
COMPLETENESS OF THE AUTHENTICATION TESTS

SHADDIN F. DOGHMI, JOSHUA D. GUTTMAN, AND F. JAVIER THAYER

Abstract. The shapes of a cryptographic protocol are its minimal, essentially
different executions. In previous work, we have described a search algorithm
to discover the shapes of a protocol, and implemented the algorithm in a
Cryptographic Protocol Shape Analyzer cpsa.

In this paper, we show its completeness, i.e. that every shape can in fact
be found in a finite number of steps. The steps in question are applications
of two authentication tests, fundamental protocol patterns for analysis and
heuristics for protocol design. We formulate the authentication tests in a new,
stronger form, for which completeness is true.

We also introduce skeletons, as partial descriptions of executions. The
information-preserving maps between skeletons are a kind of homomorphism.
The completeness result shows that any homomorphism from a skeleton to a
full execution may be digested into a sequence of atomic steps leading to a
shape.

The executions of cryptographic protocols frequently have very few essentially
different forms, which we call shapes. By enumerating these shapes, we may as-
certain whether they all satisfy a security condition such as an authentication or
confidentiality property. We may also find other anomalies, which are not necessar-
ily counterexamples to the security goals, such as involving unexpected participants,
or involving more local runs than expected. In this paper, we prove that two kinds
of step suffice for finding all of the shapes of a protocol, within a pure Dolev-Yao
model [4].

We use the strand space theory [7]. A skeleton represents regular (non-penetrator)
behavior that might make up part of an execution, and a homomorphism is an
information-preserving map between skeletons. Skeletons are partially-ordered
structures, like fragments of Lamport diagrams [9] or fragments of message se-
quence charts [8]. A skeleton is realized if it is nonfragmentary, i.e. it contains
exactly the regular behavior of some execution. A realized skeleton is a shape if it
is minimal in a sense we will make precise (Definition 4.9). We search for shapes
using the authentication tests [7] to find new strands to add when a skeleton is
not large enough to be realized. In [3], we describe a search strategy that we have
implemented in cpsa, a Cryptographic Protocol Shape Analyzer.

In the present paper, we focus on the main technical result underlying cpsa.
This is completeness, in the sense that—for any protocol—the authentication tests
lead to every shape for that protocol (Thm. 5.8). Given a protocol, we cannot give
predict a bound on how many steps may be required [5].

The type-and-effect system for spi calculus [6] is related to the authentication
tests, but differs from our work in two ways. First, we do not use the syntactically-
driven form of a type system, but instead a direct analysis of behaviors. Second,
type-and-effect systems aim at a sound approximation, whereas our work provides

1Supported by the National Security Agency and by MITRE-Sponsored Research.
1

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 07-0007

2 December 22, 2006

A
{|NaˆA|}pubk(C)-

{|NaˆA|}pubk(B)- B

•
�

�
{|NaˆNb|}pubk(A) � �

{|NaˆNb|}pubk(A) •
�

•
� {|Nb|}pubk(C) - ≺

{|Nb|}pubk(B) - •
�

Figure 1. Needham-Schroeder Shape for B (privk(A) uncompro-
mised, Nb fresh)

actual counterexamples when a security goal is not met. Blanchet’s ProVerif [1]
is also based on a sound approximation, and may thus refuse to certify a protocol
even though there are no counterexamples.

cpsa’s search is related to the second version of Athena [13], which adopted the
authentication tests from an early version of [7]. Our work, however, is distinguished
from Athena in several ways. First, it involves the regular behaviors alone; we never
represent adversary activity within a shape. Second, we have improved both the
search and the theory. In particular, we have introduced the notion of shape, which
defines a criterion for which possible executions should be considered, among the
infinitely many executions (of unbounded size) of any protocol. Third, we have
now created versions of the authentication tests strong enough for completeness to
be true.

The shapes describe protocol executions of all sizes; we do not follow the widely
practiced bounded protocol analysis (e.g. [2, 11]).

1. The Idea of Shapes

In practice, protocols have remarkably few shapes. The Needham-Schoeder-
Lowe [12, 10] protocol has only one. This holds whether we take the point of view
of a responder B, asking what global behavior must have occurred if B has had
a local run of the protocol, or whether we start from a local run of an originator
A. In either case, the other party must have had a matching run. A, however,
can never be sure that the last message it sends was received by B, as A is no
longer expecting to receive any further messages. Uniqueness of shape is perhaps
not surprising for as strong a protocol as Needham-Schroeder-Lowe.

The NS Shape. However, even a flawed protocol such as the original Needham-
Schroeder protocol may have a unique shape, shown in Fig. 1. Suppose B’s nonce
Nb has been freshly chosen and A’s private key privk(A) is uncompromised, and B
has executed the strand shown at the right in Fig. 1. In protocols using asymmet-
ric encryption, the private keys are used only by recipients to destructure incoming
messages. Given that—on a particular occasion—B received and sent these mes-
sages, what must have occurred elsewhere in the network?
Amust have had a partially matching strand, with the messages sent and received

in the order indicated by the arrows of both kinds and the connecting symbols ≺.
These symbols mean that the endpoints are ordered, but that other behavior may
intervene, whether adversary strands or regular strands. A’s strand is only partially
matching, because the principal A meant to contact is some C which may or may
not equal B. There is no alternative: Any diagram containing the responder strand

December 22, 2006 3

of Fig. 1 must contain at least an instance of the initiator strand, with the events
ordered as shown, or it cannot have happened.

Such a diagram is a shape. A shape consists of the regular strands of some
bundle, forming a minimal set containing the initial regular strands (in this case,
just the right-hand column). Possible bundles may freely add adversary behavior.
Each shape is relative to assumptions about keys and freshness, in this case that
privk(A) is uncompromised and Nb freshly chosen.

Although there is a single shape, there are two ways that this shape may be
realized in bundles. Either (1) C’s private key may be compromised, in which
case we may complete this diagram with adversary activity to obtain the Lowe
attack [10]; or else (2) C = B, leading to the intended run.

Some protocols have more than one shape, Otway-Rees, e.g., having four. In
searching for shapes, one starts from some initial set of strands. Typically, the
initial set is a singleton, which we refer to as the “point of view” of the analysis.

Skeletons, Homomorphisms, Shapes. Newly introduced terminology is in boldface.
A skeleton A is (1) a finite set of regular nodes, equipped with additional infor-
mation. The additional information consists of (2) a partial order �A on the nodes
indicating causal precedence; (3) a set of keys nonA; and (4) a set of atomic values
uniqueA. Values in nonA must originate nowhere in A, whereas those in uniqueA
originate at most once in A.1

A is realized if it has precisely the regular behavior of some bundle B. Every
message received by a regular participant either should have been sent previously,
or should be constructable by the adversary using messages sent previously.

