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Background 
San Francisco has the highest rate of tuberculosis (TB) in the US.  Exact locations of 
patients’ primary residences at the time of diagnoses are routinely collected as part of the 
TB surveillance program. It has been shown for syndromic surveillance data that when 
exact geographic coordinates of individual patients are used, higher detection rates and 
accuracy are achieved compared to when data are aggregated into administrative regions 
such as zip codes and census tracts. Here, we examine the effect of varying the spatial 
resolution in the TB data on the San Francisco homeless population, on detection 
sensitivity, timeliness, and the amount of historical data needed to achieve better 
performance measures. 

Methods and Findings 
We apply a variation of space-time permutation scan statistic to the TB data in which a 
patient location is either represented by its exact longitude and latitude or by the centroid of 
its census tract.  We show that the detection sensitivity and timeliness of the method 
generally improve when exact locations are used to identify both simulated and real TB 
outbreaks, however, better performance measures were attained under simulated cases as 
compared to actual outbreaks.  Finally, we compare the dependency of the method on the 
extent of data needed for parameter estimations under different geospatial constraints, and 
show that smaller amount of data is required when exact locations are used to achieve 
similar performance measures. 

Conclusion 
We investigate the relationship between using exact locations of TB patients, the timeliness 
of identifying real TB outbreaks, and the amount of legacy data required for early 
detection. We demonstrate that using higher spatial resolution results in higher detection 
rate, but more importantly in timely detection of TB outbreaks even when the amount of 
available data is relatively small.  For higher spatial resolution, we also show generally 
better sensitivity for simulated outbreaks as compared to actual outbreaks, though this 
difference can be explained by the variations in dispersal structure of cases between the 
two.  Trading higher spatial resolution for better performance, however, is ultimately a 
tradeoff between maintaining patient confidentiality and improving public health. 
Understanding such tradeoffs is critical to managing the complex interplay between public 
policy and public health. This study is a step forward in this direction. 
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INTRODUCTION 
TB is one of the top four diseases for infection-induced mortality in the world today.  
There are currently about 54 million people infected with the bacterium 
Mycobacterium tuberculosis with approximately 8 million new infections occurring 
each year. TB kills nearly 2.4 million people annually.  In the U.S. alone, there are 
currently about 12.5 million people who have been infected by TB (Ginsberg 2000), 
with the city of San Francisco having the highest rate in the U.S. Although in recent 
years the incidence of TB has been declining in the San Francisco general population 
(see Figure 1), it has remained relatively constant in the homeless population (see 
Figure 2).  

 
Spatial investigations of disease outbreaks seek to identify and determine the significance 
of spatially localized disease clusters by partitioning the underlying geographic region. 
The level of such regional partitioning can vary depending on the available geospatial 
data on cases including towns, counties, zip codes, census tracts, and exact longitude-
latitude coordinates.   When exact patients’ locations have been used in cancer 
surveillance, the accuracy was not appreciably higher than that obtained with larger and 
more conventional regional partitions such as census block groups (Gregorio et al., 
2005), though the benefit of localized rate variation (i.e. geographic excess or shortfalls 
in cancer incidence for small areas) was shown in an earlier study (Gregorio et al., 2002).  
In other works, there were few performance differences observed for larger aggregation 
comparisons such as block group, census tract, zip code, and town (Krieger et al, 2002; 
Sheehan et al., 2000).  More recently, Olson, et al, using the method of space scan 
statistic (Kuldorff et. al., 1997) applied to syndromic data, has shown that when patients’ 
exact locations are used, higher detection rates are achieved as compared to center points 
of larger geographical regions such as zip codes and census tracts (Olson et al., 2006). 
The authors demonstrated that the advantage in using higher resolution cluster detection 
is primarily in a reduction of the distortion effect that is induced by the use of large 
detection windows (i.e. spatial scanning windows), as compared to smaller detection 
windows.  This problem occurs when, for example, two cases are geographically close to 
one another, while they reside in two separate zip codes (or census tracts).  In such 
situations, if the geographic partitioning is by zip code (or census tract),  the detection 
window has to be rather large to encompass both administrative regions since the cases 
are represented by the centroids of these regions, while a smaller detection window can 
capture such localized cases when the exact individual addresses are used.   
                                                                                                                                                                              
