

subsets (called equivalence classes, or pseudocosets) that are associated with the elements of

the factor set; these subsets, in turn, by a group isomorphism, can be unambiguously identi�ed

with the elements of the Bayes set. In e�ect, combination of DS elements associated with

two pseudocosets can be replaced with combination of corresponding Bayes elements. As the

fundamental relationship between the DS factor set and the Bayes set is a group isomorphism,

certain elements of pseudocosets act as pseudocoset generators. These generators are identi�ed

and shown to be the elements of pseudocosets that have the largest uncertainty. Among the
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main results, the expression for the pseudocoset generator demonstrates that the structure of

a pseudocoset is fully characterized by its Bayesian image and the value of uncertainty. The

investigation concludes with extension of the semigroup formalism to the unrestricted singleton

DS set.

The content of the paper is as follows. Section 2 reviews the DS theory. Section 3 pro-

vides a resume of some elementary facts of group and semigroup theory. Section 4 investigates

the semigroup structure of the restricted singleton DS set and states the main results. Section

5 extends the analysis to the unrestricted singleton DS set. Section 6 gives concluding remarks.

2 Elements of the DS theory

Denote by 
 a �nite non-empty set of all possible outcomes of an event of interest, and by

2
 the power set of 
. De�ne the set of observable outcomes, called the set (of subsets) of

evidence, by

A = fAi j 0 < i � jAjg � 2
; A 6= ?; (1)

where jAj is the cardinality of A, and � denotes "is a subset of".

Given the set A in (1), de�ne a mapping

mA : A 7! [0; 1]; (2)

such that

mA(?) = 0 (3)

and X
mA(Ai) = 1: (4)

Set ai = mA(Ai) and call it the mass of Ai. By an abuse of notation we will also write

a = fai j 0 < i � jAjg; (5)

and refer to a as the mass assignment of A. Finally, we will call the set of pairs of the subsets

Ai and the corresponding masses ai,

A = f(Ai; ai) j 0 < i � jAjg; (6)

5



the body of evidence of A. We will distinguish a special case of (6),

A = f(Ai; ai) j 0 < i � n+ 1g; (7)

where

Ai 2 
 when i � n; An+1 = 
 and j
j = n: (8)

We will call the body of evidence in (7) the singleton body of evidence.

The key di�erence between probability and mass is that probability is a measure and

therefore it satis�es the additivity condition, that is, given a �nite sequence Ai, 0 < i � jAj, of

disjoint subsets of A,

P
�[

Ai

�
=
X

P (Ai): (9)

In general, the condition (9) is not satis�ed by mass. Removing the additivity constraint can be

convenient, as it permits inclusion of subjective judgments in the DS information fusion system,

but it also has the undesirable consequence of making the interpretation of results of such fusion

problematic. In particular, when considered together with the DS rule of combination, it is

not always clear when mass can be made consistent with the standard probability evaluation.

A key feature of the DS theory is the rule for combining bodies of evidence. Let A and B

be two distinct bodies of evidence, given by (6). The DS rule for combining the masses of A

and B is then

ck =
1

1� �

X
Ai\Bj=Ck

aibj; 0 < k � jCj; (10)

where

� =
X

Ai\Bj=?

aibj 6= 1 (11)

is the conict coeÆcient and

C = f(Ck; ck) j 0 < k � jCjg (12)

is the DS composite body of evidence.

Apart from mass, two other concepts play a key role in the DS theory: balance and plau-

sibility. Balance (also, belief or support) of a subset Ai is the sum of the masses of all subsets

Aj of A, that are also subsets of Ai, i.e.,

bAi
=
X

Aj�Ai

aj ; 0 < i � jAj: (13)
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Plausibility of a subset Ai is the sum of the masses of all subsets Aj of A, having non-empty

intersection with Ai, i.e.,

pAi
=

X
Ai\Aj 6=?

aj; 0 < i � jAj: (14)

Like mass, balance and plausibility are mappings from the power set of 
 to the unit interval.

