
MTR06B0000055

MITRE TECHNICAL REPORT

Principles of Interoperability and Integration
Volume 1: Fundamentals

August 2006

Harvey Reed, D520

Sponsor: 554th ELSW Contract No.: FA8721-04-C-0001
Dept. No.: D520 Project No.: 0305400C-GC
Derived By: Downgrade To:
 Declassify On:

The views, opinions and/or findings contained in this report are those of
The MITRE Corporation and should not be construed as an official
Government position, policy, or decision, unless designated by other
documentation.

©2004 The MITRE Corporation. All Rights Reserved.

Corporate Headquarters
McLean, Virginia

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-1124

 iii

Approved by:

 iv

 v

Abstract
This is the second edition of the MTR originally titled “Principles of Interoperability and
Integrations”, now publicly re-released as :”Principles of Interoperability and Integration, Vol 1-
Fundamentals”.

As work progressed after the original release, Net-Centric Conversations (NCC) was greatly
expanded upon. In addition, Nodes combined with Discovery Scopes to become Sub-Enterprises.
These two topics are the basis of “Principles of Interoperability and Integration, Vol 2- Net
Centric Conversations and Sub-Enterprises”. This new 2nd MTR will be published early Fall 2006,
and will also be publicly released.

The promise of net-centric warfare is based on the assumption that services (especially web
services) can freely converse amongst themselves, and exchange data via messages. The reality is
that this is a hard problem, due in no small part to the realities of how we organize services to run
within Nodes. In addition, DISA NCES efforts have encouraged us to view the world through
nine service types, and much of the discussion has been stove-piped, focusing on one service type
at a time.

This paper brings together net-centric elements of messaging, discovery and security and
examines the minimum coordination to achieve a net-centric conversation between services. This
coordination becomes the limiting factor in how quickly we can create, update, or delete a net-
centric conversation. In fact we can define an agility metric for the enterprise as: “the highest
sustainable rate of creating, updating, and deleting net-centric conversations”. An example can be
Weather service. If your organization wants to use it (their web service) do you expect to be able
to make this connection within months? Weeks? How about minutes or hours? That is what we
need to strive for to meet an agile, small adversary.

 vi

 vii

1 Executive Summary
Interoperability and integration is the exchange of messages1 between systems. Previously,
systems interoperated by constructing unique interface agreements. This created a field of
entrenched stovepipes with three properties:

• The field of stovepipes is not agile – they cannot form new relationships easily.

• It is hard to map “mission threads” through the field of stovepipes because of the unique
nature of each interface.

• Increasing overall connectedness creates “n-squared” point-to-point connections.

Recent innovations concerning sharing information2 and particularly “Communities of Interest” 3
enable groups to regularize the process of creating and maintaining a shared vocabulary that all
participants can use. In addition to enabling broader human understanding of community topics,
these shared vocabularies can be used to constrain the payload of “machine-to-machine”
messages exchanged between services so that all participating services can understand and
process the payloads.

The “net-centric conversation” is the key enabler of interoperation and integration between
services in nodes. A net-centric conversation is more than just exchanging messages in a
“mission thread”. It is also a set of enabling context required for the conversation to mechanically
take place, as well as a set of dynamic processes to maintain the context. Moreover, the exchange
of messages can span the enterprise, not just between two services.

Agility of the enterprise is defined as the ability to change and/or form new net-centric
conversations rapidly. We need to be able to add/subtract participants to existing net-centric
conversations, as well as create new net-centric conversations. The processes to create and
maintain the enabling contexts of net-centric conversations depend on organizing nodes around
services and other nodes, and the interplay with various types of discovery services. The end result
is a scalable view of an enterprise architecture, with dynamic processes to support agile net-centric
conversations.

This paper concludes with appendices:

• Foundations – summary of the Enterprise Service Bus.

• Architecture Proposal – create an enterprise master capability list automatically as a side
effect of the net-centric conversation enabling processes.

• Generic Data Center Proposal – use generic data centers a means to accelerate the velocity
of net-centric acquisition.

1 The choice of vendor or product used for the hardware or software is not relevant and is not a consideration.
We assume the use of contemporary standards, such as JMS, SOAP, WSDL, BPEL, etc. that enable the
technical exchange of messages regardless of platform software. All major messaging vendors can “bridge”
between each other.
2 DoD Directive 8320.2, "Data Sharing in a Net-Centric Department of Defense", 12/02/2004
3 MITRE Technical Report, "COI Handbook: Practical Guidance for Communities of Interest (COIs)
Implementing the DoD Net-Centric Data Strategy", December 2004, Dr. Scott Renner, Dan Hebert, Steve
Rainer, John Wilson, authorized distribution only

 viii

2 Forward
This paper has evolved from the previous v0.3 version4 internal paper which was the basis of the
GCSS-AF Enterprise Service Bus to the current version which forms the basis of the future
GCSS-AF direction of nodal interoperability, including the ESB “Extension Cord” (see Appendix
– Enterprise Services). Much of the v0.3 paper has been updated, condensed, and re-packaged as
an Appendix – Foundations.

This paper now incorporates much of the enterprise architecture “soundtrack” that I have used in
the full-day ESB training sessions given at Maxwell AFB Gunter Annex, Wright-Patterson AFB,
Randolph AFB, Air Staff, and other venues such as TEMs. The overall value of this paper is to
collect in one place the current thinking of one of the few “generic data centers” in the Air Force,
and perhaps DOD (see Appendix – Generic Data Center Proposal).

All of the principles discussed in this paper have general applicability and are not dependent on
any feature of GCSS-AF. Occasionally a capability in GCSS-AF will be cited to illustrate a point,
since GCSS-AF is a pathfinder for using an Enterprise Service Bus, and other innovations. Also I
use the word Node to mean a “place to run services”, and do not mean to denote large datacenters
such as an AOC or GCSS-AF. A Node could just as easily be a computer in a backpack for an
Army Ranger.

The biggest value of this paper is to expand and reinforce the principle of interoperability and
integration based on “net-centric conversations”5 via messages. The value of a net-centric
conversation is the recognition of the importance of interconnectedness and patterns of interaction
over a system optimized in isolation6. Much of the discussion in this paper serves to define the
basis of "interoperability" for two or more Nodes (and their services) to work together, that uses
"data interoperability" at the message level. This moves us away from the "tyranny" of n-squared
highly specific interconnects7, and provides “effective linking” which is one or the core
foundations of Net-Centric Warfare8.

There is still much work to do on this paper. Many people previously have attempted to define
interoperability and integration, and I recognize that it is difficult to create a general theory of
interoperability and integration that will be accepted throughout MITRE, and indeed throughout
the engineering profession.

Thus, the approach is not to create a general theory, but rather to describe and constrain the
problem, with a practitioner approach. In addition to posting on the USAF Portal, I am posting
this on the MITRE SEPO portal to extend the collaboration and harmonize

4 This version is posted on the “GCSS-AF ESB and Integration” Community of Practice in the USAF Portal, as
well as the author’s MITRE transfer folder.
5 This is a term we use in GCSS-AF to focus discussions concerning integrating systems
6 "The Agile Organization", Atkinson and Moffat, CCRP, 2005, in particular see Fig 7.4 and related text.
7 "Power to the Edge", Alberts and Hayes, CCRP, 2003, in particular see Chapter 7 and Fig 16.
8 "Net-Centric Warfare" Alberts, Garstka, and Stein, CCRP, 1999, p.91

 ix

Table of Contents
1 Executive Summary vii

2 Forward viii

3 Principles of Interoperability and Integration 3-1
3.1 Tenets 3-1

3.2 Realities 3-2

3.2.1 Social 3-2

3.2.2 Physical 3-3

3.3 A Net-Centric Conversation requires Context and Process 3-3

3.3.1 An example net-centric conversation 3-4

3.3.2 Enabling Context for Web Services 3-4

3.3.3 Message Context 3-5

3.3.4 Dynamic Processes to Maintain Context 3-6

3.3.5 Three Types of Net-Centric Conversation 3-6

3.4 Nodes Integrate Services 3-11

3.4.1 Participants 3-14

3.4.2 Scope of Influence 3-15

3.4.3 Opportunities 3-15

3.5 Nodes Interoperate 3-16

3.6 Nodes Interoperate using Federation 3-19

4 The Enterprise 4-1
4.1 Enterprise Discovery Service 4-2

4.2 Enterprise Messaging Service 4-3

4.2.1 Centralized 4-4

4.2.2 Jumper Cables 4-4

4.2.3 Extension Cords 4-5

4.3 Enterprise IA- Security Services 4-8

4.4 Ecosystem of Data 4-9

4.4.1 Incumbents and Satellites 4-19

5 In Closing A-1

Appendix A Architecture Proposal A-1

Appendix B Generic Data Center Proposal B-1

Appendix C Foundations C-1

 x

C.1 Services C-1

C.1.1 The Unit of Change C-1

C.2 Service Lifecycle C-2

C.2.1 Supporting Business Processes C-2

C.2.2 Supporting Tools C-3

C.2.3 Requires Social Adaptation C-3

C.3 Service Orientated Architecture C-4

C.3.1 Promise of Compose-ability and Adaptability C-4

C.3.2 Requires Organizing Principles C-4

C.4 Enterprise Service Bus C-5

C.4.1 Motivation C-5

C.5 SOA Organizing Principle C-6

C.5.1 5 Aspects C-6

C.6 Intrinsic Architecture C-6

C.7 Methods of Integration C-8

C.8 Integration Architecture C-10

C.9 Extensibility C-11

C.10 Points of Presence C-11

C.11 5 Phases of Use C-12

C.11.1 Phase 1 Simple Publish with FTP Adapter C-14

C.11.2 Phase 2 – Consolidate output interfaces/feeds C-15

C.11.3 Phase 3 – Migrate to XML change records over JMS C-16

C.11.4 Phase 4 – Add web service interfaces C-17

C.11.5 Phase 5 – Plug into business processes C-18

C.12 Publish/Subscribe C-19

C.13 Message Envelope C-22

 xi

List of Figures
3-1 Generalized View ...3-4

3-2 Publish Subscribe JMS...3-7

3-3 Request-Reply SOAP/WSDL..3-8

3-4 Business Process BPEL..3-9

3-5 A Node is a Security and Management Parameter..3-12

3-6 Integrated Services..3-13

3-7 Participants ..3-14

3-8 Node with Public and Private Services..3-16

3-9 Interoperation between Nodes- Reliable Messaging (Soap Request/ Reply)3-17

3-10 Interoperation between Nodes- Portal Linking (Browser) ...3-18

3-11 Operation between Nodes: Un-Reliable Messaging (SOAP Request/Reply)3-18

3-12 Interoperating Nodes- Exchanging Soap Messages (with a Nested node)3-19

3-13 Scope of Influence ..3-20

3-14 Discovery Registry Tracking Public and Private Services ...3-21

3-15 Conversation between Two Nodes (in the Same Discovery Scope)....................................3-22

3-16 Conversation between Two Nodes, Across Discovery Scopes..3-23

3-17 Peer Discover Scopes “Federate” ..3-24

3-18 Nested Discovery Scopes”Federate” ...3-25

3-19 Nested and Peer Discovery Scopes “Federate”...3-26

4-1 GI4-2G-ES (NCES)..4-2

4-3 Enterprise Messaging – Centralized ..4-4

4-4 Enterprise Messaging- Jumper Cable ..4-5

4-5 Enterprise Messaging- Extension Cord ...4-6

4-6 Enterprise Messaging- Chaining Extension Cord...4-7

4-7 Enterprise Messaging- Chaining Extension Cord...4-8

4-8 Data Exposed through Services ...4-10

4-9 AF Data Services Architecture- Modernization for the ESB ...4-11

4-10 Data Warehouse..4-12

4-11 Data Warehouse- Time- Based Analytics ...4-13

4-12 Portal for Viewing Data..4-14

4-13 Updating Data through Services ..4-15

4-14 Ecosystem of Data ..4-16

 xii

4-15 Aggregate Transactions- Publish/ Subscribe...4-17

4-16 Real Time Queries- Request/Reply ...4-18

4-17 Issue Command- Request/ Reply...4-19

A-1 Building of Master Capability List for the Enterprise...A-2

B-2 Large Generic Data Center (Node) .. B-2

B-3 Small Generic Data Center (Node) .. B-3

B-4 Generic Data Center- Bridging VPN’s .. B-4

B-5 Large Generic Data Center- Using Akamai... B-5

B-6 GCSS-AF ESB Roadmap- Cross Domain Solution v1.0 ... B-6

B-7 ESB CDS Semi-Automatic Solution – Cross Domain Solution v1.0 B-7

B-8 ESB CDC Automatic Solution- Cross-Domain Solution v2.0... B-8

C-1 From NCES (CES Design Doc 0.6)... C-1

C-2 From NCES (CES Design Doc 0.6)... C-2

C-3 Notional Service Lifecycle ... C-3

C-4 Social Organizations adoption of SOA.. C-4

C-5 Creating Services, is not enough .. C-5

C-6 ESB Intrinsic Architecture View.. C-7

C-7 ESB Methods of Integration... C-9

C-8 ESB Integration Architecture ... C-10

C-9 Extensible ESB.. C-11

C-10 ESB Points of Presence... C-12

C-11 Phase 1... C-14

C-12 Phase 2... C-15

C-13 Phase 3... C-16

C-14 Phase 4... C-17

C-15 Phase 5... C-18

C-16 GCSS-AF Pub/Sub Integration .. C-19

C-17 JMS Topic Tree... C-20

C-18 GCSS-AF Pub/Sub Authorization ... C-21

C-19 GCSS-AF Pub/Sub Distribution .. C-22

C-20 GCSS-AF ESB Message .. C-23

3-1

3 Principles of Interoperability and Integration
The most compelling reason to gather all of the principles in one place is to create a practical
model of how to create and grow a net-centric enterprise. This net-centric enterprise has many
moving parts and is complex. The biggest challenge from a human psychology point of view is to
find ways to reduce complexities in ways that actually help9.

The goal is to outline a few important organizing principles. These principles reduce the
complexity by means of scaling, identifying key points, etc. In short, this means reducing the net-
centric enterprise to a manageable number of factors.

3.1 Tenets
The basic tenets of our principles of interoperability and integration consists of one big
assumption, a set of things that we hold to be true, and a series of constraints that we impose an
order to make this exercise tractable10.

Our one big assumption is that we are not creating a general theory. Rather, we are creating a
practical approach to construct new systems out of existing systems, by enabling net-centric
conversations between the services of these systems. This forges a way ahead to a net-centric
future.

The set of things that we hold to be true, come in the form of foundational elements. These
foundational elements are well understood throughout the Air Force and DOD community and
form the basis of our constructionist approach. These things are:

• IP messages are delivered via the GIG.

• Mission capability is delivered via services. These services may be modern11 or legacy.
A legacy system can be considered a service as long as its interfaces are well-managed
and adapted into modern standards. This is a function of program management discipline,
not a technology limitation.

• Our constructed architecture will be compliant with NCOW-RM.

• The enterprise services that we describe will be compliant with NCES.

