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ABSTRACT 
The Goals, Operators, Methods, and Selection rules (GOMS) 
method is a well-established means of modeling the procedures 
that humans use to interact with technology.  We focus on two 
questions: what is different about using GOMS for human-robot 
interaction (HRI) versus using GOMS for traditional computer 
applications, and what are promising approaches for using 
GOMS to evaluate competing HRI designs?  This paper raises 
issues in using GOMS for modeling HRI and illustrates them 
with GOMS models that compare two interfaces for urban 
search-and-rescue robots.  Very little work has been done with 
GOMS so far in the HRI domain, so one of our chief 
contributions is the guidance we provide for using GOMS for 
HRI.  

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – graphical user interfaces, input devices and 
strategies, interaction styles, screen design. 

General Terms 
Design, Human Factors, Verification. 

Keywords 
GOMS, human-robot interaction, evaluation, interface design, 
dialog modeling. 

1. INTRODUCTION 
Mobile robots have been making a strong showing in the 
commercial marketplace in the last few years.  Suddenly robotic 
vacuum cleaners are in many thousands of homes, unmanned 
aerial vehicles are being produced by dozens of different 
contractors worldwide, and bomb disposal robots are standard 
equipment in police and military organizations, to name a few 
examples.  With the increase in the numbers and types of robots 
that are commercially available comes the challenge of ensuring 
that the intended end users can easily and efficiently use the 
interfaces to those robots.  The technically-oriented researchers 
and developers who used to be the sole operators of robots have 
been increasingly supplanted by homeowners, military security 
specialists, and police officers, among others. 
Human-robot interaction (HRI) has been maturing in tandem 
with robots’ commercial success.  In the last few years HRI 
researchers have been adopting—and sometimes adapting—
human-computer interaction (HCI) evaluation techniques to 
assess the efficiency and intuitiveness of HRI designs.  For 
example, Adams (2005) used Goal Directed Task Analysis to 

determine the interaction needs of officers from the Nashville 
Metro Police Bomb Squad.  Scholtz et al. (2004) used Endsley’s 
(1988) Situation Awareness Global Assessment Method to 
determine robotic vehicle supervisors’ awareness of when 
vehicles were in trouble and thus required closer monitoring or 
intervention.  Yanco and Drury (2004) employed usability 
testing to determine (among other things) how well a search-
and-rescue interface supported use by first responders.  One set 
of HCI tools that has so far seen little exploration in the HRI 
domain, however, is the class of modeling and evaluation 
techniques known as formal methods.   
Perhaps the most widely-used of the formal methods is the 
Goals, Operations, Methods, and Selection rules (GOMS) 
technique first presented by Card, Moran, and Newell (1983), 
and which then developed into several different forms, 
summarized by John & Kieras (1996a, 1996b). Depending upon 
the type of GOMS technique employed, GOMS models can 
predict the time needed for a user to learn and use an interface 
as well as the level of internal consistency achieved by the 
interface.  GOMS has proven its utility because models can be 
developed relatively early in the design process when is cheaper 
to make changes to the interface.  Analysts can use GOMS to 
evaluate paper prototypes’ efficiency, learnability, and 
consistency early enough to affect the design prior to its 
implementation in software.  GOMS is also used with mature 
software to determine the most likely candidates for 
improvement in the next version.  Since GOMS does not require 
participation from end users, it can be accomplished on shorter 
time scales and with less expense than usability tests.  Based on 
its use as a cost savings tool, GOMS is an important HCI 
technique: one that bears exploration for HRI.  
Very little work has been done so far in the HRI domain using 
GOMS.  A method we used for coding HRI interaction in an 
earlier study (Yanco, Drury, and Scholtz, 2004) was inspired by 
GOMS but did not actually employ GOMS.  Rosenblatt and 
Vera (1995) used GOMS for an intelligent agent.  Wagner et al. 
(2006) used GOMS in an HRI study but did so in limited 
scenarios that did not explore many of the issues specific to 
HRI.  In an earlier paper (Drury and Scholtz, in submission), we 
explored more types of GOMS than was presented in Wagner et 
al. and also modeled a wider range of tasks for a single 
interface.  This paper presents a case study of comparing two 
interfaces using a Natural GOMS Language (NGOMSL) model 
and provides a more detailed discussion of GOMS issues for 
HRI than has been previously published.  The primary 
contribution of this paper is the guidance that we provide for 
using GOMS in future HRI modeling and evaluation efforts. 



The next section discusses GOMS and what is different about 
using GOMS for HRI versus other computer-based applications.  
Section 3 contains background information on the two interfaces 
that we have modeled, prior to presenting representative 
portions of the models in Section 4.  As we present the models, 
we provide guidance for using GOMS in HRI.  Finally, we 
provide conclusions in Section 5.  

