Approved for Public Release; Distribution Unlimited
Case # 06-1155

A Data Sharing Agreement Framework

Vipin Swarup, Len Seligman, and Arnon Rosenthal

The MITRE Corporation
7515 Colshire Drive
McLean, VA 22102
{swarup, seligman, arnie}@mitre.org

Abstract. When consumers build value-added services on top of data
resources they do not control, they need to manage their information
supply chains to ensure that their data suppliers produce and supply re-
quired data as needed. Producers also need to manage their information
supply chains to ensure that their data is disseminated and protected
appropriately. In this paper, we present a framework for data sharing
agreements (DSA) that supports a wide variety of data sharing policies.
A DSA is modeled as a set of obligation constraints expressed over a
dataflow graph whose nodes are principals with local stores and whose
edges are (typed) channels along which data flows. We present a specifica-
tion language for DSAs in which obligations are expressed as distributed
temporal logic (DTL) predicates over data resources, dataflow events,
and datastore events. We illustrate the use of our framework via a case
study based on a real-world data sharing agreement and discuss issues
related to the analysis and compliance of agreements.

1 Introduction

Data sharing refers to the act of letting another party use data. It has be-
come prevalent with the spread of Internet technologies such as email, websites,
and P2P systems. Computer users routinely share ideas, documents, multimedia
files, etc. while organizational entities share large-scale data sets, e.g., scientific
datasets, counter-terrorism information, etc. Four critical capabilities that are
essential to any data sharing system are: a means for providers and consumers
to discover each other; a means for consumers to access data; a means for con-
sumers to understand data; and a means to manage sharing policies. In this
paper, we will focus on issues regarding cross-boundary sharing policies.

In organizations, sharing provides value by improving the ability of infor-
mation recipients to achieve mission objectives. However, sharing requires in-
formation to cross various kinds of boundaries and this carries risks, e.g., risks
of disclosure of the information to adversaries, and risks of compromise of the
sources and methods used to collect the information. In addition to these mis-
sion benefits and risks of sharing, information providers also have incentives
and disincentives to share. Possible incentives include prestige, satisfying legal
requirements or organizational directives, rewards, and altruism, while disincen-
tives include fear that consumers might misuse or fail to protect the data or not
give due credit to the data’s creator or provider.

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 06-1155

The decision to share involves a trade-off between the risks of sharing and
the risks of not sharing information. These risks can change dramatically when
providers and consumers have confidence that certain obligations will be met by
their sharing partners. This is greatly facilitated by policy management, which
provides a mechanism to express and realize desired behavior of a data sharing
arrangement (e.g., access controls, constraints on usage and subsequent shar-
ing, guarantees about data quality and availability, compensation, penalties for
violating agreements).

At the sharing transaction level, sharing policies have typically focused on
meeting protection goals, e.g., usage control policies that are enforced using tech-
niques such as digital rights management (DRM) engines and trusted comput-
ing platforms. At the organizational level, data sharing policies are expressed
in documents called Memoranda of Understanding (MOUs) or Memoranda of
Agreement (MOASs) that document the obligations and expectations of parties
to the agreement. Current practice is to use textual memoranda, an approach
with several disadvantages. First, there is little help for the writers, so important
sharing issues are often omitted. Second, the documents are typically filed away
in a drawer and seldom used thereafter. Third, it is hard to provide automated
support for reasoning about the contents of textual memoranda.

Service Level Agreements (SLAs) have emerged as the paradigm used by
organizations to express policies regarding service-level parameters. For instance,
for network provider services, SLAs describe obligations over parameters such
as availability, latency, throughput, packet loss, etc. Similarly, for data sharing
services that focus on the sharing of information, SLAs can describe a variety
of obligations over a similar set of parameters. However, there are several key
aspects of data sharing services that are not addressed by traditional SLAs that
focus on functional business services. First, data sharing obligations may require
a provider to actively engage in actions that result in wider sharing of its data.
These obligations may include parameters such as data freshness and quality,
regular update dissemination, etc. Second, data sharing obligations may require
a data recipient to engage in certain actions, e.g., further share the data, share
derivatives of the data, share audit records of actions that it invoked on the
data, notify the provider when the data is shared with a third party, etc. Third,
obligations may restrict what the recipient may do with the data, e.g., whether
the recipient can print a document. Finally, data objects subsume other data
objects and this property can be exploited—e.g., an agreement about European
Union persons’ data is relevant to a demand for German persons’ data.

