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Abstract 

 
Due to nonstationarity and substantial variability in 
outbreak profiles, early detection of disease outbreaks 
is challenging.  In this paper we propose a method to 
detect outbreaks in syndromic surveillance data using a 
generalized likelihood ratio test in which both the null 
and alternative hypotheses are normally distributed.  
The data is daily counts of interactions between 
patients and the National Bioterrorism Syndromic 
Surveillance Demonstration Program System in the 
Boston area.  Using Poisson regression, we estimate 
the daily means and variances of the data as well as 
day of the week variations.  The estimated means serve 
as the means under the null hypothesis.  To determine 
the means under the alternative hypothesis we use a 
generalized form of the Pool-Adjacent-Violators 
algorithm on five-day windows of data.  For each 
window a test statistic is computed and an outbreak is 
indicated if it exceeds a threshold. 
 
Keywords: Syndromic surveillance, early outbreak 
detection, generalized likelihood ratio test, pool-
adjacent-violators algorithm 
 

1. Introduction 
 
The timely detection of an infectious disease outbreak 
is among the most important problems facing the 
medical and homeland defense communities today.  
Effective solutions to this problem will improve the 
rapidity of medical response to both natural and 
manmade contagion, and will reduce the morbidity, 
mortality, and cost of an outbreak. 
 
Efforts in this area are ongoing, with researchers 
exploring a wide range of methods and data sources.  
Recent work has become even more intense in light of 
the threat of bioterrorism.  Goldenberg, Shmueli, 
Caruana, and Fienberg (2002) construct a threshold 
number of pharmaceutical transactions for a day, and 
detect an outbreak if the actual sales exceed that 
number.  Data from 26 military treatment facilities and 
99 infectious disease clinics in the Washington DC 
area is used by Lewis, et al (2002) to construct 
estimates and confidence intervals for the day’s counts 
in several syndrome categories.  Outbreaks are 

detected on days on which the daily count in a 
syndrome category exceeds its 95% confidence 
interval.  Reis, Pagano, and Mandl (2003) study using 
time windows of data to improve outbreak detection 
sensitivity and specificity.  Mohtashemi, Szolovits, 
Dunyak, and Mandl (2006) employ a susceptible-
infected model to detect outbreak days characterized 
by a greater than expected infection transmission rate. 
 
In this paper we propose a simple Generalized 
Likelihood Ratio Test (GLRT) to detect outbreaks in 
time series data.  Like other techniques, the calculated 
test statistic is based on several days of data.  It shares 
the benefits of other techniques in that it does not 
require any information on individual patients, such as 
their home addresses, and is generic to conventional 
biosurveillance data (e.g. emergency room visits), 
nonconventional data (e.g. over-the-counter drug 
sales), or some combination of the two.  The GLRT 
differs from previous work in early detection of 
outbreaks in that it generates a test statistic based on 
the shape of the trend in the excess over the expected 
daily count of events (e.g. medical encounters) over 
some time window of data.  Because the time series 
data should provide some indicator of the level of 
illness in the general population, we term the excess 
number of events as excess morbidity. 
 
We expect outbreaks to exhibit a monotonically 
nondecreasing trend in the mean of the excess 
morbidity.  We estimate this trend for time windows of 
data with the output of the Pool-Adjacent-Violators 
Algorithm (PAVA) (Härdle 1990, p. 218).  The sum of 
the estimated mean of the excess morbidity and the 
estimated daily mean number of events serves as the 
mean of the alternative hypothesis.  The mean under 
the null hypothesis of the GLRT is provided by the 
estimated daily means alone.  Here the estimated daily 
means are provided by a Poisson regression over the 
entire data set. 
 
In this paper we apply the GLRT to five years of daily 
counts of interactions between individuals diagnosed 
with an upper respiratory infection and the National 
Bioterrorism Syndromic Surveillance Demonstration 
Program system in the vicinity of Boston, 
Massachusetts.  The performance of the GLRT is 
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ascertained by inserting stochastic outbreaks into the 
data and measuring the probability of detection (i.e., 
sensitivity) and the probability of false alarm 
(i.e., 1  -  specificity).  The early detection capability, 
or timeliness, of the detector is also measured. 

 
2. Materials and Methods 

 
We apply the GLRT to real data in order to measure its 
performance.   Variations in the data are accounted for 
using a Poisson regression.  Artificial outbreaks were 
inserted into the data so that probability of detection 
and probability of false alarm could be calculated. 
 
