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ABSTRACT 
Emergence of new infectious agents spreading at a global scale has added new urgency to 

the development of real-time disease surveillance systems.  At the same time, biological terror-
ism is a growing concern.  The successful interdiction against SARS demonstrated the confronta-
tion of these urgent crises through rapid and accurate detection of unusual epidemiological 
trends.  Many surveillance algorithms have been proposed in the literature, but comparing these 
approaches is complicated. Benchmarking of temporal surveillance techniques is a critical step in 
the development of an effective syndromic surveillance system. Unfortunately, holding “bake-
offs” to blindly compare approaches is a difficult and often fruitless enterprise, in part due to the 
parameters left to the final user for tuning. In this paper, we demonstrate how common analytical 
development and analysis may be coupled with realistic data sets to provide insight and robust-
ness when selecting a surveillance technique.  Four detection approaches, all part of a family of 
detectors,  are considered:  G-surveillance based on the space-time scan statistic, a uniformly 
most powerful test for exponentially increasing outbreaks, a monotonic regression approach, and 
a non-negative regression approach.  The first of the four is a standard technique, while the latter 
three are new techniques for syndromic surveillance.  All are compared using time series on pa-
tient visits coded as influenza-like illness at Harvard Pilgrim Health Care in the Boston area.  
The tradeoff in detection capability and robustness demonstrates the benefit of a monotonic re-
gression approach for growing outbreaks.  If an exponentially growing outbreak is the target, 
then the uniformly most powerful test delivers nearly optimal performance.   

 

INTRODUCTION 

Successful disease surveillance and early detection are dependent on both real-time col-

lection and timely interpretation of syndromic data. While most surveillance systems are capable 

of monitoring and capturing appropriate data, the detection of early outbreaks remains a consid-

erable challenge. When outbreaks are substantially localized both temporally and spatially, then 

detection is enhanced. However, due to our mobile society, many (if not most) outbreaks will 
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occur over larger geographic scales, reducing the power of spatially oriented tests. Here we focus 

on temporal-only testing strategies applied to a metropolitan area.  

This paper compares the robustness and performance of three temporal surveillance tech-

niques using a twofold approach: 1) a unifying statistical analysis to establish their common fea-

tures and differences, and 2) a benchmarking on influenza-like illnesses (ILI) complaint time se-

ries from the Boston area for Harvard Pilgrim Health Care (HPHC). The ILI time series are con-

venient because “outbreak free” periods can be identified outside of the obvious flu season and 

used for background data. Furthermore, the daily patient counts outside flu season are low to 

moderate and therefore more representative of the serious case tracking that would be used to 

detect the emergence of a dangerous new disease such as SARS or a new virulent flu variety. In 

the analysis below, we use Poisson models to reflect the sampling with low daily mean. For syn-

dromes with high daily count, such as respiratory infection, applying the Central Limit Theorem 

and using a normal approximation would have more general applicability. Similar analysis 

would be developed in this case. 

The early stages of an outbreak may be highly stochastic, with additional complexity re-

sulting from the statistical sampling of the infected population by the surveillance system. Not all 

infected individuals will appear for measurement at a specific emergency department, use an 

HMO, or shop at a participating pharmacy. Some will go to private practitioners or other hospi-

tals; some will simply not be treated. This statistical sampling will be shown below to be a domi-

nant source of the short-term variation. Both the stochastic nature of an epidemic at its early 

stages and sampling effects should be considered when developing detection techniques. While 

the daily rates may not be accurately predictable due to intrinsic, random, day-to-day variations 

that are difficult to account for, it is conceivable that the underlying dynamics producing the 
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daily variations are governed by transient properties that can be tracked to detect change within a 

short time period.  