2. WHY IS HRI DIFFERENT WITH 
RESPECT TO GOMS? 
Before discussing the nuances of using GOMS for HRI, we 
briefly describe GOMS.  There is a large literature on GOMS 
and we encourage the reader who is unfamiliar with GOMS to 
consult the overviews by John and Kieras (1996a, 1996b).  

2.1 The GOMS Family 
GOMS is a “family” of four widely-accepted techniques: Card, 
Moran, and Newell-GOMS (CMN-GOMS), Keystroke Level 
Model (KLM), Natural GOMS Language, and Cognitive, 
Perceptual, and Motor GOMS (CPM-GOMS). John and Kieras 
(1996a) summarized the four different types of GOMS:  

--CMN-GOMS:  The original formulation was a loosely 
defined demonstration of how to express a goal and 
subgoals in a hierarchy, methods and operators, and how to 
formulate selection rules. 
--KLM:  A simplified version of CMN was called the 
Keystroke-Level Model and uses only keystroke operators 
— no goals, methods, or selection rules.  The analyst 
simply lists the keystrokes and mouse movements a user 
must perform to accomplish a task and then uses a few 
simple heuristics to place “mental operators.”   
--NGOMSL:  A more rigorously defined version of GOMS 
called NGOMSL (Kieras, 1997) presents a procedure for 
identifying all the GOMS components, expressed in 
structured natural language with in a form similar to an 
ordinary computer programming language. A formalized 
machine-executable version, GOMSL, has been developed 
and used in modeling (see Kieras and Knudsen, 2006). 
--CPM-GOMS:  A parallel-activity version called CPM-
GOMS (John, 1990) uses cognitive, perceptual, and motor 
operators in a critical-path method schedule chart (PERT 
chart) to show how activities can be performed in parallel. 

We used the latter three types of GOMS in Drury and Scholtz 
(in submission).  In this paper we use NGOMSL only, because it 
emphasizes the interface procedures and their structure. We 
discuss our selection of NGOMSL in more detail in Section 4.2.  

2.2 HRI Challenges 
Traditional GOMS assumes error-free operation on the part of 
the user and predictable operation on the part of the computer.  
These assumptions are unreasonable for the HRI domain.  
Robots take unexpected actions, including autonomous actions 
that are, in some sense, “wrong.”  Even when robots are 
operated without autonomy, they sometimes take actions that 
the user does not expect.  GOMS can be extended to cover user 
errors (e.g., Kieras, 2005 and Wood and Kieras, 2002), but this 
would not apply to “errors” on the part of the robot.  The fact 
that the user cannot predict the state of the robot or environment 

in the near future means that models must account for a great 
range and flexibility of users’ responses to any given situation.  
A second challenge for HRI pertains to the seemingly simple 
task of maneuvering the robot, which normally occurs with a 
pointing device such as a joystick.  While GOMS has long 
modeled users’ use of pointing devices to move cursors or select 
different items on the computer display, it has not developed 
mechanisms to model the types of movements users would 
employ to continuously or semi-continuously direct a robot’s 
movement with a joystick.  This missing element is important 
because there are fundamental differences in the amounts of 
time that are spent moving a cursor with a pointing device 
versus pushing a joystick to steer a robot’s motion.   
Wagner et al. (2006), the only other case study of using GOMS 
for HRI besides our work, models mission generation for robots 
and does not include this basic task of driving a robot.  GOMS 
has been used frequently in the aviation domain and so we 
scoured the literature to find an analogous case, for example 
when the pilot pulls back on the rudder to change an aircraft’s 
altitude.  To our surprise, we found only analyses such as Irving 
et al. (1994) and Campbell (2002), which concentrated on 
interactions with the Flight Management Computer and Primary 
Flight Display, respectively: interactions confined to pushing 
buttons and verifying the computers’ responses.  Thus we have 
had to grapple with the issue of continuous joystick movement 
in conjunction with our work. 
A third challenge relates to modeling mental operations to  
incorporate the right amounts of time for the users’ thought 
processes at each stage of using an interface.  For example, 
previous empirical work has shown that it takes a user 
approximately 1.35 seconds to mentally prepare to perform the 
next action when executing a routine task in a predictable 
environment (John and Kieras, 1996b).  But robot operations are 
notoriously non-routine and unpredictable, as discussed above.  
Instead, users may almost continuously extract dynamically 
changing information from the environment. Luckily, GOMS 
has always assumed that application-specific mental operators 
could be defined as necessary: what is difficult is determining 
the mental operators that make sense for HRI. 
A further challenge with mental and perceptual operators in 
GOMS is that they do not account for the effects of having 
varying quality sensor data, either within the same system at 
different times or on multiple systems that are being compared.  
For example, if video quality is bad on one system but 
exceptionally clear on another, it will take more time to extract 
video-based information via the first system’s interface than the 
second.  Each GOMS operator is normally assigned a single 
value as its typical time duration, such as the 1.35 seconds cited 
above for mental preparation.  Unless a perceptual operator is 
assigned one time value in the model for the first system and a 
shorter time value for the second model (to continue the 
example), the models will not take into account an important 
difference that affects performance.    
A fifth challenge pertains to different levels of autonomy.  We 
do not know of any use of GOMS models that accounts for the 
differences in autonomy levels defined for mobile robots.  We 
believe it would be very useful, for example, for GOMS models 
to tell us whether it is more efficient for the robot to not allow 
the user to get too close to objects, as opposed to the user having 



to spend time and effort watching out for obstacles immediately 
around the robot.  
As we present our GOMS models in Section 4, we provide 
guidance for overcoming these challenges. 

