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ABSTRACT 

 
This paper describes an integrated approach to sensor fusion and resource management applicable to sensor networks.   
The sensor fusion and tracking algorithm is based on the theory of random sets.  Tracking is herein considered to be the 
estimation of parameters in a state space such that for a given target certain components, e.g., position and velocity, are 
time varying and other components, e.g., identifying features, are stationary.  The fusion algorithm provides at each 
time step the posterior probability density function, known as the global density, on the state space, and the control 
algorithm identifies the set of sensors that should be used at the next time step in order to minimize, subject to 
constraints, an approximation of the expected entropy of the global density.   The random set approach to target tracking 
models association ambiguity by statistically weighing all possible hypotheses and associations. Computational 
complexity is managed by approximating the posterior Global Density using a Gaussian mixture density and using an 
approach based on the Kulbach-Leibler  metric to limit the number of components in the Gaussian mixture 
representation.  A closed form approximation of the expected entropy of the global density, expressed as a Gaussian 
mixture density, at the next time step for a given set of proposed measurements is developed.  Optimal sensor selection 
involves a search over subsets of sensors, and the computational complexity of this search is managed by employing the 
Mobius transformation.  Field and simulated data from a sensor network comprised of multiple range radars, and 
acoustic arrays, that measure angle of arrival, are used to demonstrate the approach to sensor fusion and resource 
management.     
 

Keywords: Tracking, data association, random sets, sensor network control, distributed sensors. 
 

1. INTRODUCTION 
 
Sensor networks are utilized when a single sensor can not adequately provide all desired information, e.g., target 
identification and localization may require multiple sensing modalities.  Furthermore, kinematic or other variables may 
be better estimated using multiple sensors.  Efficiently employing sensor networks requires methods to jointly utilize 
the available information to achieve the sensing objectives and methods to select sensor subsets to optimize the 
information content subject to constraints on energy usage, communications bandwidth, computational capability, or 
other limited resources1.  This paper describes an integrated approach to sensor fusion and sensor-network resource 
management.   The fusion algorithm produces probability density functions, conditioned on available measurements, on 
the state space of parameters of interest, and the resource manager selects the sensors used to obtain the next set of 
measurements so that the expected entropy of the state space density conditioned on past and next measurements is 
minimized subject to resource constraints.   
 
Tracking is difficult in environments in which the probability of target-measurement association errors is large or where 
the motion model must allow for several possible target trajectories.  Monitoring vehicles traversing a dense road 
network presents both challenges.  Multiple and varying numbers of vehicles may be in view of a given sensor, and a 
measurement may be plausibly associated with several targets.  Furthermore, at road intersections a target may pursue 
one of several paths.   
 
Random sets are used to develop a tracking algorithm that allows for both target-measurement association ambiguities 
and target motion uncertainties as well as false alarms and missed detections. The random set approach, as developed 
herein, provides estimates of parameter values at each time step; it does not explicitly define tracks.  It avoids the 
association ambiguity by statistically weighing all possible hypotheses and associations2,3,4.  It also incorporates all 
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possible target trajectories.  By Kronecker producting the kinematic space with a feature space, the RST incorporates ID 
into tracking problems without modifying the framework.   To control computational complexity, probability density 
functions on measurement and state space are approximated using Gaussian mixture models.  The number of 
components of the mixture densities are limited and mixture components are selected using a goodness-of-fit criterion. 
 
The present paper equates the resource optimization problem with minimizing the average entropy of the state space 
probability density function subject to constraints.    Earlier work2 used a restless bandit approach to solve the sensor 
selection problem.  To apply this technique, a Markov decision process is defined: monitoring road segments are the 
tasks; states are defined as knowledge of vehicular occupancy of task segments; actions are probing the task segments 
with sensors; rewards are generated for transitioning from one state to another and transition probabilities depend upon 
whether sensors were or were not employed.  The optimal action given the current state provides the maximum 
expected infinite time horizon discounted reward, and it is found by solving a linear programming problem2 .  Resource 
optimization depends only on the current state, and as there are finitely many, the optimal action for a given state can be 
precomputed and stored in a lookup table.  The present approach based on minimizing expected entropy obviates the 
need for a Markov structure and action dependent transition probabilities.  Expected reduction in approximate entropy is 
calculated directly, but cannot be precomputed.  Mutual information is the criterion used to select a single sensor at each 
time instant in 5,6,7, which consider a single target moving through a two dimensional sensor field.  Mutual information 
is computed in these papers5,6,7 by discretizing  the state and measurement spaces.  This approach is not applicable to the 
present problem of tracking a varying number of targets using potentially multiple simultaneous measurements.   
Information theoretic control using particle filters is described8.   
 