The algorithm development and analysis begins with a locally stationary Poisson arrival 

model for the patients. An outbreak is characterized by an increase in the daily Poisson mean, 

resulting in stochastic outbreaks. In this paper, we develop detectors for outbreaks with non-

decreasing Poisson mean, but the actual random outbreak will rarely be monotonic.  This time-

varying mean estimate is applied within a detection window of length T, nominally of 3-14 days 

for early detection. This moving detection window scans the time series in real time, as meas-

urements are available, to detect a current outbreak. The vast majority of the syndromic surveil-

lance literature addresses the detection of step increases in patient levels. We address the more 

general issue of detecting monotonic increases in mean as characteristic of the early stage of an 

outbreak following a classic susceptible-exposed-infected-removed model. We address this issue 

with a set of models of increasing generality. A likelihood ratio provides a common basis for a 

family of closely related algorithms, which we compare in this paper. Applying a generalized 

likelihood ratio test (GLRT) to optimize window length results in the G-surveillance statistic [8]; 

this is itself an adaptation of the widely used scan statistic [9]. G-surveillance uses a step in-

crease in mean as the outbreak model. Three new methods for syndromic surveillance are then 

considered.  A new uniformly most powerful (UMP) test is developed as a matched filter for an 

entire class of outbreak profiles. This viewpoint, after application of the Central Limit Theorem, 

is applied in [1] and [2]. Another new approach uses the GLRT formulation in conjunction with 

a monotonic regression viewpoint for the time varying mean to detect generally increasing (but 

otherwise stochastic) outbreaks. Finally, a non-negative regression approach is taken to detect 
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outbreaks that are not monotonic. This may especially be useful for non-contagious outbreaks or 

diseases with long latency periods resulting in clumps of cases at the early epidemic stages. 

 

MASSACHUSETTS SYNDROMIC SURVEILLANCE DATA  

The data were provided by the National Bioterrorism Syndromic Surveillance Demon-

stration Program (NDP) and involve ambulatory care encounters of patients using a large medi-

cal practice in eastern Massachusetts and having health insurance through a major insurer in the 

region [3-6].  Specifically, the dataset consists of counts of new episodes of illness by date of 

medical encounter and by syndrome during the five-year period of January 1, 2000-December 

31, 2004.  “New episodes” of illnesses were those not preceded by an encounter for the same 

syndrome in the previous 42 days.  “Encounters” included office visits, urgent care visits, and 

telephone calls to primary care providers.  Syndromes considered were upper gastrointestinal 

(GI) illness, lower GI, respiratory, influenza-like (ILI), and neurological and were defined in 

terms of sets of diagnostic codes [7].  A single encounter could be included in the daily count of 

more than one syndrome if the patient had diverse symptoms (e.g., vomiting (upper GI) and diar-

rhea (lower GI)) or if one of his/her diagnostic codes mapped to more than one syndrome (e.g., 

influenza with pneumonia, which is in both ILI and respiratory syndromes).   

 

METHODS 

Modeling the Benchmark Data Set 

We develop a straightforward time-dependent Poisson model to describe the time dynam-

ics of tX , the background noise. Figure 1 shows the original patient count time series.  As we 
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will see below, different days of the week have significantly different usage.  Consider a catch-

ment of size  that constitutes the sample population from which the patient population is se-

lected. The explicit dependence on time allows for a slowly evolving population size. On a par-

ticular day t , a member of the catchment population has a certain probability 

tK

tp  of acquiring a 

respiratory infection, and thus experiencing a respiratory syndrome. Given that an individual is 

sick, he or she will then appear at HPHC with a probability . In this case, a simple model for 

the number of patients arriving on a particular day is binomial 

tq

 ( , )t t t tX B K p q

t

t

 .         (1) ∼

In this context, with , the binomial is well approximated by a Poisson random variable 1t tp q �

 ( )t

t t t

X P m
m K p q=
∼           (2) 

Several different timescales drive the evolving statistics of tX . Certainly over periods as long as 

this study the underlying population size tK  may have changed. Demographic attributes, such as 

an aging population, may cause  to vary, while time of the year and severity of the flu season 

will also affect . The parameter  may be influenced by changes in health care policies and 

insurance practices, but day of the week variability most significantly affects the probability of 

arriving at this specific practice given that a respiratory infection has occurred, since office hours 

are limited on weekends. Further adjustments must also be made for holidays. 