Example 1.1. Fig. 1 shows a skeleton Ans , with nonAns = {privk(A)} and uniqueAns
=

{Nb}; indeed Ans is a realized skeleton. The right-hand strand of Fig. 1, B’s respon-
der strand, also forms a skeleton Ab with the same choice of non, unique, although
Ab is not realized. The result of replacing C by B throughout Ans—in particular,
replacing pubk(C) by pubk(B)—yields another skeleton Ansi , which represents the
Needham-Schroeder intended run.

A homomorphism is a map H from A0 to A1, written H : A0 7→ A1. We
represent it as a pair of maps (φ, α), where φ maps the nodes of A0 into those of
A1, and α is a replacement mapping atomic values into atomic values. We write
t · α for the result of applying a replacement α to a message t. H = (φ, α) is a
homomorphism iff: (1) φ respects strand structure, and msg(n) ·α = msg(φ(n)) for
all n ∈ A0; (2) m �A0 n implies φ(m) �A1 φ(n); (3) nonA0 · α ⊂ nonA1 ; and (4)
uniqueA0

· α ⊂ uniqueA1
.

Homomorphisms are information-preserving transformations. Each skeleton A0

describes the realized skeletons reachable from A0 by homomorphisms. Since ho-
momorphisms compose, if H : A0 7→ A1 then any realized skeleton accessible from
A1 is accessible from A0. Thus, A1 preserves the information in A0: A1 describes
a subset of the realized skeletons described by A0.

A homomorphism may supplement the strands of A0 with additional behavior
in A1; it may affect atomic parameter values; and it may identify different nodes
together, if their strands are compatible in messages sent and positions in the partial
ordering.

1When n⇒∗ n′ and n′ ∈ A, we require n ∈ A and n �A n′.

4 December 22, 2006

Example 1.2. The map Hns : Ab 7→ Ans embedding the responder strand of Fig. 1
into Ans is a homomorphism. Likewise if we embed the first two nodes of B’s strand
(rather than all of Ab) into Ans . Another homomorphism Hi : Ans 7→ Ansi rewrites
each occurrence of C in Ans to B, hence each occurrence of pubk(C) to pubk(B).
It exhibits the Needham-Schroeder intended run as an instance of Fig. 1.

A homomorphism H = (φ, α) is nodewise injective if the function φ on nodes
is injective. The nodewise injective homomorphisms determine a useful partial
order on homomorphisms: When for some nodewise injective H1, H1 ◦H = H ′, we
write H ≤n H

′. If H ≤n H
′ ≤n H, then H and H ′ are isomorphic.

A homomorphism H : A0 7→ A1 is a shape iff (a) A1 is realized and (b) H is
≤n -minimal among homomorphisms from A0 to realized skeletons. If H is a shape,
and we can factor H into A0

H07→ A′ H17→ A1, where A′ is realized, then A′ cannot
contain fewer nodes than A1, or identify fewer atomic values. A1 is as small and as
general as possible.

We call a skeleton A1 a shape when the homomorphism H (usually an embed-
ding) is understood. In this looser sense, Fig. 1 shows the shape Ans . Strictly, the
embedding Hns : Ab 7→ Ans is the shape. The embedding Hnsi : Ab 7→ Ansi , with
target the Needham-Schroeder intended run Ansi , is not a shape. Ans identifies
fewer atoms, and the map replacing C with B is a nodewise injective Hi : Ans 7→
Ansi , so Hns ≤n Hi ◦Hns = Hnsi .

Shapes exist below realized skeletons: If H : A0 7→ A1 with A1 realized, then the
set of shapes H1 with H1 ≤n H is finite and non-empty.

2. Terms, Strands, and Bundles

In this section and Section 4 we give precise definitions, which include a number
of fine points which seemed an unnecessary distraction in Section 1. In this section,
the definitions of replacement and protocol (Defs. 2.1, 2.5) are new versus [7].

Algebra of Terms. Terms (or messages) form a free algebra A, built from atomic
terms via constructors. The atoms are partitioned into the types principals, texts,
keys, and nonces. An inverse operator is defined on keys. There may be additional
functions on atoms, such as an injective public key of function mapping principals
to keys, or an injective long term shared key of function mapping pairs of prin-
cipals to keys. These functions are not constructors, and their results are atoms.
For definiteness, we include here functions pubk(a), ltk(a) mapping principals to
(respectively) their public keys and to a symmetric key shared on a long-term basis
with a fixed server S. pubk(a)−1 is a’s private key, where pubk(a)−1 6= pubk(a).
We often write the public key pair as Ka,K

−1
a . By contrast, ltk(a)−1 = ltk(a).

Atoms, written in italics (e.g. a,Na,K
−1), serve as indeterminates (variables).

We assume A contains infinitely many atoms of each type. Terms in A are freely
built from atoms using tagged concatenation and encryption. The tags are chosen
from a set of constants written in sans serif font (e.g. tag). The tagged concatena-
tion using tag of t0 and t1 is written tagˆt0ˆt1. Tagged concatenation using the
distinguished tag null of t0 and t1 is written t0ˆt1. Encryption takes a term t and
an atomic key K, and yields a term as result written {|t|}K .

Replacements have only atoms in their range:

Definition 2.1 (Replacement, Application). A replacement is a function α map-
ping atoms to atoms, such that (1) for every atom a, α(a) is an atom of the same

December 22, 2006 5

type as a, and (2) α is a homomorphism with respect to the operations on atoms,
i.e., α(K−1) = (α(K))−1 and α(pubk(a)) = pubk(α(a)).

The application of α to t, written t · α, homomorphically extends α’s action on
atoms. More explicitly, if t = a is an atom, then a · α = α(a); and:

(tagˆt0ˆt1) · α = tagˆ(t0 · α)ˆ(t1 · α)
({|t|}K) · α = {|t · α|}K·α

Application distributes through larger objects such as pairing and sets. Thus, (x, y) ·
α = (x · α, y · α), and S · α = {x · α : x ∈ S}. If x 6∈ A is a simple value such as an
integer or a symbol, then x · α = x.

Strands and Origination. Since replacements map atoms to atoms, not to com-
pound terms, unification is very simple. Two terms are unifiable if and only if
they have the same abstract syntax tree structure, with the same tags associated
with corresponding concatenations, and the same type for atoms at corresponding
leaves. To unify t1, t2 means to partition the atoms at the leaves; a most general
unifier is a finest partition that maps a, b to the same c whenever a appears at the
end of a path in t1 and b appears at the end of the same path in t2. If two terms
t1, t2 are unifiable, then t1 · α and t2 · β are still unifiable.