Obligation policies are a key component of SLAs. An obligation is a con-
straint that a principal commits to satisfy in the future. Obligations are distinct
from provisions (i.e., actions that a principal takes in order to gain access to a
resource) and expectations (i.e., actions that one principal expects another to
satisfy). Unlike access control rules which must always be satisfied, obligations
may be violated. Hence, obligations are typically associated with penalty clauses
that describe the consequences of violating the obligations. Obligation platforms
provide support for obligation policies, maintain representations of obligations,

enforce the satisfaction of (some) obligations, monitor and detect violations of
obligations, and manage penalties associated with obligation violations.

In prior work, we have proposed the notion of a data sharing agreement
(DSA) [19] as a variant of SLAs, and we have proposed an initial model for
DSAs [20]. In this paper, we elaborate on our model for data sharing agreements
(DSAs) that encode data sharing obligations. We focus on obligations about data
stores and data flows, although the model can be extended to express obligations
about the collection and processing of data, the use of data by parties, etc. We
represent data stores as collections of typed values, dataflows as data streams
between principals, and obligations as temporal constraints on data store and
data stream events. Our model was developed by studying several real-world
Memoranda of Agreements (MOAs) that are used by large U.S. government
organizations to capture data sharing obligations. We present a specification
language based on the model, as well as an example specification of a DSA that
is motivated by a real-world MOA. We sketch a variety of analyses that are
enabled by our approach and discuss technical challenges related to compliance.
We conclude with a comparison with related work and future directions enabled
by this work.

2 Data Sharing Agreements (DSAs)

DSAs share many aspects of SLAs, for instance, descriptions of the parties to
the agreements, availability constraints, and temporal constraints like agreement
lifetimes [14]. They also inherit from the general notion of agreements, that a
party may incur obligations in return for benefits. For example, a consumer
may promise to pay cash, to refrain from certain activities (e.g., non-compete
agreements), or even to supply the consumer’s own information to competitors.
However, the primary purpose of DSAs is to capture data sharing clauses in-
cluding descriptions of the data being shared, and obligations that constrain
both the providers and consumers of the data and the data flows among them.
The data may be described using standard techniques such as relational schema,
XML schemas or DTDs, or object classes.

Obligations on data providers can concern both the need to send certain
data (which the provider must then produce or acquire) and the quality of what
is sent. They include recency constraints (data will reflect real world events,
or data updates will be forwarded, with specified promptness or periodicity);
visibility constraints (access will be provided to specified data views); and quality
constraints (shared data will be of specified freshness, accuracy, precision, etc.).

Obligations on data consumers include protection constraints (e.g., data will
not be copied, data will be deleted after 3 days, etc.); dissemination or sharing
constraints (e.g., original source will be credited, subsequent research products
based on the data will be shared back with the data providers; data will be shared
with certain other consumers; providers will be notified of who has accessed the
data); and generic security constraints (e.g., providers will be notified of security
breaches in consumer networks). Note that parties may be data consumers in one

DSA, and providers (e.g., of derived products) in another. Parties may even be
both data consumers and providers in the same DSA (e.g., providers of logistical
data and consumers of end-user audit data).

All obligations may be conditional on events (e.g., receipt of a data object,
detection of attack or compromise, etc.) and state predicates (e.g., declaration of
local emergency, system failures, relationship among data values). Further, data
sharing agreements may include obligations whose fulfillment depends on other
DSAs or SLAs. For instance, suppose that B is obliged to ensure that C receives
fresh and accurate data at regular intervals. In order to meet this obligation,
B might rely on DSAs with data suppliers and SLAs with network providers.
Finally, parties to a DSA may agree to inherit obligations from other DSAs.

A DSA’s obligations impose global constraints on access control policies of
various parties, even in future states. The exact nature depends on how the
parties meet the obligations. For instance, suppose that a data recipient B is
obligated to share data updates back with the provider A. Then either A must
be given access rights to the data, or B must allow release and create a process
that pushes the update notifications to A.