3. SPECIFIC INTERFACES ANALYZED 
But first, we need to describe the interfaces we modeled.  User 
interface analysts model human activity assuming a specific 
application interface because the models will be different for 
each application.  Our decision regarding which interfaces to 
analyze was not important as long as the chosen interfaces 
contained representative complexity and functionality.   We 
chose two mature interfaces that use the same set of urban 
search-and-rescue (USAR) functionality and the same robotic 
platform. 

3.1  Interface “A” 
The architecture for the system underlying Interface A was 
designed to be flexible so that the same interface could be used 
with multiple robot platforms.  We observed the interface 
operating most frequently with an iRobot ATRV-Jr.: the same 
one used for Interface B.   
Interface A (Figure 1) is displayed on a touch screen.  The upper 
left corner of the interface contains the video feed from the 
robot.  Tapping the sides of the window moves the video camera 
left, right, up or down.  Tapping the center of the window re-
centers the camera.  Immediately to the right of the video 
display are pan and tilt indicators.  The robot is equipped with 
two types of cameras that the user can switch between: a color 
video camera and a thermal camera; the camera selection radio 
buttons are also to the right of the video area. 
The lower left corner contains a window displaying health status 
information such as battery level, heading, and attitude of the 
robot.  A robot-generated map is placed in the lower central 
area.  In the lower right corner, there is a sensor map that shows 
red arrows to indicate directions in which the robot’s motion is 
blocked by obstacles. 
The robot is controlled through a combination of a joystick and 
the touch screen.  To the right of the sensor map in the bottom 
right hand corner of the touch screen, there are six mode 
buttons, ranging from autonomous to tele-operation.  Typically, 
the user touches one of the mode buttons, then uses the joystick 
to steer the robot if not in the fully autonomous mode. 
When the user wishes to take a closer look at something, he or 
she touches the video window to pan the camera.  For victim 
identification, the user often switches to the thermal or Infrared 
(IR) sensor (displayed in the same space as the videostream and 
accessed via a toggle) to sense the presence of a warm body. 
The proximity sensors are shown around a depiction of the robot 
in the bottom right hand side of the display.  The triangles turn 
red to indicate obstacles close to the robot.  The small, outer 
triangle turns red when the robot first approaches objects, then 
the larger, inner triangle also turns red when the robot moves 
even closer to an obstacle.  The location of the red triangles 

indicates whether the blockage is to the front, rear, and/or sides 
of the robot.  
Note that System A’s interface does not incorporate menus.  
Visual reminders for all possible actions are present in the 
interface in the form of labels on the touch screen.   
While the organization that developed System A has explored 
other interface approaches since this version, users access 
almost exactly the same functionality with the current interface 
designs.  Also, many other USAR robots incorporate similar 
functionality.  

3.2 Interface “B” 
While Interface B is also used in conjunction with an iRobot 
ATRV-Jr. robot, this platform was modified to include a rear-
facing as well as forward-facing camera.  Accordingly, the 
interface has two fixed video windows, as can be seen in Figure 
2.  The larger one displays the currently selected camera (either 
front- or rear-facing); the smaller window shows the other video 
feed and is mirrored to simulate a rear-view mirror in a car.   
Interface B places a map at the edge of the screen.  The map 
window can be toggled to show a view of the current laser 
readings (“laser zoom view”), removing the map from the 
screen during that time.   
Information from the sonar sensors and the laser rangefinder is 
displayed in the range data panel located directly under the main 
video panel.  When nothing is near the robot, the color of the 
box is the same gray as the background of the interface, 
indicating that nothing is there.  As the robot approaches an 
obstacle at a one foot distance, the box turns to yellow, and then 
red when the robot is very close (less than half a foot away).  
The ring is drawn in a perspective view, which makes it look 
like a trapezoid.  This perspective view was designed to give the 
user the sensation that they are sitting directly behind the robot.  
If the user pans the camera left or right, this ring will rotate 
opposite the direction of the pan.  If, for example, the front left 
corner turns red, the user can pan the camera left to see the 
obstacle, the ring will then rotate right, so that the red box will 
line up with the video showing the obstacle sensed by the range 
sensors.  The blue triangle, in the middle of the range data 
panel, indicates the true front of the robot.  
The carbon dioxide meter to the right of the primary video 
screen shows a scale in parts-per-million (PPM) and also 
indicates the level at which “possible life” has been detected as 
a blue line.  (The platform used for Interface A had an IR sensor 
to serve this same purpose.)  The bottom right hand corner 
shows battery life, whether the light on the front of the robot is 
illuminated, a clock, and the maximum speed.  The level of 
autonomy is shown in the bottom right hand set of buttons 
(currently it is in Shared/Goal Mode).  

