
Modeling Human-Robot Interaction with GOMS
Jill L. Drury

The MITRE Corporation
202 Burlington Road

Bedford, MA 01730-1420 USA
+1-781-271-2034

jldrury@mitre.org

Jean Scholtz
Pacific Northwest National

Laboratory
P.O. Box 70

Rockaway Beach, OR 97136
+1-503-355-2792

jean.scholtz@pnl.gov

David Kieras
University of Michigan
2260 Hayward Street

Ann Arbor, MI 48109-2121
+1-734-763-6739

kieras@umich.edu

ABSTRACT
The Goals, Operators, Methods, and Selection rules (GOMS)
method is a well-established means of modeling the procedures
that humans use to interact with technology. We focus on two
questions: what is different about using GOMS for human-robot
interaction (HRI) versus using GOMS for traditional computer
applications, and what are promising approaches for using
GOMS to evaluate competing HRI designs? This paper raises
issues in using GOMS for modeling HRI and illustrates them
with GOMS models that compare two interfaces for urban
search-and-rescue robots. Very little work has been done with
GOMS so far in the HRI domain, so one of our chief
contributions is the guidance we provide for using GOMS for
HRI.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – graphical user interfaces, input devices and
strategies, interaction styles, screen design.

General Terms
Design, Human Factors, Verification.

Keywords
GOMS, human-robot interaction, evaluation, interface design,
dialog modeling.

1. INTRODUCTION
Mobile robots have been making a strong showing in the
commercial marketplace in the last few years. Suddenly robotic
vacuum cleaners are in many thousands of homes, unmanned
aerial vehicles are being produced by dozens of different
contractors worldwide, and bomb disposal robots are standard
equipment in police and military organizations, to name a few
examples. With the increase in the numbers and types of robots
that are commercially available comes the challenge of ensuring
that the intended end users can easily and efficiently use the
interfaces to those robots. The technically-oriented researchers
and developers who used to be the sole operators of robots have
been increasingly supplanted by homeowners, military security
specialists, and police officers, among others.
Human-robot interaction (HRI) has been maturing in tandem
with robots’ commercial success. In the last few years HRI
researchers have been adopting—and sometimes adapting—
human-computer interaction (HCI) evaluation techniques to
assess the efficiency and intuitiveness of HRI designs. For
example, Adams (2005) used Goal Directed Task Analysis to

determine the interaction needs of officers from the Nashville
Metro Police Bomb Squad. Scholtz et al. (2004) used Endsley’s
(1988) Situation Awareness Global Assessment Method to
determine robotic vehicle supervisors’ awareness of when
vehicles were in trouble and thus required closer monitoring or
intervention. Yanco and Drury (2004) employed usability
testing to determine (among other things) how well a search-
and-rescue interface supported use by first responders. One set
of HCI tools that has so far seen little exploration in the HRI
domain, however, is the class of modeling and evaluation
techniques known as formal methods.
Perhaps the most widely-used of the formal methods is the
Goals, Operations, Methods, and Selection rules (GOMS)
technique first presented by Card, Moran, and Newell (1983),
and which then developed into several different forms,
summarized by John & Kieras (1996a, 1996b). Depending upon
the type of GOMS technique employed, GOMS models can
predict the time needed for a user to learn and use an interface
as well as the level of internal consistency achieved by the
interface. GOMS has proven its utility because models can be
developed relatively early in the design process when is cheaper
to make changes to the interface. Analysts can use GOMS to
evaluate paper prototypes’ efficiency, learnability, and
consistency early enough to affect the design prior to its
implementation in software. GOMS is also used with mature
software to determine the most likely candidates for
improvement in the next version. Since GOMS does not require
participation from end users, it can be accomplished on shorter
time scales and with less expense than usability tests. Based on
its use as a cost savings tool, GOMS is an important HCI
technique: one that bears exploration for HRI.
Very little work has been done so far in the HRI domain using
GOMS. A method we used for coding HRI interaction in an
earlier study (Yanco, Drury, and Scholtz, 2004) was inspired by
GOMS but did not actually employ GOMS. Rosenblatt and
Vera (1995) used GOMS for an intelligent agent. Wagner et al.
(2006) used GOMS in an HRI study but did so in limited
scenarios that did not explore many of the issues specific to
HRI. In an earlier paper (Drury and Scholtz, in submission), we
explored more types of GOMS than was presented in Wagner et
al. and also modeled a wider range of tasks for a single
interface. This paper presents a case study of comparing two
interfaces using a Natural GOMS Language (NGOMSL) model
and provides a more detailed discussion of GOMS issues for
HRI than has been previously published. The primary
contribution of this paper is the guidance that we provide for
using GOMS in future HRI modeling and evaluation efforts.

The next section discusses GOMS and what is different about
using GOMS for HRI versus other computer-based applications.
Section 3 contains background information on the two interfaces
that we have modeled, prior to presenting representative
portions of the models in Section 4. As we present the models,
we provide guidance for using GOMS in HRI. Finally, we
provide conclusions in Section 5.

2. WHY IS HRI DIFFERENT WITH
RESPECT TO GOMS?
Before discussing the nuances of using GOMS for HRI, we
briefly describe GOMS. There is a large literature on GOMS
and we encourage the reader who is unfamiliar with GOMS to
consult the overviews by John and Kieras (1996a, 1996b).