In particular,

b? = p? = 0 (15)

and

b
 = p
 = 1: (16)

Balance and plausibility are related by the formula

pAi
= 1� b �Ai

; 0 < i � jAj; �Ai = 
�Ai: (17)

Using Rota's generalization of the M�obius inversion theorem [20], mass can be uniquely recov-

ered from balance by the formula

aj =
X

Ai�Aj

(�1)jAj�AijbAi
; 0 < j � jAj: (18)

A key result in DS theory describes the relationship between balance, plausibility and

probability. It follows from (13) and (14) that

bAi
� pAi

; 0 < i � jAj: (19)

A stronger version of (19), that allows comparison of results of DS and probabilistic analyses,

is given by

bAi
� P (Ai) � pAi

; 0 < i � jAj: (20)

(20) has been proposed by Dempster [6], for the situation where mass assignment arises from

a set-valued mapping from a probability space to 
. Since balance and plausibility bound the

value of probability in (20), they are often referred to as the lower and upper probabilities.
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3 Some basic facts of abstract algebra

The main algebraic structures considered in this paper are abelian semigroups, monoids and

groups [4], [10], [11]. We will review the properties of these structures that are necessary for

our constructions.

Suppose S is a non-empty set and Æ is a binary operation on S. If Æ is associative, i.e.,

a Æ (b Æ c) = (a Æ b) Æ c for all a; b; c 2 S;

then S is a semigroup. If, additionally, Æ is commutative, i.e.,

a Æ b = b Æ a for all a; b 2 S;

then the semigroup S is an abelian semigroup. A semigroup S that contains the identity element

e, i.e.,

a Æ e = e Æ a = a for all a 2 S;

is a monoid. A monoid S such that for every a 2 S there is an inverse element a�1 2 S, i.e.,

a Æ a�1 = a�1 Æ a = e for all a 2 S;

is a group. While there are more general structures than semigroups, called groupoids or

magmas, that do not require associativity, they are of limited use, as the product a Æ b Æ c in

these cases is not unique. However, we �nd it convenient, for the purpose of this work, to

employ the concept of partial semigroup. Partial semigroup is a non-empty set with associative

binary operation de�ned on some pairs of its elements. The algebra of partial operations,

including partial semigroups, is described in detail in [14].

Suppose S is a semigroup and T is a nonempty subset of S. If T is a semigroup under the

operation in S, then T is a subsemigroup of S, denoted T < S. The same convention is used

for monoids and groups.

Of fundamental importance in theory and applications are mappings between sets that

preserve algebraic structures. One of these mappings is a semigroup (monoid, group) homo-

morphism.
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Suppose (S; Æ) and (T; ?) are semigroups. A mapping � : S ! T is a semigroup homomor-

phism i�

�(a Æ b) = �(a) ? �(b) for all a; b 2 S:

If (S; Æ) and (T; ?) are monoids with the identity elements eS and eT , respectively, the semigroup

homomorphism � : S ! T is a monoid homomorphism i�

�(eS) = eT :

Group homomorphism is de�ned identically to semigroup homomorphism, since for groups

conservation of identity elements follows from conservation of group operation. Several special

types of homomorphism (regardless of structure) need to be mentioned. If � is one-to-one, �

is a monomorphism. If � is onto, � is an epimorphism.1 If � is one-to-one and onto, � is an

isomorphism.

Let � : S ! T be a monoid epimorphism. � induces an equivalence relation ker(�) on S,

ker(�) = f(a; b) 2 S � S j �(a) = �(b)g;

called the kernel of �. De�ne the factor monoid, S=ker(�), as the set of all equivalence classes,

[c] = fa 2 S j �(a) = cg; c 2 T;

and a mapping, � : S ! S=ker(�), that sends all elements in S to their equivalence classes. The

mapping � is called the canonical epimorphism or projection. Factor sets can be alternatively

described as partitions. A partition � of a set S is a set � whose elements are subsets of S

such that each a 2 S is an element of exactly one subset. The monoid epimorphism � induces

a monoid isomorphism,  : S=ker(�) ! T , given by  ([c]) = c. This yields the relationship

� =  � �, where � denotes composition of mappings. This relationship can be expressed in a

slightly more general form when the homomorphism � is not onto.