In space-time surveillance of disease outbreaks, however, the interdependency between 
both time and space are manifested by disease clusters that are localized in time and space. 
Such disease localizations can be investigated through dynamic partitioning of the 
underlying geographic regions, where different degrees of spatial resolution can be coupled 
with varying levels of temporal scale to examine both the detection rate and timeliness. 
While the benefits of using higher spatial resolutions, such as patients’ individual 
addresses, have been examined in the context of spatial epidemiology, the spatio-temporal 
effects of disease localizations have not been studied under different degrees of spatial 
aggregation.   As such, the effect of varying degrees of spatial aggregation on detection 
timeliness has not been investigated.  At the same time, any detection method must rely on 



a pool of legacy data to both establish a baseline of normal disease variability and estimate 
the model parameters.  However, the amount of available data varies across surveillance 
programs, and historical data are often in short supply.   Therefore, in addition to detection 
sensitivity and timeliness, the dependency on the amount of historical data must also be 
examined when varying spatial resolution.  Finally, under the multiple levels of 
aggregation, the bias in geographic spread, that can be introduced when creating simulated 
cases can cause differences when comparing simulated cases to the spread of actual 
outbreaks.  This disparity between simulated and actual cases must also be examined to 
make meaningful analogies for progressing from validation in a synthetic environment to 
validation in a real surveillance system. 
 
In this work, we use a modification of space-time permutation scan statistic  (Naus 1965; 
Kulldorff 1997; Kulldorff et al., 2005; Wallenstein 1980; Weinstock 1981) to examine 
the effect of varying degrees of spatial resolution (census tracts of patients’ residences 
versus exact locations) on the detection sensitivity and timeliness using both simulated 
and confirmed outbreaks applied to the TB data on the homeless population of San 
Francisco for 1991-2002.    We find that when exact patient’s locations are used, the 
detection method can identify more outbreaks (designated or confirmed) and, more 
importantly, in a more timely manner for both simulated and actual cases.  Finally, we 
show that with individual addresses the detection method requires a smaller amount of 
historical data to achieve similar performance measures obtained under census tract 
centroids.   
 
 
MATERIALS and METHODS 
Data 
The San Francisco Department of Public Health (SFDPH), TB Control Program (TBCP), 
routinely collects comprehensive information on TB cases and their contacts including 
demographic (e.g., age, gender, race), population risk factors (e.g., intravenous drug use, 
HIV status, alcohol intake), laboratory results (e.g., skin test, chest x-ray), time of 
diagnosis, and primary residences.  For the homeless population, the geospatial 
information typically includes shelters and single room occupancies (SROs). In addition 
to the above data types, advances in molecular biology have made it possible to identify 
different bacterium fingerprints with the technique of restriction fragment length 
polymorphism (RFLPs) and polymorphic GC-rich repetitive-sequence (PGRS) 
methodologies (Small et al., 1994; van Deutekom et al., 1997).  With these technologies, 
it is possible to both identify and track specific subpopulations that have been infected 
with the same bacterial strain.  This information can aid in outbreak investigation to 
identify patterns and hubs of transmission often hidden in a network of complex 
interactions between primary infected cases and their contacts (Klovdahl et al., 2001; 
McElroy et al., 2003).  
 
The dataset for this study consists of comprehensive information on 392 individuals that 
have been diagnosed by the SFDPH, TBCP with active TB and identified as homeless 
over the time period of 1991-2002. The primary residences of these individuals were used 
to identify their geographical coordinates (latitudes and longitudes) using ArcGIS v9.0 



(ESRI).  The census tract information for identifying the tracts in which the homeless 
individuals reside, were obtained from generalized extracts from the Census Bureau's 
TIGER geographic database provided by the US Census Bureau 
(http://www.census.gov/geo/www/cob/index.html).  There were a total of 76 unique 
census tracts covered by the study population.  TB case data is kept electronically in a 
patient management database maintained by the SFDPH, TBCP.  All case information, 
including address of residence and homeless status at the time of diagnosis, was 
downloaded directly from the database. Census tract information was obtained from the 
2000 census. 
 
