
Searching for Shapes in Cryptographic
Protocols?

Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer

The MITRE Corporation
shaddin, guttman, jt@mitre.org

Abstract. A shape describes the behavior of the honest participants in
some minimal protocol execution. These shapes are informative, because
typically protocols have very few of them. Authentication and secrecy
properties are easy to determine from the set of shapes, as are attacks,
and other protocol characteristics.
A skeleton gives partial information about some possible executions,
and a homomorphism from one skeleton to another is an information-
preserving map. We describe a procedure that searches through skeletons
using homomorphisms. The search procedure has been implemented in
a Cryptographic Protocol Shape Analyzer cpsa.

1 Introduction

The executions of cryptographic protocols frequently have a limited number
of essentially different possible forms, which we call shapes. By enumerating
these shapes, we may ascertain whether they all satisfy a security condition
such as an authentication or confidentiality property. Enumerating the shapes of
a protocol also allows us to find out whether any execution has other anomalies,
which are not necessarily counterexamples to the security goals, such as involving
unexpected participants, or involving more local runs than expected.

In this paper, we describe a method for enumerating the shapes that a proto-
col admits. If a protocol permits a security failure or an anomaly of other kinds,
then the shapes found in the enumeration will show it. If the protocol has only
finitely many essentially different shapes, the enumeration will terminate, allow-
ing us to conclude that no anomaly exists. We can then read off the answers to
traditional secrecy and authentication questions from the shapes.

We use the strand space theory as a framework [9]. A skeleton [4, 5] represents
regular (non-penetrator) behavior that might make up part of an execution,
and a homomorphism is an information-preserving map between skeletons. A
skeleton is realized if it contains exactly the regular behavior of some execution.
A realized skeleton is a shape if it is minimal in the sense of Definition 11.
We search for shapes using the authentication tests [9] to find new strands to

? Supported by the National Security Agency and by MITRE-Sponsored Research.

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 06-1055

2 August 22, 2006

add when a skeleton is not large enough to be realized. The shape enumeration
reflects protocol executions of all sizes. Our work does not lie within the widely
practiced bounded protocol analysis (initiated in [2, 7, 14]).

Our main result is that the search is complete, in the sense that—for any
protocol—our search discovers every shape for that protocol. It cannot terminate
for every protocol [6], but it does apparently terminate for reasonably inclusive
classes [1, 17]. The search idea is related to the second version of Athena [16],
which adopted the authentication tests from early versions of [9]. However, our
search involves the regular behaviors alone; we never represent penetrator activ-
ity within a shape. Moreover, we have improved both the search and the theory;
we have introduced the notion of shape; and we have created versions of the
authentication tests strong enough for completeness to be true.

We implemented this search in a program called the Cryptographic Protocol
Shape Analyzer (cpsa).

Road map to this paper. Section 2 describes examples, including the Yahalom
protocol, a small but interesting case for our method. An intuitive analysis leads
to a single shape. The remainder of the paper formalizes this kind of argument.

Section 3 summarizes definitions, and Section 4 introduces skeletons, homo-
morphisms, and shapes. Section 5, the heart of the paper, extracts search steps
from the authentication tests [9]. These search steps are complete (Corollary 3).

Section 6 describes the search algorithm, which we illustrate with a rigor-
ous treatment of Yahalom’s protocol (Section 7). In Section 8, we describe the
implementation of the search method in cpsa.

2 Some Examples

In practice, protocols have remarkably few shapes. The Needham-Schoeder-Lowe
protocol has one, shown in Fig. 1, where we use {|t|}K to refer to the encryption

A
{|Na ˆ A|}KB-

{|Na ˆ A|}KB- B

�{|Na ˆ Nb|}KA •

•

wwwwwwww

�{|Na ˆ Nb|}KA

•

{|Nb|}KB-

{|Nb|}KB - •

wwwwwwww

Fig. 1. Only Shape for Needham-Schroeder-Lowe

of t with key K, and t ˆ t′ to refer to the concatenation of messages. In this

August 22, 2006 3

analysis, we take B’s point of view, assuming that a full local run of B’s side has
occurred. If B’s nonce Nb has been freshly chosen and A’s private key K−1

A is
uncompromised, then A must have had a matching run, with the messages sent
and received in the order shown (reading down the page). The same diagram also
represents A’s point of view, if we instead assume both private keys K−1

A ,K−1
B

uncompromised and A’s nonce Na freshly chosen. However, the lowermost node
of B’s run may be absent.

Uniqueness of shape is not surprising for such a strong protocol. However, an
incorrect protocol such as Needham-Schroeder may also have a single shape, as
shown (from B’s point of view) in Fig. 2. We again assume that B has executed a
full run, using a fresh nonce Nb, and that A’s private key K−1

A is uncompromised.
Although there is a single shape, there are two ways that this shape may be
realized. Either (1) C’s private key may be compromised, in which case we may
complete this diagram with adversary activity to obtain the Lowe attack [12];
or else (2) C = B, leading to the intended run.

A
{|Na ˆ A|}KC-

{|Na ˆ A|}KB- B

�{|Na ˆ Nb|}KA •

•

wwwwwwww

�{|Na ˆ Nb|}KA

•

{|Nb|}KC-

{|Nb|}KB - •

wwwwwwww

Fig. 2. Only Shape for Needham-Schroeder

Some protocols have more than one shape, Otway-Rees, e.g., having four.
One is the intended shape. The others are variants of one basic situation, in
which the responder B “thinks he wants to talk to himself,” in the sense that
the intended initiator is also B. There need not be any initiator run at all. This
anomaly was first observed by Michael Goldsmith using Casper and FDR [13].

In searching for the shapes of a protocol, one always starts from some initial
behavior. Typically, it consists of one single local run; we refer to this original
run as the “point of view” of the analysis.

2.1 The Yahalom Protocol

The Yahalom protocol [3] provides a session key K to principals sharing long-
term symmetric keys with a key server S. We let ltk(·) map each principal A to
its long term shared key ltk(A).

The protocol contains three roles, the initiator, the responder, and the server.
Each is described by one column in Fig. 3, and each role is parametrized by

4 August 22, 2006

Init
A ˆ Na - A ˆ Na - Resp

�B ˆ {|A ˆ Na ˆ Nb|}ltk(B) •

•

wwwww

� {|B ˆ K ˆ Na ˆ Nb|}ltk(A)

{|A ˆ K|}ltk(B) - •

wwwww

•

wwwww

{|Nb|}K - {|Nb|}K - •

Serv �B ˆ {|A ˆ Na ˆ Nb|}ltk(B)

�{|B ˆ K ˆ Na ˆ Nb|}ltk(A) •

•

{|A ˆ K|}ltk(B) -

Fig. 3. Yahalom protocol (forwarding removed)

A,B,Na, Nb,K. The behavior Init of the initiator consists transmitting A ˆNa

followed by receiving {|B ˆK ˆNa ˆNb|}ltk(A) and finally transmitting {|Nb|}K ;
instances of this role are obtained by plugging in values for the parameters. The
other roles are equally self-explanatory. The key server is trusted to generate a
fresh session key K in each run, so we will assume it to originate nowhere else.

2.2 Yahalom Shapes for the Responder

Suppose an execution contains a local run of the responder’s role as shown in
the upper right column of Fig. 3. What shapes of global run are possible?

We assume the long term keys ltk(A), ltk(B) of the two participants are un-
compromised. Similarly, we assume the responder’s nonce Nb to be fresh and
unguessable.

Step 1: A server run. Nb is transmitted in B’s second step (n0 in Fig. 4)
within the encrypted unit {|A ˆNa ˆNb|}ltk(B). In B’s fourth step (n1 in Fig. 4),
it is received outside that unit in the form {|Nb|}K .

Since Nb was freshly chosen and unguessable, it must be extracted from
B’s message, and not obtained from any independent activity. Since ltk(B) is
uncompromised, the adversary would never be able to get it out of its original
message. Since some participant does get it out of this form, that must be an
uncompromised participant, namely some protocol participant willing to receive
a message containing {|A ˆ Na ˆ Nb|}ltk(B) and later retransmit Nb outside this
unit. The structure of the protocol in Fig. 3, provides only one possibility: a
run of the server role. The parameters appearing in {|A ˆNa ˆNb|}ltk(B) ensure
that the server uses the parameters A,B,Na, Nb. This server run generates some
session key K ′. We do not yet know whether K ′ = K. The situation so far is
described in Fig. 4.