The paper is organized as follows.  Section two describes the random set tracker and its implementation with Gaussian 
mixture density functions.  Relationships between the RST and the multiple hypotheses tracker (MHT) and a joint 
integrated probabilistic data association tracker (JIPDA) are demonstrated.  Section three describes the entropy based 
resource management algorithm and approximations used in its implementation.  Section four describes the application 
of the integrated tracking and resource management algorithms to the problem of monitoring vehicles moving through a 
network of roads. 
 

2. RANDOM SET THEORY TRACKING (RST) 
 
The random set tracker is defined.  Approximations used to control the computational complexity are described, and the 
random set tracker is compared to the MHT and the JIPDA.  
 

2.1 Description of the random set tracker 
 
Traditional Kalman filters assume state variables, x , and measurements, y , are fixed length random vectors3.  For 
traditional tracking applications, x represents the targets’ geokinetic variables, and y represents the measurements 
related to the geokinetic variables.  The state vector motion model is linear with Gaussian white noise, 

ttt dλΩxx +=+1 . Additionally, the measurements depend linearly on the state vectors with additive Gaussian white 

noise, ttt dδWxy += .  The Kalman filter can be extended to non-Gaussian noise, non-linear measurements, and non-
linear motion models through the Bayesian filter3.   The Bayesian filter consists of two steps.  1)  Starting with a 
probability density conditioned on previous measurements, )111 −− :tt |yP(x , a prediction step estimates the probability 
density of the vector at time step t , 

).|y)P(x|xP(xdx)|yP(x :ttttt:tt 1111111 −−−−− ∫=  (1) 

This new probability density is combined with a new set of measurements, ty , during the update step to determine the 
new estimate of the probability density, 

,11
1

1 )|y)f(x|xP(yN)|yP(x :tttt:tt −
−=  (2) 
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where N is a normalization factor.  The number of state variables and measurements is fixed and the mapping between 
the state variables and measurements is explicit.  The state variables, x , can be expanded to include ID variables, FVs, 
such as length or color.  In this case, the variables associated with target 1 are },,{ iiii fvx=x , where 

ix , iv , if denote the positions, velocities, and FV components of target i .  These feature vectors correspond to 
characteristics of the vehicles being tracked, which we will assume, in this paper, do not vary with time.  These FV 
variables allow us to discriminate targets that cannot be separated by kinematics alone. 
 
Ignoring the computational difficulties, multiple target tracking presents additional difficulties that cannot be accounted 
for in the normal Bayesian framework because the association of measurements with existing targets is often 
ambiguous3,4.  Even if the state variables are linearly related to measurements with Gaussian errors, the ambiguity in 
associations produces non-Gaussian effects9.  Missed detections, false alarms or clutter, and the birth and death of 
targets complicate the scenario.  In addition to their numerical values, the number of targets and measurements are also 
random variables, and the vectors x and y must be replaced with random sets }{x and }{y .  The state variables, }{x , 

may take on the values }{}{ φ=x , },,,{ 111 fvx  },...,,,,,{ 21 2211 fvxfvx  where ix , iv , if denote the 
positions, velocities, and FV components of target i , respectively.  The set of measurements, }{y , are estimates of the 
geokinetic and feature variables recorded from various sensors and include clutter returns and missed detections. 
 
Several methods address variable numbers of targets and detections with ambiguous associations, including joint 
integrated probabilistic data association (JIPDA) and jump Markov models (JMM)10,11.  In this paper, we explore 
applications of finite set statistics (FISST) to road constrained multiple target tracking.  FISST is a generalization of the 
Bayesian equations to sets, equations (1) and (2).  The probability density, called the global density, is defined on the 
possible number and locations of targets.  For road networks, the global density has the form 
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where 0P  is the probability of no targets, 
nrrP ...1