When S and T are groups and � is a group homomorphism, then the kernel of �, now

labeled K, describes the equivalence class of the identity element of T ,

K = [eT ] = fa 2 S j �(a) = eT g:

1Note, that we are using an "algebraic" de�nition of epimorphism. In category theory epimorphism is de�ned
more broadly, by its right-cancellative property [10].
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The group epimorphism � induces a group isomorphism,  : S=K ! T . Unlike in monoid

homomorphism, in group homomorphism the equivalence class of e fully characterizes the

structure of the factor set. This is because in a group a relation a = b is equivalent to

ab�1 = e, and hence to study relations satis�ed in the image of � it is suÆcient to consider the

equivalence class of e. The elements of the factor group S=K are called the cosets of K in S.

The cosets of K in S have a special structure: they are explicitly given by the sets

aK = fab j b 2 Kg; a 2 S:

The above construction for cosets does not hold, in general, for monoid equivalence classes,

and further investigation is usually required to determine their composition.

The structures considered in this paper are of mixed type: the domain of the monoid

epimorphism, �, is a monoid, S, while the co-domain is a group, T . In this case, the factor

set in S that is isomorphic to the image of � is the factor group S=K, and the equivalence

relation ker(�) is completely determined by the equivalence class of eT , K. Since S=K is

a group, equivalence classes of the monoid epimorphism � resemble group-theoretical cosets,

in that each equivalence class can be obtained by a composition of K with some element of

S. However, since S and K are not groups, not every element in S generates an equivalence

class. To reect these mixed properties, we will refer to the elements of S=K in this case as

pseudocosets.

Two concepts that play a key role in the theory of semigroups are idempotents and ideals.

Let S be a semigroup and A � S. If

AS = A;

where AS = fas j a 2 A and s 2 Sg, then A is an ideal of S. The minimal ideal of an

abelian semigroup, when it exists, is a group. Ideals are instrumental in the construction of a

certain type of equivalence relations called Green equivalence relations, which are fundamental

to several important semigroup classes. In this work the ideal property of the homomorphic

image with respect to the domain underlines the special relationship between the DS and Bayes

sets.

An element a 2 S is an idempotent i� a Æ a = a. Each group (and therefore each subgroup)

contains one idempotent, the identity element. Semigroups may contain multiple idempotents.
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Idempotents determine, in part, subgroups of a semigroup, the cancellative properties of a

semigroup, and the existence of an embedding of a semigroup in a group. The last property in

particular is relevant here, as semigroups with more than one idempotent cannot be embedded

in a group, which is true about the DS semigroups considered in the next two sections, S0�S1

and S, and hence a group-theoretical analysis cannot be performed on an algebraic extension

of the DS set.

We conclude with the remark that while sensu stricto the subjects of this work are monoids,

since semigroups can always be trivially extended to monoids, and since monoid theory is an

integral part of semigroup theory, in statements of results and in discussions we will generally

refer to monoids as semigroups.

4 Semigroup structure of the restricted DS set of singleton

mass

In this section we identify the DS set of singleton mass, S, and investigate algebraic proper-

ties of certain subsets of S. In particular, we focus on the admissibility condition for the DS

combination operation. The investigation reveals semigroup structure of the DS set that has

several implications for practical implementations of DS evidence accumulation, including the

design of fast algorithms. We conclude with a result relating the singleton DS analysis with

the Bayes analysis.

4.1 Partition of S

Take S to be an in�nite set of (n+ 1)-tuples

a = (a1; :::; an+1); 0 � ak � 1;
X

ak = 1: (21)

In the DS theory a is called the mass assignment of A and ak is called the mass of Ak. Suppose

S is the set of mass assignments associated with singleton evidence, given by (7)-(8), and
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a; b 2 S. Then the binary evidence combining operation Æ on S is given by

ck = (a Æ b)k
:
=

8><
>:

akbk+akbn+1+an+1bk
1�� ; 1 � k � n;

an+1bn+1
1�� ; k = n+ 1;

(22)

where

� =
X

s6=n+1

as
X

l 6=s;n+1

bl

= (1� an+1)(1� bn+1)� < a; b > +an+1bn+1

= 1� < a; b > �an+1 � bn+1 + 2an+1bn+1: (23)

For Æ to be well-de�ned, we need

1� � =< a; b > +an+1 + bn+1 � 2an+1bn+1 6= 0: (24)

The condition (24) cannot be satis�ed for all a; b 2 S. However, we can identify subsets of S,

S0
:
=

�
(a1; :::; an+1)

����
X

ak = 1; 0 < ak < 1 when k � n and an+1 = 0

�
(25)

and

S1
:
=

�
(a1; :::; an+1)

����
X

ak = 1; 0 � ak < 1 when k � n and 0 < an+1 � 1

�
; (26)

for which the condition (24) is met. The �rst set consists of non-zero mass assignments to all

singletons and to no other set. The second set includes all mass assignments with non-zero

uncertainty. In the former case the condition (24) reduces to the condition

1� � =< a; b >6= 0 i� akbk 6= 0 for some k 6= n+ 1: (27)

The condition (27) is trivially satis�ed, since, by the restriction of S0, ak > 0 for k � n.