The direction + means transmission, and the direction − means reception:

Definition 2.2 (Strand Spaces). A direction is one of the symbols +,−. A directed
term is a pair (d, t) with t ∈ A and d a direction, normally written +t,−t. (±A)∗

is the set of finite sequences of directed terms.
A strand space over A is a structure containing a set Σ and two mappings: a

trace mapping tr : Σ → (±A)∗ and a replacement application operator (s, α) 7→ s ·α
such that (1) tr(s · α) = (tr(s)) · α, and (2) s · α = s′ · α implies s = s′.

By (2), Σ has infinitely many copies of each s, i.e. strands s′ with tr(s′) = tr(s).

Definition 2.3. A penetrator strand has trace of one of the following forms:
Mt: 〈+t〉 where t ∈text, principal,nonce KK : 〈+K〉
Cg,h: 〈−g, −h, +gˆh〉 Sg,h: 〈−gˆh, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉 Dh,K : 〈−K−1, −{|h|}K , +h〉.

If s is a penetrator strand, then s · α is a penetrator strand of the same kind.
The subterm relation, written v, is the least reflexive, transitive relation such

that (1) t0 v tagˆt0ˆt1; (2) t1 v tagˆt0ˆt1; and (3) t v {|t|}K . Notice, however,
K 6v {|t|}K unless (anomalously) K v t. We say that a key K is used for encryption
in a term t if for some t0, {|t0|}K v t.

A node is a pair n = (s, i) where i ≤ length(tr(s)); strand(s, i) = s; and the
direction and term of n are those of tr(s)(i). We prefer to write s ↓ i for the
node n = (s, i). A term t originates at node n if n is positive, t v msg(n), and
t 6v msg(m) whenever m ⇒+ n. Thus, t originates on n if t is part of a message
transmitted on n, and t was neither sent nor received previously on this strand. If a
originates on strand s, we write O(s, a) to refer to the node on which it originates.

Example 2.4. Na originates on the first node of the Needham-Schroeder initiator
strand si, so we write O(si, Na) = si ↓ 1. Nb originates on the second node of the
responder strand sr, i.e. O(sr, Nb) = sr ↓ 2. More precisely, O(sr, Nb) = sr ↓ 2
unless Nb = Na, because if the two nonces were the same, then Nb would not
originate on the responder strand at all. Instead, it would have been received before

6 December 22, 2006

being re-transmitted. Thus, the replacement β = [Nb 7→ Na] destroys the point of
origination. Even if we have O(sr, Nb) = sr ↓ 2, we have O(sr ·β,Nb ·β) undefined.
In this sense, applying β to sr is a kind of degeneracy that destroys a point of
origination. When we have assumed that a value such as Nb originates uniquely,
we will avoid applying replacements that would destroy its point of origination. (See
Def. 2.5, regular strands, and Def. 4.6, homomorphism.)

A listener role is a regular strand Lsn[a] with trace 〈−a〉. It documents that a
is available on its own to the adversary, unprotected by encryption. Since replace-
ments respect type, atoms of different type must be overheard by different roles.
We assume each protocol Π has listener roles Lsn[N] and Lsn[K] for nonces and
keys respectively, with traces 〈−N〉 and 〈−K〉.

Protocols and Bundles.

Definition 2.5 (Protocols). A candidate 〈Π, strand non, strand unique〉 consists of:
(1) a finite set Π of strands—containing the listener strands Lsn[N], Lsn[K]—called
the roles of the protocol; (2) a function strand non mapping each role r to a finite
set of keys strand nonr, called the non-originating keys of r; and (3) a function
strand unique mapping each role r to a finite set of atoms strand uniquer called the
uniquely originating atoms of r.

A candidate 〈Π, strand non, strand unique〉 is a protocol if (1) K ∈ strand nonr

implies that K does not occur in any node of r, but either K or K−1 is used
for encryption on some term of tr(r); and (2) a ∈ strand uniquer implies that a
originates on r, i.e. O(r, a) is well defined.

The regular strands of 〈Π, strand non, strand unique〉 form the set ΣΠ =

{r · α : r ∈ Π and ∀a ∈ strand uniquer, (O(r, a)) · α = O(r · α, a · α)}.

The non-originating keys strand nonr and uniquely originating atoms strand uniquer

are used in Defs. 4.3 and 5.1, Clauses 1c,d. The condition that constrains r ·α based
on O(r, a) is a non-degeneracy condition. It says that replacement α determines
an instance of r only if it does not cause a value a, assumed uniquely originat-
ing, to collide with another value already encountered in executing r. Since for
a ∈ strand uniquer, the left hand side of (O(r, a)) ·α = O(r ·α, a ·α) is well-defined,
we interpret the equation as meaning that the right hand side is also well-defined,
and has the same value.

Example 2.6 (Needham-Schroeder Protocol). The Needham-Schroeder protocol
has a set Πns of roles containing the two roles shown in Fig. 1 and two listener
roles, to hear nonces and keys. For each r ∈ Πns, strand nonr = ∅ = strand uniquer.

Setting strand noninit = {privk(B)}, strand nonresp = {privk(A)} reproduces the
original Needham-Schroeder assumption that each peer chosen is uncompromised.
The protocol achieves its goals relative to this assumption.

Setting strand uniqueinit = {Na} would express the assumption that every initia-
tor uses a strong random number generator to select nonces, so that the probability
of a collision or of an adversary guessing a nonce is negligible.

The set N of all nodes forms a directed graph G = 〈N , (→ ∪ ⇒)〉 with edges
n1 → n2 for communication (with the same term, directed from positive to negative
node) and n1 ⇒ n2 for succession on the same strand.

December 22, 2006 7

Definition 2.7 (Bundle). A finite acyclic subgraph B = 〈NB, (→B ∪ ⇒B)〉 of G
is a bundle if (1) if n2 ∈ NB is negative, then there is a unique n1 ∈ NB with
n1 →B n2; and (2) if n2 ∈ NB and n1 ⇒ n2, then n1 ⇒B n2. When B is a bundle,
�B is the reflexive, transitive closure of (→B ∪ ⇒B).

A bundle B is over 〈Π, strand non, strand unique〉 if for every s ↓ i ∈ B, (1) either
s ∈ ΣΠ or s is a penetrator strand; (2) if s = r · α and a ∈ strand nonr · α, then a
does not occur in B; and (3) if s = r ·α and a ∈ strand uniquer ·α, then a originates
at most once in B.

Example 2.8. Fig. 1 is a bundle if we replace C with B and then connect arrows
with matching labels. Alternatively, it becomes a bundle by adding penetrator strands
to unpack values encrypted with KC and repackage them encrypted with KB.

We say that a strand s is in B if s has at least one node in B. Henceforth, assume
fixed some arbitrary protocol 〈Π, strand non, strand unique〉.

Proposition 2.9. Let B be a bundle. �B is a well-founded partial order. Every
non-empty set of nodes of B has �B-minimal members.