 is the probability density for n targets on roads nrr ...1  at 

}{},,,...,,,{ )(111 nn xfvxfvx nn = , respectively.  The density is normalized with respect to a set integral  
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where the summation over n refers to the number and identity of possible roads.  Similar to the Bayesian filter one can 
define conditional probabilities, motion models, and measurement models to develop a set of recursive update 
equations4,9.  The prediction step includes propagation and birth and death processes so that the conditional expectation 
of the global density on previous measurements has the form 
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where the sum is over all possible roads, mrr ′′...1 .  The predicted density is then updated with the measurements at time 
step t , 
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Summation over the associations makes these expressions more complicated than equations (1) and (2).    Similar to the 
Bayesian filter, the FISST tracker can be easily extended to applications with target ID by taking the Kronecker product 
of the FV space with the kinematic space.  The FV extension of this previously proposed tracker handles the 
ambiguities in FV space in a manner that is analogous to the kinematic trackers handling of ambiguities. The prediction 
and measurement models used in the calculation of the update equations (6)-(7) are described in detail in12.   

2.2 Numerical implementation 
A Gaussian Mixture approximation is used to make the random set implementation numerically feasible.  The Gaussian 
mixture model for this road network scenario also allows a scalable Gaussian sum particle filter (GSPF) 
representation13.  The GSPF is similar to particle filter sampling methods, but the delta function kernel associated with 
each particle is replaced by a variable dimensional Gaussian.  The covariance and mean of each particle is propagated 
instead of simply the position of each particle.  Each term in the global density is represented by a finite number of 
Gaussians, 
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may include the FV.  The Gaussian mixture representation requires several approximations:  1) After combining 
detections with the Gaussian, the probability of detect is based on the mean value of each Gaussian component.  2) The 
non-linear maps between the coordinates and the measurements are Taylor expanded around the mean values, 

+≈ ))(( 0sxgg  ))())((( 00 ssssxg −∂∂  in directions parallel and transverse to the road network—each road is 
parameterized by arclength, s, from an initial point s0.  3)  The motion model is still linear.  4)  Instead of truncating 
overhanging density, road switching and death processes correspond to the mean of the mixture component overhanging 
the end of the road.  The entire Gaussian component either switches roads or is marginalized.  5)  Birth processes 
correspond to adding mixture components to the ends of roads with a mean velocity pointing onto the roads and a fixed 
initial width.   
 
All of these approximations maintain the Gaussian mixture representation of the global density.   The validity of these 
approximations depends on the Gaussian mixture components’ variances being much smaller than variations in the 
detection probabilities, the variations in h , and the distance from the ends of the roads. We ensure the validity of these 
approximations by replacing components with large variances with several Gaussian components of smaller variances 
through a Kullback-Leibler measure.  Similarly, if a target is on the boundary of a classification, it is possible to split up 
a Gaussian into multiple Gaussian mixtures that do not straddle the boundary, but we have not implemented this 
approach13.  
 
Although these approximations ensure that the global density maintains a Gaussian mixture functional form, the 
associations of the measurements result in a geometric explosion in the number of mixture components.  To avoid the 
geometric growth, the mixture components are recombined so that the original target distribution

nrrP ...1
is replaces with 

a new Gaussian mixture distribution, 
nrrP ...1

~
, that contains two components with the same mean, variance14, 
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where (n)μ~ and (n)C~ are the optimal mean and covariance, respectively.  The optimal mean and covariance corresponds 

to the optimal mean and covariance of the distribution ∑
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based on the sensor system’s ability to distinguish the true distribution, 
nrrP ...1

, from the proposed distribution, 
nrrP ...1

~
, 

given that the sensor measurements are derived from the true distribution.  If the original and proposed distributions 
cannot be statistically distinguished by the possible sensor measurements sampled from the true distribution, the 
proposed distribution is accepted since it has less parameters (Occam’s razor). 
 
  
The KL metric is approximated by a pairwise K-L metric 
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The pair of mixture components that result in the smallest KL metric are combined until either the number of 
components is smaller than a set maximum number or the KL metric for combining two mixtures is greater than a 
tolerance14.  Other criteria for combining classes have also been explored, including the application of a threshold test to 
the probability that the log-likelihood ratio of the affected classes exceeds a value12.  The procedure results in a 
reduction in the number of mixture components, as demonstrated in Figure 1. This technique may be extended to 
include feature vectors as well12.    
 
Large scale applications can take advantage of the global density’s structure to further reduce the computational burden.  
For example, the targets might be segregated into groups such that targets from different groups are not confused by any 
of the sensors and the estimates for each group of targets could be done independently of the other groups.  These ideas 
are discussed in more details in12.   