2.1 The GOMS Family
GOMS is a “family” of four widely-accepted techniques: Card,
Moran, and Newell-GOMS (CMN-GOMS), Keystroke Level
Model (KLM), Natural GOMS Language, and Cognitive,
Perceptual, and Motor GOMS (CPM-GOMS). John and Kieras
(1996a) summarized the four different types of GOMS:

--CMN-GOMS: The original formulation was a loosely
defined demonstration of how to express a goal and
subgoals in a hierarchy, methods and operators, and how to
formulate selection rules.
--KLM: A simplified version of CMN was called the
Keystroke-Level Model and uses only keystroke operators
— no goals, methods, or selection rules. The analyst
simply lists the keystrokes and mouse movements a user
must perform to accomplish a task and then uses a few
simple heuristics to place “mental operators.”
--NGOMSL: A more rigorously defined version of GOMS
called NGOMSL (Kieras, 1997) presents a procedure for
identifying all the GOMS components, expressed in
structured natural language with in a form similar to an
ordinary computer programming language. A formalized
machine-executable version, GOMSL, has been developed
and used in modeling (see Kieras and Knudsen, 2006).
--CPM-GOMS: A parallel-activity version called CPM-
GOMS (John, 1990) uses cognitive, perceptual, and motor
operators in a critical-path method schedule chart (PERT
chart) to show how activities can be performed in parallel.

We used the latter three types of GOMS in Drury and Scholtz
(in submission). In this paper we use NGOMSL only, because it
emphasizes the interface procedures and their structure. We
discuss our selection of NGOMSL in more detail in Section 4.2.

2.2 HRI Challenges
Traditional GOMS assumes error-free operation on the part of
the user and predictable operation on the part of the computer.
These assumptions are unreasonable for the HRI domain.
Robots take unexpected actions, including autonomous actions
that are, in some sense, “wrong.” Even when robots are
operated without autonomy, they sometimes take actions that
the user does not expect. GOMS can be extended to cover user
errors (e.g., Kieras, 2005 and Wood and Kieras, 2002), but this
would not apply to “errors” on the part of the robot. The fact
that the user cannot predict the state of the robot or environment

in the near future means that models must account for a great
range and flexibility of users’ responses to any given situation.
A second challenge for HRI pertains to the seemingly simple
task of maneuvering the robot, which normally occurs with a
pointing device such as a joystick. While GOMS has long
modeled users’ use of pointing devices to move cursors or select
different items on the computer display, it has not developed
mechanisms to model the types of movements users would
employ to continuously or semi-continuously direct a robot’s
movement with a joystick. This missing element is important
because there are fundamental differences in the amounts of
time that are spent moving a cursor with a pointing device
versus pushing a joystick to steer a robot’s motion.
Wagner et al. (2006), the only other case study of using GOMS
for HRI besides our work, models mission generation for robots
and does not include this basic task of driving a robot. GOMS
has been used frequently in the aviation domain and so we
scoured the literature to find an analogous case, for example
when the pilot pulls back on the rudder to change an aircraft’s
altitude. To our surprise, we found only analyses such as Irving
et al. (1994) and Campbell (2002), which concentrated on
interactions with the Flight Management Computer and Primary
Flight Display, respectively: interactions confined to pushing
buttons and verifying the computers’ responses. Thus we have
had to grapple with the issue of continuous joystick movement
in conjunction with our work.
A third challenge relates to modeling mental operations to
incorporate the right amounts of time for the users’ thought
processes at each stage of using an interface. For example,
previous empirical work has shown that it takes a user
approximately 1.35 seconds to mentally prepare to perform the
next action when executing a routine task in a predictable
environment (John and Kieras, 1996b). But robot operations are
notoriously non-routine and unpredictable, as discussed above.
Instead, users may almost continuously extract dynamically
changing information from the environment. Luckily, GOMS
has always assumed that application-specific mental operators
could be defined as necessary: what is difficult is determining
the mental operators that make sense for HRI.
A further challenge with mental and perceptual operators in
GOMS is that they do not account for the effects of having
varying quality sensor data, either within the same system at
different times or on multiple systems that are being compared.
For example, if video quality is bad on one system but
exceptionally clear on another, it will take more time to extract
video-based information via the first system’s interface than the
second. Each GOMS operator is normally assigned a single
value as its typical time duration, such as the 1.35 seconds cited
above for mental preparation. Unless a perceptual operator is
assigned one time value in the model for the first system and a
shorter time value for the second model (to continue the
example), the models will not take into account an important
difference that affects performance.
A fifth challenge pertains to different levels of autonomy. We
do not know of any use of GOMS models that accounts for the
differences in autonomy levels defined for mobile robots. We
believe it would be very useful, for example, for GOMS models
to tell us whether it is more efficient for the robot to not allow
the user to get too close to objects, as opposed to the user having

to spend time and effort watching out for obstacles immediately
around the robot.
As we present our GOMS models in Section 4, we provide
guidance for overcoming these challenges.

3. SPECIFIC INTERFACES ANALYZED
But first, we need to describe the interfaces we modeled. User
interface analysts model human activity assuming a specific
application interface because the models will be different for
each application. Our decision regarding which interfaces to
analyze was not important as long as the chosen interfaces
contained representative complexity and functionality. We
chose two mature interfaces that use the same set of urban
search-and-rescue (USAR) functionality and the same robotic
platform.