3 DSA Model

A DSA pertains to specific data schemas and data instance sets. Data may
be represented in any data model that provides constructs to represent data,
and operations over those constructs (e.g., query, update). Three prevalent data
models are the relational data model, the XML data model, and the object
data model. Our language is based on the data model of the Cw research pro-
gramming language [6] which integrates the above three models into a single
succinct framework. It provides a uniform model for representing relational data
(e.g., database tables), semi-structured data (e.g., XML documents), object data
(e.g., Java objects), and data streams (e.g., sequences). It also provides a uni-
form means for expressing queries over data. We shall use the syntax of Cw in
our examples and will provide informal descriptions of the semantics [6, 1, 2].

A DSA is an agreement between a set of principals regarding the sharing of
data among themselves. In this context, data sharing refers to the explicit flow of
data from one principal to another, and not to the subtler notions of information
flow or data inference. Hence, we model a DSA as a set of sharing obligations
expressed over a dataflow graph whose nodes are principals with local stores,
and whose edges are (typed) channels along which data flows.

Principals can be specified in well-understood ways and include both simple
principals (e.g., named individuals or organizations) and compound principals
(e.g., groups, roles, etc.). Each principal is associated with a local data store. A
data store is a function that maps (location) names to data values. The data val-
ues may be data relations, data streams, documents, objects, etc. as mentioned
above.

Data resources describe the data to which a data sharing agreement pertains.
A data resource is a tuple {rn, p, DV}, where rn is a globally unique data resource

name, p is the principal offering the data resource, and DV (i.e., a data view) is
a set of tuples (g, T'), where ¢ is a query language expression over p’s local data
store and T is the type of the query’s result. A data resource might describe
both the data content that is being shared, and metadata such as the sharing
context and attributes of principals.

A dataflow [15] F is a tuple (s,d,T) where s and d are principals and T is
a type. F' represents a data stream of values of type T flowing from source s
to destination d. The source s can place value o of type T into the dataflow
stream (which we write as F.send(0), while the destination principal d can read
values from the stream (F.receive(o)). The state of a dataflow F is a tuple
state(F) = (f,r) where f € T* is the sequence of values that have been placed
in the stream, and r € T™ is the sequence of values that F’s destination principal
has read from the stream. Data values can include message identifiers to capture
which values in the stream have been received.

An obligation O is a pair (1, p) where 1) is a formula in Distributed Temporal
Logic (DTL) [9,12] and p is the penalty that is incurred if ¢ is not satisfied.
Obligation formulae specify properties of traces of dataflow events (sending and
receiving data) and data store events (updating data stores). DTL is a general-
ization of Linear Temporal Logic (LTL) and includes both past-time and future-
time temporal operators including Y (previous), P (sometime in the past), H
(always in the past), S (since), X (next), G (always), and U (weak until). A
DTL formula can refer to a specific principal’s local data space and hence can
be true only for that specific principal. Thus, the DTL formula @,[¢)] asserts
that proposition 7 holds in the local context of principal a. A penalty can be
any action imposed on a principal, e.g., the payment of money by one principal
to another. In this paper, for simplicity, we assume that each event corresponds
to a fixed time step (e.g., 1 hour or 1 day per time step). An alternate approach
would be to have explicit clocks (e.g., a local clock per principal) and predicates
over the clocks.

Finally, a data sharing agreement DSA is a tuple (P,S,DS,DR,DF,QO)
where P is a set of principals (i.e., the parties referenced in the agreement),
S C P is the set of signatories of the agreement, DS is a function that maps
each principal in P to a data store (that represents the local data store of the
principal), DR is a set of data resources that are views of the data stores in DS,
DF is a set of dataflows between principals in P, and O is a set of obligations
of principals in P. Note that only principals in S are signatories of the DSA and
hence have agreed to the terms of the obligations that oblige them.

4 DSA Specification Language

We now sketch a specification language for DSAs based on the above model.
A data sharing agreement specification includes the parties to the DSA, time
bounds for validity, a timestep duration (to specify the fixed time duration of
each event), a set of statements that specify the data resources referenced in
the DSA, and a set of obligations expressed over the data resources, the local

data stores of the parties, and dataflows among the parties. Parties and time
bounds are expressed in the usual ways (e.g., using X.509 distinguished names,
timestamps, etc.). In this section, we will present a language to specify data
stores, dataflows, and obligations.