2.3 Comparison with other techniques 
 
The random set tracker proposed in this paper may be compared with other techniques.    The linearization in 
measurement models is identical to the extended Kalman filter.  In fact, if there were no association ambiguities, (i.e. 
we knew which target creates each detection), the resulting algorithm would be an extended Kalman filter.  Similarly, if 
we always reduced the distribution to a single Gaussian, a tracker similar to the JIPDA filter would result10.   However, 
the random set tracker sums over associations, which avoids hard decisions made in many traditional Kalman Filter 
based approaches. A MHT attempts to track several possible hard associations, but introduces a pruning procedure to 
reduce the number of possible hypotheses.  Unlike MHT, the random set tracker avoids the exponential branching of 
hypotheses by reducing information (not the explicit number of hypotheses).  The number of hypotheses is allowed to 
vary as needed to maintain the appropriate level of information about the targets.  Figure 1 gives an illustration of the 
differences between MHT and RST.  Figure 1 (a) shows a path where a confuser vehicle will become confused with the 
VOI track at two points in time (1 and 3).    The multiple hypothesis tracker will have two branching processes, 
resulting in four hypotheses.  If the number of hypotheses maintained by the tracker is less than four, some of these 
hypotheses will be eliminated despite that the probability of each hypothesis may be close to equally likely.  The RST 
tracker would prevent this branching and pruning by determining that the hypotheses at time point 3 contain similar 
information and can be approximated by a single Gaussian with little loss of information.  This reduces the number of 
hypotheses handled by the tracker.  When the second branch occurs, only two hypotheses result. 
The RST fusion algorithm lacks the traditional concept of a track, which is a contiguous set of position estimates over 
time believed to be the result of a single vehicle.  Internally, the RST fusion algorithm simply reports the probability of 
a set of target with specific FVs and geokinetic variables at a specific time point.  A continuous track can be inferred 
from a MAP estimate performed on the global density, but this track is a refined data product that cannot be used 
internally by the fusion algorithm. 
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Figure 1:  (a)  A path where the VOI and confuser become entangled at points 1 and 3.  If no ID measurements can 
be performed at point 2, a MHT will give 4 possible hypotheses at point 4 as shown in (b).  The random set tracker 
recombines the two hypotheses at point 3 so that only two hypotheses exist at point 4 (c). 

 
3. ENTROPY BASED RESOURCE MANAGEMENT 

 
Resource management is essential to the efficient utilization of surveillance assets when all areas of interest cannot be 
surveyed simultaneously either due to limitations of the available sensing assets or limitations on energy, computational 
capability, communications bandwidth, or other resources.  Dynamic resource management determines sensor 
utilization based on the current representation of an evolving situation.  At each time instant, the global density function, 
defined above, represents current knowledge, and as described below, it provides the foundation for an entropy based 
resource management algorithm that minimizes average entropy of the global density subject to resource constraints.    
 
3.1 Derivation of the entropy based resource manager 
 
Assume that sensors are employed and that yt  denotes the measurement vector at time t. The state space model includes 
a measurement model, ( )ttt xyg | ,where gt is the probability density on the measurements conditioned on the state 

space variate.  Note that the measurement density further depends on the target-sensor relations, ,Α∈α  i.e., 
 
                        ( ) ( ) ( )∑

Α∈

=
α

αα pxygxyg tttttt ,||                                                                     (10) 

The state space model is completed by specifying a state space propagation model, i.e. the probability distribution 
function on state space at time t+1 conditioned on the variate at time t: ( )ttt xxf |11 ++ .  In this context optimal control 
is the selection of sensors to optimize an objective function subject to resource constraints.  For the present work 
sensors are chosen to minimize the expected entropy of the state space distribution subject to a resource constraint on 
each sensor or a total resource constraint. 
 