9 “The Logic of Failure”, Dietrich Dorner, Metropolitan Books, 1996, p. 185. Dorner outlines basic failure
modes in psychology experiments where subjects had to mange complex systems.
10 This document aligns with, and goes into interoperability detail first outlined in “Net-Centric Enterprise
Solutions for Interoperability (NESI)”, Navy PEO C4I & Space RAPIDS Team, Air Force ESC C2ERA Team,
March 2005
11 The use of the term “modern” here refers to contemporary techniques of constructing services that comply
with standards such as JMS, SOAP, WSDL, BPEL, etc.

3-2

A series of constraints make our constructionist approach tractable. The constraints are as
follows:

• We only consider service-oriented architectures.

• We only consider Air Force and DoD IT intensive systems.

• We do not consider the problem of data interoperability and integration, except for the use
of COI vocabularies in message payload12.

• We use a system-of-systems approach to build larger systems out of smaller systems.

We also employ scaling techniques to reduce complexity. We envision that our constructionist
approach to the principles of interoperability and integration will be a tactical complement to
strategic net-centric initiatives such as NCOW-RM and NCES.

3.2 Realities

3.2.1 Social
Any system-of-systems construction technique must be in harmony with the social realities of the
people and organizations behind the systems.

The first and most important reality is that people build systems to reflect themselves. The reason
this is important is that we can examine social systems to determine typical grouping constructs.

For example the most common grouping construct for closely related people is peer-to-peer and
hierarchical13. In fact, we see this organizational principle, extensively applied within the DOD.
Of course within the DOD there is no single top absolute group; rather it is a forest of top groups.
Indeed, we can look across the larger DOD enterprise, which includes other government partners,
coalition partners, industry partners, and academic partners and see that this pattern still applies.

In addition, we need to keep in mind that the peer-to-peer and hierarchical grouping is constantly
changing. This puts stress on tightly coupled systems that mimic an old grouping, but need to
change to a new grouping and cannot do so easily. This makes the ability to form new net-centric
conversations a high priority.

We also see this grouping effect influencing the vocabularies of the participants. In recent terms,
we call these groups communities of interest or COI. The social fact that there could never be one
complete single internally resolved vocabulary has a big impact on the physical realities of
systems as we will see below.

When we look at the social function of funding and acquisition patterns of DOD systems, we note
that much of the IT funding goes to specific, some would say stovepipe, systems. Thus, initiatives
such as NCOW-RM are crucial, since they provide strategic, high-level net-centric patterns across
stovepipe programs to move toward a net-centric future.

12 Terry Blevins of MITRE is in the final process of publishing a data interoperability paper
13 “Why Hierarchies Thrive”, Harold J. Leavitt, Harvard Business Review, Mar 1, 2003

3-3

3.2.2 Physical
Any system-of-systems construction technique must also be in harmony with the physical realities
of IT systems.

The first item to note is that most people would probably be more comfortable with one system
rather than many systems. The reason for this is simple, a single system allows for more effective
command and control.

Two factors work against having one system. The first is social as we have seen above. Groups
that have authority delegated to them typically want their own systems with their own vocabulary
or COI. The second is physical. There are limits to how big a single system can be. These limits
have to do with memory, disk, span of database transactions, and the latency of user interaction.
Thus, even in a single data center, we have multiple servers. We also divide data centers around
centers of authority, and give edge servers to tactical users14.

What we are left with is the social and physical reality that there can never be just one single
system. Rather, we will always have many systems, organized similarly to the organizations
behind them. Thus, our constructionist approach must be able to take this multitude of systems,
and using organizing principles create agile higher level systems out of lower level systems, that
are capable of participating in flexible net-centric conversations15.

3.3 A Net-Centric Conversation requires Context and Process
NET-CENTRIC CONVERSATION: An exchange of messages with associated enabling
context as well as a set of dynamic processes to maintain the context.

A net-centric conversation is the exchange of messages among services. A conversation can be
weaved through many services, across many security domains, and have human-in-the-loop
guidance at critical points.

The agility of our enterprise depends on being able to rapidly create and modify net-centric
conversations, and thus the path of information sharing among participants. The robustness of the
conversations depends on well formed message exchanges, particularly in the case of
SOAP/WSDL. Even when following standards, there are interoperability gaps. We will not cover
them here, and the reader is referred to best practices16.

The net-centric conversation can only take place when all services that need to interact with each
other share the enabling context, and can understand each others message context.

14 A good example of this is the use of Akamai edge servers world-wide by GCSS-AF to complement the data
center enclave that is distributed between Gunter Annex and Wright-Patterson AFB
15 See Appendix – Generic Data Centr proposal for discussion about the economics of consolidation. GCSS-AF
has seen tremendous economies of scale. That being said, there will never be one big data center for the whole
DoD, and this paper explains how to glue everything together, whether it’s a generic data center, or a more
specialized system.
16 "XML Schema Best Practices, Making Web services Interoperable", Jason Mathews, MITRE April 2004,
MITRE Technical Report # 04-0508

3-4

3.3.1 An example net-centric conversation
Looking at a net-centric conversation from a topology perspective, we can see the services as the
points in a graph, and the messages exchanged over the arcs. When we “cut” the message
exchange lines entering or leaving a service, we see all of the required information that must be
exchanged prior to being able to exchange messages.

3-1 Generalized View

3.3.2 Enabling Context for Web Services
The enabling context for the net-centric conversation is the set of mutual knowledge among the
services of each other, and of the messages, especially the payload. The payload is the content
(meaningful part) of the message; the rest is overhead for management by the enabling
middleware software. The enabling context and message context are not identical for all net-
centric conversation types (JMS, SOAP, BPEL), but there are enough similarities to start with the
web service. The term “endpoint” refers to the “address” of the entry point of the service.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

Net-Centric Conversation
Generalized view

Service

Messaging transport
Message exchange
Message

Key Takeaway
Services must know each
other (or their proxy) and
the messages exchanged

ServiceService

ENABLING CONTEXT
As messages are exchanged among

services, the services must cross
boundaries of local knowledge

The extent of knowledge sharing can be
determined by examining how the
regions around the services (N1-N3)
“cut” the message lines.

ENABLING CONTEXT
As messages are exchanged among

services, the services must cross
boundaries of local knowledge

The extent of knowledge sharing can be
determined by examining how the
regions around the services (N1-N3)
“cut” the message lines.

N1

N2

N3

3-5

Item Use Notes

Called endpoint The calling service uses
this to send the SOAP
request

Typically expressed as a
URL. For inter-nodal calls,
this URL is proxied

Callback endpoint If using asynchronous
messaging (preferred), the
response will come back in
a separate message, thus the
caller needs to expose an
endpoint

Typically expressed as a
URL. For inter-nodal calls,
this URL is proxied

Authentication The proxy of the called
service uses this to
determine the identity of the
caller.

Typically expressed as
X.509 certificates. if the
caller and called service are
in the same node (not
proxied), authentication will
not be required on each call

Authorization The proxy of the called
service uses this to
determine the identity of the
caller.

Typically expressed as
“roles”

Semantics The called endpoint
must understand how to
write a message, especially
the payload.

The payload is
consumed in the WSDL,
and described as annotated
schema

3.3.3 Message Context
The message context is that part of the exchanged message, in addition to the payload,

necessary for the cooperative sharing of messages. The issue of a consolidated list of URLs
is handled in the Appendix – Modest Architecture Proposal. Below is an example of message
context. The author suspects this context may vary from one Node to another, and thus the
context must be transformed at runtime when conversing between Nodes.

3-6

Item Use Notes

Payload See above enabling
context

Calling tracer A trace marking in the
message denoting the
calling service

Typically URLs to the
service repository of the
calling service

Payload tracer A trace marking in the
message denoting the
payload

Typically URLs to the
metadata repository of the
called service

3.3.4 Dynamic Processes to Maintain Context
We employ a dynamic process to share enabling and message context between services to
maintain net-centric conversations. Part of this process shares discovery registry information
between Nodes, which happens before runtime, and is covered below. Part of this process will be
to transform the message context from the conventions of one Node to another, which will happen
at runtime.

3.3.5 Three Types of Net-Centric Conversation
Before we examine the mechanics of sharing required information, and the organizing principles
we can apply, we will review the three basic building block types of conversation:

• Publish/Subscribe
• Request/Reply
• Business Process

These are described in more detail as methods of integration in the appendix –
Foundations/Enterprise Service Bus, at the end of this paper.

The first type of conversation is Publish/Subscribe using the JMS standard. A publisher sends a
message to a JMS Topic which acts as a proxy for any number of subscribers. In addition, there
are various levels of guaranteed message delivery. The subscriber receives the message from the
JMS Topic which acts as a proxy for the publisher. There can be any number of subscribers.
In this type of conversation we see that the knowledge sharing is focused on the JMS Topic.
When a new subscriber is added/subtracted, the publisher doesn’t have to know or change
anything. The subscriber must assure it can understand the message when it subscribes, and the
JMS Topic must be configured every time there is a change.

The error handling of this type is simple. The JMS Provider typically offers guaranteed messaging
so that the publisher sends once, and doesn’t have to test for successful delivery. Conversely the
subscriber doesn’t typically poll; it just waits on a queue for the message to be delivered with
assurance of delivery.

3-7

3-2 Publish Subscribe JMS

The second type of conversation is Request/Reply using the SOAP/WSDL standard. A requester
sends a message directly to the replier. The replier can “block” and send an immediate response
(synchronous), or send an immediate “ack” back, and send the content of the response back as a
separate message (asynchronous). Asynchronous SOAP messages are preferred, and lead to a
more loosely-coupled style of messaging.

In this type of message exchange we see that the burden of knowledge sharing is on each service.
When participants are added/subtracted the mutual exchangers must share knowledge. Thus the
effects of changing the conversation can be large.

The error handling of this type of conversation is complex. This is a serious weakness of this type
of conversation. The error handling comes in two parts:

• Error handling related to protocol weaknesses – SOAP is usually transported over HTTP
is weak and does not guarantee delivery of messages.

• Error handling related to business logic – consider that a single conversation can span
multiple services, with splits (no joins usually) and that multiple development
organizations are involved. There is no feasible way to assure uniform error handling
across an entire conversation.

The transport error handling can be mitigated by using guaranteed messaging to transport the
SOAP message at least across a WAN, where timeouts and other problems are more likely. Error
handling in complex conversations with a lot of business logic can only be mitigated by using a
business process engine, such as a BPEL engine, our third type.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

ENABLING CONTEXT
1. Publisher knows JMS Topic
2. Subscriber knows JMS Topic (can

be any number of subscribers)
3. Publisher and Subscriber both

understand message M-1

ENABLING CONTEXT
1. Publisher knows JMS Topic
2. Subscriber knows JMS Topic (can

be any number of subscribers)
3. Publisher and Subscriber both

understand message M-1

Net-Centric Conversation
Publish-Subscribe JMS

Publisher JMS Topic

Messaging transport
Message exchange
Message

PROCESS TO MAINTAIN
ENABLING CONTEXT
1. As publishers/subscribers are

added/subtracted from the
conversation, the JMS Topic config
is updated

PROCESS TO MAINTAIN
ENABLING CONTEXT
1. As publishers/subscribers are

added/subtracted from the
conversation, the JMS Topic config
is updated

M-1

JMS
Topic

Messaging queue

M-1

Key Takeaway
Services must know only
the JMS Topic and the
exchanged messages,

not each other

Subscriber
Subscriber

Subscriber
Subscriber

3-8

3-3 Request-Reply SOAP/WSDL

The third type of conversation is a business process using the BPEL standard, which in turn relies
on the SOAP/WSDL standards. A BPEL engine receives a message to initiate a business process,
which is described in BPEL (an XML extension). The BPEL engine, reads the BPEL file, and
orchestrates message exchanges with the participating SOAP/WSDL services. The orchestration
expressiveness of BPEL is extensive, and a business process designer can express scopes,

sequence flows, splits, joins, waiting for a message, etc. All of the interaction external to the
BPEL engine assumes web services via SOAP/WSDL.

In this type of message exchange, the BPEL engine knows about the WSDL interfaces of the
participating services, and the services know about the BPEL engine, but the services don’t have
to know about each other. This alone greatly increases the agility of our enterprise. When

participants are added/subtracted, it is easier to share the necessary knowledge in this type rather
than with a pure web service SOAP/WSDL set of calls.

The business logic error handling of this type is superior to pure SOAP/WSDL calls. Built into the
BPEL language are extensive provisions for fault handling and compensation. It is the most suited
for long-running transactions of all the types, since it is based on the SAGA long-running
transaction model17.

17 "SAGAS", Hector Garcaa-Molrna, Kenneth Salem, Department of Computer Science, Princeton University,
International Conference on Management of Data,
Proceedings of the 1987 ACM SIGMOD international conference on Management of data

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

ENABLING CONTEXT
1. Service-1 knows Service-2
2. Service-2 knows Service-1
3. Service-3 knows Service-2
4. Service-2 knows Service-3
5. Service-1 and Service-2 understand

message M-1
6. Service-2 and Service-3 understand

message M-2

ENABLING CONTEXT
1. Service-1 knows Service-2
2. Service-2 knows Service-1
3. Service-3 knows Service-2
4. Service-2 knows Service-3
5. Service-1 and Service-2 understand

message M-1
6. Service-2 and Service-3 understand

message M-2

Net-Centric Conversation
Request-Reply SOAP/WSDL

Service-1 Service-2

Messaging transport
Message exchange
Message

PROCESS TO MAINTAIN
ENABLING CONTEXT
As services are added/subtracted from
the conversation, knowledge of services
and message types need to be
distributed accordingly

PROCESS TO MAINTAIN
ENABLING CONTEXT
As services are added/subtracted from
the conversation, knowledge of services
and message types need to be
distributed accordingly

Service-3

M-1

M
-2

Key Takeaway
Services must know each
other and the exchanged

messages

Service-4

M
-3

3-9

The transport error handling can be mitigated using the same technique as with SOAP/WSDL
where messages can be transported via guaranteed messaging rather than HTTP.

3-4 Business Process BPEL

We can summarize the uses of the conversation types for building net-centric conversations as
follows:

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

ENABLING CONTEXT
1. BPEL engine knows Service-1
2. BPEL engine knows Service-2
3. BPEL engine knows Service-3
4. Service-1 and BPEL engine

understand message M-1
5. Service-2 and BPEL engine

understand message M-2
6. Service-3 and BPEL engine

understand message M-3

ENABLING CONTEXT
1. BPEL engine knows Service-1
2. BPEL engine knows Service-2
3. BPEL engine knows Service-3
4. Service-1 and BPEL engine

understand message M-1
5. Service-2 and BPEL engine

understand message M-2
6. Service-3 and BPEL engine

understand message M-3

Net-Centric Conversation
Business Process BPEL

Service-1

Messaging transport
Message exchange
Message

PROCESS TO MAINTAIN
ENABLING CONTEXT
As services are added/subtracted from
the conversation, the service needs to
understand its message types, and the
BPEL engine needs to be updated.

PROCESS TO MAINTAIN
ENABLING CONTEXT
As services are added/subtracted from
the conversation, the service needs to
understand its message types, and the
BPEL engine needs to be updated.

