
High Performance Computing for Disease
Surveillance

David Bauer†, Brandon W. Higgs†, and Mojdeh Mohtashemi†‡

The MITRE Corporation†,
7515 Colshire Drive, McLean VA 22102
{dwbauer,bhiggs,mojdeh}@mitre.org

http://www.mitre.org/

MIT CS and AI Laboratory‡,
32 Vassar Street, Cambridge MA 02139

mojdeh@mit.edu

http://www.mit.edu/

Abstract. The global health, threatened by emerging infectious dis-
eases, pandemic influenza, and biological warfare, is becoming increas-
ingly dependent on the rapid acquisition, processing, integration and
interpretation of massive amounts of data. In response to these pressing
needs, new information infrastructures are needed to support active, real
time surveillance. Space-time detection techniques may have a high com-
putational cost in both the time and space domains. High performance
computing platforms may be the best approach for efficiently computing
these techniques. Our work focuses on efficient parallelization of these
computations on a Linux Beowolf cluster in order to attempt to meet
these real time needs.

Key words: HPC, High Performance Computing, Parallel Computing,
Disease Surveillance, Beowolf cluster

1 Introduction

Timely detection of infectious disease outbreaks is critical to real time surveil-
lance. Space-time detection techniques may require computationally intense search
in both the time and space domains [5, 6]. The real time surveillance constraints
dictate highly responsive models that may be best achievable utilizing high per-
formance computing platforms. We introduce here a technique that performs
efficiently in parallel on a Linux Beowolf Cluster.

In the special case of parallelization, Amdahl’s law [1] states that if F is the
portion of an application that is sequential, then the maximum speedup S that
can be achieved using N processors is given by Equation 1.

Smax =
1

F + (1−F )
N

. (1)

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 07-0474



2 Bauer, Higgs and Mohtashemi

 0

 10

 20

 30

 40

 50

 60

 70

 64 32 16 8 1

S
pe

ed
up

Number of CPU

Amdahl’s Law: Parallel Speedup for F

Linear
F=1%
F=5%

F=10%

Fig. 1. Amdahl’s Law illustrates effective speedup.

As N → ∞, Smax approaches 1/F , and thus the amount of improvement
is limited by the sequential portion of the application. Conversely, as F → 0,
Smax goes to N , that is the ideal parallelization, where each additional processor
contributes fully to the performance of the application. In practice, this is a diffi-
cult goal to achieve. Efficient parallelization requires F be small as N increases.
Figure 1 illustrates that, for N = 64 processors and F = 10% sequential, that
the expected speedup approaches, but cannot exceed a 10-fold improvement in
the running time. Finally, we define the efficiency of the parallelization by the
Equation 2:

EN =
Smax

N
. (2)

The traditional approaches towards parallelizing an application fall into two
categories: (i) data and (ii) algorithm decomposition. Because of the high degree
of data dependency within the scan statistic algorithm, we focus on decomposing
the application in the data domain. We modify the scan statistic data domain
by computing individual addresses, thereby making the scope of the calculation
significantly larger, based on the O(N2) algorithm complexity. While the overall



High Performance Computing for Disease Surveillance 3

running time of the application is larger on a single CPU, we will show that it
can be computed in less time utilizing multiple processors executing in parallel
by minimizing F .

The scan statistic was first introduced by Naus for cluster detection in 1965
[7] and later implemented and refined in other work [4–6, 9, 10], primarily for
aberrant event detection such as those provided for surveillance purposes. The
idea relies on a scanning window that utilizes multiple overlapping cylinders,
each composed of both a space and time block, where time blocks are continuous
windows (i.e., non-intermittent) and space blocks are geographic encompassing
circles of varying radii, such as zip codes or census tracts.

In this paper, we focus our modeling efforts on clustering individual addresses
as opposed to agglomerative regions (i.e. zip codes, census tracts, etc.) while us-
ing a derivation of the scan statistic [7] for disease surveillance in a metropolitan
population. The use of individual addresses with the modified scan statistic is
found to be a more sensitive measure for detection than census tract centroids.
The former method also provides smaller time windows for significantly detected
signals, which can speed the response time of an outbreak.