3.1 Interface “A”
The architecture for the system underlying Interface A was
designed to be flexible so that the same interface could be used
with multiple robot platforms. We observed the interface
operating most frequently with an iRobot ATRV-Jr.: the same
one used for Interface B.
Interface A (Figure 1) is displayed on a touch screen. The upper
left corner of the interface contains the video feed from the
robot. Tapping the sides of the window moves the video camera
left, right, up or down. Tapping the center of the window re-
centers the camera. Immediately to the right of the video
display are pan and tilt indicators. The robot is equipped with
two types of cameras that the user can switch between: a color
video camera and a thermal camera; the camera selection radio
buttons are also to the right of the video area.
The lower left corner contains a window displaying health status
information such as battery level, heading, and attitude of the
robot. A robot-generated map is placed in the lower central
area. In the lower right corner, there is a sensor map that shows
red arrows to indicate directions in which the robot’s motion is
blocked by obstacles.
The robot is controlled through a combination of a joystick and
the touch screen. To the right of the sensor map in the bottom
right hand corner of the touch screen, there are six mode
buttons, ranging from autonomous to tele-operation. Typically,
the user touches one of the mode buttons, then uses the joystick
to steer the robot if not in the fully autonomous mode.
When the user wishes to take a closer look at something, he or
she touches the video window to pan the camera. For victim
identification, the user often switches to the thermal or Infrared
(IR) sensor (displayed in the same space as the videostream and
accessed via a toggle) to sense the presence of a warm body.
The proximity sensors are shown around a depiction of the robot
in the bottom right hand side of the display. The triangles turn
red to indicate obstacles close to the robot. The small, outer
triangle turns red when the robot first approaches objects, then
the larger, inner triangle also turns red when the robot moves
even closer to an obstacle. The location of the red triangles

indicates whether the blockage is to the front, rear, and/or sides
of the robot.
Note that System A’s interface does not incorporate menus.
Visual reminders for all possible actions are present in the
interface in the form of labels on the touch screen.
While the organization that developed System A has explored
other interface approaches since this version, users access
almost exactly the same functionality with the current interface
designs. Also, many other USAR robots incorporate similar
functionality.

3.2 Interface “B”
While Interface B is also used in conjunction with an iRobot
ATRV-Jr. robot, this platform was modified to include a rear-
facing as well as forward-facing camera. Accordingly, the
interface has two fixed video windows, as can be seen in Figure
2. The larger one displays the currently selected camera (either
front- or rear-facing); the smaller window shows the other video
feed and is mirrored to simulate a rear-view mirror in a car.
Interface B places a map at the edge of the screen. The map
window can be toggled to show a view of the current laser
readings (“laser zoom view”), removing the map from the
screen during that time.
Information from the sonar sensors and the laser rangefinder is
displayed in the range data panel located directly under the main
video panel. When nothing is near the robot, the color of the
box is the same gray as the background of the interface,
indicating that nothing is there. As the robot approaches an
obstacle at a one foot distance, the box turns to yellow, and then
red when the robot is very close (less than half a foot away).
The ring is drawn in a perspective view, which makes it look
like a trapezoid. This perspective view was designed to give the
user the sensation that they are sitting directly behind the robot.
If the user pans the camera left or right, this ring will rotate
opposite the direction of the pan. If, for example, the front left
corner turns red, the user can pan the camera left to see the
obstacle, the ring will then rotate right, so that the red box will
line up with the video showing the obstacle sensed by the range
sensors. The blue triangle, in the middle of the range data
panel, indicates the true front of the robot.
The carbon dioxide meter to the right of the primary video
screen shows a scale in parts-per-million (PPM) and also
indicates the level at which “possible life” has been detected as
a blue line. (The platform used for Interface A had an IR sensor
to serve this same purpose.) The bottom right hand corner
shows battery life, whether the light on the front of the robot is
illuminated, a clock, and the maximum speed. The level of
autonomy is shown in the bottom right hand set of buttons
(currently it is in Shared/Goal Mode).

3.3 Tasks Analyzed
We analyzed tasks that are typical of a search-and-rescue
operation: maneuver the robot around an unfamiliar space that is
remote from the user, find a potential victim, and confirm the
presence of a victim.

Figure 1. Interface A

Figure 2. Interface B

4. GOMS ANALYSIS
4.1 Introduction
We view the design process for HRI breaking naturally into two
major parts: the perceptual content of the displays and the
overall procedural operation.
Designers need to define the perceptual content of the displays
so that they can be easily comprehended and used for HRI tasks.
This design challenge will normally need to be accomplished
using traditional interface design wisdom combined with
evaluation via user testing because GOMS does not address
whether one visual presentation of an item of information is
easier to interpret than another. Rather, GOMS assigns a
“mental operator” to the part of the task that involves
interpreting display information, but this does not shed any light
on whether one presentation facilitates users extracting
information more quickly than another presentation—the
standard mental operator is a simple "one size fits all" estimate.
If analysts can define different types of domain- or task-specific
mental operators for displays, then competing designs can be
examined to see which requires more instances of one type of
mental operator versus another. If these operator durations can
be measured empirically, then the GOMS model can make a
more quantitative contribution.
GOMS can clearly help with the procedural implications of
display design. For example, perhaps one design requires
actions to toggle the display between two types of information,
while another design makes them simultaneously present;
GOMS would highlight this difference. Designers also need to
define the overall operation of the user interface in terms of the
procedures that the user has to follow to carry out the task with
the interface. Evaluating the procedural design challenge can be
done easily and well with GOMS models if the perceptual
design challenge can be handled so as not to confound any
comparisons that analysts might make between competing
designs.
This brings us to our first guideline for modeling HRI using
GOMS:

(1) Don’t get bogged down in modeling the perceptual
content of the displays.