3.3 Tasks Analyzed 
We analyzed tasks that are typical of a search-and-rescue 
operation: maneuver the robot around an unfamiliar space that is 
remote from the user, find a potential victim, and confirm the 
presence of a victim. 



 
Figure 1.  Interface A 

 

 
 

Figure 2.  Interface B 



4. GOMS ANALYSIS 
4.1 Introduction 
We view the design process for HRI breaking naturally into two 
major parts: the perceptual content of the displays and the 
overall procedural operation.   
Designers need to define the perceptual content of the displays 
so that they can be easily comprehended and used for HRI tasks.  
This design challenge will normally need to be accomplished 
using traditional interface design wisdom combined with 
evaluation via user testing because GOMS does not address 
whether one visual presentation of an item of information is 
easier to interpret than another.  Rather, GOMS assigns a 
“mental operator” to the part of the task that involves 
interpreting display information, but this does not shed any light 
on whether one presentation facilitates users extracting 
information more quickly than another presentation—the 
standard mental operator is a simple "one size fits all" estimate.  
If analysts can define different types of domain- or task-specific 
mental operators for displays, then competing designs can be 
examined to see which requires more instances of one type of 
mental operator versus another.  If these operator durations can 
be measured empirically, then the GOMS model can make a 
more quantitative contribution.   
GOMS can clearly help with the procedural implications of 
display design.  For example, perhaps one design requires 
actions to toggle the display between two types of information, 
while another design makes them simultaneously present; 
GOMS would highlight this difference.  Designers also need to 
define the overall operation of the user interface in terms of the 
procedures that the user has to follow to carry out the task with 
the interface.  Evaluating the procedural design challenge can be 
done easily and well with GOMS models if the perceptual 
design challenge can be handled so as not to confound any 
comparisons that analysts might make between competing 
designs. 
This brings us to our first guideline for modeling HRI using 
GOMS:  

(1) Don’t get bogged down in modeling the perceptual 
content of the displays. 

The analyst should focus instead on the step-by-step procedures 
used when interacting with the interface, keeping in mind that 
issues in perception might determine and dominate issues 
regarding procedures.  Getting bogged down in the perceptual 
issues is tempting because this part of the task is obviously 
important, but current modeling technology doesn’t allow 
analysts to make much progress a-priori.  Many tasks demand 
that the operator view video or dynamic sensor data.  They may 
need to do this multiple times in order to understand the 
situation.   Because these activities are so situation-dependent 
and also dependent upon environmental conditions, skill levels, 
and physical capabilities of the users (eyesight acuity, dexterity, 
etc.), there is no way to predict the number of times a user may 
consult a display.  Even if we could know how many times users 
would need to refer to a particular part of the displays, it is 
difficult to assign accurate times to the actions.   
Instead, we recommend that the primary goal of the GOMS 
modeling should be to characterize everything else about the 
task—that is, all the non-perceptual, procedural activities to 

work with the interface—while holding the perceptual subtasks 
constant at some representative level of activity as driven by the 
procedural aspects of the interface.  This approach is especially 
important due to the unpredictable, error-prone nature of 
working with robots, which requires a significant amount of 
perception and cognition to understand what the robot is doing 
and determine corrective steps when necessary.  
This modeling strategy is not ideal if the goal is to simply 
represent a single interface.  It becomes much more useful when 
comparing two interface designs to show where the procedural 
differences appear and their consequences.  When improving 
designs incrementally, however, an analyst can model a single 
interface to the point where it exposes inconsistencies or 
inefficiencies, suggest improvements to that interface design, 
then use the improved design as a second design to compare to 
the first to identify the degree of improvement attained.   

4.2 Choice of GOMS Technique   
We present our models using NGOMSL because this form of 
GOMS is easy to read and understand while still having a 
relatively high level of expressive power.  NGOMSL can be 
thought of as stylized, structured pseudocode.  The analyst starts 
with the highest level goals, then breaks the task into subgoals.  
Each subgoal is addressed in its own method, which may 
involve breaking the task further into more detailed subgoals 
that also are described in their own methods.  The lowest-level 
methods contain mostly primitive operations.  Design 
consistency can be inferred by how often “basic” methods are 
re-used by other methods.  Similarly, efficiency is gained when 
often-used methods consist of only a few steps.  The number of 
methods and steps is proportional to the predicted learning time.   
Because NGOMSL lacks the ability to describe actions that the 
user takes simultaneously, we adopt a bit of syntax from the 
executable version GOMSL (Kieras and Knudsen, 2006), the 
keyword phrase “Also accomplish goal…”, when we need to 
show that two goals are being satisfied at the same time. 
Since all detailed GOMS models include “primitive operators” 
that each describe a single, atomic action such as a keypress, we 
discuss primitives next.   