Confirmed Outbreaks— p9 cluster 
During 1991-2002, an epidemic strain of TB took hold among the homeless population in 
San Francisco.  Both RFLP and PGRS analyses were conducted on infected cases to 
identify the particular strain and associate it with previously identified molecularly 
similar clusters.  This investigation resulted in 47 unique homeless individuals being 
identified as infected carriers of this new strain not previously observed, and referred to 
as the p9 cluster.  This cluster arose at two separate time periods, peaking in 1996 and 
disappearing by 1999, with a second outbreak rapidly appearing in 2001 (how about a 
plot here?).  
 
Modified space-time permutation scan statistic 
Variations to both the scan statistic introduced by Kulldorff et al., 2005 and the method 
for fast detection of spatial overdensities, provided by Neill et al., 2003, is implemented 
here as a suitable method for space-time investigation of TB outbreaks in the San 
Francisco homeless population. For a more detailed account of the method, see the work 
cited above. 
 
Briefly, the method can be described as follows.  Instead of using circles of multiple radii 
as spatial bases for scanning cylinders (Kulldorff et al., 2005), a square grid approach, 
similar to that provided by (Neill et al., 2003) is employed here. Overlapping grids 
containing p squares, each of area 2r  are placed over the entire region, where the grid 
overlap is permitted at half the width of each square, representing the spatial domain. The 
time domain, as in (Kulldorff et al., 2005), is represented by the length of such 
(rectangular) cylinders. For each square, the expected number of cases, conditioned on 
the observed marginals is denoted by μ  where μ  is defined as the summation of 
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observed number of cases for the same cylinder is denoted by n .  Then the Poisson 
generalized likelihood ratio (GLR), which is used as a measure for a potential outbreak in 
the current cylinder, is given by  
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(Kleinman et al., 2005).  To assign a degree of significance to the 

GLR value for each cylinder, Monte Carlo hypothesis testing (Dwass 1957) is conducted, 
where the observed cases are randomly shuffled proportional to the population over time 
and space and the GLR value is calculated for each square.  This process of randomly 
shuffling is conducted over 999 trials and the random GLR values are ranked.  A p-value 
for the original GLR is then assigned by where in the ranking of random GLR values it 
occurs. 
 
For our space window, we restricted the diameter of squares  to range from 0.02 km to 1 
km.  For different sized squares that had a perfect intersect of the same cases, the smallest 
square was retained.  There were a total of 441 space scanning squares sampled for the 
census tract centroids, and a total of 4,234 for individual residences.  For our time 
window, the TB case count is much lower than the daily data feeds typical of surveillance 
systems used to monitor emergency room visits due to the influenza-like illnesses or 
pharmacy sales, for example.  To compensate for the smaller proportion of total cases, 
daily counts were aggregated into monthly (approximately 4 weeks) case counts resulting 
in a total of 144 data points (months).  This agglomeration of cases is necessary since the 
notion of early detection of outbreaks of a chronic disease, such as TB, with long 
incubation period (Benenson 1995) requires a longer time scale. This is in contrast with 
sydromic surveillance of acute infectious disease (such as influenza-like illnesses) where 
early detection encompass only hours to days after the start of an outbreak (see Mandl et 
al., 2004; Lewis et al., 2002; Reis et al., 2003; Mohtashemi et al., 2006; Mohtashemi et 
al., 2007). Finally, the amount of historical data used for training the model and 
parameter estimations varied from 4-72 weeks, spanning the years of 1991-2002.   
 