Let α be a replacement. Suppose for every regular strand s = r ·β in B, for every
b ∈ strand uniquer · β, we have (O(s, b)) ·α = O(s ·α, b ·α). Then B ·α is a bundle.

3. Strengthened Authentication Tests in Bundles

To direct the process of searching for realized skeletons, we use the authentication
tests [7] in a strengthened and simplified form.

We say that t0 occurs only within S in t, where S is a set of terms, if:
(1) t0 6v t; or
(2) t ∈ S; or
(3) t 6= t0 and either (3a) t = {|t1|}K and t0 occurs only within S in t1; or (3b)

t = tagˆt1ˆt2 and t0 occurs only within S in each ti (i = 1, 2).
So t0 occurs only within S in t if in the abstract syntax tree, every path from the
root t to an occurrence of t0 as a subterm of t traverses some t1 ∈ S before reaching
t0. On the other hand, t0 occurs outside S in t if t0 does not occur only within S
in t. This means that t0 v t and there is a path from the root to an occurrence of
t0 as a subterm of t that traverses no t1 ∈ S.

Example 3.1 (Needham-Schroeder Occurrences). Nb occurs only within the set
Sr = {{|Na ˆNb|}pubk(A)} in the term {|Na ˆNb|}pubk(A). However, Nb occurs outside
Sr in the term {|Nb|}pubk(B).

We say that a is protected in B iff msg(n) 6= a for all n ∈ B. Equivalently, a
is protected in B iff the listener strand for a is not in B′ for any B′ ∼L B; that is,
(Lsn[a] ↓ 1) 6∈ B′.

We say that a is protected up to m in B iff, for all n ∈ B, if msg(n) = a then
m ≺B n. We write a ∈ Protm(B) if a is protected up to m in B.

By the definitions of the penetrator strands for encryption and decryption (Def-
inition 2.3), if the adversary uses K for encryption or decryption anywhere in B,
then K is not protected in B. Thus, the adversary cannot create any encrypted
term with a protected key K. If K−1 is protected, it cannot decrypt any term en-
crypted with K. If a key is protected up to a negative node m, then the adversary
cannot use that key to prepare the term received on m.

8 December 22, 2006

For instance, if privk(A) is assumed uncompromised in some bundle B, then
privk(A) ∈ Protm(B).

Proposition 3.2 (Outgoing Authentication Test). Suppose that n0, n1 ∈ B, and

S ⊂ {{|t|}K : K−1 ∈ Protn1(B)}.
Suppose that a originates uniquely in B at node n0 and occurs only within S in
msg(n0), but a occurs outside S in msg(n1).

There is an integer i and a regular strand s ∈ ΣΠ such that m1 = s ↓ i ∈ B is
positive, and i is the least integer k such that a occurs outside S in msg(s ↓ k).
Moreover, there is a node m0 = s ↓ j with j < i such that a v msg(s ↓ j), and
n0 �B m0 ⇒+ m1 �B n1.

Proof. Apply Prop. 2.9 to T =

{m : m �B n1 and a occurs outside S in msg(m)}.
n1 ∈ T , so T has �B-minimal members m1. Since keys K used in S have K−1 ∈
Prot(B), m1 cannot lie on a decryption penetrator D-strand. By the assumptions,
a does not originate on m1, so that m1 does not lie on a M-strand or K-strand.
By the definitions of S and “occurs only within,” m1 does not lie on a S-, C-, or
E-strand. Thus, m1 lies on some s ∈ ΣΠ at some index i. �

In the Outgoing Authentication Test, we call m0 ⇒+ m1 an outgoing trans-
forming edge for a, S. It transforms the occurrence of a from lying only within S
to occurring outside it. We call (n0, n1) an outgoing test pair for a, S when these
nodes satisfy the condition in the first paragraph of the proposition. When we
do not know the set Protn1(B), we consider the set used(S) of keys used for some
outermost encryption in S as an approximation, and we speak of an outgoing test
pair for a, S.

Example 3.3. In the Needham-Schroeder protocol, with responder role sr, the
nodes (sr ↓ 2), (sr ↓ 3) form an outgoing test pair for Nb, Sr, where Sr is as
given in Example 3.1. If the initiator role is si, then the edge si ↓ 2 ⇒ si ↓ 3 is a
outgoing transforming edge for Nb, Sr.

On the other hand, the nodes (si ↓ 1), (si ↓ 2) form an outgoing test pair for
Na, Si, where Si is the singleton set {{|Na ˆA|}pubk(C)}. Letting s′r = sr · [B 7→ C],
then s′r ↓ 1 ⇒ s′r ↓ 2 forms an outgoing transforming edge for Na, Si.

Proposition 3.4 (Incoming Authentication Test). Suppose that n1 ∈ B is negative,
t = {|t0|}K v msg(n1), and K ∈ Prot(B). There exists a regular m1 ≺ n1 such that
t originates at m1.

The proof applies Prop. 2.9 to the set T = {m : m �B n1 and t v msg(m)}. We
call m1 as an incoming transforming node, and n1 an incoming test node.

4. Preskeletons, Skeletons, and Homomorphisms

Skeletons. A preskeleton is potentially the regular (non-penetrator) part of a bundle
or of some portion of a bundle.

A preskeleton consists of nodes annotated with additional information, indicating
order relations among the nodes, uniquely originating atoms, and non-originating
atoms. We say that an atom a occurs in a set nodes of nodes if for some n ∈ nodes,
a v msg(n). A key K is used in nodes if for some n ∈ nodes, {|t|}K v msg(n). We

December 22, 2006 9

say that a key K is mentioned in nodes if K or K−1 either occurs or is used in
nodes. For a non-key a, a is mentioned if it occurs.

Definition 4.1. A four-tuple A = (nodes,�, non, unique) is a preskeleton if:
(1) nodes is a finite set of regular nodes; n1 ∈ nodes and n0 ⇒+ n1 implies

n0 ∈ nodes;
(2) � is a partial ordering on nodes such that n0 ⇒+ n1 implies n0 � n1;
(3) non is a set of keys, and for all K ∈ non, either K or K−1 is used in nodes;
(3′) for all K ∈ non, K does not occur in nodes;
(4) unique is a set of atoms, and for all a ∈ unique, a occurs in nodes.

A preskeleton A is a skeleton if in addition:
(4′) a ∈ unique implies a originates at no more than one node in nodes.

We select components of a preskeleton using subscripts, so, in A = (N,R, S, S′),
�A means R and uniqueA means S′. A need not contain all of the nodes of a strand,
just some initial subsequence. We write n ∈ A to mean n ∈ nodesA, and we say
that a strand s is in A when at least one node of s is in A. The A-height of s is the
largest i with s ↓ i ∈ A. By Clauses 3, 4, uniqueA ∩ nonA = ∅.