4.3 Primitives 
At the lowest level of detail, GOMS models decompose a task 
into sequences of steps consisting of operators, which are either 
motor actions (e.g., home hands on the keyboard) or cognitive 
activities (e.g., mentally prepare to do an action). As 
summarized by John and Kieras (1996a, 1996b), the following 
primitive operators are each denoted by a one-letter code and 
their standard time duration: 

K to press a key or button (0.28 s for average user) 
B to press a button under the finger (e.g. a mouse 

button) (0.1 s) 
M perform a typical mental action, such as finding an 

object on the display, or mentally prepare to do an 
action (1.35 s)   

P to point to a target on a display (1.1 s) 
H to home hands on a keyboard or other device (0.4 s) 
W to represent the system response time during which 

the user has to wait for the system (variable) 



As discussed above, none of these primitives are especially 
suited to describing manipulating the robot, thus we define a 
“steer” operator S and introduce our second guideline: 

(2) Consider defining and then assigning a time 
duration to a robot manipulation operator that is 
based on typical values for how long the 
combination of the input devices, robot mechanics, 
and communications medium (especially for 
remote operations) take to move the robot a 
“reference” distance. 

This guideline is based on the fact that the time to take the 
action to manipulate the robot is driven more by the robot 
mechanics and environment than by the time needed to activate 
the steering input device.  (It may be helpful to consider driving 
the robot to be a task that is secondary to whatever is the 
overarching goal for manipulating the robot in the first place.  
For example, driving the robot is secondary to searching for 
victims in a USAR task.)  We understand that a single robot can 
run at various speeds which will change based on lighting 
conditions, proximity to obstacles, etc.  When two interfaces are 
being examined, however, using a single representative speed 
for each robot should not harm the comparison of their 
respective GOMS models.  
While all the other “standard” primitive operators apply to HRI, 
the M operator bears close scrutiny.  As used in modeling 
typical computer interfaces, M represents several kinds of 
routine bits of cognitive activity, such a finding a certain icon on 
the screen, recalling a file name, making a routine decision, or 
verifying that a command has had the expected result.  Clearly, 
using the same operator and estimated time duration for these 
different actions is a gross simplification, but it has proven to be 
useful in practice (see John and Kieras, 1996a, 1996b for more 
discussion).  However, consider data being sent to the user from 
a remote mobile robot that must be continually perceived and 
comprehended (levels 1 and 2 of Endsley’s (1988) definition of 
situation awareness).  This is a type of mental process that is 
used to assess the need for further action triggered by external, 
dynamic changes reflected in the interface (e.g. as seen in a 
changing video display).  We intuit that this mental process is 
qualitatively different, more complex, and more time-
consuming from those traditionally represented with M.  Since 
this type of mental operation is nontrivial, we posit that it is 
useful to identify it as a separate operator to determine if one 
design versus another requires more instances of this type of 
assessment.  For example, if one interface split up key sensor 
information on separate screens but another provided them on a 
fused display, the latter design would require fewer mental 
operators in general and fewer operators of the type that 
assesses dynamic changes in the environment.   

We define a C (Comprehend) operator to refer to a process of 
understanding and synthesizing complex display information 
that feeds into the user’s continually-changing formulation of 
courses of action.  This operator is expected to take much longer 
than the conventional M operator, and will be used to represent 
the interpretation of the complex displays in this domain. 
This leads us to an additional guideline: 

(3) Without violating guideline number 1, consider 
defining HRI-specific mental operator(s) to aid in 
comparing the numbers of instances these 
operators would be invoked by competing designs. 

Once the set of primitives has been finalized, the next step is to 
assign times to the various operators.  To a certain extent, the 
exact times are not as important as the relative differences in 
times that result from competing interface designs.  Thus we 
suggest using time durations that were derived empirically as a 
result of research on other systems whenever possible, such as 
the standard operator times listed above.  The time required for 
our mental operator C for robotics tasks will depend on the 
quality of the video, the complexity of the situation being 
viewed, and the design of the map and proximity sensor 
displays.  Thus, if two systems being compared have radically 
different qualities of sensor data, we suggest the following 
guideline: 

(4) Without violating guideline number 1, consider 
assigning time duration values to HRI-specific 
mental operators that reflect the consequences of 
large differences in sensor data presentation. 