Reduction of Overlapping Signals 
Due to the number of likelihood ratios calculated, multiple testing correction becomes an 
important procedure for determination of significant signals.  The Monte Carlo 
hypothesis testing step is designed to correct for much of this. However, it is often the 
case that multiple signals with similar significance also share a high degree of similar 
information, such that a procedure for reduction of such redundant information is 
required.  For example, a geographical square deemed significant that has two cases 
within the four week window may intersect with another square, also deemed as 
significant for the same time window, that is larger in size, contains three cases, and 
encompasses the first square.  Under such circumstances when there is a 100% intersect 
of a smaller square with a larger square for the exact same time period and similar 
significance measure, a unique signal is reported by retaining the smaller square.   
This procedure was performed on all significant signals using the above criteria  
 
 
RESULTS 
Simulated Outbreaks—Detection sensitivity and timeliness 
We examine the detection power and timeliness of the application of the space-time 
detection method previously described to TB data infused with simulated outbreaks under 
both individual addresses and census tract centroids.   Similar to the approach in (Olson 



et al., 2005) the scanning window size was increased from the smallest region of 0.02 km 
to the largest region of 1 km in size, while the simulated points were distributed in 
multiple administrative regions (census tracts) ranging from 1 to 4 (see Figure 3 and 
Table 1).  All simulated cases were first randomly placed in one administrative region, 
then split into two administrative regions, and so on up to four total regions. When the 
scanning window is small , the method attains greater detection sensitivity using 
individual addresses regardless of the number of regions within which the cases are 
added (see Figure 3a-b and Table 1).  As the scanning window size is set to 0.2 km 
(Figure 3c) and increased to larger values (Figure 3c-e), this trend continues only for the 
cases distributed over the multiple administrative regions (i.e. 3 and 4).  The census tract 
centroids have greater detection sensitivity when cases are distributed over fewer 
administrative regions (1 and 2) using scanning window sizes of 0.2 km and greater.  At 
the largest scanning window size (1 km), there are very few cases detected over both 
individual addresses and census tract centroids, due to the convergence of the cluster grid 
and overall detection region. 
 
The speed of detection is one of the most important performance measures for disease 
surveillance. In the space-time permutation scan statistic, the time window is varied at 
time spans ranging from 1 month to 6 months.  Outbreaks that occur in a short time 
interval for a specific geographic region or adjacent regions are detected within the small 
time window size, whereas, those outbreaks that have more sparse case counts with time 
(i.e. spread out over a longer time span than 1-2 months) for a specific geographic region 
or adjacent regions, are detected within a larger time window size.  In the context of a 
disease such as TB with chronic characteristics, we denote an outbreak is detected early if 
it is identified within months (less than a year) from the start of the outbreak. To assess 
the differential detection timeliness of the method using individual addresses and census 
tract centroids, additional cases were simulated at the same frequency and under the same 
conditions, and over the same geographic regions, while the scanning time window was 
increased from 1-6 months. As can be seen in Figure 4, at increasing time windows 
greater than 2 months, more significant clusters are detected with the use of individual 
addresses.  At time windows less than 3 months, no noticeable difference is observed 
between the two methods.  Both individual addresses and census tract centroids 
demonstrate a linear relationship with time after 2 months. 
 
Confirmed Outbreaks—Detection sensitivity and timeliness 
Here, we examine the detection sensitivity and timeliness of the method using the two 
levels of geographical resolutions (i.e. census tract centroids and individual addresses) 
applied to the confirmed outbreaks of the p9 cluster (Table 2 and Figure 5).  To provide 
parity between the two methods, some assumptions were made in the case where both 
approaches were detecting the same signal, with overlapping, yet slightly different start 
and end dates.  If the start or end dates for a significant signal under one geographic 
resolution overlapped the dates for the other, we considered them the same signal, That 
is, the detection method identified the same signal under both geographic constraints.  
The initial increase in cases that occurred in 1995, as well as the continuation of this 
outbreak through 1996, 1997, and the large resurgence in 2002 were detected under both 
spatial resolutins (see Table 2).  These p9 clusters are accurately detected at three 



separate time points (1995-1996, 1997, and 2002) that are consistent with the 
documented outbreaks of this epidemic strain.  It should be noted that the two outbreaks 
detected in 2002 using individual addresses overlap the single outbreak detected in 2002 
using census tract centroids, so this is treated as a single detection by each method. 
      