tp

tp tq

Separate measurement of catchment size, illness rates, and daily use are difficult without 

measurement of many other variables. Therefore, we follow a nonparametric approach, which 

provides a robust technique applicable to other datasets from different institutions.   
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The time-varying Poisson mean is estimated through Poisson regression, based on the 

daily average in a moving time window and adjusted for day of week and holidays. First we cap-

ture the recent average level tm using a window of length L. Note that although we use L=14 so 

that the window contains an equal number of each day of the week, this is not strictly necessary. 

The Poisson regression model below has a day of the week adjustment that can provide the cor-

rection for windows of various sizes.  

This average level tm provides a baseline for comparison that does not require a time-of-

the-year adjustment. The data set for our benchmarking is not stable enough from year to year to 

allow simple monthly comparisons. The average is estimated through a low-pass filter with coef-

ficients fτ  

1

0

L

t tm f Xτ τ δ
τ

−

− −
=

=∑          (3) 

The guard interval of width δ allows the separation of data used in the mean estimate from data 

used in the outbreak detection. Choosing a larger guard interval is conceptually simpler, since the 

baseline mean estimate tm  is calculated using a disjoint set of data from the current state tX . 

However, larger choices of guard interval introduce larger latencies in the baseline estimate tm  

and degrade performance. We use 0δ = below, which leads to the best detector performance. The 

most obvious choice of filter is a simple block average, with 1f Lτ =  for a window of length L. 

Performance, however, is significantly degraded in this case due to the high side lobes associated 

with this block filter. Since spectral content is the main separating feature between rapid onset of 

outbreaks (with high-frequency energy) and the slowly varying mean (with low-frequency en-

ergy), low filter side lobes are important to overall performance. We address side lobe concerns, 
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while maintaining the interpretation of a time-varying mean estimate, through use of a standard 

Hamming window for fτ  [10], 

 1 0.54 0.46cos 2 , 0,1, ... 1
1

f
Lτ
τπ τ+

⎛ ⎞= − = −⎜ ⎟−⎝ ⎠
L

t

.      (4) 

The resulting filter is comparatively long in duration as compared to other low-pass filter de-

signs, but the additional averaging contributes to the robustness of the design.  

To accommodate the product form of the expression for t t tm K p q= , and separate the con-

ditionally independent daily adjustments, we use a Poisson regression model with non-holiday 

Sundays as the reference: 

( ) 0 1 2 2 2 2 2

2 2

log log( ) ...t t Monday Tuesday Wednesday Thursday Friday

Saturday holiday

m m I I I I I

I I

β β β β β β β

β β

= + + + + + +

+ +
 (5) 

Note, as expected, that the coefficient for log( ( ))m t is close to one, as expected. Using log( ( ))m t as 

an offset parameter (fixing its coefficient at 1) only slightly increases the modeling error. Terms 

adjusting for months and seasons were considered, but provided minimal benefit.   

Applying the Poisson Model 

We can now describe our model and hypothesis test for early detection, based on a small 

window of data of length T. We use the notation 0 , 1,2,...s s Tλ =  to represent the mean of the Pois-

son process under the null hypothesis, when no outbreak is present, from our estimator (3-4) with 

adjustments from (5) .  In the benchmarking with HPHC data, we will estimate 0 sλ  with l sm sam-

pled at the appropriate time. Here we demonstrate T=7 and L=14, so the reduced coefficients of 

a Hamming window reduce the bias in l sm during the earliest stage of an outbreak. We also add a 

short guard interval 7δ = . Under the null hypothesis, we model our measurement with 
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Under the alternative hypothesis, for outbreak mean , we have to 1 0t t oλ λ t= +  and generalized lik-

elihood  ratio (GLR) 