August 22, 2006 5

S B

n0

• �.................................... •
w

? �.................... •
ww

?

w
•

wwwwwwww

n1

ww
A, B, Na, Nb, K

′ A, B, Na, Nb, K

Fig. 4. Adding a server run

The authentication test idea. We will repeatedly use the form of reasoning
we just used in Step 1. We call it an authentication test. The nodes at which Nb is
freshly transmitted and later received back form a test, from which we can infer
an action taken by a protocol participant. Since the fresh value goes out in an
encrypted message from which it can be extracted only using an uncompromised
key, only a participant using this key according to the protocol can extract Nb

and retransmit it in a new form. We can take cases on the transformations the
protocol offers to see how the extraction could have occurred. Indeed, often there
is no choice: only one protocol action could achieve the transformation.

In this context, we will speak of the test nodes that require a transformation;
in Step 1, the test nodes are n0, n1. The new protocol activity (the server behav-
ior in Step 1) provides a transforming edge. In Step 1, the test nodes require the
transforming edge to extract Nb from a single encrypted unit. However, in other
cases, for instance the one we turn to next, the transforming edge may need to
extract it from several different forms.

Step 2: An initiator run. Nb was sent at n0 inside {|A ˆNa ˆNb|}ltk(B), and
the server retransmits it inside {|B ˆK ′ ˆNa ˆNb|}ltk(A). However, it eventually
reaches B at n1 outside these encrypted messages as {|Nb|}K .

With ltk(A), ltk(B) uncompromised, the adversary cannot extract Nb from
the set of forms { {|A ˆ Na ˆ Nb|}ltk(B), {|B ˆ K ′ ˆ Na ˆ Nb|}ltk(A) }. Thus,
we have an authentication test, and some regular participant must free Nb

from these encrypted units. The structure of the protocol in Fig. 3, provides
only one possibility: a run of the initiator role. The parameters appearing in
{|B ˆK ′ ˆNa ˆNb|}ltk(A) ensure that the initiator is A, running with the param-
eters A,B,Na, Nb,K

′. (See Fig. 5.)

Step 3: Does K = K ′? Assuming that K ′ 6= K, we may use another au-
thentication test. Nb was transmitted only in the forms {|A ˆ Na ˆ Nb|}ltk(B),
{|B ˆ K ′ ˆ Na ˆ Nb|}ltk(A), and lastly {|Nb|}K′ . However, the test nodes n0, n1

6 August 22, 2006

A S B

• •

• �.................................... •
ww

•

wwwwwwww

�.................................. m0

ww

?

w
•

wwwwwwww

•

wwwwwwww

..- •
ww

A, B, Na, Nb, K
′ A, B, Na, Nb, K

′ A, B, Na, Nb, K

Fig. 5. Adding an initiator run

show that it is extracted from all of these encrypted units, to be received as
{|Nb|}K . If we assume for the moment that K ′ remains uncompromised, like
ltk(A) and ltk(B), we can again apply the authentication test idea.

However, the protocol in Fig. 3 provides no transforming edges at all: a
participant following the protocol that receives Nb only in the forms

1. {|A ˆNa ˆNb|}ltk(B),
2. {|B ˆK ′ ˆNa ˆNb|}ltk(A) for K ′ 6= K, and
3. {|Nb|}K′ for K ′ 6= K

does not retransmit Nb in any other form. So the assumption K ′ 6= K is false.

Step 4: K ′ is uncompromised. We used the premise that K ′ is uncompro-
mised, which we will now check. It depends on our trust that the key server, in
any run, will always select a fresh and unguessable session key K ′. In Fig. 5, it
is transmitted first at node m0. If it is ever received in compromised form at any
node m1, then there must be a transforming edge that extracts K ′ from the en-
crypted units in which the server transmits K ′, namely {|B ˆK ′ ˆNa ˆNb|}ltk(A)

and {|A ˆK ′|}ltk(B).
However, the protocol in Fig. 3 provides no possibilities: no participant ever

receives a keyK ′ and retransmits it as part of the plaintext of a different message.
So it is impossible for K ′ to become compromised.

Step 5: B receives K from the same server run. Since B receives the
message {|A ˆ K|}ltk(B), this message must have been transmitted. Since ltk(B)
is uncompromised, the adversary cannot prepare it. Therefore it must have been
transmitted by an uncompromised protocol participant. Inspecting Fig. 3, we
see that this must be a server run.

We know that the server run found in Step 1 freshly generated the value K ′,
and we later determined that K ′ = K. By the freshness assumption, the run in

August 22, 2006 7

which {|A ˆ K|}ltk(B) was transmitted must have been the same as the run in
which {|B ˆK ˆNa ˆNb|}ltk(A) was transmitted to A. (See Fig. 6.)

A S B

• •

• �................................... •
ww

•

wwwwwwww

�................................... •
ww

•
ww

...................................- •

wwwwwwww

•

wwwwwwww

..- •
ww

A, B, Na, Nb, K A, B, Na, Nb, K A, B, Na, Nb, K

Fig. 6. The resulting shape

Summary. Thus, any run in which the responder B has the behavior shown in
on the right in Figure 3 also has one server execution and an initiator execution.
All three participants agree on all of the parameters. The session key K can-
not have been compromised. We used three assumptions: (1) ltk(A), ltk(B) were
uncompromised; (2) Nb was freshly chosen; and (3) K will be freshly chosen in
every server run.

This argument, which repeatedly used the authentication test idea. corrects
the unsound proof given in [8]. The remainder of this paper provides a rigorous
theory for this type of shape analysis, and also shows how to mechanize the
reasoning. We return to apply our theory to the Yahalom protocol in Section 7.

3 Terms, Strands, and Bundles

Terms (or messages) form a free algebra A, built from atomic terms via con-
structors. The atoms are partitioned into the types principals, texts, keys, and
nonces. An inverse operator is defined on keys. There may be additional func-
tions on atoms, such as an injective public key of function mapping principals to
keys, or an injective long term shared key of function mapping pairs of principals
to keys. These functions are not constructors, and their results are atoms. For
definiteness, we include here functions pubk(a), ltk(a) mapping principals to (re-
spectively) their public keys and to a symmetric key shared on a long-term basis
with a fixed server S. pubk(a)−1 is a’s private key, where pubk(a)−1 6= pubk(a).
We often write the public key pair as Ka,K

−1
a . By contrast, ltk(a)−1 = ltk(a).

8 August 22, 2006

Atoms, written in italics (e.g. a,Na,K
−1), serve as indeterminates (vari-

ables). We assume A contains infinitely many atoms of each type. Terms in A
are freely built from atoms using tagged concatenation and encryption. The tags
are chosen from a set of constants written in sans serif font (e.g. tag). The tagged
concatenation using tag of t0 and t1 is written tag ˆ t0 ˆ t1. Tagged concatenation
using the distinguished tag null of t0 and t1 is written t0 ˆ t1. Encryption takes
a term t and an atomic key K, and yields a term as result written {|t|}K .

Replacements have only atoms in their range:

Definition 1 (Replacement, Application). A replacement is a function α
mapping atoms to atoms, such that (1) for every atom a, α(a) is an atom of the
same type as a, and (2) α is a homomorphism with respect to the operations on
atoms, i.e., α(K−1) = (α(K))−1 and α(pubk(a)) = pubk(α(a)).

The application of α to t, written t · α, homomorphically extends α’s action
on atoms. More explicitly, if t = a is an atom, then a · α = α(a); and:

(tag ˆ t0 ˆ t1) · α = tag ˆ (t0 · α) ˆ (t1 · α)
({|t|}K) · α = {|t · α|}K·α

Application distributes through larger objects such as pairing and sets. Thus,
(x, y) · α = (x · α, y · α), and S · α = {x · α : x ∈ S}. If x 6∈ A is a simple value
such as an integer or a symbol, then x · α = x.

Since replacements map atoms to atoms, not to compound terms, unification
is very simple. Two terms are unifiable if and only if they have the same ab-
stract syntax tree structure, with the same tags associated with corresponding
concatenations, and the same type for atoms at corresponding leaves. To unify
t1, t2 means to partition the atoms at the leaves; a most general unifier is a finest
partition that maps a, b to the same c whenever a appears at the end of a path
in t1 and b appears at the end of the same path in t2. If two terms t1, t2 are
unifiable, then t1 · α and t2 · β are still unifiable.

The direction + means transmission, and the direction − means reception:

Definition 2 (Strand Spaces). A direction is one of the symbols +,−. A di-
rected term is a pair (d, t) with t ∈ A and d a direction, normally written +t,−t.
(±A)∗ is the set of finite sequences of directed terms.