M-1

Business process engine

Key Takeaway
Services must know only
the BPEL engine and the
exchanged messages,

not each other

Service-3

Service-2

Business
Process
Engine

Start

? Action-1

Action-2

Start
?Action-1

Action-2

M-2

M-3

3-10

Conversation
Type

Messaging
Pattern

Ideal Use Weakness

Publish/Subscribe
JMS

1 Publisher
Many Subscribers

Disseminating
periodic reports or
events. Publisher
doesn’t have to
know who is
subscribing18

As a
convenience,
subscribers can
subscribe to a
wildcard (*) set of
topics, so they can
get messages from
new topics as they
are added

Not meant for
“chaining” together
in a long
conversation19.
Subscribers
however can
respond to
subscribed events
by kicking off
reactive business
processes (some
threshold was
exceeded for
example) as a form
of BAM

Request/Reply
SOAP/WSDL

1 Requester 1
Replier

A Replier can
transitively make
additional requests,
although this is
discouraged

Simple
request/reply, no
extensive chaining

This is useful
when there is too
much data to
publish everything,
rather let other
services query for

what they want

HTTP weakness
(no guaranteed
messaging)

Complex
business processing
makes error
handling
challenging

Business Process
BPEL

Many Many
via BPEL engine

Complex long-
running transactions
orchestrated among
a number of
SOAP/WSDL
services

Not suited for
simple (one-hop)
request reply20

18 Its worth noting that early use of Publish/Subscribe JMS within GCSS-AF tells us that the people
organizations want to know who is subscribing. This is fine, and doesn’t detract from the agility of the
conversation type. This paper focuses on the machine-to-machine aspects of net-centric conversations.
19 This is notwithstanding the fact that the initial use of Pub/Sub in Operations Support is doing crude bulk
message chaining as an emulation of current file handling. This gets participants on the ESB, where they can
continue to evolve independently, and eventually exchange change records via SOAP/WSDL in preparation for
the introduction of ERP BPEL driven business processes.
20 A developer could make an argument that every web service call is a one-hop interaction. However if a
SOAP/WSDL call can be correlated to an earlier active call (certainly the case for transitive calls), then we will

3-11

A service as a participant in a net-centric conversation only performs three functions:

• Process data – a service gathers data, compare, transform, merge, possibly sending an
event if a threshold is exceeded. A typical example is a publisher or subscriber.

• Answer query – a service is an info provider. If there is too much information to publish
everything, then answering specific queries is the preferred approach, and is far superior
than directly querying a database via SQL, esp. over ODBC. This is a key point of the net-
centric principles. Any data exchanged between services should be of the format of agreed
message payloads, for example a COI XML change record message format, not the
internal database tables of a particular instance of backing store. If you need to directly
access a database table, then you are really part of that same service or database.

• Perform command – a service wants to update one or more other services to create an
“effect” or update information. If the processing is complex, then consider using a BPEL
engine and a business process to implement the logic.

Next we will review a set of organizing principles to organize services within nodes. This
constrains and simplifies the process of sharing knowledge, which is a precursor to an agile
enterprise.

3.4 Nodes Integrate Services
INTEGRATION: A Node is a security and management perimeter which integrates a set of
services.

This perimeter maps directly to the people organization that has the authority and responsibility to
own and operate a set of mission capabilities embodied in the services. In simple terms, this
organization will typically put the services behind a firewall (security), and also be accountable
for the design, develop and runtime characteristics of the services (management).

say that is not a one-hop call, but part of a larger unit of preceding work, and must be correlated. This is the
basis for the complexity of error handling.

3-12

3-5 A Node is a Security and Management Parameter

This definition is service-oriented and abstracts away how a node is actually constructed. This is
important, because we want to include the hundreds of existing legacy systems that in effect,
function as or within nodes. We will describe organizing principles within a node that can be used
to modernize existing nodes, as well as construct new nodes.

The two organizing principles within a node are the enterprise service bus21, and service
management22.

The enterprise service bus integrates services by providing three methods of integration: (a)
publish/subscribe; (b) request/reply; and (c) business process or mission thread. Service
management assures that each service is consistently managed through the acquisition,
design/development, deployment, runtime, and sunset phases.

The enterprise service bus is an SOA equalizer. Any service (agnostic to type of service, modern
or legacy) can “adapt” into the ESB and participate in one or more methods of integration. The
enterprise service bus as an architectural construct is not at this time completely defined by
standards. However, there is common industry agreement that an ESB supports:

• Messaging – Guaranteed messaging between participants.
• Routing – Ability to route Publish/Subscribe and Request/Reply messages to their

endpoint destination without sender knowledge of the ESB topology.

21 See Appendix – Foundations
22 See Appendix

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

Security Perimeter

Management Perimeter

The boundaries of a
Node closely map to the
people organization that
is responsible for
owning and operation
the contained services.

The boundaries of a
Node closely map to the
people organization that
is responsible for
owning and operation
the contained services.

Services can be within a
security boundary, but
not a management
boundary in the case of
“Reduced Sign-On”.

Services can be within a
security boundary, but
not a management
boundary in the case of
“Reduced Sign-On”.

A Node is a security and management
perimeter

3-13

• Transformation –Transformation between formats and protocols so participants can

consume each others payload. This does not include large scale transformations such as
provided by data warehouses.

• Management – Central management of the federated distributed topology of the ESB is
necessary for scalability.

• Thus an ESB is a distributed and federated, yet centrally managed message bus that
supports transformation of payload. We can think of an ESB as a guaranteed messaging
plumbing system.

Service management recognizes the power of interfaces23. The interfaces are the unit of change
management, and requirements. Service interfaces are also the unit of adaptation into the ESB.
The implementation of the service is not important for using the ESB, but maintaining a constant
service interface to the ESB is important. We recommend that the service interfaces are designed
for exchanging small XML messages that reflect transactional changes, and answers to queries, as
opposed to the current bulk file exchange common in Air Force operations support systems.

Below we see how a node integrates services. The two primary methods of integration are JMS
publish/subscribe and SOAP request/reply interactions. Further, the SOAP interactions can be
orchestrated in a BPEL business process.

3-6 Integrated Services

The net effect is that services that are integrated into the ESB can, within limits of authorization,
freely and asynchronously exchange messages. For the purposes of integrating legacy systems,

23 This is compatible with the JTF MOSA (Modular Open Systems Approach):
http://www.acq.osd.mil/ats/opensyst.htm

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

Security Perimeter

Management Perimeter

An Enterprise Service
Bus (ESB) can be used
to organize services
around JMS (pub/sub)
and SOAP
(request/reply)
interactions. The SOAP
interactions can be
further coordinated in
orchestrations (BPEL)

An Enterprise Service
Bus (ESB) can be used
to organize services
around JMS (pub/sub)
and SOAP
(request/reply)
interactions. The SOAP
interactions can be
further coordinated in
orchestrations (BPEL)

A Node integrates Services

SubscriberSubscriberPublisher

ESB

Subscriber

Requester Replier
Business
Process

Start

? Action-1

Action-2

3-14

the services that are integrated into the ESB can include adapters and private implementations that
reach back to existing legacy systems. This in effect puts a modern service-oriented face on
legacy systems. The focus on exchanging messages is deliberate. Prior attempts at defining an
architecture based on platform software, such as DII/COE doesn't guarantee that pieces of
software can be integrated. However, integration via message exchange will always work,
because the major messaging vendors have messaging bridges and adapters to each other.

3.4.1 Participants
At this point, let's consider the active participants within a node. We have the services,

the systems that the services execute upon, and the end-users of the services. All of these
participants and their roles are known to each other and share a common trust model within
the node. In addition, there are passive participants within a node24. These passive
participants within a node are the messages. These messages are produced by one service
and consumed by another service and are expressed in a vocabulary managed by a COI. To
facilitate sharing, messages should be marked with tracing codes to denote the service that
created it and the metadata of the payload (Discovery URIs of the respective participants).

3-7 Participants

24 Content as a passive participant is not discussed in this paper.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Participants

SubscriberSubscriberPublisher

ESB

Subscriber

Requester Replier
Business
Process

Start

? Action-1

Action-2

PersonPerson

ServiceService

MetadataMetadata

The participants are:

ACTIVE:
• Person – all end users
• Service – all mission
capabilities

PASSIVE:
• Metadata – message
payload and database
tables
• Content (not shown)

The participants are:

ACTIVE:
• Person – all end users
• Service – all mission
capabilities

PASSIVE:
• Metadata – message
payload and database
tables
• Content (not shown)

3-15

3.4.2 Scope of Influence
Active and passive participants within a node have to be managed. The primary management tool
of participants is the set of discovery services: services, metadata, people, and content. The set of
discovery services will reside in some nodes25, but not all. A Node may want its own discovery
service in order to keep track of which services it wants to make public, and which to keep
private. Nodes without their own discovery services will use the discovery services in a
hierarchically higher-level node, and is said to be within that higher-level discovery services’
scope of influence. This will be covered more thoroughly in the discussion on federation below.

3.4.3 Opportunities
Having all of the active and passive participants within a node managed by discovery services
presents unique opportunities:

• Acquisition – We have an opportunity to bridge the gap between stovepipe funding and
the net-centric future vision. Currently, when a program is created and funding is allocated
for a mission capability, a contract is created with an integrator with instructions to
purchase hardware, software infrastructure, as well is to create the mission capability.
With all participants managed by discovery services, the integrator can be instructed to
reuse what already exists, both in infrastructure and other existing mission capability
exposed as services. This has the potential to dramatically reduce costs, both in initial
acquisition and maintenance.

• Architecture – We have an opportunity to use the information in the discovery services
to, in effect, create a dynamic “Master Capabilities List” for all the Nodes in an enterprise.
Please see the Appendix – A Modest Architecture Proposal.

The node then becomes a unit of scaling in the constructed enterprise architecture. If we "zoom
out," we can see the boundary of the node and understand the aggregate mission capability
without having to see all the individual services. This scaling, however, is not perfect since it is
the individual services of one node that have to interoperate with individual services of another
node. We will see more on that next.

25 While major services in most nodes will be listed in high-level discovery services, such as the Air Force
discovery, we do not want to exclude the possibility of nodes having their own discovery. This can be useful
for example in the case of netted sensors. The netted sensors node may need to be able to dynamically find
neighboring sensors as they come online and register them in a local discovery service.

3-16

3-8 Node with Public and Private Services

3.5 Nodes Interoperate
INTEROPERATION: Two Nodes that exchange messages interoperate.

In a net-centric conversation, a set of services exchange messages in order to complete a unit of
work. The services each belong to one of the Nodes, and the Nodes have to cooperate and share
enough information between them, so that the services can exchange messages. Thus, when two
Nodes interoperate, they are sharing information with each other so their respective contained
public services can exchange messages. The information that is shared is the “enabling context”
for the message exchange. In addition, there is a dynamic process that keeps the context current.

The cases examined below focus on the exchange of messages between web services (SOAP
messages). JMS message exchanges are facilitated by the ESB, and Node to Node message
exchange of JMS messages will be facilitated by ESB Extension Cords (below). The exchange of
messages in a BPEL process is factored into individual SOAP message exchanges, thus the
discussion below on SOAP also applies. For a summary, see the table – Summary of Methods of
Integration / Intra and Inter Nodal in the Enterprise Messaging section below.

Since the exchange of SOAP messages between two nodes is always between two services, this
means that at least one service in each respective node has to be made "public" public to the other
node.

3-17

3-9 Interoperation between Nodes- Reliable Messaging (Soap Request/ Reply)

Other forms of interoperability are shown below. First, two portals in two different Nodes can
interoperate by linking to each other. This is one of the ways that the Joint GCSS system will link
to the GCSS-AF. In this case, the portal being called (P2) in Node N2 must be made known to the
calling portal (P1) in Node N1. It is optional for the calling portal to be known by the called portal.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

Security Perimeter

Management Perimeter

Two Nodes interact by having
services exchange messages.
The services S1 and S2 are
known to each other – this is
denoted with checkmarks.

Two Nodes interact by having
services exchange messages.
The services S1 and S2 are
known to each other – this is
denoted with checkmarks.

Two Nodes Interoperate
Example: Reliable Messaging (SOAP Request/Reply)

S2

ESB
S1

Messages can be exchange via
reliable messaging if queues
are used. Queuing is an integral
part of an ESB.

Messages can be exchange via
reliable messaging if queues
are used. Queuing is an integral
part of an ESB.

N1

N2

3-18

3-10 Interoperation between Nodes- Portal Linking (Browser)

Another method of interoperation is to exchange SOAP messages without reliable messaging.
Service S1 in Node N1 and Service S2 in Node N2 must know about each other as in the previous
SOAP example.

3-11 Operation between Nodes: Un-Reliable Messaging (SOAP Request/Reply)

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

Security Perimeter

Management Perimeter

Two Nodes can interact
by having web services
exchange messages

Two Nodes can interact
by having web services
exchange messages

Two Nodes Interoperate
Example: Un-Reliable Messaging (SOAP Request/Reply)

ESB

S1

Web service

S2

N1

N2

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

Security Perimeter

Management Perimeter

Two Nodes can interact
by having Portals
exchange messages

Two Nodes can interact
by having Portals
exchange messages

Two Nodes Interoperate
Example: Portal Linking (Browser)

ESB

P1 P2

Portal

N1

N2

3-19

Below, we see that Nodes can also interoperate hierarchically. Service S1a in Node N1a sends a
message to Service S1 in Node N1.

3-12 Interoperating Nodes- Exchanging Soap Messages (with a Nested node)

3.6 Nodes Interoperate using Federation
Two Nodes interoperate by exchanging messages. Exchanging messages requires that the
participating services know each other and mutually share enabling and message context. This
will usually mean sharing Discovery registry entries.

The organizing principle for participants is Discovery services.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

Security Perimeter

Management Perimeter

Nodes can also have a
hierarchical relationship

Nodes can also have a
hierarchical relationship

Two Nodes Interoperate
Example: Exchanging SOAP messages with a nested Node

S1a

S1

ESB

N1

N1a

3-20

There is one Discovery type for each participant type: Services, Metadata, People, and Content.
Since interoperating Nodes is primarily a machine-to-machine effort, we will focus on the
Services and Metadata types of Discovery.

3-13 Scope of Influence

Services within Nodes are listed in a particular Discovery service. The scope of influence of a
Discovery service runs along organizational boundaries, so they will tend to encompass whole
Nodes. For the same reasons we noted above that there can never be one of anything in an
enterprise, there will be more than one instance of each Discovery type, such as a Services
Discovery26. The diagram above is a notional depiction of Discoveries as stood up perhaps by Air
Force and Army. They will each have their own set of Nodes, and keep track of their own active
participants, such as Services, in a Services Discovery.

The smallest scope for a Discovery is one Node. Below we see a Discovery scope encompassing
one Node.
Services within Nodes are listed in a particular Discovery service. The scope of influence of a
Discovery service runs along organizational boundaries, so they will tend to encompass whole
Nodes. For the same reasons we noted above that there can never be one of anything in an
enterprise, there will be more than one instance of each Discovery type, such as a Services
Discovery27. The diagram above is a notional depiction of Discoveries as stood up perhaps by Air

26 For example, each of the branches Air Force, Army, Navy, Marines, as well as DoD level and Coalition
partners will have their own Discovery. Also, for reasons we will see shortly, each Node may have their own
private Discovery to keep track of private services that no other Node will see.
27 For example, each of the branches Air Force, Army, Navy, Marines, as well as DoD level and Coalition
partners will have their own Discovery. Also, for reasons we will see shortly, each Node may have their own
private Discovery to keep track of private services that no other Node will see.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Domain App (mission capability)

Security Perimeter

Management Perimeter

A Node within Discovery
Scope of Influence

A Scope of Influence is the boundary
of various types of Discovery:
Services, People, Metadata, Content.