1
1

1 2 1 2 1
1

(( , ,... ) ( , ,... ) | H )
!
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t

T T
tt

e
P X X X x x x

x
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=

= =∏       

0

0
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s s
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T
s

X
t s s

s

e o
X

o e
X

λ

λ

λ

λ

− −

−
=

+

∈ ∏ .      (7) 

Here the outbreak itself is not deterministic, to reflect realistic sampling of the catchment.  Only 

the mean disease level in the catchment increases, with a Poisson model for measurement.  Gen-

eralized likelihood ratios, with different interpretations, are then used to build different tests, 

through choice of different classes Cd.  Each of the classes is discussed below. 

 The G-surveillance Statistic 

The G-surveillance statistic looks for the best window of length k=1,2,…,T. Use of a 

generalized likelihood ratio test optimizes window length, leading to a time-domain version of 

the widely used scan statistic [8,9]. The sum of patients counts over a window of length k is also 

Poisson with 

0 s
1 1

T T

s
s T k s T k

X Po λ
= − + = − +

⎛
⎜
⎜
⎝ ⎠

∑ ∑∼
⎞
⎟
⎟          (8) 

under 0H and  

1 s
1 1

T T

s
s T k s T k

X Po λ
= − + = − +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑∼  
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under 1H .  Note that the maximum likelihood estimate of 1sλ∑ is sX∑ , which is optimal for 

outbreaks shaped like step increases.  We then use this MLE for the unknown total mean under 

Ha and have the G-surveillance statistic with a best estimate for window length 

 

1

0 s
1 1 1

1,2,...,

0 s
1

arg max

T
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k e
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⎝ ⎠
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=

= − +

⎛ ⎞
⎜ ⎟
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⎜ ⎟
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∑

∑ ∑ ∑

∑
�     (9) 

and the test is then, for threshold τ , 
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 . (10) 

Uniformly Most Powerful Test 

A uniformly most powerful test can be developed as a matched filter for an entire class of 

outbreak profiles with shape sf . This viewpoint, after application of the Central Limit Theorem, 

is applied in [1] and [2].  Consider a fixed time window and 

( )
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0 0

0
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∼
 .      (11) 
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Different choices of profile shape so capture different phenomena. For example, a constant pro-

file results in a step function, which might be typical of a noncontagious outbreak source. A lin-

ear shape describes an exponential increase, as typical in the early stages of a contagious out-

break.  The resulting log likelihood ratio test is then  

( )

0

0

0 0

0

1 2
1 0

1
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1 1
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H
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s
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After identifying 

 0 0
1

1' ( s

T
f

s s
s

eγτ τ λ λ
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⎛ ⎞
= − −⎜⎜

⎝ ⎠
∑ )⎟⎟         (13) 

we have the matched filter 

  ( )

1

1 2
1

0

H

, ,..., '

H

>
<

T

UMP T s s
s

L X X X X f τ
=

=∑ .       (14) 

Unless both T and 0 sλ are small, a normal approximation may be developed via the Central Limit 

Theorem to describe performance in terms of matched filters and signal-to-noise ratio. 

 Note that this test statistic does not require knowledge of γ  to control the false alarm rate. 

Then the test is uniformly most powerful in the exponential rate γ , so no a priori knowledge of 

the rate is needed to develop a constant false alarm rate detector.  A single detector is used for all 
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exponentially increasing outbreaks, regardless of the exponential rate, with a fixed false alarm 

rate.  Of course, the test power will be dependent on the exponential rate. 

Monotonic Regression 

Both G-surveillance and the uniformly most powerful test are based on an underlying 

signal shape . Failure to match the shape will lead to reduced performance. A monotonic re-

gression viewpoint for the time-varying mean adapts to generally increasing (but otherwise sto-

chastic) outbreaks. In application, these growing outbreaks may provide the greatest immediate 

threat to public health.  Applying a monotonic regression viewpoint to the generalized likelihood 

ratio results in 

to
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Many techniques are available to solve the monotonic regression problem. Because of the small 

window size, we avoid numerical issues with a direct search over the constraint combinations in 

the argmax . 