In the latter case, by the restriction of S1, we have

< a; b > �an+1bn+1 � 0 (28)

and

an+1 + bn+1 � an+1bn+1 > 0; (29)
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and therefore, again, the condition (24) is satis�ed.

To complete the analysis, consider the set

S00
:
= S � S0 [ S1 =

8<
:(a1; :::; an+1)

����
X

ak = 1;
Y

k 6=n+1

ak = 0; an+1 = 0

9=
; : (30)

Since there are many pairs of elements in S00, for which � = 1, the binary operation Æ is, in

general, not well-de�ned on S00. (S
0
0; Æ) and (S; Æ) are partial semigroups. S00 can be viewed as

a generalization of the Zadeh set of anomalous mass assignments [25].

Since

S = S0 [ S
0
0 [ S1 (31)

and

S0 \ S
0
0 = S0 \ S1 = S00 \ S1 = ?; (32)

S is a direct sum of S0, S
0
0 and S1, i.e.,

S = S0 � S00 � S1: (33)

In the remainder of the paper we will investigate abstract properties of S0, S1 and S00. This

investigation will lead to the construction of a general framework for computing in S. In

particular, in section 5, we address the DS computation in S00.

Although we distinguish between the restricted singleton DS set, S0 � S1, and the unre-

stricted singleton DS set, S � 0, the latter introduced in section 5, for brevity we will often

refer to both simply as singleton DS sets, when no ambiguity arises, as the results of section 5

mirror the results of section 4. Similarly, we will refer to both, S0 and S0 � S00 � 0, as Bayes

sets.

All sets considered in this work are associative and commutative with respect to Æ. We

conclude with the demonstration of associativity of (S0 � S1; Æ). Proof of commutativity fol-

lows directly from commutativity of products of reals.
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Lemma 1 Æ is associative on S0 � S1.

Proof Take a; b; c 2 S0� S1 and �x � = 1� �. Then, by associativity of products of reals and

intersections of sets,

(a Æ b) Æ c =
1

�1

X
Xi\Cj=Ym

0
@ 1

�2

X
Ak\Bl=Xi

akbl

1
A cj

=
1

�1�2

X
(Ak\Bl)\Cj=Ym

(akbl)cj ; 1 � m � n+ 1;

= a Æ (b Æ c);

where

�1 =
X
m

X
Xi\Cj=Ym

xicj ; �2 =
X
i

X
Ak\Bl=Xi

akbl;

and

�1�2 =
X
m

X
(Ak\Bl)\Cj=Ym

(akbl)cj =
X
m

X
Ak\(Bl\Cj)=Ym

ak(blcj): 2

Associativity of (S00; Æ) follows in cases when the DS combination is allowed.

4.2 Computing in S0

Consider S0, the set of (n+ 1)-tuples, as in equation (25),

a = (a1; :::; an; 0); 0 < ak < 1; k � n;
X

ak = 1: (34)

For a; b 2 S0 the binary operation Æ reduces to

ck = (a Æ b)k =

8<
:

akbk
1��0

; 1 � k � n;

0; k = n+ 1;

(35)

where

1� �0 = 1�
X

as
X
l 6=s

bl =< a; b > : (36)

While the equations (35)-(36) are convenient in computations, for generality throughout this

section Æ will denote the operation given by (22).
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Example 1 Take a = b = (�; �; ; 0). Then, by (35),

c =

�
�2

�2 + �2 + 2
;

�2

�2 + �2 + 2
;

2

�2 + �2 + 2
; 0

�
:

First, we will check if S0 has an identity element, i.e., if there is a 2 S0, such that

a Æ b = b Æ a = b for all b 2 S0: (37)