A Scope of Influence is the boundary
of various types of Discovery:
Services, People, Metadata, Content.

Participants are registered
in Discovery Services

Active:
• People – DP
• Services – DS

Passive:
• Metadata – DM
• Content – DC

Participants are registered
in Discovery Services

Active:
• People – DP
• Services – DS

Passive:
• Metadata – DM
• Content – DC

D2SD1S

3-21

Force and Army. They will each have their own set of Nodes, and keep track of their own active
participants, such as Services, in a Services Discovery.

The smallest scope for a Discovery is one Node. Below we see a Discovery scope encompassing
one Node.

The scaling principle for a Node is the hiding of private services.

A Node will “expose” or make public only a subset of its services. The reason is similar to any
encapsulation. Only a subset of the services will be useful outside of the Node. It is these public
services that will participate in wider reaching net-centric conversations. The Discovery service
for that Node will maintain a list of which services are public, and which are private.

These public and private lists of services within a Node must be shared amongst Nodes to enable a
net-centric conversation.

3-14 Discovery Registry Tracking Public and Private Services

We see that a Node can be a component in a larger enterprise, hiding its implementation (private
services) with an API for net-centric conversations (public services). Further, the public services
should be exposed via proxy, hiding the physical location of the “real” service.

The primary organizing principle between any two nodes is federation.

Two Nodes work together by having their public services participate in a net-centric conversation.
This requires sharing of enabling context as detailed in the table above. This sharing of enabling
context is called federation. Federation means sharing enough information between nodes about
each other's public services to effectively exchange messages.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

A Discovery registry keeps track of
public and private services

The registry of the associated
services Discovery contains
entries for the public and for the
private services

The registry of the associated
services Discovery contains
entries for the public and for the
private services

DS
RegistryRegistry

Pu
bl

ic
Pr

iv
at

e

3-22

Federation is the sharing of public service discovery information. If the two nodes are within the
same discovery's sphere of influence, then the sharing has already happened. If the two nodes are
in two different discovery's sphere of influences then we need a process to make the sharing
happen.

In the diagram below, we see two Nodes in the same sphere of influence for their Services
Discovery and Metadata Discovery. In practice the Services Discovery and the Metadata
Discovery needs to have matching spheres of influence.

In contrast, the People Discovery service will likely be at a much higher level and encompass
many Nodes. The reason for this is practical. Whereas for Nodes it reduces complexity to hide
private services, for people who can be redeployed anywhere, it is simpler to have a few high
level Discovery services for People28. Another practical factor is that with the advent of ERP
systems, many legacy systems that expose services will likely be deprecated, and need to remain
private, so they can evolve without disturbing net-centric conversations.

3-15 Conversation between Two Nodes (in the Same Discovery Scope)

28 For example, the author sees that the branches (Army, Navy, Marines, and Air Force) will have their People
Discovery service, along with the DoD.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Two Nodes have a “Conversation”
in the same Discovery Scope

Two Nodes can have a conversation if and only if:
1. Both Services “know” each other

• What does this mean?
2. Both services can process the payload

• What does this mean?

Two Nodes can have a conversation if and only if:
1. Both Services “know” each other

• What does this mean?
2. Both services can process the payload

• What does this mean?

DS DM

The simplest case is where
both Nodes are within the
same services (DS) and
metadata (DM) scope of
discovery influence.

The simplest case is where
both Nodes are within the
same services (DS) and
metadata (DM) scope of
discovery influence.

3-23

Next we see two Nodes that want to converse, each of which is in their own Service and Metadata
scope of influence. Only information about their (proxies of) public services and message
payloads need to be exchanged between the respective Discoveries.

3-16 Conversation between Two Nodes, Across Discovery Scopes

Federation is the process of sharing public entries in the respective registries of the Discovery
services. For service discovery this is sharing the proxy information (concrete WSDL endpoint) of
the public services. The actual internal endpoint is private to the respective Node.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Two Nodes have a “Conversation”
across Discovery scopes

D1S D1M

The interesting case is
where the Nodes are each
in a different services (DS)
and metadata (DM) scope of
discovery influence.

The interesting case is
where the Nodes are each
in a different services (DS)
and metadata (DM) scope of
discovery influence.

D2S D2M

A conversation is possible only by
sharing knowledge of the relevant
active and passive participants.

In this case, information about the
(proxy of the) service, and the
metadata of the message payload.

A conversation is possible only by
sharing knowledge of the relevant
active and passive participants.

In this case, information about the
(proxy of the) service, and the
metadata of the message payload.

3-24

3-17 Peer Discover Scopes “Federate”

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Peer Discovery Scopes “Federate”

D1S

Here we are looking only at
the federation of service
information. A similar
process happens with
federation of metadata
information.

Here we are looking only at
the federation of service
information. A similar
process happens with
federation of metadata
information.

D2S

The associated public registry entries
of the participating services in each
registry must be shared. This is
called “federation”. Private entries
are not shared.

The associated public registry entries
of the participating services in each
registry must be shared. This is
called “federation”. Private entries
are not shared.

RegistryRegistry

Pu
bl

ic
Pr

iv
at

e

Pu
bl

ic
Pr

iv
at

e

3-25

The next two diagrams illustrate more generalized use cases of Discovery federation. The first is a
simple nested Node federating along hierarchical lines.

3-18 Nested Discovery Scopes”Federate”

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Nested Discovery Scopes “Federate”

D1S

Pu
bl

ic
Pr

iv
at

e

D2S

Pu
bl

ic
Pr

iv
at

e

Here we see a typical
federation from a nested
scope (D1S) to an enclosing
scope (D2S). An example
could be to “promote” public
services from a node (like
GCSS-AF) to the AF
Services Discovery.

Here we see a typical
federation from a nested
scope (D1S) to an enclosing
scope (D2S). An example
could be to “promote” public
services from a node (like
GCSS-AF) to the AF
Services Discovery.

3-26

The next diagram illustrates both hierarchical and peer-to-peer federation.

3-19 Nested and Peer Discovery Scopes “Federate”

With the interoperability and integration principles described above, we can now examine what an
enterprise is, and what are enterprise services.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Nested and Peer Discovery Scopes
“Federate”

D1S

Pu
bl

ic
Pr

iv
at

e

A more general illustration
of the movement of
federated information
between nested and peer
discovery scopes.

A more general illustration
of the movement of
federated information
between nested and peer
discovery scopes.

D2S

Pu
bl

ic
Pr

iv
at

e
Pu

bl
ic

Pr
iv

at
e

D3S

D4S

Pu
bl

ic
Pr

iv
at

e

D5S Pu
bl

ic
Pr

iv
at

e

4-1

4 The Enterprise
ENTERPRISE: A forest of Nodes, possibly with no “top” or “root” Node.

In a dynamic environment like the DOD, the enterprise will be constantly reorganizing, with
mergers, acquisitions29, and coalitions forming and dissolving. The need to form new and change
existing net-centric conversations smoothly and rapidly is paramount. A major organizing
principle is to group services within Nodes, and organize Nodes peer-to-peer and hierarchically.
The net-centric conversations are enabled by federating the respective Discoveries, which was
discussed above.

ENTERPRISE SERVICES: Those services which enable net-centric conversations across
Nodes in the enterprise30.

NCES and AFEITS efforts have described enterprise service types by outlining general
characteristics. NCES calls for nine types as we see below:

• Application
• Enterprise Service Management
• Storage
• Discovery
• IA-Security
• Messaging
• Collaboration
• User Assistant
• Mediation

29 In the DoD, mergers and acquisitions happen frequently under the label “reorganization”.
30 There is a class of enterprise services which enable human participation across Nodes, such as Collaboration.
These are not discussed in this paper.

4-2

4-1 GI4-2G-ES (NCES)

Of the nine types, Discovery, Messaging and IA-Security are the minimal set of enterprise
services that enable net-centric conversations:

• Discovery – Required to share enabling context for exchanging messages
• Messaging – Required to provide reliable messaging service
• IA-Security – Required for authentication and authorization of participants

The other service types add value to net-centric conversations, but are not required for minimal
functionality.

4.1 Enterprise Discovery Service
We have discussed Discovery above in the “Principles” section. This service shares enabling
context so that services of different Nodes can exchange messages with each other. The enabling
context consists of knowledge of message payload and the identities and locations of the
respective services.

KEY POINT: All Discovery services will be hosted in Nodes.

The Discovery service is for a set of Nodes, but will run in only one of those Nodes. The set of
Nodes could be just one Node

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

GIG-ES (NCES)

NCES

Nine types of
enterprise
services

NCES

Nine types of
enterprise
services

4-3

4.2 Enterprise Messaging Service
Enterprise messaging is an enterprise service, because it enables reliable net-centric conversations
between Nodes. The basic GIG provides an IP network with which we can use HTTP/S to send
SOAP messages between public web services in Nodes. However, the HTTP/S protocol is not
reliable31, and we need guaranteed delivery32 for exchanging messages over the WAN. The
reasons are obvious. Without guaranteed delivery, each service will have to check for message
delivery which in effect means added overhead, and the almost certain risk that this overhead will
not be implemented uniformly. The approach we encourage and that commercial practice follows
is to leave message delivery up to the middleware.

Reliable messaging between two points requires queues33. For example, in the WS RM, there are
“message handlers” that the applications (services) on either end can use. In order to get
persistence, these handlers must have queues with persistent backing store (such as a hard drive).

There are two competing standards for reliable messaging are WS Reliability and OASIS WS
Reliable Messaging. There are fundamental differences between the two in terms of scope of QoS
in message sequences, and whether the contract is considered a local matter. Co-authors of the
WS-Reliability spec gave the OASIS WS RM group a requirements gap analysis in June 200534.
This author concludes there is much work to be done to arrive at consensus. Presently, reliable
messaging is provided by proprietary products such as IBM MQ, TIBCO RV, etc.

In either case, proprietary or standards-based, two Nodes that exchange reliable messages must
each have a queue that is compatible with the other. Until the reliable messaging standards are
complete and robust35, we are forced to use proprietary messaging.

Independent of proprietary or standards-based messaging, there are three options for enterprise
messaging, discussed below. These options are complimentary, not mutually-exclusive, and the
net-centric enterprise will make use of all three.

KEY POINT: All messaging services run inside of a Node. There is no such thing as
messaging services between Nodes that run outside of a Node. All messaging services
require a security and management perimeter, and are thus in a Node.

31 HTTP/S does not guarantee delivery of messages.
32 Some vendors (like IBM) call this “assured delivery”. The distinction reminds us that if a Node is destroyed
in an attack at the moment a message is delivered to it, the message may be lost. There are mitigation
techniques for this (fail-over to a hot spare remote site) that are beyond the scope of this paper. For simplicity
sake, I will continue to use the term “guaranteed delivery”.
33 Queues are similar to stacks of mail as it makes it way through the Postal system. At every Post Office, the
receipt of your mail is recorded automatically, and the next Post Office destination computed. The receipt of
your mail is the transactional “guarantee” that your mail isn’t lost.
34 See http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/13186/Requirements-Analysis-WS-
RM_WS-Reliability-v08.pdf; this requires an OASIS account.
35 The timeline for this is not clear.

4-4

4.2.1 Centralized
In this model, a set of Nodes install and use a queue owned and operated by a central Node as
shown in the diagram below. The main or central queue must run inside of a Node.

The key point is that all of the participating Nodes send their messages through a central Node.
This model requires that all the Nodes share the same services and metadata Discovery scope of
influence.

4-3 Enterprise Messaging – Centralized

4.2.2 Jumper Cables
In this model, Nodes that exchange messages must have compatible queues, and be in the same
Discovery scope of influence for the relevant public services. For example, in the diagram below,
we see that a public service of Node N1 is sending a message to public service S1 of Node N4.
Node N1 and service S1 of Node N4 must be in the same Discovery scope of influence for both
services and metadata. Similarly public service S2 of Node N4 sends a message to Node N7, and
they are both in the same Discovery scope of influence for both services and metadata.

The jumper cable between Node N1 and Node N4 can be owned and operated by either Node, or
by a central agency. In the case of a central agency, the jumper cables would be of the same type
and thus compatible. If the jumper cable was owned by individual Nodes, then at juncture points,
such as Node N4, where a potentially two different jumper cables meet, standard bridges must
connect them36.

36 All proprietary messaging products offer bridges to each other. For example BEA to IBM, Sonic to TIBCO,
etc. This is standard equipment, and does not detract from the efficacy of this model.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Centralized
Enterprise Messaging

Q QQQ

MAIN
Q

N1 N2 N3 N4

N-main
DM

Key Takeaway
The central model
results in large star

networks that share the
same Discovery scope
of influence for services

and metadata

The centralized model of
messaging requires all
participants to send all
enterprise messages
through the main queue.

The centralized model of
messaging requires all
participants to send all
enterprise messages
through the main queue.

DS

4-5

In addition to the structural relationships from a messaging point of view, the jumper cable model
also shows how scopes of metadata Discovery (COI regions) can be bridged. One Node can have
public services, of which some are in one scope, some are in another. This discretionary sharing of
public services would be part of that Node’s federation processes. Inside the bridge Node, the
internal services understand both sets of metadata (COIs).

4-4 Enterprise Messaging- Jumper Cable

4.2.3 Extension Cords
In this model, Nodes that exchange messages are given compatible queues by a master Node, and
are in the same Discovery scope of influence for the relevant public services. This model is most
suitable for master Nodes that use an Enterprise Service Bus (ESB) internally to integrate
services37.

This is the messaging model used by GCSS-AF. When NCES makes its enterprise messaging
products available for use, then GCSS-AF will formulate a replacement policy.

The extension cord model gives the remote node local access to the master ESB via a “face plate”
with a variety of supported protocols, such as FTP (file drop), JMS (publish/subscribe) and web
services (SOAP/WSDL request/reply). All of the supported protocols take the input message, and
map it to the reliable messaging protocol used by the extension cord. At the plug end at the master
ESB, the message is extracted from the reliable messaging protocol, and put back into the original
protocol.

37 See Appendix – Foundations for a summary of Enterprise Service Bus (ESB) capabilities and architectural
features.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Extension Cord
Enterprise Messaging

Key Takeaway
The extension cord model gives the
remote Node its own local access to
the ESB in the master Node. This is

the messaging model used by
GCSS-AF.

The extension cord model of
messaging requires giving a “face
plate” to the remote Node N1. The face
plate plugs into the master ESB in
Node N5. Public services in N1 can
send messages of type FTP, JMS, or
web services. All messages are
transmitted reliably.

The extension cord model of
messaging requires giving a “face
plate” to the remote Node N1. The face
plate plugs into the master ESB in
Node N5. Public services in N1 can
send messages of type FTP, JMS, or
web services. All messages are
transmitted reliably.

N5

ESB

FTP

JMS

W/S

Face PlateFace Plate

PlugPlug

N1

The Discovery scope of
influence in the extension
cord model is similar to
the jumper cable model.

The Discovery scope of
influence in the extension
cord model is similar to
the jumper cable model.

Master ESBMaster ESB

4-6

This makes SOAP/WSDL web service calls reliable over a WAN, and requires the use of
asynchronous messaging. The reason is that messages may take a while to transmit over the
WAN, exceeding the timeouts of the HTTP/S protocol.