The analyst should focus instead on the step-by-step procedures
used when interacting with the interface, keeping in mind that
issues in perception might determine and dominate issues
regarding procedures. Getting bogged down in the perceptual
issues is tempting because this part of the task is obviously
important, but current modeling technology doesn’t allow
analysts to make much progress a-priori. Many tasks demand
that the operator view video or dynamic sensor data. They may
need to do this multiple times in order to understand the
situation. Because these activities are so situation-dependent
and also dependent upon environmental conditions, skill levels,
and physical capabilities of the users (eyesight acuity, dexterity,
etc.), there is no way to predict the number of times a user may
consult a display. Even if we could know how many times users
would need to refer to a particular part of the displays, it is
difficult to assign accurate times to the actions.
Instead, we recommend that the primary goal of the GOMS
modeling should be to characterize everything else about the
task—that is, all the non-perceptual, procedural activities to

work with the interface—while holding the perceptual subtasks
constant at some representative level of activity as driven by the
procedural aspects of the interface. This approach is especially
important due to the unpredictable, error-prone nature of
working with robots, which requires a significant amount of
perception and cognition to understand what the robot is doing
and determine corrective steps when necessary.
This modeling strategy is not ideal if the goal is to simply
represent a single interface. It becomes much more useful when
comparing two interface designs to show where the procedural
differences appear and their consequences. When improving
designs incrementally, however, an analyst can model a single
interface to the point where it exposes inconsistencies or
inefficiencies, suggest improvements to that interface design,
then use the improved design as a second design to compare to
the first to identify the degree of improvement attained.

4.2 Choice of GOMS Technique
We present our models using NGOMSL because this form of
GOMS is easy to read and understand while still having a
relatively high level of expressive power. NGOMSL can be
thought of as stylized, structured pseudocode. The analyst starts
with the highest level goals, then breaks the task into subgoals.
Each subgoal is addressed in its own method, which may
involve breaking the task further into more detailed subgoals
that also are described in their own methods. The lowest-level
methods contain mostly primitive operations. Design
consistency can be inferred by how often “basic” methods are
re-used by other methods. Similarly, efficiency is gained when
often-used methods consist of only a few steps. The number of
methods and steps is proportional to the predicted learning time.
Because NGOMSL lacks the ability to describe actions that the
user takes simultaneously, we adopt a bit of syntax from the
executable version GOMSL (Kieras and Knudsen, 2006), the
keyword phrase “Also accomplish goal…”, when we need to
show that two goals are being satisfied at the same time.
Since all detailed GOMS models include “primitive operators”
that each describe a single, atomic action such as a keypress, we
discuss primitives next.

4.3 Primitives
At the lowest level of detail, GOMS models decompose a task
into sequences of steps consisting of operators, which are either
motor actions (e.g., home hands on the keyboard) or cognitive
activities (e.g., mentally prepare to do an action). As
summarized by John and Kieras (1996a, 1996b), the following
primitive operators are each denoted by a one-letter code and
their standard time duration:

K to press a key or button (0.28 s for average user)
B to press a button under the finger (e.g. a mouse

button) (0.1 s)
M perform a typical mental action, such as finding an

object on the display, or mentally prepare to do an
action (1.35 s)

P to point to a target on a display (1.1 s)
H to home hands on a keyboard or other device (0.4 s)
W to represent the system response time during which

the user has to wait for the system (variable)

As discussed above, none of these primitives are especially
suited to describing manipulating the robot, thus we define a
“steer” operator S and introduce our second guideline:

(2) Consider defining and then assigning a time
duration to a robot manipulation operator that is
based on typical values for how long the
combination of the input devices, robot mechanics,
and communications medium (especially for
remote operations) take to move the robot a
“reference” distance.