As mentioned earlier, we use the data model of the Cw research programming
language [6]. We shall rely on informal descriptions of Cw language constructs
in this paper. Cw is a typed language with the usual primitive types (boolean,
integer, string, and void) and four structured types: streams, which consist of
zero or more members; anonymous structs, which are like structs in C but with
the possibility of multiple fields with the same name; choice types, which are
discriminated unions (i.e., a value of a choice type consists of one of the listed
field types and a value of that type); and classes, whose members are objects
that encapsulate data values and methods.

A snippet of our DSA language is presented in Figure 1. Informally, the
statement “Channel(P,Q,T) ¢” declares ¢ to be a (dataflow) channel from P
to Q that carries values of type T. The expressions c.src and c.dest denote
the source and destination of channel ¢ respectively, while getloc(Q,x) denotes
the value bound to location x in Q’s data store. The predicates c.send(o) and
c.rcv(o) are true if object o was just sent and received (respectively) on channel
¢, while the predicate setloc(Q,x,e) holds if Q’s data store was just updated to
bind location x to value e.

Expressions are typed terms that evaluate to a value of the appropriate type.
The Cw expression language contains usual terms for boolean, integer and string
literals, built-in operators, object and structure creation, and method invocation.
The power of the language comes from the overloaded “dot” term. If e evaluates
to a stream v, then e.{h} returns the stream created by applying the expression
h to each member of v. h may contain the special variable it which gets bound
to each successive element of v. The language does not permit nested streams,
and hence if h returns a stream as result, then the resulting stream of streams is
“flattened” to a simple stream (see below). If e evaluates to a structure v, then
e.f returns the values of the fields named f in structure v. Since a structure
may contain multiple fields with the same name, e.f returns a stream of values.
Finally, if e evaluates to a structure v, then e[i] returns the value of the i’th field
in structure v.

For instance, let:

x = { city = “Rome” ; ctry = “USA” ; ctry = “Ttaly” ; }
y = { city = “Paris”; ctry = “USA” ; ctry = “France” ; }
z = { info = x; info = y; }

Then, x.city is the string “Rome”, x[2] is the string “USA”, while x.ctry is
the stream with two values “USA” and “Italy”. z.info is the stream of the two
structure values (x and y), while z.info.{it.ctry} is the flattened stream with four
values (“USA”, “Italy”, “USA”, and “France”).

Statement terms include variable declarations and assignments, conditionals,
loops, method invocations and returns, and blocks. For streams, the language

provides a dot statement e.h that applies the expression h to each element of the
stream yielded by evaluating e (again, the variable it is bound to each successive
value of the stream); a loop construct (“foreach”) for iterating over all elements
of a stream; and a “yield” term that returns a member of a stream. For instance,
continuing with the above example, x.ctry.{print it;} applies the print method
to each member of the x.ctry stream, hence printing out the two country names
“USA” and “Italy”.

The obligation language (see Figure 1) is based on distributed temporal logic.
Formulas are evaluated at a specific temporal and distributed state. An obliga-
tion term includes a DTL formula, a predicate that specifies the cancellation
policy for the obligation, and the penalty for violating the obligation formula.
We use syntactically sugared DTL operators, e.g., (¢ innext t) specifies that
¢ must hold sometime in the next ¢ timesteps, while (¢ at B) specifies that ¢
must hold in the local state of principal B.

Finally, a DSA is specified by a name, a set of principals, a sequence of
statement and obligation terms, start and end timestamps representing the va-
lidity period of the DSA, and a timestep that specifies the time interval between
successive states in the temporal model.

5 Examples

We now present several examples of sharing obligations that can be expressed
in our framework. For brevity, we have taken significant liberty with the syntax
here, e.g., by omitting certain clauses such as cancellation and penalty clauses in
obligations, and by using time intervals and timestamps rather than time-step
counts. In these examples, let A, B, and C be principals; ¢l be a channel (of
type T) from A to B; ¢2 be a channel from B to C; and ¢3 be a channel from B
to A.

