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We are developing SWORIER (Semantic Web Ontologies and Rules for 
Interoperability with Efficient Reasoning), which is a system that uses Logic 
Programming to reason about ontologies and rules in order to answer queries. The 
system expects a human developer to create ontologies in the formalisms of OWL-DL 
(Web Ontology Language for Description Logic) along with rules in SWRL (the 
Semantic Web Rule Language) or RuleML (the Rule Markup Language). Then, at 
compile time, this information is translated into Prolog code using XSLTs (Extensible 
Stylesheet Language Transformations). In addition, a Prolog program called ‘General 
Rules’, which is meant to capture the semantics of OWL's primitives, is appended to 
the XSLT output to form a complete Prolog program. We then use knowledge 
compilation techniques to create an efficient version of the program. At run time, the 
system can answer queries and assimilate dynamic changes by reasoning over the 
given information.  

For our prototype, we have developed ontologies and rules in a military command 
and control domain in which a supply convoy moves through an unsecured area. New 
information can become available at any time, such as an approaching sandstorm or 
the discovery of a new hostile theater object. Rules trigger alerts and 
recommendations to assist the commander in making decisions. For example, if an 
enemy unit is within the convoy’s region of interest, the system reports that and 
recommends a new route. 

Recent research has addressed issues similar to ours concerning combining logic 
programming with Semantic Web ontologies and rule technologies. Related work 
includes Description Logic Programming [2, 4, 6], answer set programming [1, 5, 7], 
and courteous logic programs [3]. In particular, we are building on the 
groundbreaking work of [8], addressing a number of problems that the paper 
suggested were unsolvable.  

For example, Prolog typically has negation as (finite) failure, while OWL uses 
logical negation. So we created a new Prolog predicate called logicNot. Also, to 
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address the fact that Prolog does not allow disjunction in the head, we will create 
another Prolog predicate, or. The logicNot predicate enables SWORIER to 
represent OWL's open world assumption and to reason about complementary and 
disjoint classes. And with the or predicate, SWORIER can handle enumerated 
classes (the owl:oneOf primitive). 

We created a Prolog predicate for each OWL primitive, unlike [8], who made the 
ontology's (object-level) classes and properties into Prolog predicates. Our syntax 
makes it easier to enforce substitutivity of equivalent classes and to handle 
inconsistent cardinality restrictions. 

Most inconsistencies can be addressed in multiple ways, such as by sending an 
error message to the developer or by creating a new unnamed individual to satisfy a 
constraint. In this way, we address constraints such as those imposed by cardinality  
and existential quantification. 

At run time, SWORIER can reason about queries, switch from one rule set to 
another, and assimilate assertions and deletions of individuals. 

We ran experiments with the convoy use case described above. SWORIER was too 
slow for practical use until we implemented three techniques: extensionalization, 
avoiding reanalysis, and code minimization. Now SWORIER's knowledge 
compilation phase takes less than seven hours, and at runtime, SWORIER can answer 
a query in less than a second and assimilate a dynamic change in a few milliseconds. 

In the future, we intend to test our ideas that address issues involving disjunction, 
inconsistencies, enumerated classes, cardinality, etc. We will also implement more 
OWL primitives and enable SWORIER to handle more kinds of dynamic changes.  
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