This guideline is based on the fact that the time to take the
action to manipulate the robot is driven more by the robot
mechanics and environment than by the time needed to activate
the steering input device. (It may be helpful to consider driving
the robot to be a task that is secondary to whatever is the
overarching goal for manipulating the robot in the first place.
For example, driving the robot is secondary to searching for
victims in a USAR task.) We understand that a single robot can
run at various speeds which will change based on lighting
conditions, proximity to obstacles, etc. When two interfaces are
being examined, however, using a single representative speed
for each robot should not harm the comparison of their
respective GOMS models.
While all the other “standard” primitive operators apply to HRI,
the M operator bears close scrutiny. As used in modeling
typical computer interfaces, M represents several kinds of
routine bits of cognitive activity, such a finding a certain icon on
the screen, recalling a file name, making a routine decision, or
verifying that a command has had the expected result. Clearly,
using the same operator and estimated time duration for these
different actions is a gross simplification, but it has proven to be
useful in practice (see John and Kieras, 1996a, 1996b for more
discussion). However, consider data being sent to the user from
a remote mobile robot that must be continually perceived and
comprehended (levels 1 and 2 of Endsley’s (1988) definition of
situation awareness). This is a type of mental process that is
used to assess the need for further action triggered by external,
dynamic changes reflected in the interface (e.g. as seen in a
changing video display). We intuit that this mental process is
qualitatively different, more complex, and more time-
consuming from those traditionally represented with M. Since
this type of mental operation is nontrivial, we posit that it is
useful to identify it as a separate operator to determine if one
design versus another requires more instances of this type of
assessment. For example, if one interface split up key sensor
information on separate screens but another provided them on a
fused display, the latter design would require fewer mental
operators in general and fewer operators of the type that
assesses dynamic changes in the environment.

We define a C (Comprehend) operator to refer to a process of
understanding and synthesizing complex display information
that feeds into the user’s continually-changing formulation of
courses of action. This operator is expected to take much longer
than the conventional M operator, and will be used to represent
the interpretation of the complex displays in this domain.
This leads us to an additional guideline:

(3) Without violating guideline number 1, consider
defining HRI-specific mental operator(s) to aid in
comparing the numbers of instances these
operators would be invoked by competing designs.

Once the set of primitives has been finalized, the next step is to
assign times to the various operators. To a certain extent, the
exact times are not as important as the relative differences in
times that result from competing interface designs. Thus we
suggest using time durations that were derived empirically as a
result of research on other systems whenever possible, such as
the standard operator times listed above. The time required for
our mental operator C for robotics tasks will depend on the
quality of the video, the complexity of the situation being
viewed, and the design of the map and proximity sensor
displays. Thus, if two systems being compared have radically
different qualities of sensor data, we suggest the following
guideline:

(4) Without violating guideline number 1, consider
assigning time duration values to HRI-specific
mental operators that reflect the consequences of
large differences in sensor data presentation.

In the absence of conclusive empirical data specific to the
system and conditions being modeled, we "guestimate" the time
required by the C operator to be on the order of a few seconds.
This estimate was derived based on observing search-and-rescue
operators working with each system.
The system associated with Interface A requires approximately
0.5 seconds delay time W before the user can see a response
from steering the robot but there is only an average of
approximately 0.25 seconds delay time with Interface B. This
time difference was noticed and commented on by users and so
needs to be reflected in the models’ timing calculations.

For S, the ultimately skilled robot user would perform all
perceptual, navigation, and obstacle avoidance subtasks while
keeping the robot moving at a constant speed, thus making
execution time equal to the time it takes to cover an area at a
given speed. In practice, we found that users spent an average
of 30% of the time reorienting themselves to the exclusion of all
other activities (Yanco and Drury, 2004). However, we
assigned a reference S time of 1 foot/second to both robots.

4.4 Top-Level Model
A major part of creating a model for a task is to characterize the
top level of the task. A fragment from a preliminary model for
the top level of the robot search-and-rescue task is shown in
Figure 3. Due to space reasons, we cannot show all of the
methods, so we only show those methods that lead to the user
determining whether she has spotted a victim. This "thread" of
methods is shown in the figure by the bold-face goals.

This top-level model shows the overall assumed task structure.
After getting some initial navigation information, the user
repeatedly chooses an area to search until all areas have been
covered. Each area involves driving around to different
locations in that area and looking for victims there. Locating a
victim involves repeatedly choosing an area to view, viewing it,
and then checking the sensors to see if a victim is present. This
last goal will be examined in more detail in the next subsection.

The top-level method focuses attention on a basic issue in the
task, namely the extent to which the user can simultaneously
drive the robot to cover the area, and locate a victim using the
video and sensors. Both interfaces seem to be compatible with
simultaneous operation, compared to some other interface that,
for example, used the same joystick for both camera motion
control and driving. The method shows this simultaneity
assumption with the use of the "Also accomplish goal" operator.
However, Yanco and Drury (2004) observed that users were
able to drive and look for victims simultaneously only about
70% of the time, and often had to pause to reorient themselves.
GOMS lacks a direct way to express this sort of variability, so
we have commented this step in the method as a place-holder.

Method for goal: Perform search and rescue mission
1. Accomplish goal: obtain global navigation information.
2. Choose next local area.
3. If no more local areas, return with goal accomplished.
4. Accomplish goal: search local area.
5. Go to 2.

Method for goal: search local area
1. Accomplish goal: drive to new location.
The following step applies 70% of the time.
2. Also accomplish goal: locate victim.
3. Return with goal accomplished.

Method for goal: locate victim
1. Choose next area of location.
2. If no more areas, return with goal accomplished.
3. Accomplish goal: view area of location.
4. Accomplish goal: view sensors for indication of victim.
5. If indication shown, return with goal accomplished.
6. Go to 1.