A strand space over A is a structure containing a set Σ and two mappings: a
trace mapping tr : Σ → (±A)∗ and a replacement application operator (s, α) 7→
s · α such that (1) tr(s · α) = (tr(s)) · α, and (2) s · α = s′ · α implies s = s′.

By condition (2), Σ has infinitely many copies of each strand s, i.e. strands s′

with tr(s′) = tr(s).

Definition 3. A penetrator strand has trace of one of the following forms:
Mt: 〈+t〉 where t ∈text, principal,nonce KK : 〈+K〉
Cg,h: 〈−g, −h, +g ˆ h〉 Sg,h: 〈−g ˆ h, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉 Dh,K : 〈−K−1, −{|h|}K , +h〉.

August 22, 2006 9

If s is a penetrator strand, then s · α is a penetrator strand of the same kind.
The subterm relation, written @, is the least reflexive, transitive relation

such that (1) t0 @ tag ˆ t0 ˆ t1; (2) t1 @ tag ˆ t0 ˆ t1; and (3) t @ {|t|}K . Notice,
however, K 6@ {|t|}K unless (anomalously) K @ t. We say that a key K is used
for encryption in a term t if for some t0, {|t0|}K @ t.

A node is a pair n = (s, i) where i ≤ length(tr(s)); strand(s, i) = s; and the
direction and term of n are those of tr(s)(i). We prefer to write s ↓ i for the
node n = (s, i).

A term t originates at node n if n is positive, t @ term(n), and t 6@ term(m)
whenever m⇒+ n. Thus, t originates on n if t is part of a message transmitted
on n, and t was neither sent nor received previously on this strand. If a originates
on strand s, we write O(s, a) to refer to the node on which it originates.

A listener role is a regular strand Lsn[a] with trace 〈−a〉. It documents that
a is available on its own to the adversary, unprotected by encryption. Since
replacements respect type, atoms of different type must be overheard by different
roles. We assume each protocol Π has listener roles Lsn[N] and Lsn[K] for nonces
and keys respectively, with traces 〈−N〉 and 〈−K〉.

Definition 4 (Protocols). A candidate 〈Π,n, u〉 consists of: (1) a finite set Π
of strands—containing the listener strands Lsn[N], Lsn[K]—called the roles of
the protocol; (2) a function n mapping each role r to a finite set of keys nr,
called the non-originating keys of r; and (3) a function u mapping each role r to
a finite set of atoms ur called the uniquely originating atoms of r.

A candidate 〈Π,n, u〉 is a protocol if (1) K ∈ nr implies that K or K−1 is
used for encryption on some term of tr(r), but does not occur in any node of r;
and (2) a ∈ ur implies that a originates on r, i.e. O(r, a) is well defined.

The regular strands of 〈Π,n, u〉 form the set ΣΠ =

{r · α : r ∈ Π and ∀a ∈ ur,O(r · α, a · α) = (O(r, a)) · α}.

Example 5 (Yahalom Protocol). The Yahalom protocol has a set ΠY of roles
containing the three roles shown in Fig. 3 and two listener roles, to hear nonces
and keys. For each r ∈ ΠY , nr = ∅. For the server role Serv ∈ ΠY , uServ = {K},
and for the other roles r ∈ ΠY , ur = nr = ∅.

The set N of all nodes forms a directed graph G = 〈N , (→ ∪ ⇒)〉 with edges
n1 → n2 for communication (with the same term, directed from positive to
negative node) and n1 ⇒ n2 for succession on the same strand.

Definition 6 (Bundle). A finite acyclic subgraph B = 〈NB, (→B ∪ ⇒B)〉 of G
is a bundle if (1) if n2 ∈ NB is negative, then there is a unique n1 ∈ NB with
n1 →B n2; and (2) if n2 ∈ NB and n1 ⇒ n2, then n1 ⇒B n2. When B is a
bundle, �B is the reflexive, transitive closure of (→B ∪ ⇒B).

A bundle B is over 〈Π,n, u〉 if for every s ↓ i ∈ B, (1) either s ∈ ΣΠ or s is
a penetrator strand; (2) if s = r · α and a ∈ nr · α, then a does not originate in
B; and (3) if s = r · α and a ∈ ur · α, then a originates at most once in B.

10 August 22, 2006

Example 7. Fig. 1 is a bundle if we connect arrows with matching labels. Fig. 2
is a bundle if we replace C with B and then connect arrows with matching labels.
Alternatively, it becomes a bundle by adding penetrator strands to unpack the
values encrypted with KC and repackage the values, encrypting with KB .

We say that a strand s is in B if s has at least one node in B.

Proposition 1. Let B be a bundle. �B is a well-founded partial order. Every
non-empty set of nodes of B has �B-minimal members.

Let α be a replacement. Suppose for every regular strand s = r · β in B, for
every b ∈ ur · β, we have (O(s, b)) · α = O(s · α, b · α). Then B · α is a bundle.

4 Preskeletons, Skeletons, and Homomorphisms

A preskeleton is potentially the regular (non-penetrator) part of a bundle or of
some portion of a bundle. It is annotated with additional information, indicating
order relations among nodes, uniquely originating atoms, and non-originating
atoms. We say that an atom a occurs in a set nodes of nodes if for some n ∈ nodes,
a @ term(n). A key K is used in nodes if for some n ∈ nodes, {|t|}K @ term(n).
We say that a key K is mentioned in nodes if K or K−1 either occurs or is used
in nodes. For a non-key a, a is mentioned if it occurs.

Definition 8. A four-tuple A = (nodes,�, non, unique) is a preskeleton if:

1. nodes is a finite set of regular nodes; n1 ∈ nodes and n0 ⇒+ n1 implies
n0 ∈ nodes;

2. � is a partial ordering on nodes such that n0 ⇒+ n1 implies n0 � n1;
3. non is a set of keys, and for all K ∈ non, either K or K−1 is used in nodes;
3′. for all K ∈ non, K does not occur in nodes;
4. unique is a set of atoms, and for all a ∈ unique, a occurs in nodes.

A preskeleton A is a skeleton if in addition:

4′. a ∈ unique implies a originates at no more than one node in nodes.

We select components of a preskeleton using subscripts, so, in A = (N,R, S, S′),
�A means R and uniqueA means S′. A need not contain all of the nodes of a
strand, just some initial subsequence. We write n ∈ A to mean n ∈ nodesA, and
we say that a strand s is in A when at least one node of s is in A. The A-height
of s is the largest i with s ↓ i ∈ A. By Clauses 3, 4, uniqueA ∩ nonA = ∅.

4.1 Skeletons and Bundles

Bundles correspond to certain skeletons:

Definition 9. Bundle B realizes skeleton A if:

1. The nodes of A are the regular nodes n ∈ B.

August 22, 2006 11

2. n �A n
′ just in case n, n′ ∈ nodesA and n �B n

′.
3. K ∈ nonA iff case K or K−1 is used in nodesA but K occurs nowhere in B.
4. a ∈ uniqueA iff a originates uniquely in B.

The skeleton of B is the skeleton that it realizes. The skeleton of B, written
skeleton(B), is uniquely determined. A is realized if some B realizes it.

Two bundles B,B′ are similar, written B ∼L B′, if they differ only in what
listener strands they contain. Two realized skeletons A,A′ are similar, written
A∼L A′, if for some B,B′ with B ∼L B′, A = skeleton(B) and A′ = skeleton(B′).

By condition (4), B does not realize A if A is a preskeleton but not a skeleton.
Given a skeleton A, methods derived from [9] determine whether A is realized.

4.2 Homomorphisms

When A is a preskeleton, we may apply a substitution α to it, subject to the
same condition as in Prop. 1. Namely, suppose α is a replacement, and suppose
that for each regular strand s = r · β such that s has nodes in A, and for each
atom b ∈ ur · β,

(O(s, b)) · α = O(s · α, b · α).

Then A·α is a well defined object. However, it is not a preskeleton when x·α = y·α
where x ∈ nonA while y occurs in A. In this case, no further identifications can
restore the preskeleton property. So we are interested only in replacements with
the property that x · α = y · α and x ∈ nonA implies y does not occur in A. On
this condition, A · α is a preskeleton.