Responsive forwarding: B will send C on channel ¢2 each object it receives
from A on channel ¢1 within 24 hours of receiving it:

(forall T o) if cl.rcv(o) then
(c2.send(0) innext 24 hrs
at B until 1/1/2007

Nondisclosure agreements: If B receives object o from A on channel cl,
then B will not thereafter send o to any other principal for a year.

(forall T o) if cl.rcv(o) then
(forall Channel c) if (c.dest # A) then
(not c.send(o) until 1 year)
at B until 1/1/2007

Usage notification: If B receives object o from A on channel cl1, then for the
next 365 days, B will notify A each time B sends o to another principal. We
construct the notification object via an externally defined function called
“notify”.

S u=... Channel(P,Q) c ...
e nm=csrc | c.dest

| getloc(Qx) | ...
p ==c.send(e) | crev(e)

| setloc(Qx,e) | ...

ob ::= obf cancelif p
penalty penalty

Time-bound obligation

obf p Simple predicate
obf and obf Conjunction
obf or obf Disjunction
not p Negation

(forall 7 x) obf
(exists 7 x) obf

|

|

|

|

|

| obfatQ

| if p then obf
| (obf)

| obf innext i
| obf until i

| obf until p

| obf atnext i
| obf inprev i
|
|
|

obf fromprev i
obf fromprev p

obf atprev i

DSA ::= DSA id with

Universal quantification

Existential quantification

obf holds in the local data space of principal Q
Conditional obligation formula

Precedence brackets

obf holds sometime during the next i states
obf holds for the next i states

obf holds until p holds

obf holds at the i’th next state

obf held sometime during the previous i states
obf held during all the previous i states

obf held since the last time that p held

obf held at the i’th previous state

Data sharing agreement

principals Q
statements s
obligations ob
from timestamp
to timestamp
timestep duration

Fig. 1. DSA Language Snippet

(forall T o) if cl.rcv(o) then
(forall Channel c)
if (c.send(o) and c.dest # A) then
c3.send(notify(B,c.dest,0)) innext 1 day
until 365 days
at B until 1/1/2007

Recurrence: A will send B the latest update to object o every 24 hours.

if cl.send(o) then
cl.send(update(o)) innext 1 day
at A until 1/1/2007

Privacy: Privacy obligations may arise when a person or an organization
shares personal data with another organization. They may also arise when
an organization receives data about a human, imposed by government (via
laws) rather than the provider.! The simple privacy obligation specified be-
low asserts that A must delete all personal information about B from location
x within one year of A’s storing it.

(forall T e) if setloc(A x,e)
and (e.subject = B) then
setloc(A,x,null) innext 1 year
at A until 1/1/2007

The above examples can be combined to form complex obligations. For in-
stance, if B receives data O from A, then B will not share O with foreign citizens,
and will notify A about US citizens who are shown the data. Furthermore, even
for US citizens, B will not reveal that A was the source. Our model is quite
powerful and can capture a wide variety of such data sharing policies. To illus-
trate this, we now describe a sanitized and substantially simplified fragment of
a data sharing agreement that is based on a real U.S. government Memorandum
of Agreement (MOA). We have changed organization names and altered their
missions to facilitate release of this information. The agreement is between the
military’s fictional Antarctica Command (USANTCOM), which maintains a lo-
gistics database we shall call AntLog, and the fictitious Logistics Information
Agency (LIA), which consolidates logistics information from many sources into
the Logistics InfoMart (LIM) and provides analysis on logistics requirements and
feasibility of both hypothetical and actual operations. We have augmented the
agreement with additional terms not found in the real MOA in order to illustrate
important features of data sharing agreements.

MOA: The DSA in this example addresses data services that permit autho-
rized LIM users to access the AntLog database service via a LIM data broker-
ing service. The brokering service exposes specific data views to LIM users

! Some obligations (e.g., those imposed by law) are implicit—they are not part of
any explicit DSA even though the parties are obliged to satisfy them. Such implicit
obligations may be specified in our model although they are not the focus of this
paper.

and only permits them to execute specific queries over those data views.
The AntLog database service is hosted on AntLog database servers, while
the brokering service is hosted on LIM data brokering servers.