When the condition (37) is satis�ed, we will write a = 1S0 . Suppose a = 1S0 . Then, by (36),

ak = 1�
X

as
X
l 6=s

bl

= 1�
X

as(1� bs)

=
X

asbs; k 6= n+ 1: (38)

The last equality is true i� ak =
1
n
for all k � n. In e�ect,

1S0 = e0
:
=

�
1

n
; :::;

1

n
; 0

�
: (39)

The inverse of a, a�1, is given by

(a�1)k =

Q
j 6=k ajP

i

Q
j 6=i aj

=
a�1kP
i a

�1
i

; i; j; k 6= n+ 1: (40)

To verify validity of (40), note that the conditions

X
a�1k = 1 and a1a

�1
1 = ::: = ana

�1
n (41)

are satis�ed. Since closure and associativity hold as well, we have the following result.

Lemma 2 (S0; Æ) is a group with the identity e0.

Example 2 Take a =
�
1
2 ;

1
3 ;

1
6 ; 0
�
. Then, by (40), a�1 =

�
2
11 ;

3
11 ;

6
11 ; 0

�
.
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4.3 Computing in S1

Consider the set S1 with the binary operation Æ, given by (22). It follows from previous

discussion that S1 is a semigroup. We want to �nd if S1 is a group. Suppose there is a 2 S1,

such that a Æ b = b Æ a = b for all b 2 S1. Then by (22) and (23)

ak =
bk(1� �� an+1)

bk + bn+1
; for k � n; (42)

and

an+1 = 1� �: (43)

It follows that the identity of S1 is

1S1 = e1
:
= (0; :::; 0; 1) : (44)

Moreover, it follows from (26) and (22) that, except for e1, no element in S1 has an inverse.2

This leads to the following result:

Lemma 3 (S1; Æ) is a monoid with the identity e1.

4.4 Computing in S0 � S1

From previous discussion we know how to compute in S0 and S1. Next, we investigate the

algebraic structure of S0 � S1. Consider the combination of a 2 S0 and b 2 S1 under the

operation Æ, given by (22). To check if Æ is well-de�ned in S0�S1, observe that, since bn+1 6= 0,

then

1� � =< a; b > +bn+1 6= 0: (45)

Moreover, since

< a; b > +bn+1 =< a; b+ bn+1 >; (46)

2In DS calculus, lack of inverses follows from the uncertainty reduction formula, given by theorem 4 in section
5.
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then

ck = (a Æ b)k =

8><
>:

ak(bk+bn+1)
<a;b+bn+1>

; 1 � k � n;

0; k = n+ 1:

(47)

It follows that 0 < ck < 1 for k � n and cn+1 = 0, and therefore

S0 Æ (S0 � S1) = S0: (48)

Since Æ is well-de�ned on S0 � S1, (S0 � S1; Æ) is a semigroup, and, by (48), S0 is an ideal of

S0 � S1. Moreover, since e1 = 1S1 and, for any a 2 S0,

e1 Æ a = a Æ e1 = a; (49)

then

e1 = 1S0�S1 : (50)

In general, the elements in S0 � S1 do not have inverses, and therefore S0 � S1 is not a group.

Hence, we have the following result.

Lemma 4 (S0 � S1; Æ) is a monoid with the identity e1.

Of special interest is the composition of an element in S0 � S1 with e0. Take a 2 S0 � S1

and de�ne the mapping

� : ak 7! bk = ak Æ e0: (51)

By (47),

ak Æ e0 =

8<
:

ak+an+1
1+(n�1)an+1

; 1 � k � n;

0; k = n+ 1:

(52)

The next property is the main result of this paper.
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Theorem 1 � is a monoid homomorphism from S0 � S1 onto S0.

Proof Since �(S0) = S0 and �(S1) � S0,
3 � is onto. To prove that � is a monoid homomor-

phism, we need to establish that

�(a Æ b) = �(a) Æ �(b); a; b 2 S0 � S1;

and

�(e1) = e0:

It follows from associativity and commutativity of (S0 � S1; Æ) that

�(a Æ b) = (a Æ b) Æ e0 = (a Æ b) Æ (e0 Æ e0) = (a Æ e0) Æ (b Æ e0) = �(a) Æ �(b):

The second condition follows from the fact that � is an epimorphism. 2

The homomorphism � induces an equivalence relation, ker(�), on S0 � S1,

ker(�) = f(a; b) 2 (S0 � S1)� (S0 � S1) j �(a) = �(b)g: (53)

The image of the homomorphism, S0, is isomorphic with the factor group, S0�S1=ker(�), the

collection of all inverse images of S0 under �, formally  : S0�S1=ker(�)! S0, and the factor

group S0�S1=ker(�) is a homomorphic image of S0�S1, formally � : S0�S1 ! S0�S1=ker(�).