However, A may be a skeleton, while A ·α is a preskeleton but not a skeleton.
For instance, this occurs when two distinct atoms a1, a2 ∈ uniqueA, but a1 · α =
a2 · α. There will then be two nodes n1, n2 that are points of origination for
a1, a2 respectively. Hence, the two nodes ni · α are both points of origination
for the common value ai · α. We may be able, though, to restore the skeleton
unique origination property (4′) by a mapping φ that carries these two nodes to
a common node. This will be possible only if the terms on them are the same,
and likewise for the other nodes in A on the same strands. We regard φ, α as an
information-preserving, or more specifically information-increasing, map. It has
added the information that a1, a2, which could have been distinct, are in fact
the same, and thus the nodes n1, n2, which could have been distinct, must also
be identified.

Definition 10. Let A0,A1 be preskeletons, α a replacement, φ : nodesA0 →
nodesA1 . H = [φ, α] is a homomorphism if

1a. For all n ∈ A0, term(φ(n)) = term(n) · α;
1b. For all s, i, if s ↓ i ∈ A then there is an s′ s.t. for all j ≤ i, φ(s ↓ j) = (s′, j);
2. n �A0 m implies φ(n) �A1 φ(m);
3. nonA0 · α ⊂ nonA1 ;
4. uniqueA0

· α ⊂ uniqueA1
; and O(s, a) = O(s′, a · α) whenever a ∈ uniqueA0

,
O(s, a) ∈ A0, and φ(s ↓ j) = s′ ↓ j.

12 August 22, 2006

We write H : A0 7→ A1 when H is a homomorphism from A to A′. When a ·
α = a · α′ for every a that occurs or is used for encryption in dom(φ), then
[φ, α] = [φ, α′]; i.e., [φ, α] is the equivalence class of pairs under this relation.

The condition on O in Clause 4 avoids a kind of degeneracy, in which a point
of origination is destroyed for some atom a ∈ uniqueA0

by identifying a with
a value occurring earlier on the strand. We stipulate that such a map is not a
homomorphism. The condition for [φ, α] = [φ, α′] implies that the action of α on
atoms not mentioned in the A0 is irrelevant.

When transforming a preskeleton A into a skeleton, one identifies nodes n, n′

if some a ∈ uniqueA originates on both; to do so, one may need to unify additional
atoms that appear in both term(n), term(n′). Although this process may cascade,
when success is possible, there is a canonical (universal) way to succeed, as
follows from the results in Appendix A:

Proposition 2. Suppose A is a preskeleton and A′ is a skeleton where H : A 7→
A′. There exists a homomorphism GA and a skeleton A0 such that GA : A 7→ A0

and, for every skeleton A1 and homomorphism H1 : A 7→ A1, for some H, H1 =
H ◦GA. GA and A0 are unique to within isomorphism.

We call this universal map GA (or sometimes its target A0) the hull of A, hull(A).

4.3 Shapes

Definition 11 (Shape). A0 is nodewise less than or equal to A1 if for some
homomorphism [φ, α] : A0 7→ A1, φ is an injective function on the nodes of A0.
We say A is nodewise minimal in a set S of skeletons if A is nodewise less than
or equal to all A1 ∈ S.

A′ interpolates into H : A0 7→ A1 if H = H ′′ ◦H ′ where H ′ : A0 7→ A′.
H : A0 7→ A1 is a shape for A0 if A1 is nodewise minimal among realized

skeletons that interpolate into H.

A0,A1 are isomorphic if each is nodewise less than or equal to the other. If we
speak of a skeleton A as a shape, we mean that it is the target A1 of some shape
H : A0 7→ A1, where a particular A0 is understood from the context.

Proposition 3. Let H = [φ, α] : A0 7→ A1. The set A of realized skeletons node-
wise less than or equal to A1 that interpolate into H is finite (up to isomorphism).
If A1 is realized, then at least one of the interpolants H ′ is a shape for A0.

Proof. We generate A by choosing, for each node n ∈ (A1 \ φ(A0)), whether to
omit it and all nodes later than n on the same strand.

If a is mentioned multiple times in A1, we partition the locations at which it
is mentioned. We will leave unchanged one equivalence class of locations, and we
will replace each other class with a new atom, unmentioned in A1. A partition
is compatible with H when, if b · α = a and m = φ(n), then for any pair of
locations of b in term(m), the corresponding locations of a in term(n) are in the
same equivalence class.

August 22, 2006 13

The set A of interpolants into H (to within isomorphism) are the skeletons
we get given a choice of nodes to omit and a compatible partition. A1 ∈ A, so if
A1 is realized, A has realized members, hence also minimal realized members.

If A1 is realized and contains listener strands, and A results when we omit some
of the listener strands, then A is realized and A∼LA1. In particular, A is nodewise
less than or equal to A1. A minimal member of A will omit all of the listener
strands, which is why they do not appear in Figs. 1–2.

Given a skeleton A0 as “starting point,” we would like to find all the homo-
morphisms H : A0 7→ A that lead from A0 to a shape A. If we find homomor-
phisms from A0 to realized skeletons A1, then Prop. 3 tells us how to obtain one
or more shapes from each of these realized skeletons. We are thus most interested
in homomorphisms H that do not unnecessarily identify occurrences of atoms,
as we will try to distinguish the different uses of the same atom in A1 to find
nodewise minimal members of A.

Our search is finished when more realized skeletons cannot yield any shapes
we have not yet encountered.

5 The Authentication Tests

To direct the process of searching for realized skeletons, we use the authentication
tests [9] in a strengthened and simplified form.

We say that t0 occurs only within S in t, where S is a set of terms, if:

1. t0 6@ t; or
2. t ∈ S; or
3. t 6= t0 and either (3a) t = {|t1|}K and t0 occurs only within S in t1; or (3b)
t = tag ˆ t1 ˆ t2 and t0 occurs only within S in each ti (i = 1, 2).

So t0 occurs only within S in t if in the abstract syntax tree, every path from
the root t to an occurrence of t0 as a subterm of t traverses some t1 ∈ S before
reaching t0. On the other hand, t0 occurs outside S in t if t0 does not occur only
within S in t. This means that t0 @ t and there is a path from the root to an
occurrence of t0 as a subterm of t that traverses no t1 ∈ S.

5.1 The Tests in Bundles

We say that a is protected in B iff term(n) 6= a for all n ∈ B. Equivalently, a is
protected in B iff the listener strand for a is not in B′ for any B′ ∼L B; that is,
(Lsn[a] ↓ 1) 6∈ B′.

We say that a is protected up to m in B iff, for all n ∈ B, if term(n) = a then
m ≺B n. We write a ∈ Protm(B) if a is protected up to m in B.

By the definitions of the penetrator strands for encryption and decryption
(Definition 3), if the adversary uses K for encryption or decryption anywhere
in B, then K is not protected in B. Thus, the adversary cannot create any
encrypted term with a protected key K. If K−1 is protected, it cannot decrypt
any term encrypted with K. If a key is protected up to a negative node m, then
the adversary cannot use that key to prepare the term received on m.

14 August 22, 2006

Proposition 4 (Outgoing Authentication Test). Suppose that n0, n1 ∈ B,
and

S ⊂ {{|t|}K : K−1 ∈ Protn1(B)}.

Suppose that a originates uniquely in B at node n0 and occurs only within S in
term(n0), but a occurs outside S in term(n1).

There is an integer i and a regular strand s ∈ ΣΠ such that m1 = s ↓ i ∈ B is
positive, and i is the least integer k such that a occurs outside S in term(s ↓ k).
Moreover, there is a node m0 = s ↓ j with j < i such that a @ term(s ↓ j), and
n0 �B m0 ⇒+ m1 �B n1.

Proof. Apply Prop. 1 to

T = {m : m �B n1 and a occurs outside S in term(m)}.

n1 ∈ T , so T has �B-minimal members m1. Since keys K used in S have K−1 ∈
Prot(B),m1 cannot lie on a decryption penetrator D-strand. By the assumptions,
a does not originate on m1, so that m1 does not lie on a M-strand or K-strand.
By the definitions of S and “occurs only within,” m1 does not lie on a S-, C-, or
E-strand. Thus, m1 lies on some s ∈ ΣΠ at some index i.

In the Outgoing Authentication Test, we call m0 ⇒+ m1 an outgoing transform-
ing edge for a, S. It transforms the occurrence of a from lying only within S to
occurring outside it. We call (n0, n1) an outgoing test pair for a, S when these
nodes satisfy the condition in the first paragraph of the proposition. When we
do not know the set Protn1(B), but consider a candidate set of atoms X, we
speak of an outgoing test pair for a, S,X.

Proposition 5 (Incoming Authentication Test). Suppose that n1 ∈ B is
negative, t = {|t0|}K @ term(n1), and K ∈ Prot(B). There exists a regular
m1 ≺ n1 such that t originates at m1.