Let                         ( ) ( ) ( )( ) tttt dxyxfyxfyxH ttt :0:0 |ln|| :0 ∫=                                                        (11) 

 
be the entropy in the state space distribution conditioned on the measurements up to time t.  The increment in entropy 
over one time step is   
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( ) ( ) ( )( ) ( ),||ln|| 1:011:01:01:0 −−−−− −= ∫ ttttttttt YXHdXYXfYXfYXA

                            (12) 
 
And the reduction in entropy due to the measurements is  
 
          ( ) ( ) ( )( ) ( ).||ln|| :01:01:0:0 tttttttt yxHdxyxfyxfyxR t −= −−∫                                         (13) 

Then  
 
                                ( ) ( ) ( ) ( )tttt xRxAxHxH −+= −1                                                                     (14) 
Total entropy over n time steps is  
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Assume that the system objective is the minimization of total expected entropy subject to a resource constraint.  Further 
assume that the amount of entropy removed at tj is a function ( ) ( )j

s
j

j llRxR jt ,,1 K= , where j
il is the resource 

committed to sensor i  at time .j   Lagrange multipliers may be used16 to show that the optimum strategy, assuming that 

the increment in entropy ( )txA  is independent of past measurements  is the solution of  
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Note that E(R) is the mutual information, between the state variable conditioned on past measurements and current 
measurements16.  
 
3.2 Implementation with the RST 
 
The PDf in state-space is represented as a Gaussian mixture 
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For each set, S, of sensors and each component, j, of the state space mixture define a set of target–sensor relations, 
( )., jSΑ  The probability, ( ),,αjp  of any target-sensor relation, ( ),, jSΑ∈α  is determined by the target-sensor 

geometry and characteristics of the background and sensors.  Using a linearization of the measurement model about the 
mean of each mixture component (see above) , the measurement space density may be expressed as  
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where tt
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αμ and tt

j
|1ˆ +Γ α are obtained by linearizing the measurement model about .|1 tt

j
+μ   The density in state 

space conditioned on the sensor set S and measurements 1+tY is approximated by 
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where t|1tt|1t ~ and ~ ++ Γ ααμ jj are the Kalman filter updates of , and , |1|1 tt

j
tt

j
++ Γμ  respectively17.  Note that tt

j
|1~ +Γ α is 

independent of the measurements.  In going from (19) to (20), )(~ 1|1 ++ ttt
j Yαμ  is replaced with ,|1 tt

j
+μ and on going 

from (20) to (21) the mixture terms for a given j are combined and approximated by the given normal.   
 
3.3 Approximations 
 
The entropy of a normal mixture distribution is replaced with the following upper bound on the entropy.   
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( )xH~  is the entropy of the class weights, ,jω  plus the weighted entropy of the classes.  Note that  

 
                     ( ) ( )( ),,~ jxHxH =                                                                                                (24) 
 
which might be called the complete entropy.   
 
The mutual information is  
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Note that the difference of the sum of weighted normal entropies in (26) captures the reduction in the class covariance 
due to the measurements, and the remaining term captures the reduction in the class ambiguities.   
 
A key step in the application of  entropy based resource management is the approximation of this integral.  Results 
obtained using Monte Carlo integration may be compared with results obtained using another method in order to judge 
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the efficacy of the proposed technique.  Alternatively, quadratic mutual information, which for Gaussian mixture 
distributions can be computed in closed form may be used as a measure of sensor efficacy16. The present paper proposes 
another approximation in terms of classification error bounds.    
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where  ( ) ( )∑ Γ=
r

jrjrjr YNjyp ;,| μα  and ( ) ( )( )ΣΓ ,,, νμNB  is the Bhattacharyya bound on the maximum 

likelihood classifier assuming normally distributed classes.  This result is derived and results obtained using various 
approximation techniques are compared16.   
 
The optimization criteria (15) is implemented by determining the set of sensors that maximizes the mutual information 
for a given level of resource utilization and approximating the derivative with the corresponding difference equation.  
The resource level and hence the corresponding set of sensors is determined by the threshold criterion (15).  This 
approach requires a search over subsets of sensors.  The Mobius transformation18 is employed to reduce the 
computational complexity of the search.   Following18, suppose that Θ is a finite set and that f and g are functions on 
2Θ the set of subsets of  Θ.  Then if  
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AB

BgAf for all ,Θ⊂A and ( ) ( ) ( )∑
⊂

−−=
AB

BA BfAg 1  for all ,Θ⊂A                                           (28) 

g is the Mobius transform of f.  To reduce the computational complexity of optimizing a function over a discreet set, 
select 0>k   and define  
 

                                                ( )
( )
( )

⎪⎩

⎪
⎨
⎧
−

≤
= ∑

=− 1
,~~

BA
otherwiseBg

kAifAg
Ag                                                                      (29) 

 
Define                                                ( ) ( ).~~ ∑
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=
AB

BgAf                                                                                    (30) 

 
The extrapolations of the Mobius transform  

                                                       ( ) ( )
⎩
⎨
⎧ ≤

=
otherwise

kAifAg
Ag

,0
~                                                                             (31)  

has been applied to feature selection19.  These methods of extrapolating the Mobius function for the present application 
are compared16. 
 