2.1 Data 

 
The data were provided by the National Bioterrorism 
Syndromic Surveillance Demonstration Program 
(NDP) and involve ambulatory care encounters of 
patients using a large medical practice in eastern 
Massachusetts and having health insurance through a 
major insurer in the region (Lazarus, Kleinman, 
Dashevski, DeMaria, and Platt 2001; Lazarus et. al 
2002; Platt et. al 2003; Yih et al. 2004).  Specifically, 
the dataset consists of counts of new episodes of illness 
by date of medical encounter and by syndrome during 
the five-year period of January 1, 2000-December 31, 
2004.  “New episodes” of illnesses were those not 
preceded by an encounter for the same syndrome in the 
previous 42 days.  “Encounters” or “events” included 
office visits, urgent care visits, and telephone calls to 
primary care providers.  Syndromes considered were 
upper gastrointestinal (GI) illness, lower GI, 
respiratory, influenza-like illness (ILI), and 
neurological and were defined in terms of sets of 
diagnostic codes (CDC 2003).  A single event could be 
included in the daily count of more than one syndrome 
if the patient had diverse symptoms (e.g., vomiting 
(upper GI) and diarrhea (lower GI)) or if one of his/her 
diagnostic codes mapped to more than one syndrome 
(e.g., influenza with pneumonia, which is in both ILI 
and respiratory syndromes).  Here we focus on the 
upper respiratory infection syndrome. 
 
Analysis and modeling of the data is complicated by 
significant nonstationarity evidenced by day of the 
week and seasonal variations which exist in the data 
set.  Figure 1 illustrates the variation in the mean 
counts for each day of the week.  The day of the week 
variation is likely the result of each daily count’s 
reliance on doctor visits as a source of events; one 
plausible explanation for the significantly lower counts 
on the weekends is that most doctors’ offices are 
closed on the weekend, and appointments due to 
medical conditions arising over the weekend are 
scheduled for the following Monday.  Not surprisingly, 

holidays also impact the daily count.  As such, we 
consider holidays separately than other days (a holiday 
falling on a Monday is considered to be a holiday, and 
not a Monday).  Lewis et al (2002) also considers daily 
variation, weekly trends, and holiday effects in their 
analysis.  However, unlike Lewis et al (2002), we do 
not consider after-holiday effects here.  In addition, 
weekend days are ignored in this analysis because of 
the significant difference between the mean number of 
events on weekdays and weekends and because four 
weekend days are missing from the data set. 
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Figure 1. Day of the Week and Holiday Variation in 

the NDP Upper Respiratory Infection Data 
 

Figure 2 shows the seasonal variation in the number of 
interactions between patients diagnosed with upper 
respiratory infections and the NDP system for 
weekdays in the data set.  Autumn and winter have the 
greatest mean number of events, and spring and 
summer have the least, as is expected. 
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Figure 2. Seasonal Variation in the Upper 

Respiratory Infection NDP Data 

 
2.2 Over-Dispersed Poisson Regression 
 
To handle the seasonal and weekday variations, we 
exploit the Poisson regression to obtain tλ , the 
expected number of patients for each day, t, in the data 



set.  A Poisson approximation is a natural choice to fit 
the data, given that the data is a counting process.  
Furthermore, the data manifests Poisson properties, in 
that the variance grows with the mean.  However, the 
variance is greater than the mean, particularly at larger 
means.  Thus, we fit the data to an over dispersed 
Poisson.  The model is of the form 
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where 1 2 6, , ,β β βK are the regression coefficients, 

, , ,Tue Wed HolI I IK are indicator functions that indicate 
whether the day under consideration is a Tuesday, 
Wednesday, Thursday, Friday, or holiday (Monday is 
indicated when all the indicator functions equal zero), 
and tμ is the predictor variable for day t.  The predictor 
variable is calculated as the arithmetic mean number of 
events over a ten-day period that ends five days before 
day t.  
 