The Discovery scope of influence over this model is similar to the jumper cable model. Both
caller and called services, and the message payload metadata must be federated between the
respective Discovery scopes.

The limitation to this model is that the master ESB is in a similar relation to the remote Nodes as
the Main Queue is to participating Queues in the centralized model.

4-5 Enterprise Messaging- Extension Cord

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Extension Cord
Enterprise Messaging

Key Takeaway
The extension cord model gives the
remote Node its own local access to
the ESB in the master Node. This is

the messaging model used by
GCSS-AF.

The extension cord model of
messaging requires giving a “face
plate” to the remote Node N1. The face
plate plugs into the master ESB in
Node N5. Public services in N1 can
send messages of type FTP, JMS, or
web services. All messages are
transmitted reliably.

The extension cord model of
messaging requires giving a “face
plate” to the remote Node N1. The face
plate plugs into the master ESB in
Node N5. Public services in N1 can
send messages of type FTP, JMS, or
web services. All messages are
transmitted reliably.

N5

ESB

FTP

JMS

W/S

Face PlateFace Plate

PlugPlug

N1

The Discovery scope of
influence in the extension
cord model is similar to
the jumper cable model.

The Discovery scope of
influence in the extension
cord model is similar to
the jumper cable model.

Master ESBMaster ESB

4-7

The next level of extension cord model is the chaining extension cord. This messaging model
delegates a piece of the ESB, via a chaining face plate to the remote Node, including the ability to
run an extension cord off of the chaining face plate.

4-6 Enterprise Messaging- Chaining Extension Cord

This in effect strings an extended ESB through a set of Nodes. This is the messaging model being
developed by GCSS-AF. This gives us the ability to string an ESB through existing Nodes from
CONUS to forward deployed and beyond. The services in each of the respective Nodes can plug
in at their own pace.

The example below shows a straight chaining extension cords through a set of Nodes. The general
topology is a root ESB with branches. The leaf nodes are the outermost reaches of the ESB and
can be called “ESB edge”. We can connect forward deployed Operations and Support activities in
to the ESB edge as shown in the diagram below. This gives people at the ESB edge guaranteed
messaging back to CONUS.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Chaining Extension Cord
Enterprise Messaging

Key Takeaway
The chaining extension cord
model gives the remote Node
its own section of ESB. This is
the messaging model used by

GCSS-AF.

The chaining extension cord
model of messaging requires
giving a “chaining face plate” to
the remote Node N1. A regular
extension cord can be plugged
into it, as we see in Node N12.

The chaining extension cord
model of messaging requires
giving a “chaining face plate” to
the remote Node N1. A regular
extension cord can be plugged
into it, as we see in Node N12.

N5

ESB

FTP

JMS

W/S

Chaining
Face Plate

Chaining
Face Plate

PlugPlug

N1

FTP

JMS

W/S

N12

PlugPlug

Face PlateFace Plate

The Discovery scope of
influence in the chaining
extension cord model is
similar to the jumper
cable model.

The Discovery scope of
influence in the chaining
extension cord model is
similar to the jumper
cable model.

Master ESBMaster ESB

4-8

4-7 Enterprise Messaging- Chaining Extension Cord

The table below is a complete summary of various integration methods, inside and between
Nodes.

Method of Integration Intra-Nodal Inter-Nodal

Publish/Subscribe JMS over ESB inside
Node

JMS over ESB extension
cord

Request/Reply SOAP/HTTP inside
Node

SOAP over reliable
message service (central,
jumper cable, extension
cord)

Orchestration BPEL orchestrating
SOAP/HTTP inside Node

BPEL orchestrating
SOAP over reliable message
service (central, jumper
cable, extension cord)

4.3 Enterprise IA- Security Services
IA and security as an enterprise service is not covered in this paper. Currently GCSS-AF uses AF
Active Directory to coordinate personnel identities and X.509 certificates to coordinate server and
application identities. The security perimeter authenticates, and applications apply role-based
authorization. There is no standardized set of roles.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Chaining Extension Cord
Enterprise Messaging

Key Takeaway
The chaining extension cord model of messaging
provides a means of creating an extended
branching ESB from CONUS to forward
deployed bases and further.

This is the messaging model used by GCSS-AF.

N5

ESB

ESB sectionESB section

N3

Master ESBMaster ESB

N1

4-9

We recognize the need for uniform security policy management and are monitoring the
developments in the NCES program.

4.4 Ecosystem of Data
Data is central to operational capability, so now we consider how data is circulated through
Nodes. Although we use data interoperability for messages exchanged in net-centric
conversations, we do not fully examine the topic of data interoperability. For more on this topic
please see a recent MITRE Technical Report by Blevins38.

ECOSYSTEM OF DATA: Data is created and maintained by transactional systems that
expose services, and these services live in Nodes.

At the foundation of all data circulated throughout the enterprise is the transactional system. These
are the systems that maintains data via create, replace, and update functions.

Data is exposed via net-centric conversations, via message exchange. This message exchange can
be a SOAP/WSDL query as depicted below, or JMS publish/subscribe. Both methods decouple
the system being queried from the system doing the query. This allows both systems to evolve
independently and maintain the net-centric conversation.

CARDINAL RULE: Do not access another system’s database directly. Use net-centric
conversations instead.

Accessing another database directly, via ODBC, JDBC, Discoverer or similar tools breaks net-
centricity. The reason is simple. By using these direct database access tools, you need to know the
exact schema of the target system. This makes your system dependent on the target structure at
best, and prevents either of your systems from evolving independently. Moreover, as the first few
Joint COIs are showing, the desired end state of net-centric conversation is different and evolved
from any of the systems that must participate in them39. Thus, matching an existing system does
not get you closer to being able to have net-centric conversations that the Joint Staff is demanding.
In fact matching other systems databases can yield undesirable co-dependencies40.

CARDINAL RULE: Access data via a net-centric conversation. Use either JMS
publish/subscribe, SOAP/WSDL request/reply, or BPEL business process orchestration for
complex interactions.

38 See also “Integration-Interoperation_MP.doc” by Terrence Blevins, MITRE Technical Report, June 2005
39 GFM (Global Force Management) is a good Joint COI example. Here the J8 is creating an XML schema to
represent an “authorized force structure”, with the Air Force, Army, Navy and Marines adding service specific
features. This XML schema does not match any of the databases that currently maintain data that this structure
represents.
40 See JOPES and Air Force DCAPES

4-10

4-8 Data Exposed through Services

Data can be “rolled-up” by a data warehouse to get a cross functional view of the data. The roll-
ups are an aggregation of data subscribed (or queried by) the data warehouse. Below is a view of
how the Air Force Data Services of GCSS-AF acquires data.

Its primary means of acquiring data is via JMS publish/subscribe. This fits well with existing
legacy systems that currently issue bulk file reports and publish via FTP. The GCSS-AF ESB can
capture the FTP, and convert it to a JMS publish/subscribe where any system can subscribe to the
report41. This also fits well with systems that are modernizing to publish XML change records.
Both types of data are published to the JMS Topic, and the data warehouse (or other system) can
subscribe to it. Of course this can be supplemented with request/reply SOAP queries.

Below we see the internal high level architecture of the AF Data Service data warehouse. The
ETL (extract/transform/load) part of the warehouse subscribes to a JMS Topic. The data is moved
into the warehouse and combined with other data as appropriate to create a cross-functional view.

The data is then “cubed” in an analytic module. Once a view is constructed, it can be accessed via
an OLAP application from the Portal, re-published to another JMS Topic for other systems to
subscribe to, or made available via a web service that other services in other Nodes can query.

41 Any system that is authorized by the publishing Portfolio Manager

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Data is exposed through services

Data elements in data systems are not directly
accessed via ODBC, Discoverer or other
means.

A service in Node N1 queries the data in system
Sys1 by sending a query to Service S1 in Node
N2.

Alternately S1 can “publish” and a service in Node
N1 can subscribe if they share ESB/JMS access.

Data elements in data systems are not directly
accessed via ODBC, Discoverer or other
means.

A service in Node N1 queries the data in system
Sys1 by sending a query to Service S1 in Node
N2.

Alternately S1 can “publish” and a service in Node
N1 can subscribe if they share ESB/JMS access.

Net-centric
conversation
- Query

Net-centric
conversation
- Query

Sys1
Sys1DB

S1

N1 N2

Transactional
System

Transactional
System

Service
exposes data

Service
exposes data

4-11

4-9 AF Data Services Architecture- Modernization for the ESB

The higher up in the organization you are, the greater the need for a cross functional view. Cross
functional views are created by data warehouses that collect reports and transaction activity from
the foundation transactional systems. Typically the cross functional reports have a wider view,
and less detail than the original data.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

AF Data Services Architecture
Modernized for the ESB

AFKS

ESB
ETL

Informatica

Views

Data Warehouse

Workspace

Info Fusion

Analytics

NIPR
Portal

SubscribeSubscribe

PublishPublish

PreparePrepare

ProcessProcess

PackagePackage
AFKS

Web Service

CubeCube

Answer
Queries

Answer
Queries

OLAPOLAP

4-12

4-10 Data Warehouse

Data warehouses can also produce time-based and other dimensional analysis. This is useful to
learn about and understand trends. This kind of cross-functional time-based analytics is not
possible with a report from a single system.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Data Warehouse
“Roll-up” Reports

Warehouse – can blend data from multiple “local systems of record”
into a “global system of record” view with “as of” date.

Roll-ups are non-transactional. In order to change the original data,
you must go back to the original transactional system.

Warehouse – can blend data from multiple “local systems of record”
into a “global system of record” view with “as of” date.

Roll-ups are non-transactional. In order to change the original data,
you must go back to the original transactional system.

Data reports from
transactional
systems

Data reports from
transactional
systems

Roll-up report
from data
warehouse

Roll-up report
from data
warehouse

Roll-up processRoll-up process

4-13

4-11 Data Warehouse- Time- Based Analytics

Data can be presented as the “official as-of-date-time truth” by combining officially sanctioned
data warehouse roll-ups with “live queries” to the transactional systems. These pieces of data can
be displayed via portlets in a Portal, accessed with a standard browser. This gives a Commander a
broad and useful view over his/her area of command, with the ability to take action.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Data Warehouse
Time-based Analytics

0

10

20

30

40

50

60

70

80

90

Week-1 Week-2 Week-3 Week-4

App-1
App-2
App-3

Analytics – can be KPIs over time.

Non-transactional.

Analytics – can be KPIs over time.

Non-transactional.

4-14

4-12 Portal for Viewing Data

When a decision is made to create an “effect” a command can be issued to services to take action.
Taking action will always mean updating data in some transactional system. As with queries,
updates are always done in a net-centric conversation by sending a message to the service that
wraps the target system.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Portal to view data

Portals have sub-
windows called
“portlets”

Portals have sub-
windows called
“portlets”

A Portal is a means to view roll-
up data warehouse reports, ask
“live” queries, and issue
commands (updates to data),
and navigate static content.

A Portal is a means to view roll-
up data warehouse reports, ask
“live” queries, and issue
commands (updates to data),
and navigate static content.

4-15

4-13 Updating Data through Services

Putting all the elements together, we get a high-level picture of the ecosystem. In the diagram
below, we see that data from transactional systems is aggregated into the warehouse. This creates
a non-transactional “as-of” report that can be presented as a “cube” of data which can be
navigated via an OLAP application in the Portal.

The warehouse data, along with the ability to do particular “live” queries give the Commander a
Dashboard of decision quality data. When the Commander wants to issue a command, s/he
interacts with the Portal which issues a command to the appropriate service(s).

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Data is updated through services

Data elements in data systems are not directly
updated via ODBC, Discoverer or other means.

A service in Node N1 updates the data in system
Sys1 by sending an update command to Service
S1 in Node N2.

Data elements in data systems are not directly
updated via ODBC, Discoverer or other means.

A service in Node N1 updates the data in system
Sys1 by sending an update command to Service
S1 in Node N2. Net-centric

conversation
- Update
command

Net-centric
conversation
- Update
command

Sys1
Sys1DB

S1

N1 N2

Transactional
System

Transactional
System

Service
exposes data

Service
exposes data

4-16

4-14 Ecosystem of Data

These are the basic elements that constitute our ecosystem of data. Now let’s look at steps #1, #3,
and #4. Step #2 is the use of an OLAP Business Intelligence tool which is beyond the scope of
this paper.

Step #1 – Aggregate transactions – is where the data warehouse subscribes to transactional system
data reports (large, extract reports) and change record activity (one change at a time). Typically
each system, via its service will publish to its own unique JMS Topic.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

EcoSystem of Data

Transactional

Warehouse Reports
COI Shared Spaces

Decision
Quality
Data

Sys1 Sys2 Sys3

Sys2DB Sys3DBSys1DB

Portal

“Live” (real-time)
On-demand Queries

(Request/Reply)
(Business Process)

“Live” (real-time)
On-demand Queries

(Request/Reply)
(Business Process)

3

Warehouse

WarehouseDB

Analytic Cubes of Data
(OLAP)

Analytic Cubes of Data
(OLAP)

2

Aggregate
Transactions

(Publish/Subscribe)
(Request/Reply)
(Business Process)

Aggregate
Transactions

(Publish/Subscribe)
(Request/Reply)
(Business Process)

1

Issue Command
(Request/Reply)

Issue Command
(Request/Reply)

4

Commander’s Dashboard

4-17

4-15 Aggregate Transactions- Publish/ Subscribe

Step #3 – Real-time (live) queries – can be initiated from inside a portlet that is the GUI for a real-
time query service. This service, in the general case, will create a business process to orchestrate a
net-centric conversation to query across the target services. The business process computes the
answer, and passes it back to the service, which then displays the answer in the portlet.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

OLAP App
In AF Portal

Aggregate Transactions
Publish/Subscribe

JMS Topic Tree
(pub/sub)

AFKS
Warehouse &

Analytics

Real-time Query
[Component of

Dashboard]

System-of-Record
Access

[Component of
Dashboard]

Enterprise
Service
Bus

Sys1 Sys2 Sys3

Sys2DB Sys3DBSys1DB

4-18

4-16 Real Time Queries- Request/Reply

Step #4 – Issue Command – can be initiated from inside a portlet that is the GUI for a command
service. This service, in the general case, will create a business process to orchestrate a net-centric
conversation to update state (perform the command) across the target services. The business
process determines if the command was successful, and passes the answer back to the service,
which then displays it in the portlet.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

OLAP App
In AF Portal

Real-time Queries
Request/Reply

JMS Topic Tree
(pub/sub)

AFKS
Warehouse &

Analytics

Real-time Query
[Component of

Dashboard]

System-of-Record
Access

[Component of
Dashboard]

Enterprise
Service
Bus

Business Process

Start

? Query-1

Query-2

Sys1 Sys2 Sys3

Sys2DB Sys3DBSys1DB

4-19

4-17 Issue Command- Request/ Reply

4.4.1 Incumbents and Satellites
The set of transactional systems consist of incumbents and satellites. An incumbent is a large
system that “owns” a large piece of the “market share” for that domain area. For example when
the DIMHRS42 system comes online, it will be an incumbent. The service unique (Air Force
unique) components will be satellite to the incumbent. Both the incumbent and satellite will
interact via net-centric conversations, which will enable further development of services.