4. APPLICATION TO ROAD CONSTRAINED TRACKING 
 

MITRE’s Netted Sensor Program has deployed networks of radar, acoustic and imaging sensors and developed a 
simulation facility that is used to demonstrate the capabilities of sensors and algorithms.  The range radars were built by 
Multispectral Solutions, Inc. (Germantown, MD) and have a detection range of 512 ft (156 m) and a 24 degree beam 
pattern.  Detections are recorded by determining background clutter statistics and detecting statistically significant 
blocks of range cells that exceed the background clutter.  The detection probabilities are calculated from the signal, S, 
using the Swerling I model.  Each acoustic array consist of four microphones spaced 8 inches apart in a square planar 
configuration.  Angles of arrival are estimated in the time domain from the microphone cross-correlation functions.  
Angles are reported when the sound level exceeds a threshold, T, defined relative to the background.  Experiments show 
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a normally distributed error with o5  accuracy and a detection range of 10-15 meters.  The estimated bearing angle 
generally points to the loudest (and often closest) vehicle, although more complicated behaviors occasionally occur.   
 

4.1 Tracking  
   
The methods described above were applied to the problem of tracking vehicles traveling on a road without intersections 
as depicted in Figure 2(a).  One range radar and three acoustic arrays were utilized, and they were positioned as shown.  
Ground truth was obtained by instrumenting the target vehicle with a GPS.  This vehicle traversed the road while targets 
of opportunity enter the road network and act as decoys.   The sensors and the FISST tracker were run at  3 Hz.   
 
The FISST global density reported tracks determined by: 1) determining the most likely hypothesis through 

marginalizing over the geokinetic variables, ∑∫= })({}{
!

1 )(
...

)(
... 11

n
rr

n
rr xfxd

n
P

nn
, where the summation is 

performed over the permutations of nrr ...1 .    2) The most likely positions of the most likely hypothesis (the MAP 

estimate) are reported, })({maxarg )(
...

}{
1)(

n
rr

x
xf

nn
.   

Figure 2(b) compares a typical track on the linear road network for the fusion algorithm with all sensors collecting data 
at every time step against a typical track for the fusion algorithm.  The measured distance corresponds to the distance 
from the radar to the target or track.   
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Figure 2:  (a) The straight line road network geometry. The axes are topocentric with distances in meters.  (b) Tracking on 
the linear road network in (a) with all sensors running at 3 Hertz.    Distances are measured in meters from the radar.  
Errors in estimated positions vary with time and the measurements but have an average value of approximately 4m.  Truth 
error estimates average approximately 3m and may be systematic, due to GPS. 

4.2 Resource Management 
 
Simulation studies were performed to evaluate the resource manager.  The simulator allows for an arbitrary road 
network instrumented with an arbitrary number and placement of range radars and acoustic arrays.  Whereas the radar 
can simultaneously detect multiple targets, each in different range bins, the acoustic sensor, as described above, can 
only detect one target in any given measurement.  For each sensor type, the simulator incorporates sensor-target 
geometry dependent models of the accuracy and the probabilities of detection and models of the probabilities of false 
alarms.  As the acoustic sensor reports only one, generally the loudest, detection, its probability of detecting a target 
depends upon the totality of targets in the scene, their positions, and their amplitudes.  At present the simulator assumes 
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that the acoustic source levels and radar cross sections of all targets are identical.  Targets enter the scene according to 
the target birth model, travel through the scene according to the motion model and exit according to the target death 
model.  At each time step, given the configuration of targets, the radar and acoustic models are used to  generate 
synthetic radar and acoustic detections.  These data are used by the tracker, as real data are used, to update the global 
density.  Given the current global density, the resource manager determines what sensor data, or simulated sensor data, 
to collect at the next time instant.  The average number of sensors deployed is determined by the value of the threshold 
in  (15).  The resource manager is evaluated by computing average entropy of the global density as a function of the 
average number of sensors deployed for various target-sensor scenarios.    
 