2 An Application: Space-time Permutation Scan Statistic

Variations to both the scan statistic introduced by [6] and the method for fast
detection of spatial over-densities, provided by [8], is implemented here as a
suitable method for early detection of outbreaks in the metropolitan population,
particularly for those time/region-specific increases in case frequency that are too
subtle to detect with temporal data alone. Similar to the overlapping windows in
the method proposed by [6], the scanning window utilizes multiple overlapping
cylinders, each composed of both a space and time block, where time blocks
are continuous windows (i.e. not intermittent) and space blocks are geographic-
encompassing regions of varying size. However, instead of circles of multiple radii,
a square grid approach, similar to that provided by [8] is implemented here.

Briefly explained below (see [6] for complete algorithm details), for each grid
element, the expected number of cases, conditioned on the observed marginals is
denoted by µ where µ is defined as the summation of expected number of cases
in a grid element, given by Equation 3,

µ =
∑

(s,t)∈A

µst . (3)

where s is the spatial cluster (e.g., zip codes, census tracts, individual ad-
dresses) and t is the time span used (e.g., days, weeks, months, etc.) and

µst =
1
N

(∑
s

nst

)(∑
t

nst

)
. (4)

where N is the total number of cases and nst is the number of cases in either
the space or time window (according to the summation term). The observed



4 Bauer, Higgs and Mohtashemi

number of cases for the same grid element is denoted by n. Then the Poisson
generalized likelihood ratio (GLR), which is used as a measure for a potential
outbreak in the current grid element, is given by Equation 5 [4]:

(
n

µ

)n (
N − n

N − µ

)(N−n)

. (5)

Since the observed counts are in the numerator of the ratio, large values of the
GLR signify a potential outbreak. To assign a degree of significance to the GLR
value for each grid element, Monte Carlo hypothesis testing [2] is conducted,
where the observed cases are randomly shuffled proportional to the population
over time and space and the GLR value is calculated for each grid element. This
process of randomly shuffling is conducted over 999 trials and the random GLR
values are ranked. A p-value for the original GLR is then assigned by where in
the ranking of random GLR values it occurs.

3 Performance Study

3.1 Computing Testbed and Experiment Setup

The Hive cluster at MITRE is a Red Hat Enterprise Linux 9.0 cluster consisting
of 16 machines or compute nodes, for a total of 64 processors. The nodes are
inter-connected via a dedicated gigabit ethernet switch. Each node’s hardware
configuration consists of a dual-processor, dual-core AMD Opteron 275 server
and 8GBs of main memory. The AMD Opteron 200-series chip enables 64-bit
computing, and provides up to 24GB/s peak bandwidth per processor using Hy-
perTransport technology. The DDR DRAM memory controller is 128-bits wide
and provides up to 6.4GB/s of bandwidth per processor. Our RAM configuration
consisted of 4 2GB sticks of 400MHz DDR ECC RAM in 8 banks.

3.2 Model Scenario

The scanning window in our scan statistic model utilizes multiple overlapping
grid elements, where the space blocks may be either individual addresses, or cen-
sus tracts. We present results for both scenarios as a comparison of the effective
amount of parallelism available in the data domain.

The San Francisco Department of Public Health (SFDPH), Tuberculosis Pro-
gram provided the data. The geospatial information in the data consist of precise
locations of 392 homeless individuals infected with tuberculosis (TB). The total
number of unique census tracts for our metropolitan area is taken to be 76. We
mapped each individual location to the corresponding census tract using ArcGIS
v9.2 (ESRI).