Figure 3. Top-Level Methods for Search-and-Rescue

4.5 Comparing Interfaces A and B
In addition to showing the overall flow of control, the top-level
model acts to scope and provide a context for the more detailed
modeling, such as the consideration of how different displays
might support the goal of viewing sensors for indication of a
victim. This is illustrated by critiquing the methods for this goal
supplied by Interface A, and then comparing them to Interface
B. Note that because the two sensors are different for the two
platforms we are comparing the procedure necessary for
viewing a thermal sensor as illustrated in Interface A with the
procedure for viewing a carbon dioxide sensor as illustrated in
Interface B.

The method for Interface A is shown in Figure 4A. As shown in
this method, the display must be togged between the normal
video display and the IR display. Since it will probably be done
frequently, the time cost of this operation might well be
significant. While the GOMS model cannot predict how often it
would be done, the preliminary estimate is that it would take
about 2.2 s per toggling (two P, or Point, operators). Clearly this
aspect of the design could use improvement. Hestand and
Yanco (2004) are experimenting with a USAR interface that
places infrared data on top of video data. While research is
needed to determine if it takes longer for a user to comprehend

combined video/infrared data, this model indicates that the total
time may be less than adding additional operators to view and
comprehend a separate infrared data window. Similarly, the
model predicts that providing multiple camera views in a single
display will be more efficient in that such an arrangement may
prevent having to manipulate a single camera to alternately
point in different directions.
In addition, the IR display is color-coded in terms of
temperature, and there is no on-screen cue about the color that
indicates possible life, suggesting that the user will need to
perform extra mental work. We have represented this as a step
to recall the relevant color code.
In contrast, Interface B shows a different approach for another
sensor datum, carbon dioxide level. The method is shown in
Figure 4B. There is an on-screen indication of the relevant
level, requiring a simple visual position judgment rather than a
comparison to a memorized color.

Method for goal: view sensors for indication of victim
1. Look at and interpret camera display (C).
Using a touchscreen is similar to pointing with a mouse.
2. Point to touchscreen IR button to toggle display (P).
3. Recall IR display color-code that indicates possible life (M).
4. Look at and interpret IR display (C).
5. Decide if victim is present (M).
Need to restore display to normal video to support next activity
6. Point to touchscreen Digital button to toggle display (P).
7. Return with goal accomplished.

Figure 4A. Fragment of a GOMS Model for Interface A

Method for goal: view sensors for indication of victim
1. Look at and interpret camera display (C).
2. .Look at and determine whether carbon dioxide level is above
“Possible life” line (M).
3. Decide if victim is present (M).
4. Return with goal accomplished.

Figure 4B. Fragment of a GOMS Model for Inteface B

Interface B’s method is shorter than Interface A’s for several
reasons. Interface A cannot show video and infrared sensor
information (to show the presence of body heat) at the same
time, incurring switch costs, whereas Interface B can show
video and carbon dioxide (present in humans’ exhalations)
sensor readings simultaneously. Also, Interface B explicitly
shows the level above which the presence of nearby human life
is likely, whereas users looking at Interface A will need to
remember which color-coding in the infrared display indicates
heat equivalent to human body temperature. This difference in
approaches requires one less operator (to recall the appropriate
color) as well as changes the nature of the mental operator (from
a C to an M indicating a simple comparison). For one pass
through the method, Interface A requires 2 more steps, two P
operators, and an additional C operator - at least a few more
seconds - than Interface B.
This example shows how although GOMS cannot predict the
interpretability of display elements, the costs and benefits of

different design decisions about when those elements are
present can be modeled, and even quantified to some extent.
This must be balanced with the effectiveness of different
sensors. If a number of sensors are present and are helpful, then
procedures for viewing all of the sensors and comprehending the
information need to be modeled.

4.6 Modeling Different Levels of Autonomy
Previously in this paper we have stated our contention that
GOMS would be useful for showing the impact of differing
autonomy levels on the user’s efficiency. We illustrate this
point by showing the difference in workload between extricating
a robot when in tele-operation mode versus in escape mode. In
tele-operation mode, the user directs all of the robots’ actions; it
is a complete absence of autonomy. In contrast, once the user
puts the robot into escape mode, the robot itself figures out how
to move away from all obstacles in the immediate environment
and then, once clear of all obstacles, stops to await further
commands from the user.
Figure 5 illustrates the portion of the GOMS model that pertains
to getting a robot “unstuck”: the unenviable condition where it
has very little leeway in how it can move. Figure 5 pertains to
extricating a robot using Interface A. The model for Interface B
is similar (only a few less steps).
Note that Figure 5 employs an informal means of passing a
variable to a method. We denote the passing of a variable by a
phrase in square brackets.

 Method for goal: get unstuck when tele-operating
1. Accomplish goal: determine direction to move
2. Accomplish goal: drive to new location
3. Accomplish goal: check-movement–related sensors
4. Return with goal accomplished.

Method for goal: determine direction to move
1. Look at and interpret proximity display (C)
2. Accomplish goal: move camera in direction of obstacle
3. Return with goal accomplished

Method for goal: move camera [movement direction]
1. Point to touchscreen button for [movement direction] (P)
2. Look at and interpret video window (C)
3. Decide: if new movement direction is needed (C), go to 1.
4. Return with goal accomplished.

Method for goal: drive to new location
1. If hands are not already on joystick, home hands on joystick (H)
2. If movement direction not yet known, Accomplish goal: determine
direction to move
3. Move joystick until new location is reached or until stuck (S)
4. If stuck, then accomplish goal: get unstuck when tele-operating
5. Return with goal accomplished.