Proof. Apply Prop. 1 to T = {m : m �B n1 and t @ term(m)}. A minimal
member m1 ∈ T does not lie on a penetrator E-strand because K ∈ Prot(B).

Here we refer to m1 as an incoming transforming node, and in the solicited case
we call m0 ⇒+ m1 an incoming transforming edge. We call n1 an incoming test
node.

5.2 The Tests in Skeletons

Since these theorems hold for all bundles, and concern only the regular behavior
within the bundles, they hold for all realized skeletons. Thus, roughly speaking,
any homomorphism H : A0 7→ A1 where A1 is realized must add a transforming
edge when A0 does not already contain one. Indeed, we can regard H as a
composition H ′′ ◦H ′ where H ′ adds the transforming edge right away, and H ′′

does whatever else is needed to construct A1.

August 22, 2006 15

Definition 12 (Augmentations, Contractions). 1. The inclusion [id, id] : A0 7→
A1 is an augmentation if:
(a) nodesA1 \ nodesA0 = {s ↓ j : j ≤ i} for some s = r · α;
(b) �A1 is the transitive closure of (a) �A0 ; (b) the strand ordering of s up

to i; and (c) pairs (n,m) or (n,m) with n ∈ nodesA1 , m = s ↓ j, and
j ≤ i.

(c) nonA1 = nonA1 ∪ (nr · α); and
(d) uniqueA1

= uniqueA1
∪ (ur · α).

2. An augmentation H : A0 7→ A1 is an outgoing augmentation if there exists
an outgoing test edge n0, n1 ∈ A0 with no outgoing transforming edge in A0,
and s ↓ 1 ⇒∗ m0 ⇒+ s ↓ i, where m0 ⇒+ s ↓ i is the earliest transforming
edge for this test on s. The additional pairs in the ordering (clause 2c) are
the pairs (n0,m0) and ((s ↓ i), n1).

3. It is an incoming augmentation if it adds an incoming transforming edge for
an incoming test node in A0. The pair (m1, n1) in the notation of Prop. 5 is
the additional pair in the ordering.

4. It is a listener augmentation for a if it adds a listener strand Lsn[a], with
no pairs added to the ordering. Thus, A1 ∼L A0 if A1 results by a listener
augmentation.

5. A replacement α is a contraction for A if there are two distinct atoms a, b
mentioned in A such that a · α = b · α. We write hullα(A) for the canonical
homomorphism from A to hull(A · α). (See Prop. 2.)

We can now state the search-oriented version of Prop. 4. It states that when a
skeleton A0 with an unsolved outgoing transformed pair can lead to a realized
skeleton A1, we can get there by starting out with one of three kinds of steps: (1)
an outgoing augmentation, (2) a contraction, or (3) adding a listener strand to
witness for the fact that one of the relevant keys is in fact not properly protected
by the time we reach A1.

Theorem 1 (Outgoing Augmentation). Let H : A0 7→ A1, where A1 is re-
alized. Let X be a set of keys, and let n0, n1 ∈ A0 be an outgoing test pair for
a, S,X, for which A0 contains no transforming edge. At least one of the following
holds:

1. H = H ′′ ◦ hullα(A0) for some contraction α;
2. H = H ′′ ◦H ′, where H ′ is some outgoing augmentation for a, S,X;
3. There is a listener augmentation H ′ : A0 7→ A′

0 for some K ∈ X, and a
homomorphism H ′′ : A′

0 7→ A′
1 such that: (a) A′

1 is realized, (b) A′
1 ∼L A1,

and (c) H ′′ ◦H ′ = I ◦H, where I is an inclusion homomorphism.

Proof. Assuming H = [φ, α] : A0 7→ A1 with A1 realized, say with skeleton(B) =
A1, we have the following possibilities. If α contracts any atoms, then we may
factor H into a contraction followed by some remainder H ′′ (clause 1).

If α does not contract any atoms, then (φ(n0), φ(n1)) is an outgoing test pair
for a ·α, S ·α,X ·α. There are now two cases. First, suppose X ·α ⊆ Protφ(n1)(B).
Then we may apply Prop. 4 to infer that B and thus also A1 contains an outgoing

16 August 22, 2006

transforming edge m0 ⇒+ m1 for a · α, S · α. Since α is injective on atoms
mentioned in A0, we may augment A0 with (m0 · α−1) ⇒+ (m1 · α−1).

Second, if there is some a ∈ X such that a · α 6∈ Protφ(n1)B, then there is
A′

1 ∼L A1 such that A′
1 contains Lsn[a · α], and φ(n1) 6� (Lsn[a · α]) ↓ 1. Hence,

clause 3 is satisfied.

In applying Theorem 1, we prefer to apply Clauses 2, 3 if possible; unnecessary
contractions must simply be un-contracted using Prop. 3. In particular, we use a
contraction α only if either (1) n0 ·α, n1 ·α is no longer an outgoing transformed
pair, or else (2) for some candidate outgoing augmentation, n0 · α, n1 · α is the
most general version of the test that it solves. The latter may occur when the
protocol role mentions the same atom at several locations where different atoms
are mentioned in n0, n1; α must then identify these atoms.

We can now see something missing with the analysis in Section 2.2. Theorem 1
always interpolates the nodes m0,m1 between a’s point of origination and the
node n1 in which it occurs outside S. Thus, the repeated of it in Steps 1 and 2
place the transforming nodes between B’s first transmission and final reception,
but do not determine any order for the server strand and the initiator strand.
As we shall see in Section 7, we may introduce the strands in reverse order,
and establish that the server behavior causally preceded the initiator’s second
action. However, step 3 works out differently. The analysis of Yahalom in [8] is
unsound, because the version of the authentication tests we used at the time
did not contain a set of terms S. Effectively, it covered the case in which S is a
singleton, which makes Step 2 impossible to state.

Incoming augmentations are similar to outgoing ones, except that the rele-
vant keys are only those used for encryption in the test node:

Theorem 2 (Incoming Augmentation). Let H : A0 7→ A1, where A1 is real-
ized. Let n1 ∈ A0 be a negative node and {|t0|}K @ term(n1). If {|t0|}K originates
nowhere in A0, then either:

1. H = H ′′ ◦H ′, where H ′ is an incoming augmentation originating {|t0|}K ; or

2. There is a listener augmentation H ′ : A0 7→ A′
0 for K, and a homomorphism

H ′′ : A′
0 7→ A′

1 such that: (a) A′
1 is realized, (b) A′

1∼L A1, and (c) H ′′ ◦H ′ =
I ◦H, where I is an inclusion homomorphism.

Here we use a contraction α only when α is needed to make an incoming aug-
mentation apply. A contraction never eliminates an incoming test node.

When a @ term(m), where a ∈ uniqueA0
and m ∈ A0, and a originates at

n ∈ A0, then n will precede m in any bundle accessible from A0. That is, if
H : A0 7→ A1 where the latter is realized, then H factors through H ′ which
maps A0 to the order enrichment A′

0, where �A′
0

is the transitive closure of
(�A0∪ (n,m)). We will rely on this implicitly in what follows. When we need to
be explicit about this, to say that a skeleton needs no further enrichment of this
kind, we will say that its order reflects origination.

August 22, 2006 17

5.3 Completeness of the Authentication Tests

If a skeleton A is not realized, does it necessarily contain an outgoing transformed
edge or an incoming transformed node? Yes, it does, although to make this
precise we must be careful about which atoms are protected, as this is not explicit
in an unrealized skeleton.

Definition 13 (Penetrator web). Let G = 〈NG, (→G ∪ ⇒G)〉 be a finite
acyclic subgraph of 〈N , (→ ∪ ⇒)〉 such that NG consists entirely of penetrator
nodes. G is a penetrator web with support S and result R if S and R are sets of
terms and moreover:

1. If n2 ∈ NG is negative, then either term(n2) ∈ S or there is a unique n1 such
that n1 →G n2.

2. If n2 ∈ NG and n1 ⇒ n2 then n1 ⇒G n2.
3. For each t ∈ R, either t ∈ S or for some positive n ∈ NG, term(n) = t.

If n ∈ B is a negative node, then B includes a penetrator web G with result
RG = {term(n)}. Its support SG = {term(m) : m is positive regular and m ≺B
n}. We write the set of positive regular nodes preceding a node n as support(n).

Definition 14. A term t is penetrator-derivable before n in A if there is a pen-
etrator web G with t ∈ RG such that:

1. SG ⊂ support(n);
2. If K ∈ nonA, K does not originate in Gn; and
3. If a ∈ uniqueA and a originates in A, then a does not originate in Gn.