The resource manager was utilized as follows.  The mutual information of a given set of sensors was approximated 
using (26) and (27).  The Mobius transform of the approximate mutual information on subsets up to size 2 was 
computed and extrapolates to larger sets using  (29). Approximate mutual information was then computed using (30).   
In this work, a sensor was either on or off and all sensors were assumed to consume the same quantity of resources 
when on, so that the resources devoted to a sensor were either 0—it is off—or 1—it is on.  For each level of resource 
utilization, the subset of sensors having the largest approximate mutual information was determined, and the set of such 
sensors such that the increment in mutual information from adding the next sensor is below a threshold was selected for 
the next set of measurements.  The threshold was fixed for the duration and not time dependent as in (15). 
                                                                                                                                                                                                                          

                       
Figure 3. (a) The road network and sensor configuration for the resource management experiments in topocentric 
coordinates with distance measured in meters.  Position of the acoustic arrays and radars  indicated in green and red,  
respectively.  Note that the detection range of the radars is 156 m, and the detection range of the acoustic arrays is 10-15 m.  
(b) Curves showing the average number of sensors deployed and the ratio of the average entropy of the global density using 
resource management to the average entropy of the global density without resource management for a range of threshold 
values in equation 15: scenario 1-dashed, and scenario 2-solid.   Points obtained at threshold values of 0.4 and 0.5 are 
indicated.  
                                  
Simulation results are provided in Figure 3. The sensors were deployed as illustrated in Figure 3a.  Two scenarios—the 
first does not and the second does include a vehicle path-crossing—are considered.   In the first scenario, five seconds 
into the simulation, a vehicle enters the road network at A, takes the direct route to C, and leaves the network; eight 
seconds into the simulation a second vehicle enters the network at C, takes the direct route to B and leaves the network.   
In the second case, the first vehicle enters the network at B one second into the simulation, travels to C, travels to A and 
leaves the network, while the second vehicle enters the network at A at time 5 seconds, travels to C, and leaves the 
network.  The vehicles arrive in the vicinity of intersection C at approximately the same time.  Scenario two, is thus the 
more difficult tracking problem. Note that the vehicles, when in the vicinity of C, may be difficult to distinguish as each 
report from an acoustic array, as described above, includes at most one detection.  Subset selection threshold values 
ranged from 0.1 to 1.0 for case 1 and 0.0125 to 1.0 for case 2.  For each threshold value 10 runs through the network 
were computed. For each threshold value the average number of sensors selected and the average entropy of the global 
density were computed with the averages taken over time, as the simulation proceeds and over repeated trials.   For each 
scenario, the average entropy of the global density using all sensors was also calculated.  The curves in Figure 3b plot, 
for the two scenarios and a range of threshold values, the average number of sensors deployed and the  ratio of the 
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average entropy of the global density using resource management to the entropy of the global density obtained using all 
sensors.   
 

5. SUMMARY AND CONCLUSIONS 
 
An integrated approach to tracking and dynamic resource management that is applicable to complex surveillance 
applications has been developed.   The FISST allows for target birth and death, clutter and missed detections, and multiple 
possible trajectories that, for example, occur at intersections of roads.   A MHT can successfully track branching processes 
by intelligent pruning of hypotheses15, but the FISST examined in this paper introduces hypothesis branching reduction 
through merging similar hypotheses, which avoids information loss from pruning processes.  In application to tracking a 
single object on a road with no intersections, the FISST achieved an average error of 4m relative to GPS locations which had 
an average error of 3m.   Initial applications to the triangle network and other road networks show successful tracking 
capabilities, which will be quantified in future publications12.    The application to several experimental scenarios 
demonstrates that the algorithm does not depend on the specifics of the road network and is extensible. 
 
A resource manager based on minimizing average entropy of the state space PDF was developed and applied to the FISST 
implemented with Gaussian mixture distributions.  Key to implementing the resource manager are the approximations (27) 
using the Bhattacharyya bounds and the extrapolation of the Mobius transform (29,30).  Simulations of two vehicles moving 
through a network of intersecting roads show that dynamically choosing the sensors with this technique results in 
approximately a 20% increase in global density entropy while using on average one-third to one half of the sensors at any 
given time.  Consistent results in terms of entropy increase and resource utilization were achieved with a similar threshold 
(0.4—0.5) applied in equation (15) for two very different scenarios.   
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