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ABSTRACT 
 
Faced with a backlog of audio recordings, users of automatic speech 
recognition (ASR) systems would benefit from the ability to predict 
which files would result in useful output transcripts in order to 
prioritize processing resources.  ASR systems used in non-research 
environments typically run in “real time”.  In other words, one hour 
of speech requires one hour of processing.  These systems produce 
transcripts with widely varying Word Error Rates (WER) depending 
upon the actual words spoken and the quality of the recording.  
Existing correlations between WER and the ability to perform tasks 
such as information retrieval or machine translation could be 
leveraged if one could predict WER before processing an audio file.  
We describe here a method for estimating the quality of the ASR 
output transcript by predicting the portion of the total WER in a 
transcript attributable to the quality of the audio recording. 
 

Index Terms— Acoustic noise, Speech Recognition 
 

1. BACKGROUND 
 

The quality of the output transcript of an automatic speech 
recognition system is typically captured by the word error rate 
(WER) metric;   
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where S is the number of incorrect words substituted, I is the 
number of extra words inserted, D is the number of words deleted 
and N is the number of words in the correct transcript.  While we 
will adopt the common practice of referring to WER as a percent, it 
must be understood that it is possible to have WER exceed 100%.   
 
The WER threshold for acceptable performance is different for 
different applications.  It has been shown that good document 
retrieval performance is possible even with a 66% WER [1] but that 
precision begins to fall off rapidly when WER gets above 30% [2].  
While there is no accepted standard performance metric for machine 
translation, studies have been performed showing the correlation 
between WER and one common machine translation metric the Bleu 
score [3,4].  Knowing the WER threshold for usable transcripts and 
an estimate of WER, processing resources can be allocated to only 
those files predicted to yield usable results.  Our goal here is to 
provide such a WER prediction metric. 
 
Every automatic speech recognition system has a limited 
vocabulary.  If a spoken word is not included in this vocabulary, the 
transcribed word will be in error and WER will increase.  
Additionally, ASR systems rely on a language model (LM) which 

assumes that some sequences of words are more likely than others.  
If an incorrect language model is used, the WER will increase.  If 
an ASR system intended for office dictation is applied to 
recordings of radio conversations between pilots and the control 
tower, both out of vocabulary (OOV) words and a mismatched 
language model will contribute to a higher WER.  The final 
component contributing to WER is how well the actual audio 
characteristics match the ASR system’s acoustic model.   
 
In our proposed approach, an estimate is made of the expected 
WER caused by OOV and the system language model for 
recordings of a particular type; for example the family of 
intercepted control tower to pilot radio communications.  The 
audio quality tool described here is then used to estimate the delta 
WER (DWER) added to this estimate based upon the audio quality 
of individual files under evaluation.  This total predicted WER 
may then be used to estimate the quality of the anticipated ASR 
transcripts for the ultimate application such as machine translation.  
 

2. EXPERIMENTAL SET-UP 
 
2.1  Estimating OOV & LM Components of  WER  
To arrive at an estimate of the WER to be expected even with a 
perfect acoustic model match, the following steps are taken.  First, 
a representative subset of the family of files to be processed is 
manually transcribed creating reference transcripts.  These 
transcripts are re-recorded using a quality microphone in a quiet 
environment and the resulting files transcribed by the ASR 
system.  These “clean” recording are considered to have perfect 
audio quality and their average measured WER becomes the 
estimate of the WER resulting from a mismatch in the language 
model and the use of out of vocabulary words  for the entire 
collection of recordings. 
 
2.2  Audio Quality Evaluation 
In our work, audio quality was evaluated using the “SPeech 
Quality Assurance” (SPQA) tool [5] from NIST.  Discussions of 
audio quality typically refer to “signal-to-noise ratio”.  However, 
this only makes sense if one has access to the signal and noise 
components separately.  The recordings which are the target of 
this work contain both speech and noise combined and one must 
estimate the component of the signal attributable to noise.  The 
NIST SPQA tool calculates the RMS power within a sliding 20ms 
window.  Each reading contributes to a histogram used to identify 
the power during non-speech times attributable to noise and the 
power when both noise and speech are present.  Using these as 
indicated in equation #2, a “speech-to-noise ratio” (SNR) metric is 
calculated. 
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Figure #1 Delta WER resulting from the addition of various 
levels of white noise. 
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Two files were used during our search for correlations between 
noise and DWER.  The “ICX” file was a 4.5 minutes (717 words) 
reading of fifteen news stories relating to the Iraq constitution.  The 
“AAR” file was a 2.6 minute (475 words) extract from an original 
recording of two male speakers conducting an interview on a topic 
outside the anticipated domain of the ASR system.  The “clean” 
recordings of these files were made using GoldWave™  configured 
for 16kHz sampling rate, PCM (no compression) and a Labtec™ 
microphone.  These clean recordings had WERs of ICX = 16.9, 
AAR = 28.  Since the ICX transcript was taken from printed web 
news stories, there was no original audio for evaluation.  The actual 
original AAR recording had WER = 82.7 indicating significant 
degradation due to audio quality. 
 