Proposition 6. A skeleton A is realized iff, for every negative n ∈ A, term(n)
is penetrator-derivable before n in A.

Proposition 7. Suppose that �A reflects origination, and there exists some
H : A 7→ A′ where A′ is realized. If term(n) is not penetrator-derivable before
n in A, then either:

1. n is an incoming transformed node for some K ∈ nonA ∪ uniqueA; or else
2. (m,n) is an outgoing transformed pair with respect to a, S,X for (i) some

a ∈ uniqueA originating at a node m ∈ A; (ii) some set S of encrypted terms
such that a occurs only within S in support(n); and (iii) some set of keys
X ⊂ nonA ∪ uniqueA such that for each K ∈ X, K−1 is used for encryption
in support(n).

Proof. By structural induction on the terms n, support(n). Base Case: Suppose
that term(m) is an atom, whenever m ∈ support(n) or m = n.

Theorem 3 (Authentication Tests Completeness). Let H : A0 7→ A1 be a
shape. H = Hk ◦ Hk−1 ◦ . . . ◦ H1 ◦ H0 for some sequence of homomorphisms
{Hi}0≤i≤k, where

18 August 22, 2006

1. H0 is a surjective homomorphism from A0 onto a substructure (possibly the
identity); and

2. For each i with 1 ≤ i ≤ k, Hi is a contraction or an augmentation as in
Theorem 1, Clause 1 or Clause 2, or else Theorem 2, Clause 1.

Proof. By induction on the length k of the decomposition.

5.4 A Pruning Condition

Some augmentations make progress toward realized skeletons, and other aug-
mentations make no progress, because although they introduce a strand, that
new strand is a redundant copy of an existing strand. We can prune away these
augmentations, and ignore them when searching for shapes.

We say A′
0 augments A0 with a copy of s if A′

0 results from A0 by an augmen-
tation with a strand s′ such that: (1) nodesA′

0
\nodesA0 = {s′ ↓ j : j ≤ i} for some

i; (2) there is an idempotent I0 = [ψ0, β0] : A′
0 7→ A0 with ψ0(s′ ↓ j) = s ↓ j.

Proposition 8. Suppose A′
0 augments A0 with a copy of s, namely s′. Let H ′ =

[φ, α] : A′
0 7→ A′

1 with A′
1 realized, where φ(s′ ↓ j) 6= φ(s ↓ j). Then there exists

H : A0 7→ A1 such that A1 is realized and properly nodewise less than A′
1.

Hence, letting H ′′ = [φ, α] : A′
0 7→ A′

1 be a shape, φ(s′ ↓ j) = φ(s ↓ j).

Proof. LetGmap A′
0 to a shape interposed intoH ′. By Corollary 3, we may write

G as a sequence of contractions and augmentations, after taking a substructure
that identifies (at least) s with s′. Etc.

6 A Search Strategy

In mechanically searching for shapes from a given starting point, we are essen-
tially building up a number of relations, of which the most important is step,
which represents a single application of one of the authentication tests.

step The relation step(A0,A1) holds if A1 results by a contraction, an outgoing
augmentation, or a listener augmentation, as in Theorem 1, Clauses 1, 2, and
3 respectively; or by an incoming augmentation or a listener augmentation as
in Theorem 2, clauses 1 and 2 respectively. We write step∗ for the reflexive,
transitive closure of step.

realized We write realized(A) to mean that A is realized, which we can determine
directly.

shape We write shape(A,A′) to mean that A′ is a shape of the realized skele-
ton A. By this we mean that A′ is node minimal among realized skeletons
with a node-injective H : A′ 7→ A. So shape(A,A′) implies realized(A) and
realized(A′). We determine shapes as described in Prop. 3.

unreal We also maintain a predicate unreal(A), which expresses the fact that A
cannot ever be realized, i.e. there is no H : A 7→ A′ for any realized A′.

There are three main facts about unreal:

August 22, 2006 19

Proposition 9. 1. If a ∈ nonA and (Lsn[a]) ↓ 1 ∈ A, then unreal(A).
2. If ¬realized(A), and, moreover, unreal(A′) for all A′ such that step(A,A′),

then unreal(A).
3. unreal(A′) and H : A′ 7→ A′′ implies unreal(A′′).

Clause 2 says that, for unrealized skeletons, unreal propagates backward through
step. Clause 3 says that unreal is preserved under homomorphisms.

Given a starting skeleton A0, we would like to determine the set

{A2 : ∃A1 . step
∗(A0,A1) ∧ shape(A1,A2)}.

To do so, we use the following search algorithm.
At any stage, we have a skeleton of interest A, and we know part of the

extensions of the relations step and unreal. We also maintain a set F , the “fringe”
of skeletons we have encountered but not yet taken a step from.

Initially, A is typically a skeleton containing a single strand of the role whose
“point of view” is under analysis, for instance the right side of Fig. 1, 2, or 3. A
has a choice of nonA, uniqueA indicating the assumptions under which we would
like to analyze the protocol. Initially, F = ∅.

1. Take cases on A.
A is realized. If A is realized, we extract one or more shapes A′ (Prop. 3),
recording shape(A,A′). Continue with step 2.
A may be pruned. If A contains a redundant copy of a strand, then we
discard A (Prop. 8). Continue with step 2.
A contains an unsatisfied test. If A is unrealized, then we look for either
an outgoing test pair or else an incoming test node without any transforming
node. Applying Theorem 1, or respectively Theorem 2, we obtain k ≥ 0
candidate augmentations, contractions, and listeners, yielding the skeletons
A1 . . . ,Ak.
If an outgoing test pair or incoming test node is found, but k = 0, then A is
unrealizable; record unreal(A) and use Prop. 9 to propagate unreal backward
through step for unrealized skeletons.
If k ≥ 1, record step(A,Ai) for each i with 1 ≤ i ≤ k. Letting S be the subset
of {A1 . . . ,Ak} that have not yet been considered, then the new F is the old
F ∪ S. Continue with step 2.

2. Now prune F .
Apply Prop. 9 to F : If any A′ ∈ F has a listener strand Lsn[a] with a ∈
nonA′ , then record unreal(A′) and propagate unreal backward through step
for unrealized skeletons. We discard any skeletons A′ such that unreal from
F .

3. Now select the next skeleton A from F if possible. If F = ∅, then exit.
If for some A′, F = {A′} ∪ F ′, where A′ 6∈ F ′, then let A = A′ and F = F ′,
and go to step 1.

By Prop. 7, in step 1, at least one of the cases applies. In particular, if A is not
realized, then there is an unsatisfied test in A.

20 August 22, 2006

Theorems 1 and 2 justify one characteristic of this search algorithm. Namely,
a skeleton A is considered at most once, and only one incoming or outgoing
transformed edge is considered. The propositions say that any homomorphism
to a realized skeleton can still be found, even if this transformed edge is solved
first. Clarify choice of A1 . . . ,Ak.

7 Shape Analysis of Yahalom’s Protocol

We return now to Yahalom’s protocol. We would like to find the shapes accessible
from an initial skeleton that contains all four nodes of a strand sr of responder B,
using parameters A,B,Na, Nb,K. We assume the long term keys ltk(A), ltk(B)
uncompromised, and Nb freshly chosen. Let N0 = {sr ↓ i : 1 ≤ i ≤ 4}, and let
�0 be the strand ordering on s. Starting from the initial skeleton

A0 = (N0, �0, {ltk(A), ltk(B)}, {Nb}),

we would like to find all accessible shapes.

The initiator strand. The pair of nodes ((sr ↓ 2), (sr ↓ 4)) is an outgoing
test pair for Nb, relative to the set of terms S1 =

{ {|A ˆNa ˆNb|}ltk(B) }
∪ { {|B ˆK ′ ˆNa ˆNb|}ltk(A) : K ′ ∈ keys }

and the set of keys X0 = {ltk(A), ltk(B)}. Since ltk(A), ltk(B) ∈ nA0 , when we
apply Theorem 1, the skeletons resulting from Clause 3 are in unreal (Prop. 9).
Thus, for homomorphisms H that do not contract parameters of sr, there is only
one possibility: H adds an outgoing transforming edge m0 ⇒+ m1. In term(m0),
Nb occurs only within S1, but Nb occurs outside S1 in term(m1).