In the absence of conclusive empirical data specific to the 
system and conditions being modeled, we "guestimate" the time 
required by the C operator to be on the order of a few seconds.  
This estimate was derived based on observing search-and-rescue 
operators working with each system.  
The system associated with Interface A requires approximately 
0.5 seconds delay time W before the user can see a response 
from steering the robot but there is only an average of 
approximately 0.25 seconds delay time with Interface B.  This 
time difference was noticed and commented on by users and so 
needs to be reflected in the models’ timing calculations. 

For S, the ultimately skilled robot user would perform all 
perceptual, navigation, and obstacle avoidance subtasks while 
keeping the robot moving at a constant speed, thus making 
execution time equal to the time it takes to cover an area at a 
given speed.  In practice, we found that users spent an average 
of 30% of the time reorienting themselves to the exclusion of all 
other activities (Yanco and Drury, 2004).  However, we 
assigned a reference S time of 1 foot/second to both robots.  

4.4 Top-Level Model 
A major part of creating a model for a task is to characterize the 
top level of the task.  A fragment from a preliminary model for 
the top level of the robot search-and-rescue task is shown in 
Figure 3.  Due to space reasons, we cannot show all of the 
methods, so we only show those methods that lead to the user 
determining whether she has spotted a victim.  This "thread" of 
methods is shown in the figure by the bold-face goals.  

This top-level model shows the overall assumed task structure. 
After getting some initial navigation information, the user 
repeatedly chooses an area to search until all areas have been 
covered.  Each area involves driving around to different 
locations in that area and looking for victims there.  Locating a 
victim involves repeatedly choosing an area to view, viewing it, 
and then checking the sensors to see if a victim is present.  This 
last goal will be examined in more detail in the next subsection.  



The top-level method focuses attention on a basic issue in the 
task, namely the extent to which the user can simultaneously 
drive the robot to cover the area, and locate a victim using the 
video and sensors.  Both interfaces seem to be compatible with 
simultaneous operation, compared to some other interface that, 
for example, used the same joystick for both camera motion 
control and driving.  The method shows this simultaneity 
assumption with the use of the "Also accomplish goal" operator. 
However, Yanco and Drury (2004) observed that users were 
able to drive and look for victims simultaneously only about 
70% of the time, and often had to pause to reorient themselves.  
GOMS lacks a direct way to express this sort of variability, so 
we have commented this step in the method as a place-holder. 
___________________________________________________ 
 
Method for goal:  Perform search and rescue mission 
1.  Accomplish goal: obtain global navigation information. 
2.  Choose next local area. 
3.  If no more local areas, return with goal accomplished. 
4.  Accomplish goal: search local area. 
5.  Go to 2. 
 
Method for goal:  search local area 
1.  Accomplish goal:  drive to new location. 
The following step applies 70% of the time. 
2.  Also accomplish goal:  locate victim. 
3.  Return with goal accomplished. 
 
Method for goal:  locate victim 
1.  Choose next area of location. 
2.  If no more areas, return with goal accomplished. 
3.  Accomplish goal: view area of location. 
4.  Accomplish goal:  view sensors for indication of victim. 
5.  If indication shown, return with goal accomplished. 
6.  Go to 1. 

 
Figure 3. Top-Level Methods for Search-and-Rescue 

 

4.5 Comparing Interfaces A and B 
In addition to showing the overall flow of control, the top-level 
model acts to scope and provide a context for the more detailed 
modeling, such as the consideration of how different displays 
might support the goal of viewing sensors for indication of a 
victim.  This is illustrated by critiquing the methods for this goal 
supplied by Interface A, and then comparing them to Interface 
B.  Note that because the two sensors are different for the two 
platforms we are comparing the procedure necessary for 
viewing a thermal sensor as illustrated in Interface A with the 
procedure for viewing a carbon dioxide sensor as illustrated in 
Interface B.   

The method for Interface A is shown in Figure 4A.  As shown in 
this method, the display must be togged between the normal 
video display and the IR display.  Since it will probably be done 
frequently, the time cost of this operation might well be 
significant.  While the GOMS model cannot predict how often it 
would be done, the preliminary estimate is that it would take 
about 2.2 s per toggling (two P, or Point, operators). Clearly this 
aspect of the design could use improvement.  Hestand and 
Yanco (2004) are experimenting with a USAR interface that 
places infrared data on top of video data.  While research is 
needed to determine if it takes longer for a user to comprehend 

combined video/infrared data, this model indicates that the total 
time may be less than adding additional operators to view and 
comprehend a separate infrared data window.  Similarly, the 
model predicts that providing multiple camera views in a single 
display will be more efficient in that such an arrangement may 
prevent having to manipulate a single camera to alternately 
point in different directions. 
In addition, the IR display is color-coded in terms of 
temperature, and there is no on-screen cue about the color that 
indicates possible life, suggesting that the user will need to 
perform extra mental work.  We have represented this as a step 
to recall the relevant color code.  
In contrast, Interface B shows a different approach for another 
sensor datum, carbon dioxide level.  The method is shown in 
Figure 4B.  There is an on-screen indication of the relevant 
level, requiring a simple visual position judgment rather than a 
comparison to a memorized color. 
___________________________________________________ 
 