( ) (
1
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0
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Note again that the outbreak itself is stochastic, with the profile so describing and increase in dis-

ease in the catchment and Poisson sampling applied. The maximum likelihood outbreak shape 

so� also provides an inference on the characteristics of the outbreak. 

 Non-negative Regression 

A non-negative regression approach is taken to detect outbreaks that are not monotonic. 

This may especially be useful for non-contagious outbreaks or diseases with long latency periods 

resulting in clumps of cases at the early epidemic stages. The maximum likelihood estimate of 

outbreak shape is then 0max( , )s sX λ  with 
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and 

0max( , )s s so X λ=� . 

For the generalized log likelihood detector, 

 ( ) ( )( )
1

NNR 1 2 0 0 0 0
1 1

0

H

L , ,..., ( max( , )) ln max( , ) ln

H

>
<

T T

T s s s s s s s
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= =

= − + −∑ ∑ λ τ .    (18) 

This detector provides the most general detection strategy but, as seen below, may have less 

power for monotonic outbreaks. 
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The Optimal Test 

The theoretically optimal test provides the benchmark for comparison of the various 

techniques. This optimal test is based on two unrealistic assumptions:  the background process 

mean  0 sλ and outbreak process mean 1 sλ  are exactly known a priori, and the resulting measure-

ments are exactly Poisson processes, independent at each time. Obviously neither assumption is 

accurate in practice, but the optimal detector does provide an upper performance bound.   

 Instead of generating a test for a fixed mean, we instead map our actual data set into a 

Poisson process, independent at each time, with known time varying means 0 sλ and 1 sλ . By using 

actual experimental time series to specify a candidate 0̂ sλ , based on our Poisson regression, we 

provide some level of realism while applying a theoretically optimal test.  The mean during out-

break is also considered known with 1 0̂s s oλ λ s= + .  In this case, we can specify and apply the op-

timal test with a log likelihood ratio and 
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Test Thresholds  

Each of the tests above require calculation of a threshold for the test statistic. Due to the 

complex form of the tests, no simple analytical solution is available. Instead, we use our null hy-
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pothesis model based on the time-varying Poisson process resulting from our mean estimation 

procedure, 0 sλ . Then our model for the measured vector in the window is 

0
0

1 2 1 2 0
1

(( , ,... ) ( , ,... ) | H )
!

t txT
t

T T
tt

e
P X X X x x x

x

λ λ−

=

= =∏ .     (20) 

This model is used with repeated sampling to generate test thresholds for each of our statistics 

for a targeted test size.  

 The actual test data set only approximately meets this model under 0H . To assess per-

formance, the actual time series is then used to estimate actual detection and false alarm prob-

abilities. Due to the approximations made in the model for the threshold, and in particular the 

assumption of independence, the actual test size is slightly larger than the target. Of course, this 

can be accommodated in the design. To facilitate detection comparison, we estimate actual de-

tection and false alarm probabilities below. 

 

RESULTS—SENSITIVITY AND SPECIFICITY 

Our test time series clearly contains outbreaks during the peak of flu season. In our per-

formance valuations for detector performance, we exclude these periods of obvious outbreak us-

ing a simple threshold. If at any time during the week used in the detector, we strongly 

suspect an outbreak was present in the initial data set and exclude that time from analysis. With 

this requirement, 89.75% of the data set was used and 10.25% was excluded. Successful detec-

tions during these highly spiked periods are difficult to interpret, since the nominally H0 testing 

time series unfortunately contains outbreaks.  This exclusion allows us to assess performance 

during periods with a lower likelihood of already containing an outbreak.  