USANTCOM must notify LIA whenever the AntLog database schema is
changed or a new data feed into AntLog is created; this notification must
occur 30 days in advance of the change. AntLog engineers must provide
technical assistance to LIA to create and optimize the SQL queries that
LIM users are permitted to execute against the AntLog database. USANT-
COM must provide the LTA manager of the LIM data brokering service with
credentials to access a group account on AntLog.

LIA must ensure that all LIM users of the LIM data brokering service are au-
thenticated, and that only cleared and authorized users can use the provided
group credentials to access AntLog via the data brokering service. Further,
LIA must audit all such successful transactions. LIA is also responsible for
maintaining valid (interim or final) accreditation status for all LIM systems
and networks and must ensure that there are no actual or probable security
breaches on those systems and networks. Finally, LIA must notify USANT-
COM and AntLog administrators of any violation of these assertions, and
the penalty will be that USANTCOM may disconnect AntLog from all af-
fected systems/servers.

Figure 2 contains a specification of the data brokering DSA. In this instan-
tiation, dbs is a data view of AntLog and represents a relational table whose
rows consist of a resource descriptor (“rsrc”), current location (“curloc”),
and destination location (“destloc”). queryl returns the current locations of
all resources, while query2 returns all resources which are not yet at their
destination. The obligations encode the constraints described above.

6 Analysis and Compliance

A formal data sharing model enables us to reason about a range of properties:

1. Is it possible for me to satisfy all my obligations? E.g., we’re obliged to share
all data with a business partner but we receive product documentation un-
der a stringent nondisclosure agreement; is there a sequence of events that
will satisfy my obligations? If we assume that all data types are finite, and
if we restrict ourselves to the LTL fragment of our language, then satisfiabil-
ity is tractable and is answerable by standard model checkers (e.g., NuSMV).

2. Do I need a new DSA, or are my information needs already covered by exist-
ing DSAs? This can be formulated as subsumption, i.e., does an obligation
entail another? Again, if we assume that all data types are finite, and if we
restrict ourselves to the LTL fragment of our language, then entailment is

DSA InfoMart with
principals USANTCOM, LIA, AntLog, Broker,
LIM, LIMusers
signatories USANTCOM, LIA

statements
Channel(Broker,AntLog) cba;
Channel(USANTCOM,LIA) cul;
Channel(LIA,USANTCOM) clu;

struct { String rsrc; String curloc; String destloc } * dbs;

dbs = getloc(AntLog,tracker).{ {rsrc = it.rsrc; curloc = it.cloc;
destloc = it.dloc; } };

String queryl = dbs.{it.curloc};

String query2 = dbs.{ if it.curloc # it.destloc then it.rsrc };

obligations
if dbs.update(u) then
cul.send(notify(“schema update”)) inprev 30 days

if clu.rcv(“credentials”, “AntLog”) then
cul.send(credentials(“AntLog” ,uname,passwd))
innext 24 hrs

if cba.send(q) then
(qa == queryl or q == query2) and
(exists Principal Q) (exists Channel(Q,Broker) cgb)
(cgb.rcv(q) and cgb.authenticated()) inprev 24 hrs
and setloc(Broker,audit,getloc(Broker,audit).add(Q,q))

if LIM.system.securitybreach() then
clu.send(notify(“breach”, “LIM”)) innext 2 hrs
penalty USANTCOM may disconnect AntLog

from 6 May 2003
to indefinite

Fig. 2. USANTCOM-LIA Data Brokering DSA

tractable and is answerable by standard model checkers.

3. What actions must I take in order to meet all my obligations? Which cus-
tomers must I send data to, or notify about potential changes to my data
schema, or to the frequency of data updates? Can we automatically gen-
erate dataflows from a DSA that satisfy the DSA’s dataflow obligations?
This is largely an unexplored problem since, unlike access control policies,
obligations are not always enforceable. In fact, obligation formulae place con-
straints on future behavior and they may well be violated by parties, e.g.,
due to changes in external circumstances. Obligations carry penalties that
describe actions to be taken when the obligation formulae are violated. Irwin
et al. [13] formulate compliance in terms of accountability, namely whether
a given policy can ensure that the system can hold principals accountable
for obligation constraint violations.