2.3 Generalized Likelihood Ratio Test 
 
Once tλ is calculated, tx , the excess morbidity  on day 
t, may be determined.  The excess morbidity is 
expressed as 
 ,t t tx k λ= −  (2) 
 
where tk is the daily count of new episodes of upper 
respiratory infection on day t.  Here we detect 
outbreaks having a monotonically nondecreasing trend 
in mean excess morbidity.  The trend in the mean 
excess morbidity is determined via the Pool-Adjacent-
Violators Algorithm (PAVA) (Härdle 1990, p. 218), 
which provides a set of minimum mean squared error 
estimates for the data under the monotonicity 
constraint.  In other words, the PAVA finds the set of 
estimates ˆtx  such that 
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is minimized, where l is the window length, and τ is 
the most recent day in the window (i.e., today), under 
the restriction that ( ) ( )1 2ˆ ˆ ˆ .l lx x xττ τ− − − −≤ ≤ ≤K  If tx is 
normally distributed, the estimates have the additional 
property of being the maximum likelihood estimates 
for the data under the monotonicity constraint.  The 
estimates, in addition to the corresponding tλ , serve as 
means under the alternative hypothesis of the GLRT. 
 
The GLRT is utilized to determine whether a trend in 
excess morbidity is due to an outbreak process or is 
simply the result of ordinary day-to-day variations in 

the data.  Here, we invoke the central limit theorem in 
order to utilize a Gaussian approximation for the 
distribution of the data under the null and alternative 
hypotheses.  Under the null hypothesis the data is 
distributed with mean of tλ and variance 2

wσ , 
where 2

wσ is a function of tλ and the dispersion 
parameterψ estimated in the Poisson regression, given 
by 
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The dispersion parameter is estimated by dividing the 
sum of weighted residuals squared (Pearson’s chi-
square) by the degrees of freedom.  Under the alternate 
hypothesis the data is distributed with mean of 
( )ˆt txλ + and variance 2

wσ .  In this paper, we use a 
window length of 5 days.  Thus, the test statistic G is 
given by 
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and the log likelihood ratio test is given by 
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An outbreak is detected when the test statistic lnG  is 
above a threshold value.  Because of the variation in 
the data, a different threshold is calculated for each 
time window of the data by simulating data under the 
null hypothesis 4000 times, and calculating and 
ordering the resulting lnG values.  The sorted lnG values 
serve as thresholds, with smaller lnG values 
corresponding to smaller p-values. 
 
It should be noted that the emphasis of the test is on 
the trend in the mean of the excess morbidity, not its 
magnitude.  In other words, any monotonically 
nondecreasing trend in the mean excess morbidity has 
the potential to trigger a detection, regardless of 
whether the excess morbidity values are greater or less 
than zero. 
 



2.4 Artificial Outbreaks 
 
Unfortunately, it is not possible to derive performance 
results from the original NDP data because the 
locations of actual outbreaks in the data set are not 
known.  Therefore, the data set was augmented with 
artificial, stochastic outbreaks at known locations.  The 
artificial outbreaks were randomly created from the 
outcomes of Poisson random variables.  The means of 
the random variables had trends based on two families 
of shapes, uniform and exponential growth.  Figure 3 
and Figure 4 show the trends in the mean for several 
artificial three and five-day exponential outbreaks, 
respectively (the exact values of the means are shown 
in brackets in the figures).  Figure 5 shows the trend in 
the mean for three artificial three-day uniform 
outbreaks.  One day and five day uniform outbreaks 
were also inserted into the data; the daily means for 
these outbreaks were the same as those for the three-
day uniform outbreaks, only the lengths of the 
outbreaks were different.  The outbreaks were inserted 
by adding the outcome of the random variables to the 
daily counts on the desired days.  To ensure that the 
performance measure is not influenced by the location 
in time of the artificial outbreaks, outbreaks were 
added to every five-day window of data. 
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Figure 3. Trend in the Mean of Poisson Random 
Variables for Artificial Three-Day Exponential 

Outbreaks 
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Figure 4. Trend in the Mean of Poisson Random 

Variables for Artificial Five-Day Exponential  
Outbreaks 
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Figure 5. Trend in Mean of the Poisson Random 

Variable for Artificial Three-Day Uniform 
Outbreaks  

 
3. Results 

 
Receiver Operating Characteristic (ROC) curves were 
constructed for the detector based on the test (6) in 
order to determine its performance.  The ROC curves 
for three and five-day exponential outbreaks are shown 
in Figure 6 and Figure 7, respectively.  The ROC 
curves appear similar because of the means chosen for 
the random variables.  In both cases, for each of the 
three levels of outbreak, the outbreaks end with the 
same mean number of events.  Had the trends been 
chosen differently, different results would have been 
produced.  However, it should be noted that the 
detector performs nearly as well when presented with 
three-day exponential outbreaks as when it is presented 
with five-day exponential outbreaks that end on the 
same mean number of events. 
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Figure 6. ROC Curve for Three-Day Exponential 