The process for preparing for large ERP modules is as straightforward as it is daunting. The ERP
process will be large, long-term and disruptive. A full treatment is beyond the scope of this paper.
However, for current legacy systems that are thought to be future satellites, there are important
steps that can be taken to prepare and make the transition as smooth as possible:

1. Connect the legacy system to an ESB via an adapter. In GCSS-AF the most common case
is the FTP adapter.

2. Consolidate the number of interfaces on the legacy system. Many systems have redundant
interfaces. The fewer unique interfaces you support, the easier it will be to adjust to the
ERP system

3. Change your output from bulk file to XML change records – and strive to make the XML
schema as close as possible to relevant Joint COIs as possible. The Joint COIs will be the
heavy-weight drivers for net-centric conversations in the future.

42 DoD Human Resource ERP system, with service unique components. When it comes fully online it is
projected to fulfill 90% of the functionality of the AF Personnel systems.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

OLAP App
In AF Portal

Issue Command
Request/Reply

JMS Topic Tree
(pub/sub)

AFKS
Warehouse &

Analytics

Real-time Query
[Component of

Dashboard]

Command
[Component of

Dashboard]

Enterprise
Service
Bus

Business Process

Start

? Action-1

Action-2

Sys1 Sys2 Sys3

Sys2DB Sys3DBSys1DB

4-20

4. Create services for all interactions with your legacy system. The ERP incumbents will
only interact via services and net-centric conversations. These net-centric conversations
should align with Joint COIs and other major functional COIs.

5. Plug your services into the business processes of the incumbent ERPs. All major ERP
vendors (SAP, Oracle, PeopleSoft, SeeBeyond, etc.) provide templated business processes
as their major value-add. These business processes are driven by BPEL engines, similar to
the BPEL engine in the GCSS-AF ESB. There will be some interaction via
publish/subscribe, but mostly via BPEL.

The major challenges for converting a legacy system to services that plug into BPEL processes are
two-fold:

1. People – organizations need to start thinking about how they execute their function as
business processes. This will take some time, and cannot be rushed. The best advice is to
start simple by mapping all of your systems, and diagram the flow of bulk files from one
system to another, and indicate all of your error processing, both automatic and manual.
This will give you an idea of process flow from one system to another.

2. Technical – This can be just as challenging. There are two dimensions:

a. What functionality to keep? – There won’t be a clean cut line of systems and
functionality to keep. Most likely bits and pieces from various systems will be
crammed together into services. How do we track the movement of these
requirements?

b. How do I multi-task? – Many systems were designed for “one run” or one user at
a time. A service by design handles as many as request service. This requires
sessions, understanding critical sections of code, etc. In other words the work
force needs to be retrained. Start early.

 A-1

5 In Closing
We have reviewed the principles of interoperability and integration. The core principle is to
support the rapid creation and update of net-centric conversations.

The agility of the enterprise can be defined as the highest sustainable rate of creation and
update of net-centric conversations.

By keeping our focus on net-centric conversations we can create a simplified picture of enterprise
architecture where services are grouped in Nodes, and Discovery scopes of influence organize
how knowledge of (proxies of) public services and message payload metadata are shared.

The enterprise is the set of Nodes we are interested in. This is a forest of Nodes with no one
“root” Node. This includes DoD, Coalition, Commercial Nodes, etc.

We reviewed how enterprise messaging services can be used to provide reliable messaging and
ESB/JMS messaging pathways weaved through Nodes from CONUS to forward deployed
positions.

The ecosystem of enterprise data includes transactional systems, data warehouses, decision
data portals, real-time queries, and command oriented services.

Access and update data via services and net-centric conversations, not direct access (ODBC,
etc.)

As ERP modules are introduced, they will become functional incumbents. This means that the
surviving legacy systems must be satellite to the ERP modules, and provide “service unique” (AF
unique) functionality. The way to prepare legacy systems is to upgrade them with services and
plug them into the BPEL business processes that the ERP systems provide.

The balance of this paper is a set of appendices:

1. Architecture Proposal
a. Crawl Discovery services to build a master capabilities list

2. Generic Data Center Proposal
a. Create a few generic blueprints of data centers (Nodes)

3. Cross-Domain Integration
a. Publish/subscribe cross-domain solution (in GCSS-AF Fall 2005)
b. Web service cross-domain solution (FY06)

4. Foundations
a. SOA
b. ESB

 A-1

Appendix A Architecture Proposal

The current methodology of creating DoDAF artifacts is suitable for highly customized, GOTS-
centric, stove-piped, locally optimized systems.

This methodology applied to emerging net-centric systems leaves us in an awkward position, with
several serious enterprise architecture concerns throughout the Air Force and DoD:

1. Enterprise architecture artifacts (DoDAF) are inadequate for net-centric architectures. As
evidenced, there are numerous efforts trying to determine how to express SOA in
DoDAF.

2. Enterprise architecture artifacts have an immense amount of detail and are rarely up-to-
date. This is a reflection of the highly customized nature of our data centers (Nodes). If we
migrate to generic data centers (see the Generic Data Center proposal below) we can
eliminate a lot of architectural detail, and focus primarily on deployed services.

3. The Mission Capability List is useful, but how do we make sure this information is up-to-
date?

We need to evolve to an enterprise architecture methodology that is suitable for COTS-centric,
globally optimized, net-centric architectures.

Proposal:

1. Focus on creating a useful mission capabilities list. This should primarily be a list of
public services of Nodes.

2. Ignore private services.
3. Ignore the details of the Node (move to Generic Data Center) infrastructure
4. Create the mission capabilities list by automatically crawling the nested and peer-to-peer

Discovery services whose scope of influence covers the Nodes we are interested in.

In the diagram below we see a depiction of a crawling process. Starting with a top level
Discovery, we can crawl recursively and depth-first to visit all the Discoveries in the path.

 A-2

A-1 Building of Master Capability List for the Enterprise

VALUE: The master capabilities list expressed as public services is suitable for the entire
AF or DoD to consider composition of mission threads, and rapid gap analysis.

A sample master capability list could look like the table below

Public
Service

Method Payload Owning
Node

Nested
inside Node

ROADAHEAD: The crawling process required to create the mission capability list requires
that the Discovery federation process be standardized.

This requires that we solve the following problems:

1. Consistent information (service and metadata profile) in all crawled repositories
2. Consistent federation process between Discoveries
3. Develop a crawler (not presently a commercial product)
4. Update and socialize the new net-centric Master Capability List (MCL)
5. Apply the new MCL to mission thread use case analysis and determine if further

improvements need to be made.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Crawling Discovery Scopes to build Master
Capability List for the Enterprise

D1S

Pu
bl

ic
Pr

iv
at

e

D2S

Pu
bl

ic
Pr

iv
at

e
Pu

bl
ic

Pr
iv

at
e

D3S

D4S
Pu

bl
ic

Pr
iv

at
e

D5S Pu
bl

ic
Pr

iv
at

e

Master
Capability List

Standard Discovery federation
techniques will make it possible to
“crawl” the Discovery services and
automatically build a Master
Capabilities List for the entire
enterprise

Standard Discovery federation
techniques will make it possible to
“crawl” the Discovery services and
automatically build a Master
Capabilities List for the entire
enterprise

 B-1

Appendix B Generic Data Center Proposal

Today’s Air Force information based systems are moving to COTS-centric, globally optimized
net-centric architectures, and commercial best practices.

We have an opportunity to create a set of generic data center (Node) architecture patterns
with the capability to run contemporary services (JMS, SOAP, BPEL) and interoperate
with other Nodes.

These generic Node architectures can be available for a program in a two different ways:

1. The program can decide to build a new data center, determine the right-size model to
build, and just copy the proven architecture

2. The program can decide what type of data center to use, and find the one that is currently
operating that most closely meets its needs.

In both cases, we avoid hand-crafting yet another unique expensive data center.

The benefits of generic data centers (Nodes) are significant:

1. Acquisition can focus exclusively on adding capability (services) not more redundant,
highly hand-crafted, locally optimized infrastructure

2. Integrators will respond to RFPs and RFQs more uniformly
3. If a program needs a Node, the cost of acquisition, maintenance and sunset is known in

advance with low risk
4. The design, stand-up and operation of Nodes can be opened up to multiple integrators,

increasing competition.

The design of the Generic Node(s) can be globally optimized, addressing one of the great
paradoxes of the net-centric effort.

The great net-centric paradox is how do we optimize globally, when funding is stove-piped? The
answer is that only the generic data centers (Nodes) have to be globally optimized. The rest are
services which can be deployed on any Node. If there are only a few models of Node to select
from, then the majority of program capability acquisition can be focused on functional services.

This is not a proposal to list products to purchase and install

This is a proposal to develop a few generic Node architectures, not to lock us into a fixed set of
products to install. One of the advantages of this proposal is to have product choice where it
makes sense, but to constrain the overall architecture to one that fits with a net-centric enterprise
architecture as outlined in the “Principles” section earlier in this paper.

 B-2

The large data center (Node) example is below. This will have the capacity to run:

1. An ESB (including proxy for services)
2. Popular app servers (BEA, IBM, Oracle, .NET, etc)
3. Discovery
4. Security
5. Management
6. Extension cord
7. Chaining extension cord

B-1 Large Generic Data Center (Node)

A small (minimal) Node has the capacity to run:
1. Popular app servers (BEA, IBM, Oracle, .NET, etc)
2. Security
3. Management
4. Proxy for public services
5. Connect to the face plate of an extension cord

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Large Generic Data Center (Node)
Enterprise Patterns

Chaining
Extension
Cord

Chaining
Extension
Cord

SubscriberSubscriberPublisher

ESB

Subscriber

Requester Replier
Business
Process

Start

? Action-1

Action-2

FTP

JMS

W/S

FTP

JMS

W/S

Extension
Cord

Extension
Cord

Proxy for
public
Services

Proxy for
public
Services

Management
Perimeter

Management
Perimeter

Security
Perimeter

Security
Perimeter

Enterprise
Service Bus

Enterprise
Service Bus

Service/App
Servers

Service/App
Servers

Discovery listing
for public Services

Discovery listing
for public Services

 B-3

B-2 Small Generic Data Center (Node)

Another reason to focus efforts on a few Node architectures is to develop repeatable practices with
respect to bridging VPNs and cross-domain integration. By creating a small set of Node
architectures, and developing repeatable VPN bridging techniques, we can then make creating
new net-centric conversations a reality. Currently it can take months to establish connections in
DISA megacenters using B2B connections. The rate of connection creation is held back by
policies that are not well understood.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Small Generic Data Center (Node)
Enterprise Patterns

Service

Proxy for
public
Services

Proxy for
public
Services

Management
Perimeter

Management
Perimeter

Security
Perimeter

Security
Perimeter

Service
Service

FTP

JMS

W/S

Extension
Cord

Extension
Cord

Service/App
Servers

Service/App
Servers

 B-4

B-3 Generic Data Center- Bridging VPN’s

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Generic Data Center
Bridging VPNs

Nodes bridge VPNs. The
bridging techniques have to
be developed and put in
practice by DISA.

Nodes bridge VPNs. The
bridging techniques have to
be developed and put in
practice by DISA.

VPN AVPN A
VPN BVPN B

 B-5

Another capability to generalize is how large Nodes can use the Akamai network for edge serving.
Akamai has the capability of serving static content and some applications. Many requests can be
handled by Akamai without ever sending a request to the Node.

B-4 Large Generic Data Center- Using Akamai

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Large Generic Data Center
Using Akamai

Akamai is a revolutionary
technology to edge serve static
content and some applications on
the world-wide Akamai network

Akamai is a revolutionary
technology to edge serve static
content and some applications on
the world-wide Akamai network

Akamai
Network

Akamai
Network

Akamai can assure security
and serve most requests
without having to send
requests to the Node

Akamai can assure security
and serve most requests
without having to send
requests to the Node

Generic
Large
Node

Generic
Large
Node

 B-6

Finally there is cross-domain capability. This is also a generic large Node capability. Below we
review how the GCSS-AF data center is building this capability. The GCSS-AF Node is
organized around the ESB. The v1.0 of the cross domain service (Fall 2005) will allow for
subscribers on the SIPR side to get information published on the NIPR side.

B-5 GCSS-AF ESB Roadmap- Cross Domain Solution v1.0

209I n t e g r i t y - S e r v i c e - E x c e l l e n c e

GCSS-AF ESB Roadmap
Cross-Domain Solution v1.0

ESB ESB
Cross-Domain

Solution

Publisher

FTP
Adapter

NIPRNIPR SIPRSIPR

Publisher – either:
- Domain App
- AFKS
- External Domain

App (via FTP on
NIPR or commercial)

Publisher – either:
- Domain App
- AFKS
- External Domain

App (via FTP on
NIPR or commercial)

Subscriber – either:
- Domain App
- External Domain App

(via FTP on SIPR)

Subscriber – either:
- Domain App
- External Domain App

(via FTP on SIPR)

Subscriber

The GCSS-AF ESB Cross Domain Service moves data from LO to HI leveraging the
native publish/subscribe ESB mechanism. It is recommended that data be strictly
typed using XML schema guidelines.

The GCSS-AF ESB Cross Domain Service moves data from LO to HI leveraging the
native publish/subscribe ESB mechanism. It is recommended that data be strictly
typed using XML schema guidelines.

 B-7

Below we can see the implementation leverages JMS publish/subscribe adapters already in place
for the GCSS-AF ESB. The information published on the NIPR side will be imaged periodically
onto a data DVD and republished on the SIPR side. There is virus scanning on both sides.

B-6 ESB CDS Semi-Automatic Solution – Cross Domain Solution v1.0

210I n t e g r i t y - S e r v i c e - E x c e l l e n c e

File
server

ESB

ESB CDS Semi-Automatic Solution
Cross-Domain Solution v1.0

Move Select JMS Topics to File Server
1. The File adapter copies select published content to the

corresponding sub-directory on a file server
2. Write access to the file server is prevented prior to copying sub-

directories to DVD media; the media is used to populate the
mirrored file server on the HI side

3. The File adapter picks up the file on HI-side file server and
publishes it to the corresponding JMS topic

Move Select JMS Topics to File Server
1. The File adapter copies select published content to the

corresponding sub-directory on a file server
2. Write access to the file server is prevented prior to copying sub-

directories to DVD media; the media is used to populate the
mirrored file server on the HI side

3. The File adapter picks up the file on HI-side file server and
publishes it to the corresponding JMS topic

LO-SIDE

JMS Topic Tree

FILE
adapter

1

File
server

ESB

HI-SIDE

JMS Topic Tree

FILE
adapter

3

2 DVD Media
Transfer

 B-8

The next version of the cross domain solution v2.0 will be available in Fall 2006. It also supports
JMS publish/subscribe, as well as web service calls. The difference is that instead of batching the
data, each message will be sent as soon as its created. The core technology of the cross domain
solution v2.0 is the TDX guard, with XML firewalls on either side.

B-7 ESB CDC Automatic Solution- Cross-Domain Solution v2.0

In summary, creating a small number of generic Node architectures will free up tremendous
resources to focus on mission capability delivered as services.

Lastly, we recommend using GCSS-AF as a good example of a large Node generic
architecture with over 500K users and over 100 applications. This data center has
innovated generic Node architecture, delivered the first Enterprise Service Bus in the Air
Force, the first large scale use of Akamai, and soon to be first generic cross-domain solution
for JMS publish/subscribe from NIPR to SIPR.