Example 4.2. Ans, shown in Fig 1, is a skeleton with non = {privk(A)}, unique =
{Nb}. Its ordering is generated from the double arrows ⇒, single arrows →, and
precedence signs. Ab, containing only the responder strand sr on the right side of
Fig 1, is also a skeleton (equipped with non = {privk(A)}, unique = {Nb}). However,
if we adjoin a copy s′r = sr · [B 7→ C] to Ans, then the result is not a skeleton, but
only a preskeleton Apre . Nb originates both at sr ↓ 2 and at s′r ↓ 2. If instead we
adjoin s′′r = sr · [B 7→ C,Nb 7→ N ′

b], we obtain a skeleton A′
pre .

The skeletons for a protocol 〈Π, strand non, strand unique〉 are defined like the
bundles for that protocol.

Definition 4.3. A is a preskeleton for protocol 〈Π, strand non, strand unique〉 iff for
every n ∈ nodesA with n = s ↓ i, (1) s ∈ ΣΠ; (2) if s = r ·α and a ∈ strand nonr ·α,
then a does not occur in A; and (3) if s = r · α and a ∈ strand uniquer · α, then
a ∈ uniqueA. A is a skeleton for a protocol if A is a skeleton, and A is a preskeleton
for that protocol.

Skeletons and Bundles. Bundles correspond to certain skeletons:

Definition 4.4. Bundle B realizes skeleton A if:
(1) The nodes of A are the regular nodes n ∈ B.
(2) n �A n

′ just in case n, n′ ∈ nodesA and n �B n
′.

(3) K ∈ nonA iff case K or K−1 is used in nodesA but K occurs nowhere in B.
(4) a ∈ uniqueA iff a originates uniquely in B.

The skeleton of B is the skeleton that it realizes. The skeleton of B, written
skeleton(B), is uniquely determined. A is realized if some B realizes it.

Two bundles B,B′ are similar, written B∼LB′, if they differ only in what listener
strands they contain. Two realized skeletons A,A′ are similar, written A ∼L A′, if
for some B,B′ with B ∼L B′, A = skeleton(B) and A′ = skeleton(B′).

By condition (4), B does not realize A if A is a preskeleton but not a skeleton.
Given a skeleton A, methods derived from [7] determine whether A is realized.
Skeleton Ans from Example 4.2 is realized, but Nb is not.

10 December 22, 2006

Homomorphisms. When A is a preskeleton, we may apply a substitution α to it,
subject to the same condition as in Prop. 2.9. Namely, suppose α is a replacement,
and suppose that for each regular strand s = r · β such that s has nodes in A, and
for each atom b ∈ ur · β,

(O(s, b)) · α = O(s · α, b · α).

Then A ·α is a well defined object. However, it is not a preskeleton when x ·α = y ·α
where x ∈ nonA while y occurs in A. In this case, no further identifications can
restore the preskeleton property. So we are interested only in replacements with
the property that x ·α = y ·α and x ∈ nonA implies y does not occur in A. On this
condition, A · α is a preskeleton.

However, A may be a skeleton, while objects built from it are preskeletons but
not skeletons. In a preskeleton, we can sometimes, though, restore the skeleton
unique origination property (4′) by a mapping φ that carries the two points of
origination to a common node. This will be possible only if the terms on them are
the same, and likewise for the other nodes in A on the same strands. We regard
φ, α as an information-preserving, or more specifically information-increasing, map.
It has added the information that a1, a2, which could have been distinct, are in fact
the same, and thus the nodes n1, n2, which could have been distinct, must also be
identified.

Example 4.5. A′
pre is a skeleton, but the result of applying the replacement [N ′

b 7→
Nb] yields the preskeleton Apre which is not a skeleton. If the map φ : nodesApre 7→
nodesAns maps the successive nodes of the strand s′r to the nodes of the strand
sr, then it will identify s′r ↓ 2 with sr ↓ 2, and thus restore the unique point of
origination for Nb.

Definition 4.6. Let A0,A1 be preskeletons, α a replacement, φ : nodesA0 → nodesA1 .
H = [φ, α] is a homomorphism if

1a. For all n ∈ A0, msg(φ(n)) = msg(n) · α, with the same direction;
1b. For all s, i, if s ↓ i ∈ A then there is an s′ s.t. for all j ≤ i, φ(s ↓ j) = (s′, j);
2. n �A0 m implies φ(n) �A1 φ(m);
3. nonA0 · α ⊂ nonA1 ;
4. uniqueA0

·α ⊂ uniqueA1
; and φ(O(s, a)) = O(s′, a·α) whenever a ∈ uniqueA0

,
O(s, a) ∈ A0, and φ(s ↓ j) = s′ ↓ j.

We write H : A0 7→ A1 when H is a homomorphism from A0 to A1. When a · α =
a·α′ for every a that occurs or is used for encryption in dom(φ), then [φ, α] = [φ, α′];
i.e., [φ, α] is the equivalence class of pairs under this relation.

The condition for [φ, α] = [φ, α′] implies that the action of α on atoms not
mentioned in the A0 is irrelevant. The condition on O in Clause 4 avoids the
degeneracy in which a point of origination is destroyed for some atom a ∈ uniqueA0

.
We stipulate that such degenerate maps are not homomorphisms. For instance, a
replacement α that sends both Na and Nb to the same value would not furnish
homomorphisms on Ans . For the responder, expecting to choose a fresh nonce,
inadvertently to select the same nonce Na he has just received, would be an event
of negligible probability. Thus, there is no harm in discarding this degenerate set.

A homomorphism I = [φ, α] : A0 7→ A1 is an isomorphism iff φ is a bijection
and α is injective. We say that two homomorphisms H1,H2 are isomorphic if they
differ by an isomorphism; i.e. H1 = I ◦H2 for some isomorphism I.

December 22, 2006 11

When transforming a preskeleton A into a skeleton, one identifies nodes n, n′ if
some a ∈ uniqueA originates on both; to do so, one may need to unify additional
atoms that appear in both msg(n),msg(n′). This process could cascade. However,
when success is possible, and the cascading produces no incompatible constraints,
there is a canonical (universal) way to succeed:

Proposition 4.7. Suppose H0 : A 7→ A′ with A a preskeleton and A′ a skeleton.
There exists a homomorphism GA and a skeleton A0 such that GA : A 7→ A0

and, for every skeleton A1 and every homomorphism H1 : A 7→ A1, for some H,
H1 = H ◦GA. GA and A0 are unique to within isomorphism.

We call this universal map GA (or sometimes its target A0) the hull of A, hull(A).
We say that a skeleton A0 is live if for some H,A1, H : A0 7→ A1 and A1 is

realized. Otherwise, it is dead. There are two basic facts about dead skeletons:

Proposition 4.8 (Dead Skeletons). (1) If a ∈ nonA and (Lsn[a]) ↓ 1 ∈ A, then A
is dead. (2) If A is dead and H : A 7→ A′, then A′ is dead.