ˆ 20tm >
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To evaluate the relative detector performance, we spiked the ILI time series with a ran-

dom outbreak following a Poisson distribution 1 sλ , independent in time, using a one-week-long 

analysis window. Two different outbreak shapes are considered: an exponentially increasing out-

break typical of contagious disease, and a step increase. To evaluate timeliness, detection tests 

were run with only one day of outbreak in the test window, two days of outbreak in the test win-

dow, and so on until the one-week analysis window contained only outbreak day. Since the uni-

formly most powerful test has the possibility of model/outbreak disparity, the mismatch case was 

also analyzed for UMP. Outbreaks were spiked and actual false alarm and detection probabilities 

were tabulated in Table 2. The optimal test provides an upper bound on performance, using the 

assumption that the null hypothesis model is accurate. 

 

DISCUSSION 

Model Validation: Poisson Distribution of Patient Counts  

 We first confirm two properties of the distribution: the Poisson distribution, and the 

decorrelation between time samples. We demonstrate our approach on our HPHC dataset, but the 

reader should note that our technique captures the population health seeking behavior and is gen-

erally applicable to different datasets from different institutions. The Poisson assumption itself is 

not critical, especially for larger daily counts, due to the Central Limit Theorem, but the assump-

tion that the time-varying mean approximates the time varying variance is critical.  Our Poisson 

regression approach in equation (5) leads to a time-varying estimate of the mean , based on 

levels during the last two weeks, day of the week, and holiday status.  

ˆ ( )m t
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Testing this approximation is complicated because the mean changes too rapidly to al-

low enough averaging for a high-quality estimate. Instead, we follow a diagnostic viewpoint that 

is commonly applied in logistic regression. We sort the values of 

tm

tX and  in ascending order 

based on , resulting in 

ˆ tm

ˆ tm sX� . In this sorted data set, samples close together in time have nearly 

the same estimated mean ˆ sm . Since the standard deviation provides the natural scale for error 

probabilities, we then estimate ( )sstd X� using the ensemble of time points with nearest values of 

l sm . We test this approximation on our historic time series. Figure 2 shows the resulting  and 

estimated 

1/ 2ˆ sm

( )sstd X� , using the sorted values. Note that  is a reasonable approximation of 1/ 2ˆ sm

( )sstd X� , except for large values of . This approximation is not perfect and would certainly 

fail any statistical test of fit. In particular, the match is weakest during periods of highest mean 

level.  These high mean periods represent time-localized outbreaks in the original data set, so our 

low-pass filter estimate for outbreak-free levels should be inaccurate during these times.  How-

ever, the approximation is based on a simple underlying model—the Poisson sampling of pa-

tients—and as such is highly robust and widely applicable. Use of this approximation allows the 

development of early surveillance approaches without the expensive, arduous, and often impos-

sible task of collecting many years of syndromic-specific data for each location. 

1/ 2ˆ sm

Model Validation: Prewhitening  

In the usual development of matched filter designs, we would derive a prewhitening filter 

to specifically match the spectrum of the data set. This approach requires large historic data sets, 

so we avoid it here. Instead, we demonstrate that our simple locally stationary Poisson model 

acts as a prewhitening filter. 
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Under a no-outbreak condition, we have developed an approximate distribution for the 

marginal distribution of tX . We now investigate time dependence using the normalized autocor-

relation  

( ) ( )( )
( )( )2

ˆ ˆ

ˆ
t t t t

t t

E X m X m

E X m

τ τ+ +− −

−
        (21) 

for our historic time series as shown in Figure 3. Note that the time series for ˆt tX m−  substan-

tially decorrelates in a single day. We can model tX as uncorrelated from time sample to time 

sample. The Central Limit Theorem would then suggest that the Poisson time series is independ-

ent, as required in the theoretical model. This is only approximately true for periods of low to 

moderate daily count. 