The inverse images of S0 under  form equivalence classes under ker(�).

Consider a subset of S0 � S1,

K =

�
(a1; :::; an+1)

���� ak = 1� an+1
n

; k 6= n+ 1; and 0 � an+1 � 1

�
: (54)

Then,

for all a 2 K; �(a) = e0 = 1�(S0�S1): (55)

In fact, since for no other elements of S0�S1 the condition (55) is satis�ed, K is the pre-image

of �. It is not diÆcult to see that K is a monoid with the identity element

1K = e1: (56)

3Subsequently it will be shown that �(S1) = S0.
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It follows that K is the equivalence class of e0. In general, an equivalence class of an element

b 2 S0 is the set

[b] = fa 2 S0 � S1 j �(a) = bg: (57)

Since S0 � S1=ker(�) is a group, K fully characterizes the structure of S0 � S1=ker(�), and

hence we can write S0 � S1=ker(�) = S0 � S1=K.

In the remainder of the section we will investigate the relationship between equivalence

classes of S0 � S1. This relationship is somewhat more complicated here than when the un-

derlying structure is a group. An explicit construction of equivalence classes of S0� S1, which

delineates this relationship, is guided by the next two results.

Lemma 5 Take a 2 S0�S1 and let � be the monoid homomorphism in (51), with �(a) = b. �

preserves magnitude ordering among components of a and b, i.e., ap < aq implies bp < bq for

all p; q 6= n+ 1.

Proof Follows directly from (52).

Theorem 2 Denote an arbitrary equivalence class of � in S0 � S1 by [b], and its image under

� by b. Suppose bk, k 6= n+ 1, is the smallest component of b, except for bn+1. The following

conditions are satis�ed.

1. Each equivalence class [b] contains a unique element a� 2 S1, such that among all elements

of [b], a� has the largest value of an+1.

2. a� is given by

a�i =

8><
>:

bi�bk
1�(n�1)bk

; i = 1; 2; :::; n;

bk
1�(n�1)bk

; i = n+ 1:

(58)

3. a� generates all elements in [b], by the composition a�K, and it is the only element in

S0 � S1 to do so.

Proof Take an arbitrary element b 2 S0. Suppose bk, k 6= n + 1, is the smallest component

of b, except for bn+1. Then, by lemma 5, each element a in the inverse image of �, [b], has a
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corresponding smallest component ak. If a is distinct from b, then ai < bi for all i 6= n+ 1. In

particular, [b] admits an element a�, such that a�k = 0. Then, by (52),

bk =
a�n+1

1 + (n� 1)a�n+1
=

a0k + a0n+1
1 + (n� 1)a0n+1

for all a0 2 [b]nfbg. It follows that either a0k = 0 and a0n+1 = a�n+1, and hence a0 = a�, or a0k 6= 0

and a�n+1 > a0n+1. Hence a
� is the element in [b] with the largest an+1.

Solving the set of equations

bi =
a�i + a�n+1

1 + (n� 1)a�n+1
; i 6= n+ 1; and a�k = 0

for a�i , yields (58).

Since a� 2 [b], then a�K � [b]. Moreover, since, by (52), all elements in [b] can be strictly

ordered by the value of an+1, and b = a�e0 and a�e1 are the minimal and maximal elements

of [b], respectively, then a�K = [b]. Since for any a� 6= a 2 [b], (ae1)n+1 < (a�e1)n+1, a
� is the

unique element in S0 � S1 that generates [b]. 2

Since equivalence classes inherit some of the properties of group-theoretic cosets, we will

refer to them as pseudocosets and maintain the usual coset notation, a�K. We call a� the

pseudocoset generator of a�K, and the set of all a� in S1, S
�
1 , the pseudocoset generating set for