With exception to the significant cluster that is detected within the dates of 11/26/96-
12/17/96 using individual addresses (increased sensitivity), there is not a considerable 
difference in the detection sensitivity of the two.  Though one could argue that this 
additional cluster that was detected using individual addresses in 1996 (and not detected 
by census tract centroids) is evidence that supports overall better performance with 
individual addresses (as compared to census tract centroids), based on the list of 4 
principle time points with confirmed p9 outbreaks.  By assessing accuracy as a ratio of 
the number of detected (and confirmed) outbreaks to the total number of confirmed 
outbreaks, the use of individual addresses detects 100% of the confirmed outbreaks, 
whereas the use of census tract centroids detects 75% of the confirmed outbreaks.  
Irrespective of this last point,,the detection timeliness is improved when using individual 
addresses.   Here, the timeliness is assessed by the detection time window, which 
constitutes the number of weeks that are used within the base of the scanning grid to 
calculate the expected and observed number of cases (used for the generalized likelihood 
ratio).    When examining the time window lengths for similar signals under the two 
spatial resolutions, the detection method using individual addresses generally requires 
smaller time windows than that of census tract centroids. As can be seen from Table 2, 
the significant signal detected within the dates of 5/13/97-8/26/97 using individual 
addresses is detected approximately 1 month prior the same outbreak is detected using 
census tract centroids.  In addition, the end date of this time window, using individual 
addresses, is approximately 2 months earlier.  This earlier end date pattern is also 
demonstrated for the 2002 outbreak as well, even when the use of individual addresses 
identifies a significant cluster with two separate date blocks.  For detection of identical 
outbreaks, the use of individual addresses (as compared to census tract centroids) is 
advantageous in reporting the significant cluster in a shorter time interval. 
  
Legacy data requirement 
The accuracy of surveillance algorithms is often determined by assessments on 
retrospective data.  Documented outbreaks in the past are used as ground truth to measure 
model performance.  Depending on the algorithm, the larger the pool of legacy data, the 
more reliable are the performance measures, since the assessment of normal variability 
improves with measurements over time  We assessed the accuracy of the algorithm using 
the two spatial resolutions by simulating increasing cases on a background of real TB 
cases, using varying amounts of historical data.  First, we randomly selected a geographic 
region, and simulated 1-8 cases  over  the range of 4-72 weeks (roughly 1-18 month) of 
historical data.  The percentage of simulated cases with the background of real cases in 
the scan window was then recorded, as well as the detection p-value from the Monte 
Carlo hypothesis test for that scan window.  For example, if 3 cases are simulated within 
a background of 3 cases, this region has had a 100% (3/3) increase in cases, 50% (3/6) 
consisting of simulated cases, and the detection p-value calculated may be 0.20.  Now if 3 
more simulated cases are added to the previous 3 simulated cases and the background of 



3 cases, this region now has had a 200% (6/3) increase in cases, 67% (6/9) consisting of 
simulated cases, and the detection p-value calculated may be 0.01.  We implemented this 
methodology using the p-values (Figures 6a and 6b y-axis) and simulated case 
percentages (Figures 6a and 6b: x-axis), starting with only one month of legacy data to 
draw upon, all the way up to 18 months.  Then this procedure was repeated 1,000 times 
for different randomly selected regions.  
 
Figures 6a and 6b illustrate the sensitivity of significant signals to the amount of 
historical data required to detect outbreaks within a one-month window. The orange 
dashed lines represent a significant weak and strong signal and correspond to p-values of 
0.001 and 0.0001, respectively.  When the availability of historical data is limited to only 
2-3 months, individual addresses provide a more sensitive measure than census tracts.  
With the use of census tracts, there is neither a weak nor strong significant signal detected 
with 2 months of legacy data, as opposed to the weak signal observed for individual 
addresses.  In addition, with 3 months of legacy data, the use of individual addresses 
demonstrate detection of a weak signal when simulated cases were added at 90%, 
whereas, the use of census tracts allows detection of the weak signal, requiring simulated 
cases to be added at 95%.  When the availability of historical data is limited to 6 months, 
the method detects a weak signal at 90% of simulated cases using census tracts, while it 
detects a strong signal at about the same 90% using individual addresses.  Note that 
increased detection sensitivity is implied when the detection method identifies fewer 
simulated cases using smaller amount of legacy data under individual addresses. 
 