The structure of the protocol in Fig. 3, provides only one possibility: m0 ⇒+

m1 lies on an instance si of the initiator role, specifically (si ↓ 2) ⇒ (si ↓ 3).
Matching term(si ↓ 2) with {|B ˆK ′ ˆNa ˆNb|}ltk(A), we infer si is an initiator
strand with A,B,Na, Nb and some session key K ′. In the resulting skeleton A1

(Fig. 7), (sr ↓ 2) �A1 (si ↓ 2) and (si ↓ 3) �A1 (sr ↓ 4). A1’s non-originating and
uniquely originating atoms are unchanged.

The server strand. We can now introduce the server strand using either an
outgoing augmentation or an incoming augmentation using si ↓ 2. We prefer the
latter, since it is simpler.

Since term(si ↓ 2) = {|B ˆK ′ ˆNa ˆNb|}ltk(A) and ltk(A) ∈ nA0 , the listener
strand is unrealizable. Thus, there is a regular node m1 that precedes si ↓ 2 and
transmits term(si ↓ 2). The structure of the protocol in Fig. 3, provides only
one possibility: m1 is node 2 of a server strand ss. Reading the parameters off
term(m1), the parameters of ss are A,B,Na, Nb,K

′. The resulting skeleton A2

(Fig. 8) has unchanged non-originating atoms. However, the strand ss freshly
generates K ′, i.e. uss = {K ′}, so uA2 = {Nb,K

′}.

August 22, 2006 21

A : si B : sr

• •

�................... •
w

•

wwwwwww

�....................

•

wwwwwww

•

wwwwwww

...- •
w

A, B, Na, Nb, K
′ A, B, Na, Nb, K

Fig. 7. Skeleton A1, with nA1 = {ltk(A), ltk(B)}, uA1 = {Nb}

A : si S : ss B : sr

• •

• �.................................... •
ww

•

wwwwwwww

�..................................... •
ww

?

w
•

wwwwwwww

•

wwwwwwww

..- •
ww

A, B, Na, Nb, K
′ A, B, Na, Nb, K

′ A, B, Na, Nb, K

Fig. 8. Skeleton A2, with nA2 = {ltk(A), ltk(B)}, uA2 = {Nb, K
′}

22 August 22, 2006

Does K ′ = K? We apply the outgoing test with (n0, n1) = ((sr ↓ 2), (sr ↓ 4)),
using the set S2 = S1 ∪ {{|Nb|}K′}. Here we have three cases: (1) Eliminate the
transformed edge with a contraction; (2) Find an outgoing augmentation; or (3)
Add a listener strand for K ′.

Case 1: Contract K ′ to K. The mapping α = [K ′ 7→ K] destroys the outgoing
test edge, since S2 · α contains {|Nb|}K . Let A3 = hullα(A2).

Case 2: Find an outgoing augmentation. An initiator strand s′i with pa-
rameters A,B,Na, Nb,K

′′, for K ′′ 6= K, would receive Nb only within S2 and
transmit it in the form {|Nb|}K′′ , so that Nb no longer occurs only within S2.
However, s′i is a copy of si, in the sense of Prop. 8, so that we will prune the
resulting skeleton.

Case 3: Add a listener strand Lsn[K ′]. We we add a listener strand s` =
Lsn[K ′] to A2, and now have an outgoing transformed edge with (n0, n1) =
ss ↓ 2 , s` ↓ 1, where the uniquely originating parameter is K ′, the set S3 =
{{|B ˆ K ′ ˆ Na ˆ Nb|}ltk(A), {|A ˆ K ′|}ltk(B)}, and X = {ltk(A), ltk(B)}. No
contraction will eliminate this transformed edge; no outgoing augmentation will
resolve it; and no listener strand for a member of X can be realized. So the
listener strand s` is not realizable.

Thus, only the contraction α = [K ′ 7→ K] can lead to a live skeleton, A3.

The source of sr ↓ 3. Finally, sr ↓ 3 is an incoming test node in A3, which
because ltk(B) ∈ nA3 , can be resolved only by an incoming augmentation.
Again by the form of the protocol, only a server strand s′s can be the origin
of {|A ˆK|}ltk(B). Thus, s′s uses parameters A,B,K, although the nonces are not
yet clear. However, since K originates uniquely in A3, and originates on both
ss and s′s, we may identify ss = s′s, thus resolving the remaining parameters.
The resulting skeleton A4 is realized, and is shown in Fig. 9. We may check that
no common occurrences of the same atom can be distinguished while preserv-
ing realization. Thus, A4 is a shape for A0. We have no remaining skeletons to
explore, and so our search has terminated with just one skeleton.

8 Implementing CPSA

In implementing cpsa, we have represented terms, strands, and skeletons in
straightforward ways. A homomorphism [φ, α] : A0 7→ A1 is also represented
directly via an association of strands in A0 to strands in A1 (for φ), together
with a type-respecting association of atoms to atoms (for the replacement α).
When cpsa parses a protocol description Π, it identifies the nodes that are
potential transforming nodes for incoming tests, and the potential transforming
edges m0 ⇒+ m1 for outgoing tests.

cpsa annotates skeletons with additional information about safe atoms. We
say that a is a safe atom in A if unreal(A′) when A′ is A augmented with Lsn[a].

August 22, 2006 23

A : si S : ss B : sr

• •

• �................................... •
ww

•

wwwwwwww

�................................... •
ww

•
ww

...................................- •

wwwwwwww

•

wwwwwwww

..- •
ww

A, B, Na, Nb, K A, B, Na, Nb, K A, B, Na, Nb, K

Fig. 9. Skeleton A4, with nA4 = {ltk(A), ltk(B)}, uA4 = {Nb, K}

By Prop. 9, Clause 3, safe atoms are preserved under homomorphisms. I.e., if
[φ, α] : A0 7→ A1, and a is a safe atom in A0, then a ·α is a safe atom in A1. Safe
atoms observed early in a search may be used repeatedly to prune many dead
branches later in the search. For this reason, we explore the listener augmentation
branches in our search before outgoing and incoming augmentations.

A tricky matter was how to select the sets S to use in applications of Theo-
rem 1. We settled on a trick we call the “forwards-then-backwards” technique.
cpsa plans a sequence of applications of Theorem 1, like Steps 1 and 2 of Sec-
tion 7. To do so, it follows the transmission of the uniquely originating value—
Nb in that case—forwards. Essentially, it follows the intuitive, forwards order of
Steps 1–3 in Section 2. Since Step 3 does not produce an outgoing augmentation,
but only a contraction, it is deferred; each of the previous steps has suggested
an S. We have

1. S1 = {{|A ˆNa ˆNb|}ltk(B)}, and
2. S2 = S1 ∪ {{|B ˆK ′ ˆNa ˆNb|}ltk(A) : K ′ is a key }

cpsa uses the sets in the opposite order, i.e. S2 is used first to introduce the
initiator strand si in Step 1 of Section 7, and then S1 is used to introduce the first
two nodes of the server strand ss. These occur earlier in the resulting skeleton
than the transforming edge introduced using S2. The forwards-then-backwards
technique appears to produce a “good enough” selection of sets S to preserve
the completeness property, Corollary 3, but we have not carefully established
this.

The forwards-then-backwards technique also suggested cpsa’s representation
for the sets S. These sets are not necessarily finite; S2 for instance is not. How-
ever, they are generated by the operations of union and set difference from sets
that are either

1. singletons {t} or
2. all the instances of {t} obtained as some of its parameters vary.

24 August 22, 2006

For instance, {{|B ˆ K ′ ˆ Na ˆ Nb|}ltk(A) : K ′ is a key } consists of all instances
of {|B ˆ K ′ ˆ Na ˆ Nb|}ltk(A) obtained as parameter K ′ varies. Of course, the
singleton t is the set of all instance of t obtained as none of its parameters vary.
Thus, we represent the sets S as finite unions and differences of values λv . t,
where the vector v binds 0 or more atoms occurring in t. Restricting S to the
sets representable in this form does not falsify the completeness property, as can
be seen from the proof of Prop. 7.

In practice, we use unification to determine relevant contractions. We also
use unification to combine augmentation and contraction steps. For instance, if
A contains an outgoing test relative to a, S,X, we unify the transforming edges
m0 ⇒+ m1 in the protocol Π with the components λv . t in the representation
of S. A most general unifier α is successful if a · α occurs only within S · α in
term(m0 ·α), but it occurs outside S ·α in term(m1 ·α). When this is the case, we
obtain the new skeleton A ·α augmented with r ·α, where r ∈ Π is the role that
m0 ⇒+ m1 occurs on. In practice, this provides an extremely focused search.
This use of unification preserves the completeness property. Some protocols and
runtimes on a Thinkpad X31, with a 1.4 GHz Pentium M processor and 1 GB
store, running Linux, are shown in Fig. 10. cpsa is implemented in OCaml.