Outbreaks 
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Figure 7. ROC Curves for Five-Day Exponential 

Outbreaks 

 
The ROC curves for one, three, and five day uniform 
outbreaks are shown in Figure 8, Figure 9, and Figure 
10, respectively.  In the case of uniform outbreaks, as 
the figures show, detection probability is heavily 
influenced by outbreak length.  Detection probability 
improves when the outbreak length increases from one 
day to three days in all three cases examined, 
particularly those for which the mean number of 
outbreak events per day is 100.  While present, the 
improvement in detection probability is less 
pronounced between three and five-day outbreak 
lengths. 
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Figure 8. ROC Curves for One-Day Uniform 

Outbreaks 
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Figure 9. ROC Curves for Three-Day Uniform 

Outbreaks 
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Figure 10. ROC Curves for Five-Day Uniform 

Outbreaks 

 
In addition to measuring the probability of detection 
for various probabilities of false alarm, the timeliness 
of the detector was also investigated.  We define 
timeliness as the ability of the detector to detect an 
outbreak early in the outbreak process (Reis et al. 
2003).  Practically, we measure timeliness by sliding 
the detection window across an inserted stochastic 
outbreak and recording each day of the outbreak a 



detection is signaled.  That is, we begin with a 
detection window filled with four days of 
unaugmented data and one day (i.e. the last or most 
recent day) filled with the first day of the outbreak; the 
window is then moved one day at a time until the 
entire window is filled with outbreak data.  Each 
window position, or outbreak day, the PAVA is run on 
the data in the window and the likelihood ratio test is 
applied.  If the outcome of the test exceeds the 
threshold for the five days in the window for a given 
false alarm probability, an outbreak is indicated. 
 
Figure 11 shows the detection rates for a false alarm 
probability of 0.1639 for each day of an outbreak for 
exponential and uniform outbreaks.  In this case, the 
means of each day of the stochastic outbreaks were 
[3 6 16 40 100] in the case of exponential outbreaks, 
and [50 50 50 50 50] in the case of uniform outbreaks.  
As Figure 11 shows, the detector, when presented with 
an exponential outbreak having this shape, exhibits 
low timeliness.  The timeliness of the detector in the 
face of uniform outbreaks is much better than in the 
face of exponential outbreaks.  The probability of 
detecting the uniform outbreak is nearly twice as large 
as the probability of detecting the exponential outbreak 
on day one of the outbreaks, and more than twice as 
large in days 2 through 4 of the outbreaks.  On the last 
day of the outbreaks, conversely, the probability of 
detection of the exponential outbreak is greater than 
that of the uniform outbreak. 
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Figure 11. Detector Timeliness 

 
When comparing the detection probabilities in the face 
of different outbreak shapes, however, it is important 
to note the power in the outbreak signals.  Overall, the 
power in the mean of both outbreak shapes is 
approximately equal, assuming each outbreak day is 
independent, with the power in the mean of the 
exponential outbreaks being less than that of the 
uniform outbreaks.  However, the power in the first 
four days of the mean of the uniform outbreak signal is 
approximately five times greater than that of the 

exponential outbreak.  This undoubtedly accounts for 
the improved timeliness of the detector in the face of 
the uniform outbreaks.  The improved probability of 
detection of the exponential outbreaks on the last day 
of the outbreaks is due to the fact that the signal power 
in day five of the mean of the exponential outbreaks is 
four times that of the uniform outbreaks. 
 

4. Conclusion 
 

Early detection of infectious disease outbreaks is an 
important and challenging problem.  In this paper we 
present a solution based on signal processing 
techniques.  We propose a Generalized Likelihood 
Ratio Test (GLRT) to detect outbreaks in time series 
data.  Unlike prior outbreak detection techniques, the 
GLRT generates a test statistic based on the shape of 
the trend in the excess morbidity over some time 
window of data. In addition, it does not require any 
information on individual patients, a benefit shared by 
other techniques.   
 
The detector could provide a real time outbreak alarm 
when presented with time series data from one or more 
data sources.  The detector, matched to monotonically 
nondecreasing trends in mean excess morbidity, was 
evaluated for performance in the face of exponentially 
and uniformly shaped outbreaks.  For a given signal 
strength and false alarm rate, the detector is better able 
to detect exponential outbreaks.  On the other hand, the 
detector manifests increased early detection 
performance, or timeliness, in the face of uniform 
outbreaks. 
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