K in S0 � S1.
4 It follows from theorem 2 that the direct sum

M
a�2S�

1

a�K (59)

is the pseudocoset decomposition of K in S0 � S1.
5

Theorems 1 and 2 establish mathematical relationship between the restricted singleton DS

set S0�S1 and the Bayes set S0. An extension of this relationship to the unrestricted singleton

set, S, will be given in section 5. Together, these results show that the operation on the DS

mass, up to the uncertainty factor, is equivalent to the operation on Bayes probability. In

4Note, that if a; a� 2 a�K and a 6= a�, then aK � a�K, hence the standard notion of a coset, that is either
disjoint or identical with any other coset, does not apply.

5One consequence of the fact that the factor set S0 � S1=K is a group, with relevance to DS theory, is that
each element combined with another element of an appropriate pseudocoset yields an element in K.
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particular, theorem 1 reveals that there is a natural correspondence between the elements of

the Bayes set and the subsets of the DS set, while theorem 2 provides means of an explicit

identi�cation of the Bayes elements with the DS subsets. In practical terms, replacement of

the DS operation (22) with the Bayes operation (35) results in computational complexity re-

duction, which becomes signi�cant when the intermediate computations in a sequence of DS

combinations are performed on unnormalized mass.

Example 3 Set n = 2. Then

K =

��
1� u

2
;
1� u

2
; u

�
; 0 � u � 1

�
;

S0 = f(t; 1� t; 0); 0 < t < 1g

and, by (58),

a� =

8>>>>><
>>>>>:

�
0; 1�2t1�t ;

t
1�t

�
; t < 1

2 ;

(0; 0; 1); t = 1
2 ;

�
2t�1
t
; 0; 1�t

t

�
; t > 1

2 :

Fix t = 1
3 . Then b =

�
1
3 ;

2
3 ; 0
�
and a� =

�
0; 12 ;

1
2

�
. The pseudocoset a�K contains, among others,

the elements

a� Æ e0 =

�
1

3
;
2

3
; 0

�
;

a� Æ

�
3

8
;
3

8
;
1

4

�
=

�
3

13
;
8

13
;
2

13

�
;

a� Æ

�
1

4
;
1

4
;
1

2

�
=

�
1

7
;
4

7
;
2

7

�
;

a� Æ

�
1

8
;
1

8
;
3

4

�
=

�
1

15
;
8

15
;
6

15

�
; and

a� Æ e1 =

�
0;
1

2
;
1

2

�
:

5 Computing in the unrestricted singleton DS set

In this section we extend the DS analysis to the set S0 � S1 � S00, the unrestricted singleton

DS set.
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Denote by 0 the (n+ 1)-tuple of all zeroes, set

B0 = S0 � S00 � 0; (60)

S0 = S1 �B0 = S � 0; (61)

and de�ne the binary operation on S0, ÆS , by

a ÆS b =

8<
:

a Æ b; < a; b > 6= 0;

0; otherwise:
(62)

We have the following three results, which are slight generalizations of lemmas 2 and 4, and

theorem 1, respectively.

Lemma 6 (B0; ÆS) is a monoid with the identity e0.

Lemma 7 (S0; ÆS) is a monoid with the identity e1.

Theorem 3 The mapping

� : a 7! a ÆS e0 (63)

is a monoid homomorphism from S0 onto B0.

The homomorphism in (63) di�ers trivially from the homomorphism in section 4 in that it

produces an additional collection of jS00�0j degenerate pseudocosets, consisting of elements of

S00 � 0. Theorem 2 applies to S0 as well. Composition of a degenerate pseudocoset with any

pseudocoset yields a degenerate pseudocoset.

Extending the DS analysis from S to S0 allows one to gracefully address the case when

the standard DS computation is not feasible. Apart from completing the algebra of singleton

mass assignments, the extension provides a convenient mechanism for identifying incongruent

bodies of evidence. Such evidence arises, for example, in diagnostic medicine, in identi�cation of

unknown diseases. Medical tests in such cases need to eliminate all known alternatives, rather

than to point to the least unlikely possibility, to allow the hypothesis of a new alternative.
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Apart from e0, e1 and 0, all elements in S00, whose non-zero components are equal, are

idempotents. These idempotents give rise to special subsets of B0, called semilattices [4]. As

identi�cation of the DS process with a combination with an idempotent determines the outcome

of evidence combination, semilattices play an important role in the investigation of asymptotic

properties of the DS analysis. This topic will be addressed in a sequel.