Protocol Point of view Runtime

iso reject responder 0.193s
Kerberos client 1.443s
Needham-Schroeder responder 0.055s
Needham-Schroeder-Lowe responder 0.124s
Yahalom responder 2.709s

Fig. 10. Protocols with cpsa runtimes

In future work, we intend to augment cpsa with keys generated by hashing
complex terms, which many protocols use for key derivation. We also plan to in-
corporate Diffie-Hellman operations on atoms, as studied in [11]. We also believe
that it will be straightforward to lift the atoms-to-atoms restriction on replace-
ment, and obtain a framework in which compound terms may be instantiated
for parameters. We preferred, however, to work out the underlying theory in the
simpler atoms-to-atoms context first.

References

1. Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols:
Tagging enforces termination. In Andrew D. Gordon, editor, Foundations of Soft-
ware Science and Computation Structures, number 2620 in LNCS, pages 136–152.
Springer, April 2003.

2. Michele Boreale. Symbolic trace analysis of cryptographic protocols. In ICALP,
2001.

August 22, 2006 25

3. Michael Burrows, Mart́ın Abadi, and Roger Needham. A logic of authentication.
Proceedings of the Royal Society, Series A, 426(1871):233–271, December 1989.

4. Shaddin Doghmi, Joshua Guttman, and F. Javier Thayer. Skeletons and the shapes
of bundles. Technical report, The MITRE Corp., 2005. Available at http://www.
ccs.neu.edu/home/guttman/skeletons.pdf.

5. Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Skeletons, homo-
morphisms, and shapes: Characterizing protocol executions. Submitted for publi-
cation, June 2006.

6. Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset rewrit-
ing and the complexity of bounded security protocols. Journal of Computer Secu-
rity, 12(2):247–311, 2004. Initial version appeared in Workshop on Formal Methods
and Security Protocols, 1999.

7. Marcelo Fiore and Mart́ın Abadi. Computing symbolic models for verifying cryp-
tographic protocols. In Computer Security Foundations Workshop, June 2001.

8. Joshua D. Guttman. Key compromise and the authentication tests. Electronic
Notes in Theoretical Computer Science, 47, 2001. Editor, M. Mislove. URL http:

//www.elsevier.nl/locate/entcs/volume47.html, 21 pages.

9. Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, June 2002.

10. Joshua D. Guttman, F. Javier Thayer, Jay A. Carlson, Jonathan C. Herzog,
John D. Ramsdell, and Brian T. Sniffen. Trust management in strand spaces:
A rely-guarantee method. In David Schmidt, editor, Programming Languages and
Systems: 13th European Symposium on Programming, number 2986 in LNCS, pages
325–339. Springer, 2004.

11. Jonathan C. Herzog. The Diffie-Hellman key-agreement scheme in the strand-
space model. In 16th Computer Security Foundations Workshop, pages 234–247,
Asilomar, CA, June 2003. IEEE CS Press.

12. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proceeedings of tacas, volume 1055 of Lecture Notes in Computer Science,
pages 147–166. Springer Verlag, 1996.

13. Gavin Lowe. Casper: A compiler for the analysis of security protocols. In 10th
Computer Security Foundations Workshop Proceedings, pages 18–30. IEEE Com-
puter Society Press, 1997.

14. Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In 8th ACM Conference on Computer and Com-
munications Security (CCS ’01), pages 166–175. ACM, 2001.

15. Lawrence C. Paulson. Mechanized proofs of a recursive authentication protocol. In
10th IEEE Computer Security Foundations Workshop, pages 84–94. IEEE Com-
puter Society Press, 1997.

16. Adrian Perrig and Dawn Xiaodong Song. Looking for diamonds in the desert:
Extending automatic protocol generation to three-party authentication and key
agreement protocols. In Proceedings of the 13th IEEE Computer Security Founda-
tions Workshop. IEEE Computer Society Press, July 2000.

17. R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols.
Journal of Computer Security, 13(1):135–166, 2005. Preliminary version appeared
in WITS ’03, Workshop on Issues in the Theory of Security, Warsaw, April 2003.

18. Peter Y. A. Ryan and Steve Schneider. An attack on APM’s recursive authentica-
tion protocol—a cautionary tale. Information Processing Letters, 65, 1998.

26 August 22, 2006

A Unifying Equivalence Relations

The essential content of Prop. 2 is that there is a coarsest equivalence relation
that satisfies the cascading conditions mentioned in Section 4.2.

We will consider equivalence relations on atomic terms which are type pre-
serving. This means aR b implies a, b have the same type.

The set of equivalence relations R on atomic terms forms a partially ordered
set with respect to coarsening v. Thus is R v S iff R is a coarsening of S,
or equivalently R ⊆ S. Note that R v S iff the each equivalence class of R is
a subset of some equivalence class of S. Thus R v S implies the equivalence
classes of S form a coarsening of those of R. The two extremes are the equality
relation and the relation which identifies everything.

Equiv with coarsening is a lattice (Equiv,v).
An equivalence relation R on atoms induces an equivalence relation also

denoted R on terms, defined by recursion as follows. For non-atomic terms s, t
sR t iff t and s both have the same constructor and the components s1, . . . sn of
s and t1, . . . tn of t, s satisfy si R ti for i = 1, . . . , n.

Proposition 10. If Rλ is a family of equivalence relations on atoms, and s, t
are terms then s

[⋂
λ Rλ

]
t iff sRλ t for all λ.

Proof. Structural induction. If s, t are atomic this is by definition. Otherwise,
s = F(s1, . . . sn), t = F(t1, . . . tn). Then

s
[⋂

λ

Rλ

]
t ⇐⇒ si

[⋂
λ

Rλ

]
ti

⇐⇒ ∀λ, i = 1, . . . , n, si Rλ ti

⇐⇒ ∀λ, sRλ t.

If S is a set of terms, the unification of S, denoted Unif(S) is the smallest
equivalence R relation under which all elements of S are equivalent with respect
to R.

Definition 15. Let A be a pre-skeleton. Strands s, s′ are equivalent with respect
to an equivalence relation R iff for every index k, if the nodes s ↓ k and s′ ↓ k
are both defined, then they have the same sign and term(s ↓ k)R term(s′ ↓ k).

Nodes n = s ↓ k, n′ = s′ ↓ k′ are equivalent iff sR s′ and k = k′.

In the above definition, s and s′ are not required to have the same length.
A transitive relation � on a set X is invariant under an equivalence relation

≡ iff m � n, m ≡ m′ and n ≡ n′ imply m′ � n′. The invariance property implies
that the relation m � n is determined by the ≡ classes of m and n respectively,
and thus passes to the quotient space X/ ≡.

If ≡ is an equivalence relation on X and � is a transitive relation on X,
define

m �′ n ⇐⇒ ∃m1, n1, · · ·mk, nk s.t m = m1 � n1 ≡ m2 � n2 ≡ m3 · · ·mk � nk = n.

Then �′ is the coarsest transitive refinement of � on X invariant under ≡.

August 22, 2006 27

Definition 16. An equivalence relation R on atoms is order compatible with
the pre-skeleton A iff whenever m1 �A n1 Rm2 �A n2 Rm3 · · ·mk �A nk Rm1

then, for all i, mi Rni.

Lemma 17. An equivalence relation R on atoms is order compatible with a pre-
skeleton A iff the coarsest R invariant refinement �′ of �A has the property that
if m �′ n and n �′ m, then mRn.

It follows from the previous lemma that given an A-order compatible equiv-
alence relation R, the quotient structure obtained by collapsing R equivalent
nodes of A, equipped with the image order structure is a pre-skeleton A/R, and
the map A → A/R is a homomorphism.

Proposition 11. If Rλ is a family of equivalence relations on atoms which are
order compatible with the pre-skeleton A, then

⋂
λ Rλ is order compatible with

A.

Definition 18. An equivalence relation R on atoms collapses a pre-skeleton A
iff for every atom a, the set of strands

{s : for some atom b, bR a and b originates on s}

is empty if a ∈ nonA and consists of R equivalent strands if a ∈ uniqueA.

Proposition 12. If Rλ is a family of equivalence relations on atoms each of
which collapses the pre-skeleton A, then

⋂
λ Rλ collapses A.

Proposition 13. If R is an equivalence relation on atoms which has a compat-
ible and collapsing refinement, then the there is a coarsest compatible collapsing
refinement.