Comparing the Detectors  

 Table 2 provides a comparison of the power and timeliness of all four techniques, bench-

marked with the HPHC time series. In particular, the tradeoff between timeliness, robustness, 

and maximum detection power has been established in a wide number of settings and illustrated 

with the example in Table 2. An actual probability of false alarm of 0.02 was used for analysis, 

which would correspond to approximately one false alarm event per year, given the approxi-

mately one week correlation period in the detector. Obviously, detection was nearly impossible 

in the first day and progressively easier as the outbreak filled the week-long analysis window. 

None of the approximate detectors reached the performance of the optimal test, as expected since 

the time series only approximately fit the model. However, at the seventh day of the outbreak, 

performance of the correctly matched UMP test was comparable to the optimal test, despite limi-

tations in modeling.  In this example, and the many other numerical experiments we undertook, 
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the monotonic regression consistently performed well. The monotonic regression even per-

formed well against the uniformly most powerful test during UMP filter/outbreak match, despite 

the fact that monotonic regression is much less parametric. 

 The uniformly most powerful test performed well, given that it tested for the presence of 

an entire class of outbreaks. This is particularly attractive for testing for exponential growth 

families, since the growth parameter would rarely be known a priori. However, model fil-

ter/outbreak shape mismatch does cause some deterioration and reduces the UMP performance to 

that of the monotonic regression approach.  

 Performance of the G-surveillance statistic, however, was generally inferior. In retro-

spect, this is not surprising. The spatial scan statistic must identify the geographical location of 

an outbreak to detect time-space localized outbreaks. The generalized likelihood test for this lo-

cation is critical. In a time scan setting, the time windows are all nested inside the one week 

analysis window. The maximum operation is in some sense superfluous, since a fixed one-week 

window can still be used to capture the full outbreak energy. In fact, a fixed constant window did 

outperform G-surveillance, especially when the transient filled the entire outbreak window.  

The non-negative regression statistic performed consistently below the other test statis-

tics. This is somewhat surprising, since monotonic regression provided consistently good per-

formance. Non-negative regression does seek a quite general signal structure, making outbreaks 

more difficult to separate from the underlying noise. This suggests that the more general problem 

of identifying any outbreak, regardless of shape, is significantly more difficult than early detec-

tion of increasing outbreaks. 

 

CONCLUSIONS 
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Comparing and selecting temporal surveillance techniques are complicated tasks because 

of the wide variety of techniques in the literature. In this paper, we demonstrate an approach for 

this process based on common analytical development and benchmarking with common data 

sets.   Poisson regression is applied to develop a time-varying model of the number of visits clas-

sified as influenza-like illness to the Harvard Pilgrim Health Care system in the Boston area. 

Four different outbreak detection approaches are contrasted using this common data set, and the 

optimal detector performance is provided as a benchmark. 

A highly nonparametric approach, based on monotonic regression, provided the best 

overall performance and most detection robustness for early detection of stochastic, increasing 

outbreaks.  In situations where an exponentially growing outbreak is the target, then the uni-

formly most powerful test delivers nearly optimal performance.  However, more work remains to 

be done.  Our approach here, with use of common data sets and analytical assumptions, provides 

a uniform approach for evaluating and comparing surveillance techniques. While additional work 

in developing effective surveillance techniques are needed, it is likely that different detection 

techniques may perform differently under various outbreak conditions or datasets. For example, 

a monotonic regression algorithm may be better suited for capturing the early transmission dy-

namics of contagious disease while others respond better to retrospective detection of recurring 

noninfectious disease processes. Finally, some techniques may be region-specific and sensitive 

to localized clustering of disease incidents in time and space while others detect elevated num-

bers across an entire area. Relative advantages and disadvantages of different surveillance tech-

niques cannot be systematically addressed until a uniform evaluation approach is adopted. 
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terms constant 

term 

log( ( ))m t IMonday ITuesday IWednes-

day

IThurs-

day

IFriday ISaturday IHoliday

β  -1.0867 0.9587 0.8663 0.7257 0.6533 0.6573 0.5596 0.0096 -0.6230 

Table 1: Coefficients in the Poisson regression model, using a Hamming window of length L=14 

 

Table 2a:  Detection probabilities for an exponentially increasing outbreak. 
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outbreak length/ 

shape 1 sλ  

1 day 

0 *[0 0 0 ...