Shapes. Shapes are minimal realizable skeletons, or more precisely, minimal homo-
morphisms with realizable targets.

Definition 4.9 (Shape). [φ, α] : A0 7→ A1 is nodewise injective if φ is an injective
function on the nodes of A0.

A homomorphism H0 is nodewise less than or equal to H1, written H0 ≤n H1,
if for some nodewise injective J , J ◦H0 = H1. H0 is nodewise minimal in a set S
if H0 ∈ S and for all H1 ∈ S, H1 ≤n H0 implies H1 is isomorphic to H0.
H : A0 7→ A1 is a shape for A0 if H is nodewise minimal among the set of

homomorphisms H ′ : A0 7→ A′
1 where A′

1 is realized.

The composition of two nodewise injective homomorphisms is nodewise injec-
tive, and a nodewise injective H : A 7→ A is an isomorphism. Thus, H0,H1 are
isomorphic if each is nodewise less than or equal to the other. Hence, the relation
≤n is a partial order on homomorphisms to within isomorphism.

If we speak of a skeleton A0 as nodewise less than another skeleton A1, we mean
that H : A0 7→ A1 for some nodewise injective H. When we say that A1 is a shape,
we mean that it is the target of some shape H : A0 7→ A1, where a particular A0 is
understood from the context.

Proposition 4.10. Let H : A0 7→ A1. The set S = {H ′ : H ′ ≤n H} is finite (up to
isomorphism). If A1 is realized, then at least one H ′ ∈ S is a shape for A0.

Proof. Letting H = [φ, α], we generate S by choosing, for each node n ∈ (A1 \
φ(A0)), whether to omit it and all nodes later than n on the same strand.

We associate each location at which a is mentioned with an atom in α−1(a), the
inverse image of a under α. An association is permissible if locations containing
the same atom in A0 are associated with the same atom.

The set S contains the homomorphisms we get given a choice of nodes to omit
and a permissible association. H differs by a renaming from a member of S, namely
the one that omits no nodes and associates every occurrence of any a with a single
representative from α−1(a). Thus, if A1 is realized, S has members with a realized
target. Letting S ′ ⊆ S be the set of H ′ ∈ S such that the target of H ′ is realized,
S ′ is non-empty and finite; hence, S ′ has ≤n -minimal members. �

12 December 22, 2006

If A1 is realized and contains listener strands, and A results when we omit some
of the listener strands, then A is realized and A∼L A1. In particular, A is nodewise
less than or equal to A1. A minimal member of A will omit all of the listener
strands, which is why they do not appear in Fig. 1.

Given a skeleton A0 as “starting point,” we would like to find all the homomor-
phisms H : A0 7→ A that lead from A0 to a shape A. If we find homomorphisms
from A0 to realized skeletons A1, then Prop. 4.10 tells us how to obtain one or
more shapes from each of these realized skeletons. We are thus most interested in
homomorphisms H that do not unnecessarily identify occurrences of atoms, as we
will try to distinguish the different uses of the same atom in A1 to find nodewise
minimal members of A.

Our search is finished when more realized skeletons cannot yield any shapes we
have not yet encountered.

5. The Tests in Skeletons

To adapt the authentication tests to skeletons and homomorphisms, there are
essentially two steps. First, we must “pull back” from bundles or realized skele-
tons to the skeletons that reach them via homomorphisms. Second, since we can
no longer read off the safe atoms from Prot(B). We have only partial information
about which atoms will turn out to be safe or compromised. Thus, we specula-
tively consider both possibilities, i.e. both the possibility that a key will turn out
to be compromised, and also the possibility that the transformed nodes need to
be explained. We use listener strands to mark the keys we are assuming will be
compromised. If this assumption is not consistent, then the skeleton containing
the listener strand will be dead, and no homomorphism leads from it to a realized
skeleton.

Definition 5.1 (Augmentations, Contractions). (1) An augmentation is an in-
clusion [id, id] : A0 7→ A1 such that:
(a) nodesA1 \ nodesA0 = {s ↓ j : j ≤ i} for some s = r · α;
(b) �A1 is the transitive closure of (i) �A0 ; (ii) the strand ordering of s

up to i; and (iii) pairs (n,m) or (n,m) with n ∈ nodesA0 , m = s ↓ j,
and j ≤ i.

(c) nonA1 = nonA0 ∪ (nr · α); and
(d) uniqueA1

= uniqueA0
∪ (ur · α).

(2) An augmentation H : A0 7→ A1 is an outgoing augmentation if there exists
an outgoing test edge n0, n1 ∈ A0 with no outgoing transforming edge in A0,
and s ↓ 1 ⇒∗ m0 ⇒+ s ↓ i, where m0 ⇒+ s ↓ i is the earliest transforming
edge for this test on s. The additional pairs in the ordering (clause 1b(iii))
are the pairs (n0,m0) and ((s ↓ i), n1).

(3) It is an incoming augmentation if it adds an incoming transforming edge
for an incoming test node in A0. The pair (m1, n1) in the notation of
Prop. 3.4 is the additional pair in the ordering.

(4) It is a listener augmentation for a if it adds a listener strand Lsn[a], with
no pairs added to the ordering.

(5) A replacement α is a contraction for A if there are two distinct atoms
a, b mentioned in A such that a · α = b · α. We write hullα(A) for the
canonical homomorphism from A to hull(A · α), when the latter is defined.
(See Prop. 4.7.)

December 22, 2006 13

We can now state the search-oriented version of Prop. 3.2. It states that when
a skeleton A0 with an unsolved outgoing transformed pair can lead to a realized
skeleton A1, we can get there by starting out with one of three kinds of steps: (1) an
outgoing augmentation, (2) a contraction, or (3) adding a listener strand to witness
for the fact that one of the relevant keys is in fact not properly protected by the
time we reach A1.

Since we consider realized skeletons that differ only in their listener strands, we
recall that A1∼L A2 if they are both realized and differ only in what listener strands
they contain. We will also write H1 ∼L H2 if adding listener strands can equalize
them; i.e., when the Hi (for i = 1, 2) are of the form Hi : A 7→ Ai, and there are
embeddings Ei : Ai 7→ A′ such that A1 ∼L A′ ∼L A2 and E1 ◦H1 = E2 ◦H2.

Theorem 5.2 (Outgoing Augmentation). Let H : A0 7→ A1, where A1 is realized.
Let n0, n1 ∈ A0 be an outgoing test pair for a, S, for which A0 contains no trans-
forming edge. At least one of the following holds:

(1) H = H ′′ ◦ hullα(A0) for some contraction α;
(2) H = H ′′ ◦H ′, where H ′ is some outgoing augmentation for a, S;
(3) There is a listener augmentation H ′ : A0 7→ A′

0 for some K ∈ used(S), and
a homomorphism H ′′ : A′

0 7→ A′
1 such that H ∼L H

′′ ◦H ′.