 
DISCUSSION 
We investigated the effect of varying the spatial resolution in a variant of a widely used 
space-time detection technique on the sensitivity and timeliness of identifying both 
simulated and confirmed TB outbreaks, and examined the dependency of these 
performance measures on the amount of historical data required. We showed that when 
exact patients’ locations are used, irrespective of whether the outbreaks were simulated or 
real, both performance measures are generally improved compared to when census tracts 
are used as the spatial base for geographic partitioning. Furthermore, using simulated 
outbreaks we demonstrated that when individual addresses are used, the detection method 
requires smaller amount of historical data than that required to achieve similar 
performance measures under census tract centroids.  Overall, higher performance 
improvements were achieved under simulated outbreaks, compared to real TB outbreaks, 
when individual patients’ coordinates were used for search. 
 
The results of Table 1 warrant some discussion.  First, when individual patients’ 
coordinates are used as basis for geographic partitioning, the detection method 
consistently performs better if the size of the scanning window is sufficiently small (<0.2 
km).  This appears to be true regardless of the degree of case-spread in the study region 
(see Table 1).  Second, when the size of the spatial scanner is sufficiently large (0.2 km or 
larger) to encompass an entire area covered by one or two census tracts, if the cases are 
clustered within such an area, then the method performs better under census tract-based 
partitioning.  Third, when the simulated cases were spread over more than two 



administrative regions, further expansion of the spatial base did not result in better 
performance using census tracts, yet the detection sensitivity was better using individual 
coordinates under similar conditions (see Table 1). 
 
When simulating cases for the sensitivity comparison, the cases were randomly 
distributed within 1-4 administrative regions (census tracts), such that the spread of cases 
was approximately uniform.  This was conducted in such a manner as to not bias the 
spread of cases around any particular region.  We attempted to measure the approximate 
case-spread under both the simulated and real outbreaks using two measures—the 
coefficient of variation (CV) in the pair-wise distance distribution of simulated cases and 
the CV of the distribution of distance between cases and center of their census tracts.  
The first measure gives an indication of the extent of spread of the simulated cases with 
respect to each other while the second is an indication of how spread these cases are with 
respect to the center of their census tracts. The respective CVs were 0.85 and 1.88 and the 
respective variances were 0.39 and 0.6.  In principle, the larger the variance, or the CV, 
of a distribution, the closer is the underlying distribution to that of uniform, the 
distribution by which these cases were simulated and the results of Table 1 were 
obtained. This means that such spatially uniformly distributed cases are much more 
spread with respect to center of their administrative regions than from each other. In such 
a situation, expanding the spatial base of the search when cases are spread over more than 
two regions does not improve the detection.  On the other hand, the detection method 
performed better using individual addresses even when the spatial base was large and 
cases were spread over four census tracts.   
 
For the confirmed outbreaks, the respective CVs for the pair-wise and case-to-census 
distance distributions were 0.69 and 1.33 while their variance was the same (0.2), which 
can partially explain why the improvement in detection sensitivity using individual 
locations was not as considerable as with the simulated cases.  However, using exact 
patients’ coordinates, the detection method almost invariably was able to identify 
localized clusters of smaller sizes earlier in time, which is a critical property of real time 
surveillance and timely containment of disease outbreaks. 
 
While the results of this study clearly point to improvement in the detection sensitivity 
and timeliness when patients’ coordinates are used as the center of the spatial scanner, the 
larger improvement was obtained when the cases were randomly generated. This is a 
sensible result, because the real TB case distribution in the event of an actual outbreak is 
not expected to characterize a uniform distribution.  Factors affecting the spread and 
transmission of TB in the homeless population, such as localization of shelters and SROs 
to specific geographic regions and the high prevalence of intravenous drug use and HIV 
and AIDS among the homeless, result in spatial clusters of TB that are topologically 
different from those attained under random distribution of cases in space.  Thus, we infer 
that quantitating the extent and topology of disease case-spread derived from historical 
data, can widely benefit real time surveillance and guide public health investigations with 
respect to detection and control of infectious diseases.  While the decision on which 
spatial resolution results in improved detection sensitivity may depend on localization 
properties of historical case spread, we showed that the detection timeliness is 



consistently improved when the detection method uses patients’ coordinates as the center 
of its spatial base for search. 
 