For our space window, we restricted the geographic squares to sizes ranging
from 0.02 km to 1 km in size, where for each separate sized-square, a neighboring
square was allowed to overlap at half of the width on each side. For different
sized squares that had a perfect intersect of the same cases, the smallest square



High Performance Computing for Disease Surveillance 5

 0

 10

 20

 30

 40

 50

 60

 70

 64 32 16 8 1

S
pe

ed
up

 fr
om

 P
ar

al
le

liz
at

io
n

Number of CPU

Parallel Scan Statistic: Census Tracts

Linear
Actual

(a) Parallelization Speedup

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 6976 1000 100 10

N
um

be
r 

of
 C

en
tr

oi
ds

Centroid Execution Time (secs)

Census Tract Workload Distribution

(b) Workload Distribution

Fig. 2. Performance results for census tracts.

was retained. The total number of space squares sampled for the census tract
centroids was 441, while the total for individual residences was 4,234. For our
time window case counts were used with time windows of 4 to 72 weeks spanning
a period of ten years.

The scan statistic model is thus parallelized by mapping the individual spaces
onto CPUs for processing. We utilize the Unified Search Framework (USF) de-
veloped at RPI for spawning the jobs onto the cluster compute nodes, and col-
lecting the overall runtime of the model [11]. Our expectation is that the spatial
blocks will exhibit a uniformly distributed workload, and that will translate into
a highly efficient parallel model, although we cannot know the distribution until
runtime.

3.3 Census Tract Performance

For comparison purposes, we first perform a parallelization of the scan statis-
tic using census tracts. Our model consists of 441 centroids, and we computed
mappings over 1, 8, 16, 32 and 64 processors. The purpose is to illustrate the
effective scalability over a varying number of processors.

Figure 2a shows that using 16 processors achieves an efficiency of 93%, reach-
ing an almost 15-fold improvement over sequential. When we utilize 32 or 64
CPUs, the efficiency drops to under 45%, indicating that there is a large se-
quential component to the data set once the runtime improves to around 7,000
seconds.

The issue here is that the workloads are not uniform in terms of computa-
tional workload, with some spatial squares requiring far more effort. The work-
load distribution is described by the histogram displayed in Figure 2b, and the
longest running job last 6,976 seconds. In the 8 and 16 CPU cases, the run-



6 Bauer, Higgs and Mohtashemi

 0

 10

 20

 30

 40

 50

 60

 70

 64 32 16 8 1

S
pe

ed
up

 fr
om

 P
ar

al
le

liz
at

io
n

Number of CPU

Parallel Scan Statistic: Individual Addresses

Linear
Actual

(a) Parallelization Speedup

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 11886 1000 100 10

N
um

be
r 

of
 C

en
tr

oi
ds

Centroid Execution Time (secs)

Individual Address Workload Distribution

(b) Workload Distribution

Fig. 3. Performance results for individual addresses.

ning times of all other centroids consumed at least this much time, and so the
efficiency of the computation is high. The 32 and 64 CPU cases are unable to
improve on the running time of the longest centroid, and so the efficiency drops
as more CPU are added. To keep the efficiency high would require either increas-
ing the total workload in the system, or parallelization within the scan statistic
algorithm for the longest running centroids.

Although the efficiency of the parallelization limits us to making effective use
of no more than 16 CPUs, we do report a significant improvement on the overall
runtime of the algorithm for this data decomposition. The runtime dropped from
over 28 hours to just under 2 hours.

3.4 Individual Address Performance

Decomposing the data domain into individual addresses allows for a higher de-
gree of parallelism within the application. As with census tracts, the efficiency of
the parallelization is high up to 16 CPUs. Figure 3a shows an efficiency of 68.75%
for 32 CPU, an improvement over census tracts, and a 22-fold improvement in
the runtime.

It is clear from the histogram in Figure 3b that the workloads based on indi-
vidual addresses are more uniformly distributed, allowing for more efficient use
of the cluster resources. However, the overall running time of the parallel applica-
tion continues to be dominated by the most computationally complex centroid.
Because the runtime of the longest census tract is smaller than the runtime of
the longest individual address (6,977 seconds vs. 11,886), the individual address
decomposition is not able to complete in less time on the cluster. The overall
runtime for either are relatively close; execution times for all experiments are
shown in Table 1.



High Performance Computing for Disease Surveillance 7

Table 1. Parallel Execution Performance of the Scan Statistic Model.