Proof. Assuming H = [φ, α] : A0 7→ A1 with A1 realized, say with skeleton(B) = A1,
we have the following possibilities. If α contracts any atoms, then we may factor
H into a contraction followed by some remainder H ′′ (clause 1).

If α does not contract any atoms, then (φ(n0), φ(n1)) is an outgoing test pair
for a ·α, S ·α,X ·α. There are now two cases. First, suppose X ·α ⊆ Protφ(n1)(B).
Then we may apply Prop. 3.2 to infer that B and thus also A1 contains an outgoing
transforming edge m0 ⇒+ m1 for a·α, S ·α. Since α is injective on atoms mentioned
in A0, we may augment A0 with (m0 · α−1) ⇒+ (m1 · α−1).

Second, if there is some a ∈ X such that a·α 6∈ Protφ(n1)B, then there is A′
1∼LA1

such that A′
1 contains Lsn[a · α], and φ(n1) 6� (Lsn[a · α]) ↓ 1. Hence, clause 3 is

satisfied. �

In applying Theorem 5.2, we prefer to apply Clauses 2, 3 if possible; unnecessary
contractions must simply be un-contracted using Prop. 4.10. In particular, we use
a contraction α only if either (1) n0 ·α, n1 ·α is no longer an outgoing transformed
pair, or else (2) for some candidate outgoing augmentation, n0 · α, n1 · α is the
most general version of the test that it solves. The latter may occur when the
protocol role mentions the same atom at several locations where different atoms
are mentioned in n0, n1; α must then identify these atoms.

Incoming augmentations are similar to outgoing ones, except that the relevant
keys are only those used for encryption in the test node:

Theorem 5.3 (Incoming Augmentation). Let H : A0 7→ A1, where A1 is realized.
Let n1 ∈ A0 be a negative node and {|t0|}K v msg(n1). If {|t0|}K originates nowhere
in A0, then either:

(1) H = H ′′ ◦ hullα(A0) for some contraction α;
(2) H = H ′′ ◦H ′, where H ′ is an incoming augmentation originating {|t0|}K ;

or
(3) There is a listener augmentation H ′ : A0 7→ A′

0 for K, and a homomorphism
H ′′ : A′

0 7→ A′
1 such that: (a) A′

1 is realized, (b) A′
1∼LA1, and (c) H ′′◦H ′ =

I ◦H, where I is an inclusion homomorphism.

14 December 22, 2006

Here we use a contraction α only when α is needed to make an incoming aug-
mentation apply. A contraction never eliminates an incoming test node.

When a v msg(m), where a ∈ uniqueA0
and m ∈ A0, and a originates at n ∈ A0,

then n will precede m in any bundle accessible from A0. That is, if H : A0 7→ A1

where the latter is realized, then H factors through H ′ which maps A0 to the order
enrichment A′

0, where �A′
0

is the transitive closure of (�A0∪ (n,m)). We will rely
on this implicitly in what follows. When we need to be explicit about this, to say
that a skeleton needs no further enrichment of this kind, we will say that its order
reflects origination.

Completeness of the Authentication Tests. If a skeleton A is not realized, does it
necessarily contain an outgoing transformed edge or an incoming transformed node?
Yes, it does, although to make this precise we must be careful about which atoms
are protected, as this is not explicit in an unrealized skeleton.

Definition 5.4 (Penetrator web). Let G = 〈NG, (→G ∪ ⇒G)〉 be a finite acyclic
subgraph of 〈N , (→ ∪ ⇒)〉 such that NG consists entirely of penetrator nodes. G
is a penetrator web with support S and result R if S and R are sets of terms and
moreover:

(1) If n2 ∈ NG is negative, then either msg(n2) ∈ S or there is a unique n1

such that n1 →G n2.
(2) If n2 ∈ NG and n1 ⇒ n2 then n1 ⇒G n2.
(3) For each t ∈ R, either t ∈ S or for some positive n ∈ NG, msg(n) = t.

If n ∈ B is a negative node, then B includes a penetrator web G with result
RG = {msg(n)}. Its support SG = {msg(m) : m is positive regular and m ≺B n}.
We write the set of positive regular nodes preceding a node n as support(n).

Definition 5.5. A term t is penetrator-derivable before n in A if there is a pene-
trator web G with t ∈ RG such that:

(1) SG ⊂ support(n);
(2) If K ∈ nonA, K does not originate in Gn; and
(3) If a ∈ uniqueA and a originates in A, then a does not originate in Gn.

Proposition 5.6. A skeleton A is realized iff, for every negative n ∈ A, msg(n) is
penetrator-derivable before n in A.

Proposition 5.7. Suppose that �A reflects origination. If msg(n) is not penetrator-
derivable before n in A, then either:

(1) n is an incoming transformed node, i.e., for some {|t|}K v msg(n), K ∈
nonA ∪ uniqueA and K is not penetrator-derivable before n in A; or else

(2) (m,n) is an outgoing transformed pair with respect to a, S for (i) some
m �A n; (ii) some a ∈ uniqueA originating at m; (iii) some set S of
encrypted terms such that a occurs only within S in support(n); and (iv)
for each K ∈ used(S), K−1 is not penetrator-derivable before n in A.

Proof. Similar to[7, Prop. 7]. �

Recall that shapes (being minimal) do not contain listener strands, so Clause 3
of Theorems 5.2, 5.3 need not appear in the following:

December 22, 2006 15

Theorem 5.8 (Authentication Tests Completeness). Let J = [φ, α] : A 7→ As be
a shape. J is isomorphic to Hi ◦ . . . ◦ H0 for some sequence of homomorphisms
{Hj}0≤j≤i, where

(1) H0 : A 7→ A0 is surjective and A0 is a substructure of A, or a contraction
of a substructure of A; and

(2) For each j with 1 ≤ j ≤ i, Hj : Aj−1 7→ Aj is a contraction or an augmen-
tation as in Theorem 5.2 or Theorem 5.3, Clauses 1, 2.

Proof. We define two sequences of homomorphisms, namely {Hj}0≤j≤i and {Lj}0≤j≤i,
such that (1), (2) hold, and moreover, (3) J = Lj ◦Hj ◦ . . . ◦H0, and (4) each Lj is
nodewise injective and Li is an isomorphism. (3) and (4) imply that J is isomorphic
to the composition of the Hj .

By the definition of shape, if any composition Hj ◦ . . . ◦H0 is realized, then we
may take j = i and stop. The nodewise injective Lj must be an isomorphism.