Method for goal:  view sensors for indication of victim 
1.  Look at and interpret camera display (C). 
Using a touchscreen is similar to pointing with a mouse. 
2.  Point to touchscreen IR button to toggle display (P). 
3.  Recall IR display color-code that indicates possible life (M). 
4.  Look at and interpret IR display (C). 
5.  Decide if victim is present (M). 
Need to restore display to normal video to support next activity 
6.  Point to touchscreen Digital button to toggle display (P). 
7.  Return with goal accomplished. 
 

Figure 4A.  Fragment of a GOMS Model for Interface A 
 

 
Method for goal:  view sensors for indication of victim 
1.  Look at and interpret camera display (C). 
2. .Look at and determine whether carbon dioxide level is above 
“Possible life” line (M). 
3.  Decide if victim is present (M). 
4.  Return with goal accomplished. 
 

Figure 4B.  Fragment of a GOMS Model for Inteface B 
 
Interface B’s method is shorter than Interface A’s for several 
reasons.  Interface A cannot show video and infrared sensor 
information (to show the presence of body heat) at the same 
time, incurring switch costs, whereas Interface B can show 
video and carbon dioxide (present in humans’ exhalations) 
sensor readings simultaneously.  Also, Interface B explicitly 
shows the level above which the presence of nearby human life 
is likely, whereas users looking at Interface A will need to 
remember which color-coding in the infrared display indicates 
heat equivalent to human body temperature.  This difference in 
approaches requires one less operator (to recall the appropriate 
color) as well as changes the nature of the mental operator (from 
a C to an M indicating a simple comparison).  For one pass 
through the method, Interface A requires 2 more steps, two P 
operators, and an additional C operator - at least a few more 
seconds - than Interface B. 
This example shows how although GOMS cannot predict the 
interpretability of display elements, the costs and benefits of 



different design decisions about when those elements are 
present can be modeled, and even quantified to some extent.  
This must be balanced with the effectiveness of different 
sensors.  If a number of sensors are present and are helpful, then 
procedures for viewing all of the sensors and comprehending the 
information need to be modeled.   

4.6  Modeling Different Levels of Autonomy 
Previously in this paper we have stated our contention that 
GOMS would be useful for showing the impact of differing 
autonomy levels on the user’s efficiency.  We illustrate this 
point by showing the difference in workload between extricating 
a robot when in tele-operation mode versus in escape mode.  In 
tele-operation mode, the user directs all of the robots’ actions; it 
is a complete absence of autonomy.  In contrast, once the user 
puts the robot into escape mode, the robot itself figures out how 
to move away from all obstacles in the immediate environment 
and then, once clear of all obstacles, stops to await further 
commands from the user.  
Figure 5 illustrates the portion of the GOMS model that pertains 
to getting a robot “unstuck”: the unenviable condition where it 
has very little leeway in how it can move.  Figure 5 pertains to 
extricating a robot using Interface A.  The model for Interface B 
is similar (only a few less steps). 
Note that Figure 5 employs an informal means of passing a 
variable to a method.  We denote the passing of a variable by a 
phrase in square brackets.   
___________________________________________________ 
 Method for goal:  get unstuck when tele-operating 
1.  Accomplish goal: determine direction to move  
2.  Accomplish goal: drive to new location 
3.  Accomplish goal:  check-movement–related sensors 
4.  Return with goal accomplished.  
 
Method for goal:  determine direction to move  
1.  Look at and interpret proximity display (C) 
2.  Accomplish goal:  move camera in direction of obstacle 
3.  Return with goal accomplished   

 
Method for goal: move camera [movement direction] 
1.  Point to touchscreen button for [movement direction] (P) 
2.  Look at and interpret video window (C) 
3.  Decide: if new movement direction is needed (C), go to 1. 
4.  Return with goal accomplished. 
 
Method for goal:  drive to new location 
1.  If hands are not already on joystick, home hands on joystick (H) 
2.  If movement direction not yet known, Accomplish goal: determine 
direction to move 
3.  Move joystick until new location is reached or until stuck (S) 
4.  If stuck, then accomplish goal: get unstuck when tele-operating 
5.  Return with goal accomplished. 
 
Method for goal:  check movement-related sensors 
1.  Look at and interpret video window (C) 
2.  Look at and interpret map data window (C) 
3.  Look at and interpret sonar data window (C) 
4.  Return with goal accomplished. 
 