211I n t e g r i t y - S e r v i c e - E x c e l l e n c e

ESB

ESB CDS Automatic Solution
Cross-Domain Solution v2.0

Move Select JMS LO-side Topics to HI-side; Provide Query Down Capability
• CDS v2.0 will deliver automated v1.0 functionality in addition to

request/reply in an automated guard solution
• GCSS XML firewall TDX solution will permit message traffic for authorized

users and approved content
• JMS native publish/subscribe supported through GCSS XML firewalls

Move Select JMS LO-side Topics to HI-side; Provide Query Down Capability
• CDS v2.0 will deliver automated v1.0 functionality in addition to

request/reply in an automated guard solution
• GCSS XML firewall TDX solution will permit message traffic for authorized

users and approved content
• JMS native publish/subscribe supported through GCSS XML firewalls

LO-SIDE

ESB

HI-SIDE

XML
FirewallTDXXML

Firewall

SOAP, JMS
HTTP, HTTPS, MQ XML Messages SOAP, JMS

HTTP, HTTPS, MQ

ERP
Module

Domain
App

CDS v2.0

 C-1

Appendix C Foundations

This appendix reviews the foundation of interoperability – services, and a key organizing
principle of services, the Enterprise Service Bus. For more detailed reading, please refer to
the Bibliography.

C.1 Services

C.1.1 The Unit of Change
Fundamentally, a service is a unit of change. It is the smallest unit of change in the

enterprise. This unit of change is managed via its interface, whether it’s expressed as WSDL,
and FTP address, or a phone number.

The NCES CES Design Document highlights the fact that every service has relationships

with a number of interested parties. Each party will interact with the service in its own
manner.

C-1 From NCES (CES Design Doc 0.6)

 C-2

The NCES CES Design Document illustrates that a production service has service access points.
These SAPs are the interface, and can be anything from a WSDL file, in the case of web services,
to a JMS interface for publish/subscribe, to an FTP address in the case of a legacy system. In
addition, business services such as a help desk are included; in this case the SAP is the phone
number.

C-2 From NCES (CES Design Doc 0.6)

C.2 Service Lifecycle

C.2.1 Supporting Business Processes
Every service has a lifecycle with milestones between phases. The interested parties will interact
with the services via an institutionalized business process. There will be one or more tools used to
support the services through these business processes.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

From NCES (CES Design Doc 0.6)

Product FamilyService

Service Access
Points (SAP)

Functional
processes

Internal service
storage

Figure 1.6 Service Definition Components and Relationships

 C-3

C-3 Notional Service Lifecycle

C.2.2 Supporting Tools
This document will refer to tools such as “Discovery” services. There is still much work to be
done to completely understand the full set of service lifecycle business processes. Nonetheless,
there is utility in considering how the registries of the four main Discovery services will stand in
relation to each other. The four main Discovery services, taken from NCES are: Services,
Metadata, People, and Content. These relations are considered in the “Principles” section below.

C.2.3 Requires Social Adaptation
One consideration that is not discussed much in the DISA/NCES documentation is the extent of
social adaptation required to fully use SOA.

 C-4

C-4 Social Organizations adoption of SOA

This topic is beyond the scope of this paper; however note that some organizations have radically
reorganized around SOA. Please see SOA instruction by R. Wilson (MITRE)43.

The key point is that all the constituents must adapt. The users, the creators of the services, and the
people that maintain and sustain the services need a roadmap for change that shows how to
organize around SOA.

C.3 Service Orientated Architecture

C.3.1 Promise of Compose-ability and Adaptability
SOA architectures promise great advances by easily building composite applications and adapting
to changes in the environment. The biggest promise is that of an agile enterprise. An agile SOA-
based enterprise does not just magically appear. It’s actually a lot of hard work because it is so
easy to create services. The trick is to create the “right” services. If there is no governance or
organizing principles then we run the risk of recreating a stovepipe environment, with services
being the stovepipes.

C.3.2 Requires Organizing Principles
SOA requires governance, and SOA governance requires organizing principles to reduce the
complexity of potentially thousands of services.

43 “D500 BootCamp-Service Eng v0-15.ppt”, Robert Wilson, MITRE, April 2005

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Social Organizations need to Adapt to SOA

Today’s manual
intensive business
processes are similar
to the early telephone
system.

It is possible to retrain
our organizations so
that the same people
fill higher value jobs –
do we have a roadmap
for this?

CREDIT: operator3.jpg from http://www.mediacritica.net/courses/413/Overheads/telephone3.html

 C-5

C-5 Creating Services, is not enough

We will see that that we have a few organizing principles we can apply:

1. Services can be grouped in Nodes
2. Services within Nodes can be organized around an Enterprise Service Bus
3. The Nodes and Services follow certain principles of interoperability and integration that

we will see later in this paper.

C.4 Enterprise Service Bus
For a complete treatment of ESB, consult IBM Redbooks, O’Reilly44, BEA, Sonic, Fiorano, etc.
Below is a summary of the architectural principles and usage guidelines for the GCSS-AF ESB,
which closely follows best commercial practice.

C.4.1 Motivation
An interesting consideration is the question “why go to all the bother?” If we wanted to just keep
doing what we have been doing, then the answer is “let’s not bother”.

However, a key driving factor in SOA and ESB is the tremendous pressure to change. If it were
not for the need to change at a faster and faster pace, we shouldn’t bother with SOA and ESB.

What is driving the pressure to change? From the Air Force Operations Support point of view,
there are two big factors:

1. Operations Support is straining to support the warfighters’ increased tempo requirements

44 “Enterprise Service Bus”, David Chappell, O’Reilly 2004

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Just creating services is not enough

We can easily recreate
a stovepipe
environment, where
the stovepipes are
services.

We need organizing
principles that
governance can use to
direct the power of an
SOA to create an agile
enterprise.

 C-6

2. ERP Modules are being introduced that will have a tremendous impact on Operations

Support programs (elimination, deprecation, shift to service unique complement to the
ERP module)

Programs that survive in the future will be programs that integrate into the ESB, and add value to
an ERP module, via a BPEL business process. We’ll see how to do this below, in our five phase
plan.

C.5 SOA Organizing Principle
The Enterprise Service Bus (ESB) is an organizing principle for services within a node. For a full
discussion of the Enterprise Service Bus, see other papers on this subject by this author. The
following is a summary.

The primary organizing principle of the ESB is that it is an SOA equalizer. The ESB can take
services with a variety of Service Access Points (SAP – a DISA concept) or interfaces, and via
adapters, “plug” them in. With either native programming, or adapters, all services will interact on
the ESB via JMS for publish/subscribe, or SOAP/WSDL for request/reply. As a complement to
SOAP/WSDL, services can be orchestrated in a business process via a BPEL engine.

By constraining the types of interactions to JMS and SOAP, and moving the business process
logic to a BPEL engine, rather than hard coding it in the (web) services, we decouple the services
from one another and lay the groundwork for an agile enterprise.

C.5.1 5 Aspects
The five aspects of an ESB are:

1. Intrinsic Architecture – an ESB has core architectural features
2. Methods of Integration – an ESB provides three methods of integration
3. Integration Architecture – services and processes use the methods of integration within a

Node
4. Extensibility – an ESB is extensible, and separate ESBs can interoperate.
5. Points of Presence – an ESB lives in a data center, even when that data center is

distributed

C.6 Intrinsic Architecture
ESB as an architectural construct is not at this time completely defined by standards. However,
there is common agreement45 that an ESB supports:

• Messaging – Guaranteed, highly available messaging between participants.
• Routing – Ability to route Publish/Subscribe and Request/Reply messages to their

endpoint destination without sender knowledge of the ESB topology.

45 The interested reader can consult the websites of ESB Vendors, such as Sonic Software, Fiorano and IBM to
learn more about the architecture of typical commercial ESBs.

 C-7

• Transformation –Transformation between formats and protocols so participants can

consume each others payload.
• Management – Central management of the federated distributed topology of the ESB is

necessary for scalability.

Thus an ESB is a distributed and federated, yet centrally managed message bus that supports
transformation of payload. We can think of an ESB as segments of a guaranteed messaging
plumbing system.

Each service connects once to the ESB, whether the service is a legacy system, a packaged COTS
application (ERP module), or a newly developed application of either J2EE or .NET variety. The
connection is via either native technology, or through adapters. An adapter is a bridging capability
that is used to connect legacy applications to the ESB. New applications written for the ESB do
not need adapters.

Domain applications and ERP modules connect to the ESB with a JMS or SOAP interface. Data
sources in one application are not directly accessed by another application. Prior methods of SQL
extraction and FTP will be replaced by adapters and publishing data to JMS topics in the ESB.
JMS topics are covered below.

C-6 ESB Intrinsic Architecture View

Tenet: GCSS-AF ESB enables integration. Any Community of Interest (COI) can integrate
• Within the enclave
• Extend outside the enclave

This means that GCSS-AF will facilitate machine to machine integration, even if the machines do
not reside in the GCSS-AF enclave. This is a crucial point. Even legacy systems residing outside

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Messaging Routing Transformation Management

AFKS

Legacy App

Discovery

Packaged App .NET
J2EE App

BEA Weblogic
Websphere
Oracle, etc.

ESB Intrinsic Architecture View

ESB and Associated Services

Domain Applications/Services

Enterprise Service Bus

Integrate with Publish/Subscribe,
Request/Reply and/or Process

Security

Application
Servers

independent of
ESB

Application
Servers

independent of
ESB

 C-8

the enclave can participate in net-centric Publish / Subscribe using the FTP adapters. This is a very
low cost way to increase net-centric participation.

Tenet: COI data sources are not directly accessed. Instead we integrate using:

• Publish /Subscribe (JMS)
• Request/Reply (SOAP/WSDL)

This is another crucial point. We will move away from point-to-point brittle, and proprietary
database connections, and move toward asynchronous net-centric message exchange. The two
types of messages supported are JMS and SOAP. These can be read by any machine and will
increase the rate of integration, and improve the flow of information.

Tenet: GCSS-AF ESB will be as “self-serve” as possible by COI applications

• Easy to use integration patterns
• Connecting does not require modifications to GOTS code

It is imperative that we remove any barriers to entry in this net-centric marketplace of data.
Therefore, COI domain applications must be able to find and use simple integration patterns, and
connect to the ESB without needing to wait for GOTS code to be rewritten. Therefore, the ESB is
99% COTS, and where there are GOTS adapters (such as the FTP adapter), they are 100%
configuration driven.

Tenet: The COIs and programs make data decisions, not the GCSS-AF SPO or other agency. It is
important for the COIs to make their own data decisions, and use the ESB as a means to
implement those decisions.

C.7 Methods of Integration
The ESB has three integration capabilities which are:

• Publish / Subscribe – the subject of this paper
o 1-many messaging

• Request / Reply – classic SOAP/WSDL web services
o 1-1 messaging
o Query for data
o Issue a command
o We recommend non-blocking asynchronous messaging

• Process Orchestration – orchestration of web services
o If a number of web services need to be coordinated, consider creating an

orchestrated process.
o The number one value of an orchestrated process is that error handling can be

done consistently, and the state of the process is centralized.

 C-9

C-7 ESB Methods of Integration

The Publish/Subscribe capability is the JAVA Messaging Service (JMS), and is a standard part
of J2EE technology. JMS allows a Publisher to publish a message (report or event) once to a JMS
topic, which is a queue inbox with the name of the inbox organized hierarchically [such as
Community of Interest (COI) Application Report type, …]. Any number of Subscribers will
automatically get a copy of the message from the inbox it is subscribing to. This relieves the
Publisher from the burden of maintaining who wants the information. The message is deleted
once all the Subscribers receive the message. The ESB has the option for a durable Subscriber
which leaves a copy of the message in the inbox until a disconnected Subscriber reconnects. A
Subscriber also has the option for wildcarding(*) subscriptions which means, for example, that all
messages of new ReportTypes will automatically be received, if subscribing at the “Application*”
level.

The Request/Reply capability is SOAP/WSDL Request/Reply, which is one of the W3C
standards. The SOAP message can be transmitted either HTTP/S (not recommended over WAN)
or via the guaranteed messaging backbone (recommended). SOAP Requests allow a Requester to
Query for data, or Request an action to be performed. Requesting a Query of data is the preferred
method (over JMS) when the provider of the data has too much data to publish simple reports. For
example a Weather Service could be Queried for “what is the weather – at this lat/long – for this
period of time”? In addition, SOAP Requests can be used to perform an action, process a business
object, etc.

The Orchestration capability is the Business Process Execution Language (BPEL) which
provides orchestration and is one of the OASIS standards. The BPEL engine (pictured as a yellow
process flow) uses SOAP/WSDL messages to coordinate actions among Services, and maintains
centralized process state and logging. One of the Services could be an inbox of a Commander to

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

SubscriberSubscriber

ESB Methods of Integration

Three methods of integration
Pub/Sub integration
Request/Reply Integration
Process Integration

All methods of integration use the GCSS-AF “ESB Message”
Tracking / auditing (CFO requirments)
Metadata linked to corresponding item in Discovery
Service

Service ServicePublisher

ESB

Subscriber

ESBESB

Requester Replier

Start

? Action-1

Action-2

Pub/Sub (1 many)
Integration

Request/Reply (1 1)
Integration

Process (many many)
Integration

 C-10

include human-in-the-loop processing of exceptions. BPEL provides long running transactions
with compensating actions to handle faults. This is the industry standard method to perform
transactions longer and more complex than simple ACID or two-phase commit transactions.

C.8 Integration Architecture
GCSS-AF ESB is a machine to machine integration architecture that is net-centric for both
machines and people.

Machine to machine connectivity is achieved with guaranteed asynchronous messaging, in NIPR,
SIPR, as well as NIPR SIPR. Human connectivity remains via the portal and now has a wider
range of machines and data to access. AFKS connectivity and value is also increased via the ESB.

In the diagram below we can see domain apps in green either directly attached to the ESB, or in
the case of legacy systems, coming into the ESB via FTP adapters. In addition to domain apps,
we show the ERP modules in green. All of the domain apps, legacy systems, and ERP modules
represent inherent mission capability.

The NIPR portal, the SIPR portal, AFKS (Air Force Knowledge Services, Air Force Data
Services) and process engine are all major tools of the integration architecture. The FTP adapter
and other adapters provide a low-cost method for legacy systems and other domain applications to
plug into the ESB.

C-8 ESB Integration Architecture

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

ESB Integration Architecture
from GCSS-AF

ESB ESBCross-Domain
Service

Domain
App

Domain
App

ERP
Module

FTP
Adapter

NIPR
Portal

Process
Engine

SIPR
Portal

Domain
App

Domain
App

Process
Engine

NIPRNIPR SIPRSIPR

Legacy
System

Legacy
System

Legacy
System

AFKS

 C-11

C.9 Extensibility
 In the diagram below we see the domain apps in the green square appservers, and the message
bus is in the steel gray and blue pipes. The importance of separating apps from messaging cannot
be overstated. This separation allows us to connect any app server into the ESB via standard JMS
and/or Web service connections. This separation also allows us to grow the ESB messaging
backbone independent of any app server.

The ESB makes platform and technology comparison charts obsolete. Now we can connect any
system to the GCSS-AF ESB using standard connectors, since interoperability is no longer an
issue.