Method for goal: check movement-related sensors
1. Look at and interpret video window (C)
2. Look at and interpret map data window (C)
3. Look at and interpret sonar data window (C)
4. Return with goal accomplished.

Figure 5. Model Fragment for Tele-Operating Stuck Robots

As might be expected, getting a robot unstuck can be a tedious
process. Not counting the shared method for checking
movement-related sensors, there are 16 statements in the
methods in Figure 5, and it often takes multiple iterations
through most of the steps to completely extricate a robot. Each
iteration requires at least 6 C operators, a P, and possible H, in
addition to the robot moving time included in the S operator—
many seconds of user activity, all of it attention-demanding.
Our experience is that robots become wedged into tight quarters
surprisingly frequently, which motivated the development of the
escape mode.
Figure 6 shows in a quantitative manner how much easier it is
for users to change the autonomy mode from tele-operation to
escape and watch the robot use its sensors and artificial
intelligence to move itself from a position almost completely
blocked by obstacles to one that is largely free of obstacles. In
contrast, the single method shown in Figure 6 lists only 5
statements. This method assumes that the user will do nothing
but wait for the robot to finish, but clearly, the user could
engage in other activity during this time, opening up other
possibilities for conducting the task more effectively.
While this comparison might seem obvious, these models were
simple to sketch out, and doing so is a very effective way to
assess the possible value of new functionality. Using GOMS
could save considerable effort over even simple prototype and
test iterations (see Kieras, 2004 for more discussion).

Method for goal: get unstuck when using escape
1. Point to touchscreen button for escape (P).
2. Wait for robot to finish (W).
Same method called as in manual get unstuck method
3. Accomplish goal: check movement-related sensors
4. Decide: if robot still stuck, go to 1.
5. Return with goal accomplished.

Figure 6. Model Fragment for Extricating Robots using
Escape Mode

5. CONCLUSIONS AND FUTURE WORK
In this paper we have shown how GOMS can be used to
compare different interfaces for human-robot interaction.
GOMS is useful in determining the user’s workload, for
example when introducing different displays for sensors.
GOMS models are also useful in determining what the upper
and lower time limits are for different procedures. For example,
checking movement-related sensors will depend on how many
sensor windows the user has to look at and how many of these
windows have to be manipulated to be viewed. This can be
extremely helpful in deciding what should be visible at what
time to maximize the user’s efficiency.
GOMS can also be used to evaluate autonomy modes. In our
example we used the escape mode on the INL robot to show
how autonomy modes can be modeled. In actuality, the escape
mode was originally incorporated into robots because it was
clear to everyone that enabling this robotic behavior could save
the user a lot of work and time. In other words, designers did
not need a GOMS model to tell them that such functionality

would be worthwhile. However, this example shows how
GOMS can be used to model other autonomy modes to
determine possible human-robot ratios. By examining the
maximum expected times for different procedures, it is possible
to use Olsen and Goodrich’s equations on “fan out” (Olsen and
Goodrich, 2003) to determine the upper bound on the number of
robots that a single person can control simultaneously.
While GOMS was designed to model user behavior with a
particular user interface, what it has done in the escape/tele-
operation example is to render explicit the effect of both the
robotic behavior and the user interface on the user. GOMS
could be used in less obvious cases to “test drive” the effects
that new robot behaviors, coupled with their interaction
mechanisms, might have on users. To the extent that the effects
of the interface design and robot behavior can be teased apart,
GOMS can thus have utility in the process of designing new
robot behaviors.
Future work might productively include experimentation with
the effect of degraded video on the time necessary for users to
perceive and comprehend information. Simulators could
introduce a controlled amount of noise into the videostream in a
repeatable fashion so that user tests could yield empirical data
regarding average times for comprehending video data under
various degraded conditions. This data could be codified into a
set of “reference” video images. By comparing a systems’
video quality with the reference images, analysts could assign a
reasonable estimate of video comprehension times a priori,
without further empirical work.
Another future work area might be to examine whether it is
useful to employ GOMS to model the robots' performance in
interacting with the environment, other robots, and/or humans.
Perhaps such an analysis would be desirable to help determine
how many autonomous robots would be needed to complete a
task under critical time limitations such as a large-scale rescue
operation, for example. Such a modeling effort would likely
involve a whole new set of issues and would depend on the
nature of the robot’s environment, the behaviors that were
programmed for the robot, and the mechanical limitations
inherent in the robot platform.
The use of GOMS models for comparing alternative designs can
be much less costly than conducting user testing assuming that
little additional empirical testing is needed to determine
execution times for domain-specific operators. User testing
necessitates building robust versions of user interfaces,
obtaining sufficiently trained users, and having robots that are in
operating condition for the number of days needed to conduct
the tests.
While open issues exist with applying GOMS models for HRI,
we are confident that much useful design information can be
obtained earlier and with much less effort than user testing.

6. ACKNOWLEDGMENTS
This work was supported in part by NSF (IIS-0415224) and
NIST. We would like to thank Douglas Few and David
Bruemmer of Idaho National Laboratories; Elena Messina,
Adam Jacoff, Brian Weiss, and Brian Antonishek of NIST; and
Holly Yanco and Brenden Keyes of UMass Lowell.