Figure 5.  Model Fragment for Tele-Operating Stuck Robots 
 

As might be expected, getting a robot unstuck can be a tedious 
process.  Not counting the shared method for checking 
movement-related sensors, there are 16 statements in the 
methods in Figure 5, and it often takes multiple iterations 
through most of the steps to completely extricate a robot.  Each 
iteration requires at least 6 C operators, a P, and possible H, in 
addition to the robot moving time included in the S operator—
many seconds of user activity, all of it attention-demanding.  
Our experience is that robots become wedged into tight quarters 
surprisingly frequently, which motivated the development of the 
escape mode.    
Figure 6 shows in a quantitative manner how much easier it is 
for users to change the autonomy mode from tele-operation to 
escape and watch the robot use its sensors and artificial 
intelligence to move itself from a position almost completely 
blocked by obstacles to one that is largely free of obstacles.   In 
contrast, the single method shown in Figure 6 lists only 5 
statements.  This method assumes that the user will do nothing 
but wait for the robot to finish, but clearly, the user could 
engage in other activity during this time, opening up other 
possibilities for conducting the task more effectively. 
While this comparison might seem obvious, these models were 
simple to sketch out, and doing so is a very effective way to 
assess the possible value of new functionality.  Using GOMS 
could save considerable effort over even simple prototype and 
test iterations (see Kieras, 2004 for more discussion).  
 

Method for goal: get unstuck when using escape 
1.  Point to touchscreen button for escape (P). 
2.  Wait for robot to finish (W). 
Same method called as in manual get unstuck method 
3.  Accomplish goal: check movement-related sensors 
4.  Decide: if robot still stuck, go to 1. 
5.  Return with goal accomplished. 
 

Figure 6.  Model Fragment for Extricating Robots using 
Escape Mode 

 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we have shown how GOMS can be used to 
compare different interfaces for human-robot interaction.  
GOMS is useful in determining the user’s workload, for 
example when introducing different displays for sensors.   
GOMS models are also useful in determining what the upper 
and lower time limits are for different procedures.  For example, 
checking movement-related sensors will depend on how many 
sensor windows the user has to look at and how many of these 
windows have to be manipulated to be viewed.  This can be 
extremely helpful in deciding what should be visible at what 
time to maximize the user’s efficiency. 
GOMS can also be used to evaluate autonomy modes.  In our 
example we used the escape mode on the INL robot to show 
how autonomy modes can be modeled.  In actuality, the escape 
mode was originally incorporated into robots because it was 
clear to everyone that enabling this robotic behavior could save 
the user a lot of work and time.  In other words, designers did 
not need a GOMS model to tell them that such functionality 



would be worthwhile.  However, this example shows how 
GOMS can be used to model other autonomy modes to 
determine possible human-robot ratios. By examining the 
maximum expected times for different procedures, it is possible 
to use Olsen and Goodrich’s equations on “fan out” (Olsen and 
Goodrich, 2003) to determine the upper bound on the number of 
robots that a single person can control simultaneously. 
While GOMS was designed to model user behavior with a 
particular user interface, what it has done in the escape/tele-
operation example is to render explicit the effect of both the 
robotic behavior and the user interface on the user.  GOMS 
could be used in less obvious cases to “test drive” the effects 
that new robot behaviors, coupled with their interaction 
mechanisms, might have on users.  To the extent that the effects 
of the interface design and robot behavior can be teased apart, 
GOMS can thus have utility in the process of designing new 
robot behaviors. 
Future work might productively include experimentation with 
the effect of degraded video on the time necessary for users to 
perceive and comprehend information.  Simulators could 
introduce a controlled amount of noise into the videostream in a 
repeatable fashion so that user tests could yield empirical data 
regarding average times for comprehending video data under 
various degraded conditions.  This data could be codified into a 
set of “reference” video images.  By comparing a systems’ 
video quality with the reference images, analysts could assign a 
reasonable estimate of video comprehension times a priori, 
without further empirical work. 
Another future work area might be to examine whether it is 
useful to employ GOMS to model the robots' performance in 
interacting with the environment, other robots, and/or humans.  
Perhaps such an analysis would be desirable to help determine 
how many autonomous robots would be needed to complete a 
task under critical time limitations such as a large-scale rescue 
operation, for example. Such a modeling effort would likely 
involve a whole new set of issues and would depend on the 
nature of the robot’s environment, the behaviors that were 
programmed for the robot, and the mechanical limitations 
inherent in the robot platform.   
The use of GOMS models for comparing alternative designs can 
be much less costly than conducting user testing assuming that 
little additional empirical testing is needed to determine 
execution times for domain-specific operators.  User testing 
necessitates building robust versions of user interfaces, 
obtaining sufficiently trained users, and having robots that are in 
operating condition for the number of days needed to conduct 
the tests.   
While open issues exist with applying GOMS models for HRI, 
we are confident that much useful design information can be 
obtained earlier and with much less effort than user testing.   
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