 0 0 0 0.10]
sλ

 

3 day 

0 *[0 0 0 ...

 0  0.10 0.22 0.35]
sλ

5 day 

0 *[0 0 0.10 ...

0.22 0.35 0.49 0.64]
sλ

 

7 day 

0 *[0.10 0.22 0.35 ...

 0.49 0.64 0.81 1.00]
sλ

G-surveillance 0.02 0.05 0.22 0.70 

UMP for 

exponential 
families 

0.03 0.09 0.41 0.85 

monotonic 

regression 

0.03 0.10 0.34 0.76 

non-negative 

regression 

0.02 0.07 0.25 0.69 

optimal 0.03 0.12 0.39 0.85 

outbreak length/ 

shape 1 sλ  

1 day 

0 *[0 0 0 ...

 0 0 0 0.60]
sλ

 

3 day 

0 *[0 0 0 ...

 0  0.60 0.60 0.60]
sλ

5 day 

0 *[0 0 0.60 ...

0.60 0.60 0.60 0.60]
sλ

 

7 day 

0 *[0.60 0.60 0.60 ...

 0.60 0.60 0.60 0.60]
sλ

G-surveillance 0.09 0.35 0.55 0.72 

UMP for 

constantl fami-
lies 

0.05 0.28 0.64 0.87 

monotonic 

regression 

0.17 0.50 0.65 0.79 

non-negative 

regression 

0.11 0.37 0.59 0.75 

optimal 0.29 0.57 0.74 0.87 

. 

Table 2b:  Detection probabilities for a constant outbreak. 
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outbreak length/ 

UMP shape 

Filter 

Actual outbreak 

1 day 
[1 2 3 4 5 6 7]  

0 *[0 0 0 ...

 0 0 0 0.60]
sλ

 

3 day 
[1 2 3 4 5 6 7]  

0 *[0 0 0 ...

0  0.60 0.60 0.60]
sλ

 

5 day 
[1 2 3 4 5 6 7]  

0 *[0 0 0.60 ...

0.60 0.60 0.60 0.60]
sλ

 

7 day 
[1 2 3 4 5 6 7]  

0 *[0.60 0.60 0.60 ...

 0.60 0.60 0.60 0.60]
sλ

UMP for 

exponential 
families 

0.10 0.49 0.75 0.79 

outbreak length/ 

UMP shape 

Filter 

Actual outbreak 

1 day 
[1 1 1 1 1 1 1]  

0 *[0 0 0 ...

 0 0 0 0.10]
sλ

 

3 day 
[1 1 1 1 1 1 1]  

0 *[0 0 0 ...

0  0.10 0.22 0.35]
sλ

 

5 day 
[1 1 1 1 1 1 1]  

0 *[0 0 0.10 ...

0.22 0.35 0.49 0.64]
sλ

 

7 day 
[1 1 1 1 1 1 1]  

0 *[0.10 0.22 0.35 ...

 0.49 0.64 0.81 1.00]
sλ

UMP for con-
stant families 

0.02 0.05 0.26 0.74 

 

Table 2c:  UMP detection probabilities during model mismatch.
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Figure 1:  ILI daily patient counts from Harvard Pilgrim Health Care.  Day-of-week variability 
contributes substantially to the overall variability. 
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Figure 2:  Sorting the days based on estimated Poisson mean ˆ sm , allows model comparison of 
square root of means and standard deviations for similar days.  Using a sliding window of 14 
days, the square root of the estimated mean  and sorted mean are very close.  They also well 
approximate the standard deviation, as expected for Poisson processes. 

1/ 2ˆ sm
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Figure 3:  Normalized autocorrelation function.  Note that the process substantially decorrelates 
in a single day, supporting an independent approximation. 
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