C-9 Extensible ESB

C.10 Points of Presence
An ESB that spans datacenters provides a messaging backbone that spans a distributed enclave.
Below we see that the domain applications run inside appservers that are co-resident with
persistent queues. This brings guaranteed messaging right next to the applications. Messages are
routed by the Message Brokers, and the JMS topic trees reside in the Message Brokers also.
Applications from Datacenter-1 or Datacenter-2 do not need to know the location of either other
applications, or the JMS topic trees.

We consider the GCSS-AF ESB that spans the enclave to be an “ESB Segment”. This is in
recognition that the GCSS-AF ESB will not be the only ESB in the Air Force (or DoD, Federal
Gov’t, Coalition, or Commercial sector for that matter) and serves as a useful term to define
interoperability below.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

An ESB is Extensible

Application servers can
be BEA Weblogic, IBM
Websphere, Oracle,
.NET or even
mainframes

Application servers can
be BEA Weblogic, IBM
Websphere, Oracle,
.NET or even
mainframes

World-wide reach
with Asynchronous
Guaranteed
Messaging Backbone

World-wide reach
with Asynchronous
Guaranteed
Messaging Backbone

Organizations
plug applications
into the ESB and
retain control of
their apps and
data

Organizations
plug applications
into the ESB and
retain control of
their apps and
data

ESB growth and
interoperability patterns are
similar to the Internet:
• Distributed

• No central database, or
point of failure

ESB growth and
interoperability patterns are
similar to the Internet:
• Distributed

• No central database, or
point of failure

 C-12

C-10 ESB Points of Presence

C.11 5 Phases of Use
A key challenge in adopting any new integration strategy is how to let each individual adopting
system adopt at their own pace. This was a key finding in recent federal IRS SOA project
failures. Any integration strategy will fail if all participating systems have to change
simultaneously.

Therefore, we have developed adoption patterns that allow an individual system to evolve at their
own pace. We call these asymmetric evolution patterns. The key points are:

• Being able to break co-dependencies with other applications, especially FTP
dependencies, and

• Minimizing the work necessary for adoption

We have developed five basic patterns which are summarized below:

1. Interface consolidation - this is a widely used pattern in commercial practices,
where the recommendation is to eliminate redundant functionality, or interfaces.
In AF Operations Support terms, if a system outputs five feeds, then that system
should consider publishing one feed, that is a superset. Then the subscribers can
read the superset and take the data they need. This is a much more cost effective,
and net-centric way to publish data.

2. ESB visible/private - this is another widely used pattern in commercial practices,
where the recommendation is to hide your implementation, behind a public
interface. In AF Operations Support terms, if a connecting system has several

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

ESB Points of Presence
from GCSS-AF

IBM Message Broker

IBM MQ Series Queue Manager

Apps/Services(*) in WAS

DMZ Enclave

(*) Incl special apps/services such as
discovery, orchestration, gateways,
ERP packages, etc.

ESB - Broker to Broker

DMZ

Gunter Wright Patt

 C-13

3. hidden backend systems, the backend systems do not have to modernize. Only the

connecting system, which has a visible interaction to the ESB, has to modernize or
adapt into the ESB.

4. Break FTP co-dependency - this pattern is unique to the GCSS-AF ESB. This
pattern allows a legacy system that has FTP co-dependencies to modernize into
the ESB without causing rework in dependent systems.

5. Bridge FTP to pub/sub - this pattern is also unique to the GCSS-AF ESB. This
pattern allows a legacy system that has FTP co-dependencies to publish into the
ESB without modernizing.

6. Output changes instead of complete database - this is an old pattern of commercial
practices, where the recommendation is to output transaction activity one activity
at a time. In AF Operations Support terms, systems should stop dumping
complete database outputs, and start publishing each individual change activity.

In order to simplify adoption we have recast these patterns into a five step plan of action – the five
phases of ESB use. The five phases of use are based on the above principle of “asymmetric
evolution”. Every native service and legacy system that adapts into the ESB needs to evolve
separately and independently from any other service or system. This principle extends to legacy
systems that have existing relationships with each other. If a legacy system adapts into the ESB, it
must be able to maintain its existing relationships, without incurring programmatic or funding
dependencies. We will see a summary of how this asymmetric evolution principle is put into
practice below.

1. The five phases of use are:
2. Simple Publish with FTP adapter
3. Consolidate output interfaces/feeds
4. Migrate to XML change records over JMS
5. Add web service interfaces
6. Plug into business processes

The following examples are taken from GCSS-AF.

 C-14

C.11.1 Phase 1 Simple Publish with FTP Adapter
This is the starting point for most systems in Air Force Operations Support. The majority of
systems operate by sending bulk files to each other via FTP. With the ability to break FTP co-
dependencies via the FTP adapter, we can migrate one system at a time. The first step is to get all
trading partners of the target system to point their FTPs to the ESB instead of the target system.

C-21 Phase 1

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

PHASE 1
Simple Publish with FTP adapter

ESB ESB
Cross

Domain
Service

AFKS

Domain
App

Legacy
System-1

ERP
Module

FTP & File
Adapter

NIPR
Portal

Process
Engine

SIPR
Portal

Domain
App

Domain
App

Process
Engine

1. Legacy system publishes a file to FTP adapter in DMZ
2. FTP adapter publishes file as JMS message in JMS Topic Tree

1. Legacy system publishes a file to FTP adapter in DMZ
2. FTP adapter publishes file as JMS message in JMS Topic Tree

1 2

 C-15

C.11.2 Phase 2 – Consolidate output interfaces/feeds
Once a legacy system is publishing and its trading partners are subscribing to the ESB, the legacy
system can then evolve, in conjunction with it’s trading partners, to reduce the number of unique
interfaces (usually bulk files).

The usual pattern for reducing the number of interfaces is to replace or supplement many closely
related interfaces with one superset. This introduces the challenge of change management. We
recommend:

1. Initially keep sending the old interfaces as well as the new superset. This keeps old trading
partners happy.

2. Set a date when the old interfaces are “deprecated”. This gives programs a timeline for
migration to the superset bulk feed.

3. As programs migrate off of the old interface, stop using it, and sunset it immediately –
including retiring the JMS Topic

C-12 Phase 2

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

PHASE 2
Consolidate Output Interfaces/Feeds

Legacy
System-1

outputs

1. Legacy system publishes a variety of interfaces, or feeds, some
as many as 100 or more.

2. Legacy systems may be able to consolidate up to a 10:1 ratio or
higher, dramatically reducing maintenance and transmission
costs.

1. Legacy system publishes a variety of interfaces, or feeds, some
as many as 100 or more.

2. Legacy systems may be able to consolidate up to a 10:1 ratio or
higher, dramatically reducing maintenance and transmission
costs.

1 2

Legacy
System-1a

outputs

 C-16

C.11.3 Phase 3 – Migrate to XML change records over JMS
The next step is to evolve from a bulk file output to a single change record at a time. In addition,
make the output an XML file instead of a single row of the older format. Lastly, publish via JMS
either internally to the enclave, or via an extension cord.

C-13 Phase 3

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

PHASE 3
Migrate to XML Change Records over JMS

ESB ESB
Cross

Domain
Service

AFKS

Domain
App-1b

Domain
App

ERP
Module

FTP & File
Adapter

NIPR
Portal

Process
Engine

SIPR
Portal

Domain
App

Domain
App

Process
Engine

1. Domain app (migrated legacy system) can now generate XML
change records to reflect transaction activity

2. Domain App publishes JMS messages

1. Domain app (migrated legacy system) can now generate XML
change records to reflect transaction activity

2. Domain App publishes JMS messages

2

1

 C-17

C.11.4 Phase 4 – Add web service interfaces
If you think the legacy system will need to plug into business processes, you need to add web
services. Web services support SOAP/HTTP which is required by a BPEL engine, which is the
only supported means to execute a business process.

C-14 Phase 4

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

PHASE 4
Add web service interfaces

ESB ESB
Cross

Domain
Service

AFKS

Domain
App-1c

Domain
App

ERP
Module

FTP & File
Adapter

NIPR
Portal

Process
Engine

SIPR
Portal

Domain
App

Domain
App

Process
Engine

1. Domain app-1c (migrated legacy system) can now accept SOAP
requests as queries or commands

2. Another Domain App sends a SOAP request to Domain app-1c

1. Domain app-1c (migrated legacy system) can now accept SOAP
requests as queries or commands

2. Another Domain App sends a SOAP request to Domain app-1c

21

 C-18

C.11.5 Phase 5 – Plug into business processes
An important case where you need to plug a legacy system into a business process is if the legacy
system will provide “Air Force unique” functionality to ERP functionality. The most important
form of integrating with ERP modules is to plug into a BPEL process they own.

The BPEL engine starts a process when it receives a message instructing it to start one. Then, the
instructions (similar to flow chart) are read, and all of the actions are translated into SOAP/WSDL
calls of the identified systems.

Humans plug into the business process behind the web services. For example one of the actions in
the flowchart could be to ask a web service for the decision of a human being. That web service
would not respond to the BPEL engine until the human interacted, and provided a decision.

C-15 Phase 5

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

PHASE 5
Plug into Business Processes

ESB ESB
Cross

Domain
Service

AFKS

Domain
App-1c

Domain
App

ERP
Module

FTP & File
Adapter

NIPR
Portal

Process
Engine

SIPR
Portal

Domain
App

Domain
App

Process
Engine

1. Process engine is loaded with BPEL file (business process description) – keeps process state
2. Process engine exchanges SOAP messages via WSDL with Domain App-1c
3. Process engine exchanges SOAP messages via WSDL with Domain App
4. Process engine exchanges SOAP messages via WSDL with ERP module

1. Process engine is loaded with BPEL file (business process description) – keeps process state
2. Process engine exchanges SOAP messages via WSDL with Domain App-1c
3. Process engine exchanges SOAP messages via WSDL with Domain App
4. Process engine exchanges SOAP messages via WSDL with ERP module

1

2 3

4

 C-19

C.12 Publish/Subscribe
Pub/Sub (JMS) is part of the J2EE standard, and a commercially accepted defacto component of
any Enterprise Service Bus. Pub/Sub works by having a Publisher (app or service) create a JMS
message and send it to a JMS Topic. One or more Subscribers will then receive the JMS message
automatically.

This is more effective than older polling methods for distributing data. For example in Operations
Support we have requirements for disconnected users, so the JMS Topic can be configured to wait
for a Subscriber to come back on line and get all pending messages.

C-16 GCSS-AF Pub/Sub Integration

The published data is organized into a hierarchical tree to allow for wildcarded subscriptions. The
general structure consists of a tree that resembles government structure:
US Gov DoD AF [TRIPLET]

The triplet is:
COI App Name/Business Process Stage Report

The triplet is “owned” by the COI and can be applied at any point in the structure. The example
below shows the triplet extending off of AF, but it can be put anywhere in the government
structure.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

GCSS-AF Pub/Sub Integration

Integrate using JMS Pub/Sub
Publish JMS messages to ESB
Subscribe to JMS messages from ESB
Guaranteed delivery
Auditable & Secure

Domain App
Publisher

Domain App
Subscriber

ESB

JMS Topic Tree

JMS Message JMS Message

 C-20

C-17 JMS Topic Tree

Each JMS Topic can be “locked down” as tight as we need, or left open. We anticipate that the
initial uses of Pub/Sub in many cases will emulate the tight specific interface agreements in place
today. We also anticipate that for some carefully defined data, there may be more open
subscriptions. Currently we are advocating the use of Interface Agreements to facilitate emulating
current patterns and accelerating adoption.

As seen in the diagram, the broker that maintains the JMS Topic can be configured to exactly
specify what app can publish and what app can subscribe. Authentication is via X.509 or restricted
FTP accounts, so identity is assured.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

JMS Topic Tree Structure

 C-21

C-18 GCSS-AF Pub/Sub Authorization

JMS Messages are Published into a JMS Topic, then delivered to as many subscribers as are
authorized. Subscribers that are marked “durable” will have their messages held until they return
if they become disconnected. This creates an on-demand response to data and events flowing in
the system, and is more scalable than older distribution methods such as polling a database for
updates.

The ESB does not aggregate. Thus, there is no “mosaic effect” that can inadvertently create
classified data out of select non-classified data. Messages are Published to JMS Topics, then
delivered ASAP by the broker with no waiting for Subscribers.

In contrast, a data warehouse may aggregate by subscribing and holding a variety of data. That is
its purpose. In this case, the benefit is to create a wide cross-functional view, and the result may in
fact be classified data. If this is the case, then this data needs to be moved to a data warehouse on
SIPR.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

GCSS-AF Pub/Sub Authorization

Domain App
Publisher

Domain App
Subscriber

ESB JMS Topic

JMS Message

Publisher is
authorized for
each JMS Topic

Publisher is
authorized for
each JMS Topic

Subscribers are
authorized for
each JMS Topic

Subscribers are
authorized for
each JMS Topic

 C-22

C-19 GCSS-AF Pub/Sub Distribution

C.13 Message Envelope
The Enhanced ESB message envelope supplements a standard commercial message structure. It is
a logical grouping of header and payload within a message for consistency for publish/subscribe,
request/reply and orchestrated processes. The categories of header information are as follows:

1. Discovery references
a. Service/application ID
b. Metadata ID

2. Tracking and auditing references such as
a. Unique msg#
b. Timestamp

3. Distributed process state references (future)

An example Message Envelope for JMS and how it corresponds to the wire format is shown
below:

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

GCSS-AF Pub/Sub Distribution

ESB

JMS Topic

Typically one
Publisher for
each JMS Topic

Typically one
Publisher for
each JMS Topic

There can be
any number of
Subscribers for
each JMS Topic

There can be
any number of
Subscribers for
each JMS Topic

JMS Messages live in the JMS
Topic until delivered to all
Subscribers – If a Subscriber is
frequently disconnected they can
register as a “durable”
subscriber so the JMS message
waits for them to reconnect

JMS Messages live in the JMS
Topic until delivered to all
Subscribers – If a Subscriber is
frequently disconnected they can
register as a “durable”
subscriber so the JMS message
waits for them to reconnect

JMS Messages are not
aggregated, they are
delivered – no
classification mosaic
effect

JMS Messages are not
aggregated, they are
delivered – no
classification mosaic
effect

 C-23

C-20 GCSS-AF ESB Message

179I n t e g r i t y - S e r v i c e - E x c e l l e n c e

MQ Message
JMS Message

JMS
header

JMS Payload
GCSS-AF

Header
GCSS-AF
Payload

MQ
header

GCSS-AF
JMS EnvelopeGCSS-AF
JMS Discovery

References

GCSS-AF
JMS Tracking
References

GCSS-AF
JMS Payload

Physical
message
Physical
message

Logical
message
Logical

message

GCSS-AF ESB Message

 1

Distribution List
Internal

D010
George Providakes,

D200
Backman, Tom

Farish,Stephen

Gannon, Thomas F.

D370
Quigley,William

D400
Norman,Douglas

D520
Partridge, Chris

Reed, Harvey

Wilson, Robert

D560
Harris, Deborah L.

D580
Adams, Chris

Chamberlin, Eric

Landsman, Seth

D810
Walsh, Jean

W010
Petroski,Frank

W300
Stein,Fred

Project
ESC/EISS/EID

3 Eglin Street

Hanscom AFB, MA 01731-2100

Besselman, Lt. Colonel Joseph

Farinello, Joseph

Gindhart, Major David

Whitmore, 1st Lieutenant Joseph