Finally, trading higher spatial resolution for increased performance is ultimately a 
tradeoff between maintaining patient confidentiality and improving public health.  While 
these features are critical to real time surveillance, maintaining patient confidentiality 
introduces a challenge to the timely investigation of outbreaks.  The complex interplay 
between public policy and public health may be better managed by understanding and 
balancing the associated risks in each problem domain.  As critical as this topic of debate 
may be, it is outside the scope of this work. 
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Figure 1. Three month interval temporal plot of TB cases in the San Francisco general 
population for the years of 1991-2002.  Grey dashed lines separate each year. 
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Figure 2. Three month interval temporal plot of TB cases in the San Francisco homeless 
population for the years of 1991-2002.  Grey dashed lines separate each year. 
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Figure 3.  Detection sensitivity of simulated cases. Significant clusters detected for 
individual addresses (blue bars) and census tract centroids (red bars) with increasing 
spatial windows of a) 0.02 km, b) 0.1 km, c) 0.2 km, d) 0.5 km, e) 1 km, and census tract 
regions (1 to 4) .  For each plot, the x-axis is scaled to the maximum detection sensitivity 
percentage. 
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Figure 4. Detection timeliness of simulated cases.  The average -log2 transformed p-value 
distribution for individual addresses (blue bars) versus census tract centroids (red bars) 
with an increasing window size. 
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Figure 5. Significant signals for the p9 outbreaks using individual addresses (a-e) and 
census tract centroids (f-h).  Bay area maps partitioned by census tract where tracts 
shaded red represent the location of the significant signal detected for the specified dates 
in Table 2.  To protect patient confidentiality, only the census tracts in plots a-e are 
shaded, as opposed to highlighting the exact locations. 
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Figure 6a. Sensitivity of detection to historical data.  Significance of detected simulated 
outbreaks to the amount of legacy data required using census tract centroids.  The orange 
dashed lines represent a significant weak and strong signal correspond to p-values of 
0.001 and 0.0001, respectively. 
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Figure 6b. Sensitivity of detection to historical data.  Significance of detected simulated 
outbreaks to the amount of legacy data required using individual addresses.  The orange 
dashed lines represent a significant weak and strong signal correspond to p-values of 
0.001 and 0.0001, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLES 
 
Table 1. Significant clusters detected for individual addresses and census tract centroids 
with increasing spatial windows from 0.02 km to 1 km.  Data in table corresponds to 
Figure 3. 

0.02 km 
individual 

address 
census 
tract 

1 100.00% 23.12% 
2 72.97% 15.92% 
3 63.36% 0.00% 
4 75.08% 12.01% 
    

0.1 km     
1 63.66% 46.25% 
2 48.65% 31.53% 
3 39.64% 12.91% 
4 56.46% 24.02% 
    

0.2 km     
1 45.65% 92.49% 
2 24.32% 63.36% 
3 23.72% 12.91% 
4 24.92% 24.02% 
    

0.5 km     
1 45.65% 92.49% 
2 24.32% 63.36% 
3 7.81% 0.00% 
4 24.92% 24.02% 
    

1 km     
1 18.32% 46.25% 
2 0.00% 0.00% 
3 0.00% 0.00% 
4 6.31% 0.00% 

 
Cells shaded grey represent regions where individual addresses have a higher detection 
percentage than census tract centroids. 



Table 2. Detection timeliness and number of significant p9 clusters using census tract 
centroids and individual addresses. 

 Individual addresses Census tract centroids
Outbreak Start date End date Start date End date 

1 10/31/1995 4/9/1996 10/31/1995 4/9/1996 
2 11/26/1996 12/17/1996   
3 5/13/1997 8/26/1997 6/10/1997 10/21/1997
4 7/2/2002 9/17/2002 7/2/2002 11/12/2002
 9/24/2002 10/15/2002   

 
 
 