First, we define H0 to prune unnecessary strands in A, so that L0 will be node
injective. Partition the strands in A by their image under φ; i.e. es = {s′ : φ(s′ ↓
1) = φ(s ↓ 1)}. For each partition element es, choose a representative r(es) of
maximal height. We know that α unifies all the terms on the strands in any
partition element, so there is a most general contraction β compatible with these
identifications. Enrich the ordering to reflect origination. Let H0 = [(λs . r(es)), β].

Next, suppose that H0 . . .Hj and L0 . . . Lj have been defined, with Hj : Aj−1 7→
Aj , and Aj is not realized. Let Lj = [φj , βj] : Aj 7→ As. Let n1 ∈ Aj be a negative
node with msg(n1) not penetrator derivable before n1 in Aj (Prop. 5.6).

By Prop. 5.7, n1 is either an unsolved incoming transformed node for some {|t|}K

or else half of an unsolved outgoing transformed pair (n0, n1). In the latter case, we
choose n0 to be the point of origination of some a ∈ uniqueAj

such that a v msg(n1),
and (n0, n1) is an outgoing transformed edge for a, S for some S. There are now
the following possibilities.

(1) φj(n1) is still unsolved, meaning that K ·βj (or some K = K1 ·βj for some
K−1

1 ∈ used(S)) is compromised. Since n1 is not penetrator-derivable in
Aj , some such K is not derivable.

If for some S1, As \ Jj(Aj) contains an outgoing transforming edge for
K ·βj , S1 ·βj , then we augment Aj with a most general preimage of this edge.
If required, first apply a contraction Hj+1 to Aj . Then the augmentation
is Hj+2, and Jj+2 is Jj+1 together with this addition. Otherwise, the
augmentation is Hj+1.

If As contains no additional outgoing transforming edge for K · βj , then
this K is already derivable in Aj , contradicting the choice of K.

(2) Outgoing transformed edge φj(n0), φj(n1):
(a) φj(n0), φj(n1) is no longer a transformed edge with respect to a ·βj , S ·

βj . In this case, let Hj+1 be a most general contraction with this
property.

(b) φj(n0), φj(n1) is solved in As. Select a transforming edge contained in
As. Let m0 ⇒+ m1 be a most general preimage of the outgoing trans-
forming edge. If m0 ⇒+ m1 is not a transforming edge for (n0, n1) and
a, S, then the reason is that m0 ⇒+ m1 is less general than (n0, n1).
In this case, first contract Aj . After contracting, one will at the next
step augment with m0 ⇒+ m1. If contraction is not needed, augment
Aj with m0 ⇒+ m1.

16 December 22, 2006

(3) φj(n1) is a solved incoming test node in As. Select a transforming node
contained in As. Let m1 be a most general preimage of the incoming
transforming node. If m1 is not a transforming node for n1, then the
reason is that the transforming node m1 is not as general as n1. In this
case, first contract Aj . After contracting, one will at the next step augment
with m1. If contraction is not needed, augment Aj with m1.

Thus, if Aj is realized, it is isomorphic to As; otherwise, we extend {Hj}, {Lj}. �

A Pruning Condition. Some augmentations make progress toward realized skele-
tons, and other augmentations make no progress, because although they introduce
a strand, that new strand is a redundant copy of an existing strand. We can prune
away these augmentations, and ignore them when searching for shapes.

We say A′
0 augments A0 with a copy of s if A′

0 results from A0 by an augmen-
tation with a strand s′ such that: (1) nodesA′

0
\ nodesA0 = {s′ ↓ j : j ≤ i} for some

i; (2) there is an idempotent I0 = [ψ0, β0] : A′
0 7→ A0 with ψ0(s′ ↓ j) = s ↓ j.

Proposition 5.9. Suppose A′ augments A with a copy of s, namely s′. Let J ′ =
[φ′, α′] : A′ 7→ A′

s with A′
s a shape. Then φ′(s′ ↓ j) = φ′(s ↓ j).

Proof. Let H ′
i ◦ . . . ◦ H ′

0 be the decomposition of J ′. We may now construct a
corresponding sequence Hi ◦ . . . ◦ H0 starting from A, but using the identity in
place of any steps H ′

j such that the non-derivable node is not present in Aj . For
any node whose derivation uses positive nodes from s′, we use the corresponding
positive nodes in s. Thus, the target As ofHi◦. . .◦H0 is realized, and a substructure
of A′

s. By the definition, Hi ◦ . . . ◦H0 ◦ I0 is a homomorphism from A′ to As. Since
As is embedded in A′

s, there’s a node injective map from As to A′
s. If this is not

the identity, it contradicts A′
s being a shape. �

6. Conclusion

In this paper, we have developed the theory of skeletons and homomorphisms.
We used it together with the strong form of the authentication tests (Props. 3.2–3.4)
to establish search-oriented versions of the tests (Thms 5.2–5.3). Finally, we showed
that these tests have a form of completeness (Thm 5.8). In [3] we describe how to
use these ideas to mechanize protocol analysis. In future work we intend to study
whether the search ideas themselves are still applicable, even when more interesting
message algebras are substituted in place of the free algebra of the pure Dolev-Yao
model (Section 2). These may include algebras with probabilistic structure.

References

[1] Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types and logic
programs. Journal of the ACM, 52(1):102–146, January 2005.

[2] Roberto M. Amadio and Denis Lugiez. On the reachability problem in cryptographic proto-
cols. In Concur, number 1877 in LNCS, pages 380–394, 2000.

[3] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for shapes in
cryptographic protocols. In Tools and Algorithms for Construction and Analysis of Systems
(TACAS), LNCS. Springer, March 2007. Extended version at URL:http://eprint.iacr.
org/2006/435.

[4] Daniel Dolev and Andrew Yao. On the security of public-key protocols. IEEE Transactions
on Information Theory, 29:198–208, 1983.

[5] Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset rewriting and
the complexity of bounded security protocols. Journal of Computer Security, 12(2):247–311,
2004. Initial version appeared in Workshop on Formal Methods and Security Protocols, 1999.

December 22, 2006 17

[6] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic proto-
cols. Journal of Computer Security, 12(3/4):435–484, 2003.

[7] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure of bundles.
Theoretical Computer Science, 283(2):333–380, June 2002.

[8] ITU. Message sequence chart (MSC). Recommendation Z.120, 1999.
[9] Leslie Lamport. Time, clocks and the ordering of events in a distributed system. CACM,

21(7):558–565, 1978.
[10] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In

Proceeedings of tacas, volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer Verlag, 1996.

[11] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process cryp-
tographic protocol analysis. In 8th ACM Conference on Computer and Communications
Security (CCS ’01), pages 166–175. ACM, 2001.

[12] Roger Needham and Michael Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12), 1978.

[13] Adrian Perrig and Dawn Xiaodong Song. Looking for diamonds in the desert: Extending
automatic protocol generation to three-party authentication and key agreement protocols. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop. IEEE Computer
Society Press, July 2000.