Data Set # CPU Runtime in Seconds Speedup Efficiency (%)

Census 1 103,129 - -

Census 8 13,672 7.54 94.25

Census 16 6,940 14.86 92.875

Census 32 6,977 14.78 46.18

Census 64 7,055 14.61 22.82

Individual 1 267,029 - -

Individual 8 33,305 8.0 100

Individual 16 14,401 16.0 100

Individual 32 11,886 22.4 70.18

Individual 64 11,918 22.4 35.0

The sequential running time for individual addresses is nearly 3 times larger
than for the census tract data, from 28 to 74 hours. The parallelization improve-
ment yields a decrease in the runtime of the model, to 3.3 hours.

4 Footnote on Parallelism

In [3], researchers at Sandia illustrate that the size of the model should be scaled
with the number of processors utilized. By fixing the size of the model, it would
appear that Amdahl’s law would dictate only embarrassingly parallel (F very
close to 0) applications would see a speedup using more than 100 CPUs. However,
whenever additional computing capacity is available, it is more common that the
size of the problem grows to consume that capacity. It may be more meaningful
to propose a fixed runtime, rather than a fixed problem size.

In fact, this situation is encountered here. The size of our data set has not
been scaled with the number of processors utilized. If we had done so, then the
efficiency of the parallelization would have been much closer to 100% for the
32 and 64-CPU cases. This stems from the fact that the sequential portions of
the application (time for start-up, serial bottlenecks, etc) do not increase as the
problem size increases.

5 Conclusions & Future Work

We have proposed a highly efficient parallel computation technique for the real
time surveillance of infectious disease outbreak detection. We have shown that
high performance computing platforms, such as a Linux Beowolf Cluster, can
come closer to meeting the needs of real time surveillance constraints.

In this paper we have reported results on the parallelization of a scan statis-
tic model that has been modified to compute individual addresses as well as



8 Bauer, Higgs and Mohtashemi

agglomerate regions, such as census tracts. We have shown that while the se-
quential execution time of the model is significantly larger, we can equalize the
magnitude of the running time through parallelization of the model.

In the future we plan to investigate methods of parallelizing the scan statistic
algorithm, to further increase the efficiency of the model on multiple processors.
One expected outcome of this effort would be to balance the workload within a
single centroid over multiple processors, and thus balance the non-uniform work-
load across the cluster computer. Our intent would be to improve the efficiency
of the parallel scan statistic model.

References

1. Amdahl, G.: Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities. In AFIPS Conference Proceedings (1967) 30:483-485

2. Dwass M.: Modified randomization tests for non-parametric hypotheses. In The
Annals of Mathematical Statistics (1957) 29:181187

3. Gustafson, J.: Reevaluating Amdahl’s Law. In Communications of the ACM (1988)
31(5):532-533

4. Kleinman KP, Abrams AM, Kulldorff M, Platt R: A model-adjusted space-time
scan statistic with application to syndromic surveillance. In Epidemiology and In-
fectection (2005) 000:1-11

5. Kulldorff M.: A spatial scan statistic. Communications in Statistics: Theory and
Methods (1997) 26:1481-1496

6. Kulldorff M, Heffernan R, Hartmann J, Assuncao R, Mostashari F: A space-time
permutation scan statistic for disease outbreak detection. In Public Library of Sci-
ence (2005) 2(3)

7. Naus J.: The distribution of the size of maximum cluster of points on the line. In
Journal of the American Statistical Association (1965) 60:532-538

8. Neill DB, Moore AM.: A fast multi-resolution method for detection of significant
spatial disease clusters. In Advances in Neural Information Processing Systems
(2003) 16

9. Wallenstein S.: A test for detection of clustering over time. In American Journal of
Epidemiology (1980) 111:367-372

10. Weinstock MA.: A generalized scan statistic test for the detection of clusters. In
International Journal of Epidemiology (1982) 10:289-293

11. Ye T., Kalyanaraman S.: A Unified Search Framework for Large-scale Black-box
Optimization. Rensselaer Polytechnic Institute, ECSE Department, Networks Lab
(2003)