7 Related Work

Several researchers have proposed policy languages for expressing obligations for
data protection. Park and Sandhu [18] propose a usage control model that con-
strains how a data consumer can use data. Bettini et al. [4, 5] propose an access
control model based on provisions and obligations, where a reference monitor
creates obligations while making an authorization decision. In contrast to this
body of work, our focus is on data sharing obligations, not on data protection
obligations. Thus, for instance, we support obligations that require data con-
sumers to share data further with other consumers; such obligations may not be
associated with any authorization decision.

Ponder [8] and PDL [7] use event-condition-action (ECA) rules to express
obligations. In those models, obligations are actions that are triggered immedi-
ately when certain events occur and certain predicates are satisfied. In contrast,
our model is based on a temporal logic that can place temporal constraints on
when obligations must be satisfied. For instance, our model can express obliga-
tions that are activated when certain events occur (or predicates are satisfied)
in the future.

Bettini et al. [3] propose an obligation model in which events are represented
as predicates; an event predicate is true in a state iff the corresponding event
occurs in that state. We take a similar approach but we also incorporate a
general data model and a dataflow model, and our work is motivated by several
real-world MOAs.

Gama and Ferreira [11] describe a policy language (xSPL, Extended Security
Policy Language) and enforcement platform (Heimdall) for specifying and en-
forcing complex policies, including history-based and obligation-based policies.
Our focus, in this paper, has been on the data specific aspects of such policies.

Several systems use deontic logic [17] to express obligations. Other sys-
tems are based on temporal logics that enable the specification of temporally-
constrained obligations. We have adopted Hilty et al.’s distributed temporal logic
framework [12].

A distinction between our work and prior work is that we distinguish between
expectations and obligations. Formulas that express constraints on future actions
are expectations; they become obligations only when the obliged parties accept
them as obligations, for instance, by signing them. In contrast, most previous
work does not require obliged parties to accept (or agree to) the obligations.

Firozabadi et al. [10] address the sharing of scarce resources and they address
conflicts between entitlements, obligations, and resource scarcity. Data, on the
other hand, may be freely replicated. Thus, it is an opportunity rather than a
conflict if many parties want the same data item. Subsumption and derivation
of data schemas and queries are well-understood problems (e.g., [16]) and can
be exploited in sharing data with multiple parties.

Irwin et al. [13] present an analysis and modeling approach for obligations.
They present the notion of accountability as a key goal for obligation mecha-
nisms. In their model, obligations are defined as actions that subjects are obliged
to take on a set of objects, within a time window. They provide detailed analyses
for determining whether a system will remain accountable, given obligation and
authorization policies. Obligations in our model are at a much higher abstraction
level, and it would be interesting to map our abstract obligation specifications
to low-level action specifications.

8 Conclusion

In this paper, we have presented a model for data sharing agreements. The model
is based on a dataflow graph whose nodes are principals with local stores, and
whose edges are (typed) channels along which data flows. Data sharing con-
straints are expressed as DTL predicates over data stores and data flows. These
constraints can include both past events and future events, and may hold only
at certain principals’ local states. We have argued why this approach is cen-
tral to the problem of secure information sharing, one of the most fundamental
problems in information security.

Our work has been motivated by several real-world data sharing agreements
(currently expressed as textual Memoranda of Agreement). We illustrated the
expressive power of our language by expressing a sanitized fragment of a real
MOA. Since our language can be given a precise formal semantics, DSAs specified
in our language are amenable to a variety of automated analyses.

This work is an important first step towards our ultimate goal of building
a comprehensive technical infrastructure for secure information sharing policies.
We are beginning to develop a prototype platform that manages and enforces
DSAs. This platform will include wizards to assist in the creation of comprehen-
sive and consistent DSAs; repositories to assist in the lifecycle management of
DSAs; distributed agents to monitor and enforce the terms of the DSAs, when
possible; and modules to provide automated analysis capabilities.

Note that obligations are binding on the obliged parties and the parties may
be subject to penalties for failing to meet their obligations. Hence, obligation sys-
tems are subject to a variety of attacks by adversaries. Attacks include creating

obligations that are not undertaken by the obliged principals, freeing princi-
pals from their obligations, causing principals to violate their obligations, and
preventing obligation monitors from detecting violations of obligations. Hence,
a secure DSA system must protect against such attacks while managing DSAs
and monitoring for potential violations of obligations.