The main focus of this paper was on the relationship between the DS set and the Bayes

set. The last, well-known result shows that the Bayes set can be viewed, in a certain sense, as

the limit of the DS analysis.

Theorem 4 The DS combination of two elements in S, at least one of which is in S1nfe1g,

reduces uncertainty.

Proof

(a Æ b)n+1 =
an+1bn+1
1� �

=
an+1bn+1

1� (1� an+1)(1 � bn+1) + (a1b1 + :::+ anbn)

�
an+1bn+1

1� (1� an+1)(1 � bn+1)

=
an+1bn+1

an+1 + bn+1 � an+1bn+1

� min(an+1; bn+1) 2

We remark that there is a close connection between theorem 4 and the lack of inverses in

S1nfe1g.

6 Conclusions

Developments of this paper reveal a close link between computations taking place in the sin-

gleton DS and Bayes sets, S0 � S1 and S0. This link is made precise by the homomorphism

theorem. Since S0 is an ideal of S0 � S1
6, in cases when at least one of the elements to be

combined is in S0, computations in the two semigroups yield identical results. In the case

6It is worth pointing out the multiple roles S0 plays in the restricted singleton DS analysis: (1) S0 is the
homomorphic image of S0 � S1 under �, (2) S0 is an ideal of S0 � S1, and (3) S0 is the maximal subgroup of
S0 � S1. The last property permits viewing the DS analysis as a monoid extension of the Bayes analysis.
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when both elements are in S1, replacement of the computation in S0�S1 with a corresponding

computation in S0 results in loss of the uncertainty estimate, as homomorphism distributes

uncertainty among all components of the composite mass. This might not be a signi�cant

drawback in situations when uncertainty is either very small or very large. In the former case

the results of DS and Bayes evidence accumulations are similar. In the latter case (much less

likely to occur as combination of evidence reduces uncertainty very quickly) the utility of results

of either analysis is questionable. However, a loss of a potentially valuable information will

occur when uncertainty assumes an intermediate value. This loss needs to be evaluated, for a

given application, and compared with the gains brought about by the replacement of the DS

approach with the Bayes approach, reduction of computational complexity of the combining

operation and simpli�cation of the analysis, before such replacement is made.

The above interpretation holds, if uncertainty assignments are understood as absolute error

measures of mass evaluations. However, since DS mass evaluations are, in general, subjective,

it might be reasonable to interpret uncertainty as a relative error, so that combination of two

bodies of evidence gives larger weight to the body with lower uncertainty. Once the evidence is

combined, the cumulative uncertainty ceases to have much interpretable value, as it represents

only a part of the overall error (the other part being the error associated with subjective

judgementis about mass assignment of individual bodies of evidence). This suggests that the

distribution of uncertainty performed by the homomorphism does not need to result in a loss

of information, even in the general case, and therefore the computation performed in S0 might

fully capture the complexity of the DS analysis in the larger semigroup.

One of the main �ndings of this work is the revelation of pseudocoset structure of the DS

set. It is shown that elements of a �xed pseudocoset di�er only by an aÆne scaling of its

components, and that the maximal value of uncertainty depends on the smallest component of

the homomorphic image of the pseudocoset. By the homomorphic relationship, combination

of elements from two (not necessarily distinct) pseudocosets is equivalent to combination of

the corresponding Bayes elements. This result decouples the choice among alternatives from

the value of uncertainty. In e�ect, regardless of the viewpoint taken on the role of uncertainty,

results of DS analysis can be directly interpreted in terms of Bayes probabilities.

While the focus of this paper was on the singleton case, the semigroup approach is applicable
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to the general case as well. The homomorphism extends trivially to the general case. The

structure of equivalence classes, however, is more complex, and the pseudocoset generators are

not unique. Despite the greater complexity of the general DS set, the fundamental, semigroup-

theoretic relationship between the DS and Bayes analyses still holds and the interpretation

of the role of uncertainty presented in this paper remains valid. Full account of the general

formalism will be given in [7], together with a discussion of the role of semigroup ideals in the

process of evidence elimination.
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