3.  PREDICTION METRICS 
 
In our search for an audio quality metric we investigated the impacts 
of white and colored noise and the use of single or multiple audio 
quality features. 
 
3.1  Single Feature White vs. Colored Noise 
We first evaluated the impact of “white noise” (noise whose energy 
is equally distributed across the frequency spectrum).  White noise 
at various amplitudes was added to the original “clean” recordings 
and the resulting SNR to WER relationship was determined.  Since 
we are interested in the DWER rather than total WER, Figure #1 
shows the DWER for our two files at various SNR settings. 
 
The addition of small amounts of white noise, SNR > 40dB, does 
not effect performance.  Similarly, when the added noise is too 
great, SNR < 10dB, WER becomes large enough to render the 
system unusable for most if not all applications.  We focus our 
attention on SNR in the range of 15 – 25dB.  In this range, a first 
approximation of the DWER to SNR relationship is: 
 

( whiteSNRDWER *56.6165−= )                            (Eq. 3) 
 
To check the repeatability of this SNR to DWER prediction, we 
divided the single “clean” ICX file into its 15 individual news 
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Figure #2: AAR audio file speech-to-noise ratio in mel-warped 
frequency bins  
 
stories and added white noise resulting in SNR = 15 – 25 dB.  
While the average DWER for the 15 passages does indeed 
decrease as expected as the input SNR increases, there is a non-
trivial average error (avg. = 8.5) in the predicted DWER at all 
levels of input noise.  However, we applied the single feature 
white noise relationship (eq. 3) to the original AAR recording.  
The SNR calculation for the original AAR file was SNR = 26; 
which our equation predicts will have little or no degradation in 
the total WER for the file.  Since the actual DWER = 54.7, 
something was obviously wrong.  We assumed that treating the 
noise as white noise was too simplistic.  For our remaining 
experiments we used the AAR recording allowing us to focus on 
colored rather than white noise. 
 
We began by evaluating the noise in the original AAR file using a 
bank of twelve 51-tap overlapping bandpass filters whose center 
frequencies spanned the 0-8khz bandwidth using the mel warping 
relationship employed by ASR systems to mimic the logarithmic 
response of the human auditory system (eq 4). 
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Looking at figure #2, it is clear that the overall SNR=26 is 
influenced by the higher frequency bands but does not reflect the 
poor signal quality in the lower frequencies known to be critical 
for ASR performance.  If we use the frequency specific 
information from our filters and replace our overall SNR 
measurement with a simple average of the first eleven frequency 
bins (Avg11 = 17), our white noise DWER/SNR predictor 
developed using the ICX file is only off by 2% when applied to 
the original AAR recording.   
 
To see if this “avg11” metric is robust, we used GoldWave™ to 
create two types of colored noise.  We filtered the white noise file 
used in earlier experiments to create band limited noise files with 
bandwidth = 1kHz ranging from 0-8kHz.  The bandwidth of these 
noise files intentionally did not agree with the mel-warped 
frequency analysis tool since one can’t depend upon noise to fall 
neatly into preferred bandwidths.  Noise in only one of these eight 
frequency bands was added to files at randomly selected 
amplitudes.  We refer to this as “narrow noise”.  Contributions, 
scaled to randomly selected relative amplitudes, from all eight  
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Figure #3 DWER resulting from eight band limited (1kz)  noise 
components added at random amplitudes. 
 
bandwidth limited noise files were used to create “spread noise”.  
These two types of colored noise files were added to the “clean” 
recording of the AAR file.  The relationship between DWER and the 
AVG11 SNR metric for the 124 files corrupted with spread colored 
noise with average SNR in our identified range of 15 – 25dB is 
shown in Figure #3.   
 
While the best fit line results in a prediction for the original AAR 
file with only a 7% error, there is more variance across the 
development files than we would like.  When the 29 narrow noise 
files are added (Fig. #4), the fit becomes clearly unacceptable.  Most 
of the files corrupted with narrow noise have better performance 
than the average SNR would predict.  A possible explanation for this 
is that the acoustic models for most sub-word units rely on 
information across the full frequency spectrum.  When noise is 
isolated to a single band of frequencies, the acoustic models are 
robust enough to still make the correct decision.  When the noise is 
everywhere, the models have no good information and make more 
mistakes.  
 