References

10.

11.

12.

13.

. Arvind Arasu and Jennifer Widom. A denotational semantics for continuous

queries over streams and relations. SIGMOD Record, 33(3):6-12, 2004.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In Proceedings of the ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 1-16,
2002.

Claudio Bettini, Sushil Jajodia, Xiaoyang Sean Wang, and Duminda Wijesekera.
Obligation monitoring in policy management. In 3rd IEEE International Workshop
on Policies for Distributed Systems and Networks (POLICY 2002), pages 2-12,
June 2002.

Claudio Bettini, Sushil Jajodia, Xiaoyang Sean Wang, and Duminda Wijesekera.
Provisions and obligations in policy management and security applications. In
VLDB, pages 502-513, 2002.

Claudio Bettini, Sushil Jajodia, Xiaoyang Sean Wang, and Duminda Wijesekera.
Provisions and obligations in policy rule management. J. Network Syst. Manage.,
11(3), 2003.

Gavin M. Bierman, Erik Meijer, and Wolfram Schulte. The essence of data ac-
cess in Cw. In Proceedings of the 19th European Conference on Object-Oriented
Programming (ECOOP 2005), volume 3586 of Lecture Notes in Computer Science,
pages 287-311. Springer, 2005.

Jan Chomicki, Jorge Lobo, and Shamim A. Naqgvi. Conflict resolution using logic
programming. IEEE Trans. Knowl. Data Eng., 15(1):244-249, 2003.

Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The Pon-
der policy specification language. In POLICY ’01: Proceedings of the International
Workshop on Policies for Distributed Systems and Networks, pages 18-38, London,
UK, 2001. Springer-Verlag.

Hans-Dieter Ehrich and Carlos Caleiro. Specifying communication in distributed
information systems. Acta Inf., 36(8):591-616, 2000.

Babak Sadighi Firozabadi, Marek J. Sergot, Anna Cinzia Squicciarini, and Elisa
Bertino. A framework for contractual resource sharing in coalitions. In Proceedings
of the 5th IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY 2004), pages 117-126, 2004.

Pedro Gama and Paulo Ferreira. Obligation policies: An enforcement platform. In
Proceedings of the 6th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2005), pages 203-212, 2005.

Manuel Hilty, David Basin, and Alexander Pretschner. On obligations. In 10th
European Symposium on Research in Computer Security (ESORICS 2005), volume
3679 of Lecture Notes in Computer Science, pages 98-117. Springer, 2005.

Keith Irwin, Ting Yu, and William H. Winsborough. On the modeling and analysis
of obligations. In To appear in Proceedings 13th ACM Conference on Computer
and Communications Security, 2006.

14.

15.

16.

17.

18.

19.

20.

Alexander Keller and Heiko Ludwig. The WSLA framework: Specifying and mon-
itoring service level agreements for web services. Journal of Network and Systems
Management, Special Issue on E-Business Management, 11(1), March 2003.

Gary T. Leavens, Tim Wahls, and Albert L. Baker. Formal semantics for SA style
data flow diagram specification languages. In Proceedings of the ACM Symposium
on Applied Computing (SAC), pages 526-532, 1999.

Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava.
Answering queries using views. In Proceedings of the Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 95-104,
1995.

John-Jules Ch. Meyer, Roel Wieringa, and Frank Dignum. The role of deontic
logic in the specification of information systems. In Logics for Databases and
Information Systems, pages 71-115. Kluwer, 1998.

Jaehong Park and Ravi Sandhu. The UCONpp@ usage control model. ACM
Transactions on Information and System Security, 7(1):128-174, 2004.

Len Seligman, Arnon Rosenthal, and James Caverlee. Data service agreements:
Toward a data supply chain. In Workshop on Information Integration on the Web,
at VLDB 2004, 2004.

Vipin Swarup, Len Seligman, and Arnon Rosenthal. Specifying data sharing agree-
ments. In Seventh IEEE International Workshop on Policies for Distributed Sys-
tems and Networks (POLICY’06), pages 157-162, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