7. REFERENCES
[1] Adams, J. A. (2005). Human-Robot Interaction Design:

Understanding User Needs and Requirements. In
Proceedings of the 2005 Human Factors and Ergonomics
Society 49th Annual Meeting, 2005, Orlando, FL.

[2] Campbell, C. B. (2002). Advanced integrated general
aviation primary flight display user interface design,
development, and assessment. In Proceedings of the 21st
Digital Avionics Systems Conference, Vol. 2.

[3] Card, S., Moran, T., and Newell, A. (1983). The
Psychology of Human-Computer Interaction. Hillsdale,
New Jersey: Erlbaum.

[4] Drury, J. L. and Scholtz, J. (2006). Adapting GOMS to
model human-robot interaction. Submitted to the HRI
2007 conference.

[5] Endsley, M. R. (1988). Design and evaluation for situation
awareness enhancement. In Proceedings of the Human
Factors Society 32nd Annual Meeting, Santa Monica, CA,
1988.

[6] John, B. E. (1990). Extensions of GOMS analyses to
expert performance requiring perception of dynamic visual
and auditory information. In Proceedings of the CHI 1990
Conference on Human Factors in Computing Systems.
New York: ACM, pp. 445 – 451.

[7] Hestand, D. and Yanco, H. A. (2004). “Layered sensor
modalities for improved human-robot interaction.” In
Proceedings of the IEEE Conference on Systems, Man and
Cybernetics, October 2004.

[8] Irving, S., Polson, P., and Irving, J. E. (1994). A GOMS
analysis of the advanced automated cockpit. In
Proceedings of the 1994 CHI conference on Human
Factors in Computing Systems, Boston, April 1994.

[9] John, B. E. (1990). Extensions of GOMS analyses to
expert performance requiring perception of dynamic visual
and auditory information. In Proceedings of the 1990
Conference on Human Factors in Computing Systems.
New York: ACM, pp. 107 – 115.

[10] John, B. E. and Kieras, D. E. (1996a). Using GOMS for
User Interface Design and Evaluation. ACM Transactions
on Human-Computer Interaction, 3(4), December 1996.

[11] John, B. E. and Kieras, D. E. (1996b). The GOMS Family
of User Interface Analysis Techniques: Comparison and
Contrast. ACM Transactions on Human-Computer
Interaction, 3(4), December 1996.

[12] Kieras, D. E. (1997). A Guide to GOMS model usability
evaluation using NGOMSL. In M. Helander, T. Landauer,
and P. Prabhu (Eds.), Handbook of Human-Computer
Interaction. (Second Edition). Amsterdam: North-Holland.
733-766.

[13] Kieras, D. E. (2004). Task analysis and the design of
functionality. In A. Tucker (Ed.) The Computer Science
and Engineering Handbook (2nd Ed). Boca Raton, CRC
Inc. pp. 46-1 through 46-25.

[14] Kieras, D. E. (2005). Fidelity Issues in Cognitive
Architectures for HCI Modeling: Be Careful What You
Wish For. In Proceedings of the 11th International
Conference on Human Computer Interaction (HCII 2005),
Las Vegas, July 22-27.

[15] Kieras, D., and Knudsen, K. (2006). Comprehensive
Computational GOMS Modeling with GLEAN. In
Proceedings of BRIMS 2006, Baltimore, May 16-18.

[16] Leveson, N. G. (1986). “Software safety: why, what and
how.” ACM Computing Surveys 18(2): 125 – 162, June
1986.

[17] Olsen, D. R., Jr., and Goodrich, M. A. (2003). Metrics For
Evaluating Human-Robot Interactions. In Proceedings of
PERMIS 2003, September 2003.

[18] Rosenblatt, J. and Vera, A. (1995). A GOMS
representation of tasks for intelligent agents. In
Proceedings of the 1995 AAAI Spring Symposium on
Representing Mental States and Mechanisms. M. T. Cox
and M. Freed (Eds.), Menlo Park, CA: AAAI Press.

[19] Scholtz, J., Antonishek, B., and Young, J. (2004).
Evaluation of a Human-Robot Interface: Development of a
Situational Awareness Methodology. In Proceedings of

the 2004 Hawaii International Conference on System
Sciences.

[20] Wagner, A. R., Endo, Y., Ulam, P., and Arkin, R. C.
(2006). Multi-robot user interface modeling. In
Proceedings of the 8th International Symposium on
Distributed Autonomous Robotic Systems, Minneapolis,
MN, July 2006.

[21] Wood, S. D. and Kieras, D. E. (2002). Modeling Human
Error For Experimentation, Training, And Error-Tolerant
Design. In Proceedings of the Interservice/Industry
Training, Simulation and Education Conference. Orlando,
Fl. November 28 – December 1.

[22] Yanco, H. A. and Drury, J. L. (2004). “Where Am I?”
Acquiring Situation Awareness Using a Remote Robot
Platform. In Proceedings of the 2004 IEEE Conference on
Systems, Man, and Cybernetics.

[23] Yanco, H. A., Drury, J. L., and Scholtz, J. (2004). “Beyond
usability evaluation: analysis of human-robot interaction at
a major robotics competition.” Human-Computer
Interaction, Vol. 19, No. 1 & 2, pp. 117 – 149.