3.2  SNR Below Threshold Metric 
Our simple SNR average assumes that noise in all frequency bands 
is equally important to DWER.  As already noted, this is not true.  
Using the known frequency dependence and the previous 
observation that SNR above some maxSNR threshold has no impact 
on DWER, we developed a new set of metrics.  One consideration in 
the creation of these new metrics was our desire to limit the number 
of frequency selective filters needed for our DWER prediction.  The 
SNR tool processes the output of each filter in any specified filter 
bank independently.  Therefore each added frequency band 
increases the processing time which we are trying to minimize.  
Starting with the same 12 overlapping frequency bins, we 
experimented with using all 12 filter bank outputs or only the 9 
whose regression coefficients contributed at least 1% of the total 
predicted DWER.  Both of these metrics had an average error of 4.7 
on the development files.  Choosing a different MaxSNR threshold 
for each filter bank output rather than a single common threshold 
allowed us to use only 6 outputs from the filter bank and further 
reduced the average error to 4.0.  We next incorporated the 
observation that once noise is bad enough it causes no further 
degradation in WER.  We therefore set a cap on the maximum 
difference between the measured SNR and the MaxSNR threshold.  
This reduced average error to 3.75.  Attempts to reduce the number 
of filters in our filter bank below 6 resulted in an unacceptable 
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Figure #4 DWER resulting from colored noise files limited to a 
single band limited noise component and noise spanning the 
entire frequency band  
 
reduction in performance.  For example, our best 3 band metric 
doubled the average error. 
 
3.3  Six Non-Overlapping Filters 
The six bins with the best performance just described spanned the 
frequency range from 150-6500Hz.  However, it left a gap which 
ignored noise between 2.6-4.1Khz.  We developed a final metric 
spanning the same 150-6500Hz frequency range with a six bin 
filter bank of non-overlapping mel-warped filters.  While 
frequencies above 6500Hz were ignored, there was no gap in our 
identified range of interest.  The correlation between predicted and 
actual DWER for this final metric is shown in Figure #5.  This 
metric resulted in an increase in the average error from 3.75 to 4.7 
on the development data but we suspected that it would generalize 
better to unseen data.   
 
The steps in generating our DWER prediction which incorporates 
both a maximum and a minimum level of noise within a specified 
filter bank is as follows.  Process the input audio through a bank of 
filters.  Use the SPQA tool to calculate an SNR measurement for 
each of the filtered outputs.  Calculate the difference between this 
SNR measurement and a filter specific maximum SNR threshold.  
Set any negative difference to zero and truncate any difference to a 
global maximum used for all filters. Use the resulting difference 
values in a linear regression.  The particular regression 
coefficients, thresholds and maximum delta used for our ASR 
system are shown in Table #1. 
 

 F6 F5 F4 F3 F2 F1 Int 
Coefficients 0.94 0.31 0.80 1.96 3.76 -3.56 0.83 
Threshold 29 30 35 23 25 21  
Max Delta 17       

Table 1: Regression coefficients used with the 6 filter bank 
prediction equation.  F# is the filter bank (F1 lowest freq.), 
Threshold is the maximum SNR value (dB) used to calculate a 
difference and Max Delta is the maximum allowed SNR 
difference for any filter bank SNR. 
 
Processing the outputs of all six filters in our filter bank requires 
30% of the audio file duration when run on a SunBlade 1500.  
Further savings could be realized by extracting sub-segments of  
long files and performing the evaluation on only these 
representative samples. 
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Figure #5  The predicted and actual DWER using the difference 
between the SNR measurement in six non-overlapping 
frequency bands and a maximum SNR threshold. 

 
4.  VALIDATION 

 
To evaluate our two six band metrics on unseen data, we again used 
GoldWave™ to create 65 test files with a different type of colored 
noise than used to this point in developing SNR to DWER 
relationships.  We filtered the white noise file used in earlier 
experiments to create narrower band limited noise files with 
bandwidth = 500Hz.  Noise files with random relative amplitudes 
across the entire spectrum from 0-8khz were created as well as files 
using 3 or 4 of these narrow bins sprinkled across the full frequency 
range.  The average error using the overlapping six bins with the 
range of uncovered frequencies grew to 26.1 while the non-
overlapping contiguous filter bank only increased to 11.3.  
 
Our final evaluation applied our best six band prediction relationship 
to two files collected from different domains than those used in the 
metric development.  Eval1 was a five minute (711 words) recording 
of a conversation between three civilians and  security personnel 
during a simulated exercise.  Eval2 was an eight minute (463 words) 
recording of an individual providing situation reports during a 
simulated exercise.  Both recordings were made with an OlympusTM 
DS-2 digital voice recorder.  The performance for these evaluation 
files is shown in table #2. 
 

File WER Predicted WER Error 
Eval 1 84.8 88.4 4% 
Eval 2 85.5 83.7 2% 

Table #2  Prediction performance of the six band metric applied 
to field data. 
 

5.  CONCLUSION 
 
In this paper we have shown that it is possible to use an audio 
quality metric to estimate the word error rate in the output transcript 
of an ASR system. We have shown that the relative importance of 
noise at different frequencies makes it impossible to predict WER 
with a single speech to noise estimate across the entire frequency 
range.  Additionally we have seen both that noise below a minimum 
threshold does not impact performance and that increasing noise 
beyond a maximum threshold does not further degrade performance.  
We have shown that an approach which identifies and appropriately 
weights the noise in critical frequency bands between these two 

thresholds can make a usable approximation of actual ASR system 
performance. 
 
Future work should investigate the robustness of the described 
approach to a wider range of audio files and apply it to multiple 
ASR systems.  While we anticipate that the actual regression 
coefficients found during our work will differ when the ASR 
system changes, we believe that the approach is independent of the 
ASR system. 
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